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Nonstationary filtration in partially saturated porous media )

by

C.J. van Duyn & L.A. Peletier

ABSTRACT

From the mathematical formulation of a one-dimensional flow through a
partially saturated porous medium, we arrive at a nonlinear free boundary
problem, the boundary being between the saturated and the unsaturated re-
gions in the medium. In particular we obtain an equation which is parabolic
in the unsaturated part of the domain and elliptic in the saturated part.

Existence, uniqueness, a maximum principle and regularily properties
are proved for weak solutions of a Cauchy-Dirichlet problem in the cylinder
{(x,t): 0<x<1, t20} and the nature, in particular the regularity, of the
free boundary is discussed.

Finally, it is shown that solutions of a large class of Cauchy-
Dirichlet problems convergettowards a stationary solution as t + « and

estimates are given for the rate of convergence.

KEY WORDS & PHRASES: nonlinear elliptic-parabolic equation, free boundary,
existence, uniqueness, maximum principle, regularity,

asymptotic behaviour.

This report will be submitted for publication elsewhere.






1. INTRODUCTION

During the last two decades a great deal of progress has been made on
the mathematical analysis of flows through porous media [1,2,3,5,6,9,10,11,
12,14,15,18]. Much of this work, however, has been concerned with flows
which were either completely saturated or completely unsaturated. In this
paper we shall consider the flow of a fluid in a porous medium which is
only partially saturated. This leads to a free boundary problem, the bound-
ary being between the saturated and unsaturated regions. In the context of
ground water flow this interface is called the water table.

Consider a homogeneous, isotropic and rigid porous medium filled with
a fluid. Let g denote the macroscopic velocity of the fluid and c the volu-
 metric moisture content. If c is the moisture content at saturation, we

have 0 < ¢ < c. Then the flow is governed by the confinuity equation

ac . _
EYS + divg=20 (1.1)

and Darcy's law
q = - K(c) grad 9, (1.2)

where K is the hydraulic conductivity and ® the total potential (hydraulic
head) (cf. BEAR [4], p.488, RAATS and GARDNER [17]). If absorption and chem-
ical, osmotic and thermal effects are ignored, ¢ may be expressed as the sum
of a hydrostatic potential ¥ due to capillary suction and a gravitational
potential [4]. Thus, if we choose the z-coordinate along the gravity vector,

we may write

® =9y + z. (1.3)
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Eliminating g and ¢ from (1.1)-(1.3) we obtain

ac 3

— = i + — . .
5t div(K(c) grad ) 2 K(c) | (1.4)
Between the variables c and ¥ there exists an empirical relationship

which can be quite complicated because of hysteresis effects. However, we

shall ignore these effects and assume that we may write c¢ = c(y), where

(i) ify <0, 0 = c) <‘E and ¢ is strictly increasing;

(ii) if ¢ > 0, c(y) = c.

Equation (1.4) now becomes

P o d
Fo c¥) = div(D(Y) grad V) + o7 D) (1.5)

where D = K o c. Note that in the saturated region (1.5) reduces to
N = 0.

Thus, equation (1.5) is of elliptic type in the saturated region and of
parabolic type in the unsaturated region. Across the boundaries between
these regions one would expect c and g to be continuous.

In this paper we shall restrict our attention to one-dimensional flows

» for which K(c) = KO. Then (1.5) becomes

(C(W))t=w ’

XX

where subscripts denote differentiation, and K, has been set equal to unity.

0
Let O = {(x,t) :0 <x <1, 0<t <T}, where T is some fixed positive

constant. Then ous objéct is to study the Cauéhy—Dirichlet problem

(c(u))t =u in QT (1.06)
(1) u(0,t) = -1, u(l,t) = +1 for 0 <t <T (1.7)
1c(u(x,0)) = vo(x) for 0 £ x <1, (1.8)

where the function c: [-a, =) + [0,1] (a > 1) satisfies the following hypo-

theses.

Hla. c(s) is Lipschitz continuous and strictly increasing on [-a,0]. More-

over dc(s)/ds > O whenever it exists on (-a,0);



Hlb. c(s) =1 for s =2 0.

As regards the initial value Vyr We assume that there exists a function

) [0,1] > R which satisfies the hypotheses

H2a. u, is Lipschitz continuous on [0,1];

0
H2b. uo(O) = -1, uo(l) = +1 and uo(x) > -a on [0,1],
such that
c(uo(x)) = VO(X) for 0 < x £ 1. (1.9)
It should be observed that since c'(s) = 0 for s > 0, u, is not uniquely

0
determined by vy

One approach to Problem I is to assume the existence of an interface
x = r(t), to solve (1.6) on both sides of it and then to patch the solutions
together at the interface, using the continuity of c and g = -u - This leads
to a condition from which the function ¢ then can be determined [7].

Another approach is to define a class of weak solutions on the entire
cylinder éT' to establish their existence, and to show that they have prop-
erties, which are to be expected of physical flows [13]. It is this second
approach which we shall adopt in this paper.

Inspired by the class of weak solutions defined by OLEINIK, KALASHNIKOV
and YUI-LIN for the porous media equation [14] we introduce the following

notion of weak solution.

DEFINITION. A function u(x,t), defined a.e. in 6T' will be called a weak

solution of Problem I if (i) c(u) € C(é ), u possibly redefined on a set

T
of measure zero, (ii) u - u € L2(O,T;Hé(0,1)), where u(x) = 2x-1 and (iii)
u satisfies the identity
U {d)xux - ¢tc(u) laxdt = J d)(x,O)vo(x)dx (1.10)

Qp
for all ¢ € C1(§T) which vanish for x = 0,1 and t = T.

~ The plan of the paper is the following. In section 2 we prove the
existence of a weak solution. This is done by approximating c and Uy by
sequences of smooth functions {cn} and {uOn} such that cé > 1/n for all
n > 1. For each n 2 1, the equation (cn(u))t = U is now uniformly para-

bolic and has a unique smooth solution u which satisfies (1.7) and the



initial condition u(x,0) = UOn(X), 0 < x £ 1. We then extract a subsequence
uu, which converges weakly in I?(O,T;Hl(o,l)) to an element u, which is then
shown to possess all the properties of a weak solution.

In section 3 we establish the uniqueness of weak solutions and a maxi-
mum pringiple for the concentration c(ﬁ). Then in section 4 we discuss the
regularity of weak solutions.

Let v = c(u), where u has been chosen so that v ¢ C(@T). Suppose there
exists a point x € (0,1) §uch that VO(X) <1 on [0,x) and Vo(x) =1 on [x,1].
Then we show in section 5 that there exists a function z: [0,T] - (0,1) such

that for each t ¢ [0,T]:

v(ix,t) <1 for 0 £ x < ¢(t)

vix,t) =1 for z(t) < x < 1.

Thus, ¢ defines the interface in Problem I. Subsequently we derive a number
of properﬁies of this function C.

Finally, in section 6 we show that
v(x,t) > v(x) = c(u(x)) as t > «

where u(x) = 2x-1, uniformly on [0,1], and we give two estimates for the
" rate of convergence.

It is a pleasure to acknowledge a number of fruitful discussions with

Ph. Clément and J. van Kan.

2. EXISTENCE

We begin by approximating the function c in equation (1.6) by a sequence

of smooth, strictly increasing functions {cn}.
LEMMA 1. Suppose c: [-a,») - [0,1] satisfies hypotheses Hla, b. Then there
exists a sequence {cn} c Cm(IU and a constant K > 0 such that

(1) cn(s) + c(s) as n + » uniformly on bounded subsets of [-a,®);
(ii) 1/n < cé(s) < Kon R for all n = 1;

(iii) if ¢ is concave, then c;(s) < 0on R for alln=1.

PROOF. Let C: R - (-»,1] be a uniformly Lipschitz continuous extension of



¢ to R such that € ¢ Cl(—m,—a) and ¢'(s) = constant and positive for s < -a.
Let p € Cg(ﬂn be a nonnegative function such that p(s) = 0 for |s| 2 1 and

[E{p(s)ds = 1. Then for each n =2 1, we set pl/n(s) = np(ns) and we define

8-

c (s) ==s +J pl/n<r—s)'8(r—-r1;) dr. (2.1)

R

(o]
Clearly c € C (R), and we assert that {cn} has the desired properties.
The first property follows from the Lipschitz continuity of ¢ and the
second one from the monotonicity of C. Let A ¢ [0,1] and Sl' s, € R. Then,

CAAS1+(1'A)52%=%{Asl+(1_x)s2}+- o) n(r—Asl—(l—A)sz)E(r—%?dr

8=

~ 1
{)\Sl+(1-)\)s2}+ 0 n(z)c()\(z+s 'H) +

1/
1/ 1

R

R

+ (1-1) (z+s.-3)) az
2 n

>

B

f ~ 1
{Asl+(1—A)52}+XJ pl/n(r—sl)c(r—EOdr
R

+ (1-)) [ pl/n(r—s2)3(r—%)dr,
r

where we have used the fact that if ¢ is concave, it is possible to choose

an extension € which is also concave. Thus
- > -
cn(As1+(1 A)sz) 2 A cn(sl) + (1 A)cn(sz).

Since c, € Cm(nU this establishes the third property.

Next, we approximate uO by a sequence of smooth functions {uOn}. Set

-2 - uo(—x) -1 <x<0

31 = < <

u.o(x) uo(x) 0 <x<1
2 - uO(2-x) 1 <x <2

and define for n = 1:
2
= - 3 <
uOn(x) [ pi/n(x y)uo(y)dy 0 £<x<1., (2.2)

-1



LEMMA 2. Suppose U

negative function with support in [-1,1] such that flzp(x)dx =1, p(-x) = p(x)

satisfies hypotheses H2a,b and p € C;(IU is a non-

and xp'(x) £ 0 for x ¢ R. Then the sequence {uon} c c”([o,1]) defined by
(2.2) in which pl/n(x) = np(nx) has the following properties:

(i) uOn(X) - uo(x) as n > « uniformly on [0,1];
i g = - = " = " = .
(ii) uOn(3i) 1, uon(l) 1, uOn(O) uOn(l) (1? for(;fl n>1;
(iii) if u, and u'?) poth satisfy H2a,b and uy " zuy" on [0,1], then
u(l) > u(2) on [0,1] for all n = 1.
On On

PROOF. Parts (i) and (ii) follow from the continuity of u. and the symmetry

0

. ~ . _ (1) ~(2) _ () (@)
properties of U and p. (iii) Define w = uy uO and W= uOn uOn .
Then
2
= — < <
wn(x) J pl/n(x v)w(y)dy 0 <x < 1.
-1

It is clear that wn(x) <0if 1/n<x <1 -1/n. Thus, choose x ¢ (0,1/n).

Then we can write

0 x?l/n
w (x) = J pl/n(x—y)W(y)dy + J pl/n(x—y)W(y)dy
x-1/n 0
x+1/n

J{ {pl/n(x—y) - pl/n(xw) }w(y)dy
0

1\

0

in view of the asymmetry of w and the properties of p. Similarly, wn(x) >0
)

1 2
for x € (1-1/n,1]. Hence uén > uén) on [0,1].

We now consider for each n € W the problem

v = :
[cn(u)ut u in QT (2.3)
I(n) qu(o,t) = -1, u(l,t) = +1 for O <t £T
u(x,0) = uOn(x) for 0 < x < 1.

The properties of the functions c_ and uOn guarantee that Problem I (n)

. 2+1 = )
h luti C .
as a unique solution u_ e (QT) ncC (QT)



LEMMA 3. Let m = max{|u0(x)|: 0 <x <1} and L = ess sup{lué(x)]: 0 <x <1}
Then

|un(x,t)l < M= max{m,1} and lunx(x,t)l <L

for all n € W and all (x,t) € éT'

PROOF. The bound on u, is an immediate consequence of the maximum principle.
To obtain the bound on unx’ we first derive a uniform bound on unx at the
parabolic boundary PT of QT. Let Iuél <L a.e. on (0,1), then it follows
from (2.2) that Iuénl < L on [0,1] for all n = 1. Now consider the functions
wi(x) = -1*Lx. Then w_ < un <w on FT. Since w+ and w_ both satisfy (2.3)

+

it follows from the maximum principle that w_ < u, < W, in éT' and hence
]unx(O,t)l <L for 0 £ t < T. In the same way we obtain that lunx(l,t)l <L

for 0 £t <7T. Thus |u | <L on T_ for alln = 1.
nx T

Next, we differentiate (2.3) with respect to x. Putting z = u this

yields

zt = a(x,t)zxx + b(x,t)zX
v -1 " =2 . .
where a = {c'(u )} and b = - ¢"(u_)c (u)u__. In view of the properties
n n n n n n’ nx
of u and c_ it follows that a and b are uniformly bounded in QT, and

n
2
c’1

zZ € (QT) n C(§T). Hence, by the maximum principle

@gxlz(x,t)l < max|z(x,t)| < L

Op T

which proves the second estimate.

REMARK. By a slight modification of the proof of Lemma 3 one can prove the

following result: If ué(x) > 6 >0 a.e. on (0,;1) then
nx
for all n ¢ W and all (x,t) € éT'

" Set

w =u_ - u,
n n

where u = u(x) = 2x-1 on [0,1]. Then it follows from Lemma 3 that {wn} is

a bounded sequence in the space LZ(O,T;Hé(O,l)). Hence there exists a



subsequence {wu} which converges weakly to an element w € L2(O,T;Hé(0,1)).

Let
u=w+u , (2.4)
then we shall show that u has all the properties required of a weak solution.

Plainly u possesses the second property. Let us next turn to property

(i) . For convenience we write
v (x,t) =c (u (x,t)) neN (x,t) € QT.

LEMMA 4. The sequence {vn} is uniformly Lipschitz continuous with respect

to x and uniformly Hélder continuous (exponent %) with respect to t in éT'
Before proving Lemma 4, we establish an auxiliary result.

PROPOSITION 1. Let f € Cl([O,l]) have the following properties:
. b
(i) |£f'|l <A on [0,1], (ii) If f(x)dx] < € for any a,b € [0,1]. Then
a

|£(x)| < max{2e, v2ae} for 0 < x < 1.

The proof is elementary, and we shall omit it.

Proof of lemma 4. By Lemma 3, and the properties of {cn}:

v 1= lc;(un)llunxl < KL in §T.

Hence, {vn} is uniformly Lipschitz continuous with respect to x in éT'
Define the rectangle R = (a,b) X (t1’t2) c §T' and integrate (2.3) over
R. This yields

b )
J {vn(x,t2) - vn(x,tl)}dx = J {unx(b,t) - unx(a,t)}dt.
a t1

Hence by Lemma 3
b
'l[ {vn(x,tz) - vn(x,tl)}dx| < 2L|t2—t

1
a

We now apply Proposition 1 with



f(x) = Vn(x’tZ) - Vn(x’tl)'
Since If'l < 2KL, we may conclude that for [t2-tll small enough
lv_(x,£) - v_(x,£)] < 2/&T [e -t |
n-’'"72 nro0 b7 2 "1

for all x ¢ [0,1].

It follows from Lemma 4 that the sequence {vn} has a convergent sub-

sequence, denoted again by {vu}, such that

B

v >V as H > ® in C

u (QT)' (2.5)

where B ¢ (0,1), and v € CO+1(§T).

LEMMA 5. Let u and v be defined in (2.4) and (2.5) respectively. Then

= c(u é.e. in Q.
v (u) On
PROOF. Define

D

{(x,t) € QT: v(x,t) < 1}

1}

-
Il

{(x,t) € Qpi V(x,t)

~T'

Ix—xol + lt-tol < r}. In view of (2.5) there exists a ny>1andap>0

(i) Let (xo,to) e D, and set 28 = 1 - v(xo,to). Define N = {(x,t) € Q_:

such that

1 - 36 < &u <1-6 in N

for all 1 =2 n For each n =2 1, we may write

0
Moreover, in view of the assumptions on c:
max{l(cgl(s))'lz nx1, c(-a)+8§ < s < 1-8} = C(8) < o,

Hence, if we set IG = [c(-a)+§,1-6], then
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C(6)|v -v_ | + max Ic—l(s) - c_l(s)l
o Hy seIa My Ha

o
|

o]

A

A

C(8)|v. -v. | + C(%8) max |c_(r)-c_(x)],
Mo ¥ —asr<0 "

for ul,ﬁz large enough. Hence {uu} is a Cauchy sequence in C(ﬁp), and there-
fore converges to an element u*e C(ﬁp). In view of the continuity of c¢ this
implies that v = c(u*) in ﬁp.

Notewthat as y - o, wu -~ w in LZ(QT) and hence uu -~ u in L2(QT).
Let ¢ € CO(Np)' Then

u > u > o
(¢, U)Lz (¢, )L2 as u
by the weak convergence of {uu} and

*
(p,u) , > (¢p,u) as U >
u .2 2
L L
by the uniform convergence of uu in ﬁp. Therefore

(9m) , = (6,u”) ,
L L

0 * :
for any ¢ € CO(Np) and hence u.= u a.e. inin. Thus v = c¢(u) a.e. in Np

and hence, because (xo,to) was an arbitrary point in 0, v = c(u) a.e. in D.

(ii) Let € > 0 and let
PE = {(x,t) € QT: vix,t) > 1 - g}.

By (2.5) there exists an n, € N such that if y =2 n

1 1

v. >1 - 2¢ in P .
U €

Hence, if y =2 n

w =c Yw ) 2 t1-2e). (2.6)
TR u

Let ¢ € CS(PE) be nonnegative. Then (2.6) and the weak convergence of {uu}
imply that
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o
IA

. -1
llm((b,uu cu (1-2¢))

2
L
-1
= (p,u-c " (1-2¢)) ,.
Thus L
u>c (1-2¢) a.e. in Pe} (2.7)

Because P c Ps for any € > 0, it follows that (2.7) holds in P for any € > 0

and hence, letting € tend to zero we obtain
u=20 a.e. in P.

This implies that c(u) = 1 a.e. in P, Since v = 1 in P we have proved

that v = c(u) a.e. in P. This completes the proof of the lemma.

Thus by Lemma 5 and (2.5) u has property (i), and it remains to verify
that u has property (iii).

Let ¢ € Cl(éT) be a test function, i.e. it vanishes at x = 0,1 and at
t = T. Then, because un is a classical solution of Problem I(n) we have

1

JJ {¢Xunx—¢tcn(un)}dxdt = J ¢(x,0)cn(u0n(x))dx. (2.8)
Qp 0

" If we pass in (2.8) to the limit through the subsequence {uu} and use (2.5)

we obtain
1

JJ {¢Xux—¢tv}dxdt = J ¢(x,0)v0(x)dx.
Q 0

T

Since, by Lemma 5, v = c(u) a.e. in QT, it follows that u satisfies (1.10)

and hence possesses property (iii).

Thus the function u defined by (2.4) is indeed a weak solution of

Problem I. This completes the proof of the existence theorem:

THEOREM 1. Suppose that the function c satisfies hypotheses Hla,b and that

v0 is such that there exists a function uO which satisfies H2a,b. Then there

exists a weak solution of Problem I.
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3. UNIQUENESS AND A MAXIMUM PRINCIPLE

In this section we shall establish uniqueness of the weak solution u
defined in the previous section, and a maximum principle for the concentra-

tion.

THEOREM 2. Let the function c satisfy hypotheses Hla,b. Then Problem I has
at most one weak solution.

PROOF. Let u1 and u2 be two weak solutions of Problem I. Then if we substi-

tute them into (1.10) and substract, we obtain the identity.

” [c1>x(u1—u2)X - ¢t{c(u1)—c(u2)}]dxdt =0 (3.1)

Or

for all ¢ € C1(§T) which vanish at x = 0, x =1 and t = T. It follows from
a completion argument that (3.1) continuous to hold if ¢ is taken from the
set Hl(QT) n C(QT) and vanishes at x = 0, x = 1 and t = T. Hence, for any

t1 e (0,7], (3.1) holds if we substitute

t1
[J {ul(x,s)—uz(x,s)}ds 0

IA
kg

IA
.
o
IA
t
A

o+

¢<x,t)=Jt
10 0O<x<1, t <ts<T
and we obtain
i
5 J {¢X(x(0)}2dx + JJ (ul—uz){c(ul)-c(uz)}dxdt = 0.
0 Q

€y

Since both integrals are nonnegative, it follows, that both must vanish,

and hence that

t
¢ 1
L J {ulx(x,s)—u2x(x,s)}ds =0 a.e. on [0,1]. (3.2)
0
Let us write w = u1 - u2, and let y(a,b) denote the characteristic

function of the interval (a,b) ¢ R. Then utilizing the fact that t1 is

an arbitrary point in (0,T], it follows from (3.2) that
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JJ X(xl’x2)x(t1’t2)wdedt =0
O

for arbitrary intervals (x1,x ) ¢ (0,1) and (t ,t ) < (0,T). Hence W= 0
a.e. in Q . Because, by property (ii) of weak solutlons W € L (0,T; H1(O 1)),

this implies that w = 0 a.e. in QT, and hence that u, = u, a.e. in QT.

COROLLARY. By Lemma 5, the uniqueness of u implies the uniqueness of the

concentration v = c(u) in\éT.

THEOREM 3. Suppose the function c satisfies hypotheses Hla,b and v01 and

v02 are such that there exist functions u01 and uo2 which satisfy H2a,b.
Let u, and u, be the weak solutions of Problem I, corresponding to, respec-—
, , S ,

tively V91 and Vo2* Then, if Vo1 Z Vpp On [0,1], it follows that c(u1)22c(u2)
a.e. 1in QT.
PROOF. By (1.9)

c(u01(x)) > C(uoz(X)) on [0,1]. (3.3)
We shall show that U and u02 can be chosen so that

>
u 1(x) > uoz(x) on [0,1]. | (3.4)
- Suppose at a point Xy € (0,1),
u01(x0) < uOZ(XO)' (3.5)

Then it follows from the monotonicity of c that
‘<
c(uol(xO)) < C(uOZ(XO))'

In view of (3.3) only equality can apply, and this is only compatible with
i >
(3.5) if u01(x0) > 0 and hence uOZ(XO) > 0.
Thus (3.4) can only be violated at points in (0,1) where both u and

01

u are nonnegative. However at these points we may modify Ugq and Uy

02
provided they remain nonnegative and Lipschitz continuous. Thus, at points

where u 2 =2 0, we redefine u = 0, except for a sufficiently

0 0 02
small interval (1-8,1]. Then, in view of the Lipschitz continuity of u

o so that u

o1’
we can achieve inequality (3.4).

Let uin be the solution of Problem I(n) with initial value uOin

(i =1,2). Then by (3.4) and Lemma 2, u u on [0,1] and hence, by

>
Oln 02n
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the maximum principle

S .
Y1n = Yon in QT

for every n =2 1. This implies, by the monotonicity of c that

cn(uln) 2 cn(u2n

) in QT

for every n 2 1 and hence, by (2.5) and Lemma 5,
C(ul) > c(u2) a.e. in Q .

Because c(ul) and c(uz) are uniquely determined by v01 and v02 the theorem

is proved.

4. REGULARITY

In this section we derive three results about the regularity of weak

solutions of Problem I.

THEOREM 4. Let u be the weak solution of Problem I, in which c and o satisfy

the hypotheses imposed in Theorem 1. Then u € L2(0,T;H2(O,1)).

e ;
PROOF. Let ¢ € (0,%) and On = (e,1-€) x (g,T]. Let u be the solution of
Problem I(n).Thenun € Cm(ég) and hence, if we multiply (2.3) by u . and
integrate over Q;, we obtain

|

1-¢

T 1-¢

L2 f 1-e 2

cn(un)untdxdt = J [unxunt]e at + % unx(x,e)dx
€ €

j
£
1-¢

-5 I u2 (x,T)dx.
nx
€

+ 2+1 =
. . -> = =
At this point we let € 0 . Because un € C (QT) and unt(O,t) unt(l,t) 0

for t € [0,T], we obtain in the limit

T 1 1

2 2
1 < 1
I I cn(un)untdxdt <k [ uOndx
0 O 0
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or because lc&(s)l <K for all s €e R and n = 1,
1
JJ uixxdxdt <LK j uéidx.
Qp 0

Remembering that u, and u . are uniformly bounded with respect to n in QT'
it follows that the sequence {un} is bounded in L2(O,T;H2(0,1)). This implies
that there exists a subsequence of {uu} which converges weakly to an element
U e L2(O,T;H2(O,1)). Plainly § = u.

In the region D, where v < 1, the equation is parabolic and u can be
shown to be a classical solution of Problem I. This is the content of the

following theorem. We shall impose an additional condition on the function c.

Hlc. The restriction of ¢ to [-a,0] belongs to C2([—a,O]) and c" < 0.

THEOREM 5. Let u be a weak solution of Problem I, in which c¢ and v, satisfy

0
the hypotheses imposed in Theorem I and Hlc. Then u is a classical solution

of equation (1.6) in the region
D= {(x,t) € QT: v(x,t) < 1}.

PROOF. Let (xo,to) € D. Then, because Vv ¢ C(QT), there exists a neighbourhood

: NO c D of (xo,to) and a 61 > 0 such that v < 1 - 361A1n NO. Since vu -+ v as

Y > o« in C(QT), there exists a My 2 1 such that if p = uo

= > 1 - 26 in N_. 4.1
vu cu(uu) 1 0 ( )

By Lemma 1 (i) there exists a Wy 2 1 such that if p > Wy
Icu(s)—c(s)l <8  fors e [-mml. (4.2)
Thus, if p = u* = max{uo,ui}, it follows from Lemma 3 that

c(uu) > 1 - 61 in NO. (4.3)
In view of the fact that c € C2([—a,0]) and ¢' > 0 on [-a,0) (4.3) implies

the existence of a constant 62 > 0 such that if p 2 u*

-M<u 3—62 in N (4.4)

u
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We now consider equation (2.3), writing it as

u, = au(x,t)uxx, (4.5)

where

-1
x,t) = 1c' t .
au( /t) { u(uu(x, ))}
Since c¢' > 0 on [-a,0), there exists a 63 > 0 such that

c'(s) = 63 for s € [—M,—62]. (4.6)
Let ¢ be a concave extension of c to R, as in Lemma 1. Clearly we

may assume that c o« C2((—W,0]). Then for s € [-a,0]
1/n

+Jp
-1/n

8=

el (s)=c' (s) = Jn(2) (C (542 -3 % (s) Yaz. (4.7)

1
Because ¢ is concave, the integral in (4.7) is nonnegative and hence

c'(s) - c'(s) = L for s € [-a,0]. (4.8)
n n

Thus, by (4.4) and (4.6) we have that if p 2> u*

53 < cﬁ(uu) < K in N (4.9)

and hence

1/K < au < 4/63 in No.

Therefore (4.5) is uniformly parabolic and the coefficient au is

uniformly bounded away from zero in N

0+1 = 0 0+1 =
By Lemma 4, vn € C (NO) and hence, in view of (4.9) uu € C (NO)
as well. Therefore a € CO+1(ﬁO) and it can easily be verified that the

if p is large enough.

norm of au in CO+1(ﬁO) is uniformly bounded with respect to u. By standard
regularity theory ([8], p.64) this implies that there exists a neighbour-

hood N, © N, of (xo,to) such that the solution uu of (4.5) belongs to

1 0
2+1 -
C (Nl)’ the norm being uniformly bounded with respect to u 2 u*. Hence

+ -
there exists a subsequency of {uu} which converges in C2 0‘(Nl) (0 < a<1)

2+1 =

* *
to an element u € C (Nl)' It is clear then that u = u a.e. in N1 and

satisfies (1.6).
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Whereas the definition of a weak solution and Theorem 4 supply infor-
mation about the dependence of u on x, we have as yet very little information
about the dependence of u on t outside the region 0. In the following theo-
rem we partially fill this gap, however only at‘the expense of an additional

condition on uo.

H2c. u, € C2+Y([O,1]) (0 <y <1, uS(O) = ug(l) = 0 and

uS(x) > -k c'(uo(x)) on [0,1]

for some k > 0, whenever uo(x) # 0.

THEOREM 6. Let u be the weak solution of Problem I in which c and vO are
such that hypotheses Hla-c and H2a-c are satisfied. Then there exists a

- *
function u*: QT -+ IR such that u = u a.e. in QT and
* *
- > - -—
u (X’tl) u (x,t2) > K(t1 t2)

for all (x,tl), (x,t2) € éT such that 0 < t2 < t, <T,

PROOF. Let u be the solution of Problem I(n) in which the initial function

u has been replaced by u

2+y =
on Then u € C (QT) and hencg

0°
1 — n
cn(uo(x))unt(x,O) = uo(x) on [0,1].
In view of H2c and (4.8) this means that
unt(x,O)A> -k on [0,1].

i = = > -
At the lateral boundaries we have unt(O,t) unt(l,t) 0, hence unt K

on the parabolic boundary FT of QT for every n > 1.

Since u € Cw(QT) we may differentiate (2.3) with respect to t. Writing

u,. = g, this yields the equation
n
IS D s U
e c!(u) Tyx c'(u) q
n n n n

1
S —_—
T oc'(u) Dex’
n n
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because of the concavity of c, - Since q € C(é ) and g > - k along PT it
T

follows from the maximum principle that g > - k in éT' i.e.
unt(x,t) > - K for (x,t) € éT’ n=>1. (4.10)

For any n = 1 and (x,t) € éT we define
t t
wn(x,t) = J un(x,s)ds w(ix,t) = J u(x,s)ds,
0 0

where u is the weak solution of Problem I. Since {uu} converges weakly to u

in L2(O,T;H1(0,1)) it follows that wu converges weakly to w in H1(O,T;H1(O,1)L
But Hl(O,T;Hl(O,l)) is compactly imbedded in C(QT). Hence WU converges strong-
ly to w in c(éT) .

Next we define for n = 1

z (x,t) w_(x,t) + lzi<t2
n n

z(x,t) wix,t) + %Ktz.

Then for each x ¢ [0,1], it follows from (4.10) that

Z g = U t K 0.
Hence the function z_(x,*): [0,7] + R is convex for any n > 1 and any
x ¢ [0,1]. Since z >z in C(QT) this implies that z(x,+): [0,T7] - R is
also convex for any x € [0,1]. Thus, the right derivative a+z(x,t)/3t exists
for all t € [0,T) and is nondecreasing with respect to t.
Now we define for (x,t) e [0,1] x [0,T)

+

* P ’
u (x,t) = 3T z(x,t) - kt.

*
Clearly u = u a.e. in QT. Moreover if O < t2 < t1 <T

* *
u (x,ti)+-Kt > u (x,t2) + kt

1 2°

To complete the proof we define

* 9
u (x,T) = 5; z(x,T) - kT 0

IA
b

IA
[
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and we obtain, in view of the convexity of z(x,°) for

0T b kT = 20,1 > L a(xt) = ut ) + Kt
u (x, KT = °E X, s z(x, o) = u (x,t2 K ot

whenever t_, ¢ [0,T), and x € [0,1].

2

REMARK. In what follows we shall often refer to u* as the weak solution of
Problem I, in the cases that hypothesis Hla-c and H2a-c are satisfied.
REMARK. The convexity condition H2c imposed on U, is reminiscent of the
convexity condition introduced by ARONSON [3] and, more recently KNERR [12],
to derive an equation for the interface in the Cauchy problem for the porous
media equation

= >
ut (u )xx xe R, t 0

u(x,0) = uo(x) x € R.

-1
In this problem the condition is: (ug (x))" > - k at points x € R, where

uO(x) > 0.
5. THE INTERFACE

Let u be a weak solution of Problem I and v = c(u) the associated

concentration profile. As in the proof of Lemma 5 we set

D
I

{(x,t) € Qni Vix,t) < 1}

P = {(x,t) € Qpi v(x,t) = 1}.
It is immediately clear from Lemma 3 that
(O,L_l)X(O,T] c?D and [1—L_1,1)X(O,T] c P. (5.1)

For each t ¢ [0,T] we define

z (t) sup{x ¢ (0,1):(&,t) ¢ D for all £ ¢ [0,x)}

£ (t) = inf{x e (0,1):(£,£) ¢ P for all £ e (x,17}.
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Then, in view of (5.1),

In this section we shall show that if ¢ (0) = C+(O), then z (t) = C+(t)
for all t € [0,T], and hence, that there exists a function z: [0,T] »> (0,1)
such that

D
I

{(x,£): 0 <x<czg(t), O0<t<rmT} (5.2)

-
Il

{(x,t): g(t) <x <1 0 <t < T} (5.3)

This function ¢ will be called the interface. Having proved its existence,

we shall derive a few properties.

THEOREM 7. Let the hypotheses Hla-c and H2a,b be satisfied. Suppose
z (0) = §+(O). Then there exists a function r: [0,T] > (0,1), such that
D and P are given by (5.2) and (5.3).

PROOF. Clearly it is enough to prove that T (t) = C+(t) for t € [0,T]. Thus,
suppose to the contrary that for some T ¢ (0,T], C—(T) < §+(T). Then, since
Vv € C(QT), there exist numbers X 1%, € [z (1), C+(T)] such that X) < Xgs
v(xl,T) = v(xz,r) =1 and v(x,T) < 1 on (xl,xz).

For € > 0, let Ie denote a subinterval of (xl,x2) in which v < 1-¢,
and let Ge be the component of the set {(x,t) ¢ QT: v(x,t) < 1-e} which is
connected with Is' Finally let Fe denote the part of the boundary of Ge for
which t < 1. It follows from the continuity of v that IE, GE and Pe are non-
empty for € small enough.

Let FT denote the parabolic boundary of QT. Then, for e sufficiently

small, we distinguish the following two cases:

(1) Tg n FT = @. Since v ¢ C(§T), this implies that v Te = l1-e. Moreover,
because G€ c P, it follows from Theorem 5 that in Ge’ v satisfies the equa-
tion
-1
Ve T (c " (v) ) xx

in a classical sense. Here, c_1 denotes the inverse of ¢, which is well-
defined for the values taken on by v in EE.

Let min_ v(x,t) = v(xo,to) < 1-e. Then because Vv r

= 1-g, (x.,t.)
(x,t) eGg £ 00
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is either an interior point of GE or it lies on a segment of the line t = T,
which is part of the boundary of Ge' In both cases we can apply the maximum
principle {[16], p.169, Theorem 2} to show that v(x,to) = v(xo,to) < 1-¢ for

all x on the line segment t=t_ which lies in Geand contains the point(xo,tOL

0

Plainly this contradicts the fact that v = l1-¢. Therefore vla > 1-e and

T-

€

in particular VII 2 1-e. Thus we arrive at a contradiction.
€ ~ o~

(ii) r.n I # @. Since v| = l-e¢ there exists a point (x,t) € Ipo N r.

I'enQp

such that v(;,g) = 1-e. Because v(0,t) = c(-1) and v(1,t) =1, t ¢ [0,T],
it follows that for € sufficiently small, t = 0 and ; e (0,z(0)). By assump-
tion Yo < 0 on [0,z(0)). Hence there exists a § > 0 such that vo(x) < 1-6§
on [0,x].
Let Ze denote a curve in G€ which connects (§,0) with an arbitrary

point (X3,T) of Ie' Plainly VIZE < 1-8. Then, we consider the domain D en-

closed by the arcs

£1={(x,t)= t=0, O0<x<x}
£2={(x,t): x =0, 0 <t <T}
23 = {(x,t): t=rT, 0 < x < x3}

B

and ZE. Let {VU} be tZe sequence which converges to v in C (§T) (cf. (2.5)).
Then there exists a u = 1 such that if p 2 u*, v, < 1-8/2 on Kl u 22 u Ke.
It now follows from the maximum principle that vu < 1-8/2 in D and in par-
ticular in the point (xl,r). Hence V(Xl,T) < 1-6/2 < 1, and we have again

obtained a contradiction.

In what follows, we shall always assume that C~(O) = C+(0), and that D
and P are given by (5.2) and (5.3).

In D the weak solution u is a classical solution of equation (1.6) by
Theorem 5. If uO satisfies the convexity condition H2c, we can say in addi-

tion that u, is continuous up to Z(t).

THEOREM 8. Let u be the weak solution of Problem 1, in which c and v0 are

such that hypotheses Hla-c and H2a-c are satisfied. Then for each tO e (0,T]

lim u (x,to) exists.
xfC(to)

PROOF. Consider the sequence {wn} defined by
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W (x,8) = u (x,0) + bK{x-g ()},

where un is the solution of Problem I(n) (with uOn replaced by uo). Then,

by the proof of Theorem 6

w = u + kK > k{-c'(u )+K} = 0.
nxx nxx n'n

Let (xo,to) ¢ D. Then, by the proof of Theorem 5, wuxx(xO'tO) > W X(xo,to)
as y > « and hence

wxx(xO'tO) >0 0 < x. <zg(t.).

0 0

By Lemma 3 it follows in a similar manner that

0 <
wx(xo,to) < L + kK 0 < xO < Q(to).
Therefore
lim u (x ,t) = 1lim w (x_ ,t.) exists.
0" 0 x 0°°0
xo¢;(to) xo+c(t0)

In the next theorem we discuss the nature of the weak solution u in

the saturated region P.

THEOREM 9. Let u be the weak solution of Problem I in which c¢ and Yo satisfy

the hypotheses of Theorem 1. Suppose that r(t) is continuous on an interval
(a,b) < (0,T]. Then

_x-C(t)

ut) = T

z(t) < x <1 (5.4)
almost everywhere on (a,b). If in addition hypotheses Hlc and H2c are satis-—

fied, (5.4) holds for all t € (a,b).

PROOF. Define the set A = {(x,t) « On: Z(t) < x <1, a <t < b}. This set
is open because ¢ € C(a,b).

| Let ¢ € Cg(A). Then, because c(u) = 1 in A, the integral identity
(1.10) yields

¢

J {¢XuX - ¢t}dxdt = JJ ¢xuxdxdt.
A A
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By Theorem 4, u € L2(0,T;H2(0,1)). Hence

[{ ¢u dxdt = 0.
XX
A

Thus uxx'= 0 a.e. in A from which (5.4) follows almost everywhere on (a,b).
Next, we assume that Hlc and H2c are satisfied. By the first part of
the theorem there exists a set E, which is dense in (a,b), where (5.4) holds.
Let t. € (a,b)\E. We shall show that (5.4) also holds for t = t

0
Let {tn} c E n (a,to) be such that t -t

0
o @ n > > Let x € (C(to),l)-

Then by the continuity of ¢, X € (c(tn),l) for n large enough and hence, by
Theorem 6 and (5.4):

x-C(tn)

u(x,to) > T:—C(—t—')—
n

- K(toltn) ®

If we now let n tend to infinity we obtain

x—C(tO)
U(X,to) > ot - (5.5)
0
Next, suppose there exists a point Xy € (C(to),l) at which we have
strict inequality in (5.5), i.e.
x,-z(t))
1 0
u(xl,to) = TTTE?EST + ¢

where € > 0. Let {tm} c (to,b) n E be such that t + t, as m + «. Then by

0
Theorem 6 and (5.4) for m large enough

0
-ty

xl—C(tm) ,xl-l(t
1-¢g(t )
m

+ e - K(tm—to).

Letting m tend to infinity, we obtain a contradiction.

To complete this section we derive a few regularity properties of the

interface z(t). We begin with an auxiliary lemma.

LEMMA 6. Let hypotheses Hla-c and H2a,b be satisfied. Let (xo,to) e P and

suppose that there exists a positive constant o such that

Ka(xo,to) = {(x,t)eQT: t=t0—a(xo—x), 0 < x < xo} c D.
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Then there exist positive constants B and m such that

am(xo—x)
u(x,tg) < g{1-e } 0

IA
b
IA
Lol

and Xq = C(to).

PROOF. Let D denote the open triangle enclosed by x 0, Za and t = t.. Then,

0
because u < 0 on Za, it follows from Theorem 7 that u < 0 in D, whence, by

Theorem 6 u is a classical solution of the equation

- ! = :
uxx c (u)ut 0 in D.

m{t-t

+ -
Define the function u(x,t) = Bll-e a(xo %)}

0 ], where B and m are posi-=

tive contants, which we shall select in due course. We have

m{t—t0+a(xo—x)}

w _-c'(u)w {—(am)2+c'(u)m}e
XX

t

m{t-t

+a(x_-x) }
{-(om) 2+1<m}e 0

0

IA

if we choose m > K/az.

Along Eu we have w = 0 and along {x=0}

m(t-—to+ax0)J

w(0,t) Bl 1-e

mox
B[1-e B

\%

]

for B sufficiently small.

Set z = w-u. Then

z - c! z <0 in D
%x (u) &

and z 2 0 along the parabolic boundary of D. Let D€ c D be the triangle

enclosed by x = 0, ﬂa and t = t.—-e, where € € (O,axo). Then, by the maximum

0
principle, z = 0 in D€ and in particular
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IA
»
IA

x . -g/0.

u(x,t —-e) < w(x,t.-¢€) for O 0

0 0
or

IA
b
IA

x —e/o.

-g) < c(w(x,t.—€)) for O 0

v(ix,t 0

0

If we now let € tend to zero and use the fact that v € C(§T), we obtain

V(X,to) < c(w(x,to)) for 0 < x < xO

from which the result follows.
We are now in a position to prove the first regularity result.

THEOREM 10. Let the hypotheses Hla-c and H2a-c be satisfied and suppose ¢
is continuous on (O,T)\{tl,...,tN} (tk e (0,™, k=1,2,...,N), such that

£(t) = lim z(t) and C(t)) = lim z(t) k=1,2,...,N
k k
tftk t+tk

exist. Then ¢ is continuous on (0,T). If C(T—) exists, then ¢ € C((0,T]).

= +
PROOF. Let ti € {tk}. Since v € C(QT) it follows that (Q(ti ),ti) e P, and

hence

. - +
g(ty) < mln{c(tlx, c(ti)} (5.6)
(i) Suppose C(tI) < C(t;). Then, by (5.6)
C(ti) < C(ti). (5.7)

Since C is continuous on (ti—l'ti) (or (O’tl) if i = 1), there exists a
constant o > 0 such that Ka(c(t;),ti) c D. Hence by Lemma 6, c(t;) = c(ti)
which contradicts (5.7).

(ii) Suppose

z() < a(ti). (5.8)

Let {t } < (t, ,,t.), such that T_ > t, as n > «. Then, because ¢ ¢ C(t., ,,t.)
n i- i n i i-1"71i

1
we obtain, using Theorems 6 and 9:

X—C(Tn)

u(x,t) 2 7——
1—C(Tn)

- k(t=-1 ) (5.9)
n
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if x € [g(t_),1]J and t =2 T_. Let {t } < (t,,T) such that T = t, as m > .
n n m i m i

Then (5.9) implies that

C(Tm)—C(Tn)

- 1-C(Tn) - I<(Tm_ﬂrn)v

if C(Tm) > C(Tn). In view of (5.8) this will be the case of m and n are

large enough. Hence if we let m and n tend to infinity we obtain

+ -—
C(ti)—ﬁ(ti)
1-C(ti)

which contradicts (5.8).

Thus, C(tI) = C(t;) whence ¢ is continuous at t = ti, it follows that
z e C(0,T).

Finally, if (T ) exists, it is clear that z(T) < C(T_) and it follows

from the argument given in case (i) that in fact z(T) = C(T_).

In Theorem 10, we assume a certain degree of regularity of the inter-
face z, and we proved on the basis of this a stronger regularity result.
In the following theorem we shall make no initial regularity assumptions

about Z. Instead we impose a monotonicity assumption on u

0"
THEOREM 11. Let hypotheses Hla-c and H2a-b be satisfied, and let Yo be such
- that uO can be chosen to satisfy the condition ué(x) >¢§ >0 a.e. on (0,1).

Then ¢ ¢ c([0,T]).

PROOF. It follows from the remark after Lemma 3 that U, 26 in QT
for all n > 1. Hence u > § in D,
Let T ¢ [0,T], and X%, € (0,z(t)) such that X, > X,. Then
- > -
u(xl,T) u(xz'T) > d(x1 x2),

and therefore

A

u(x2,T) < - 6(x1—x2) + u(xl,T) < - 6(x1-x2),
or

v(x.,T) < c(—6(x1-x2)).

2

Hence, if we let x1 tend to ¢(T), we obtain in view of the continuity of c.
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vix,, 1) < c(=8(g(1)-x,)) 0 < x, <z(1). (5.10)
Now suppose r is discontinuous at t = to. Then there exist a constant
e > 0 and a sequence {tk} c (0,T) such that t, > t as k > » with the prop-

k 0
erty

lze) - ze)| 2 e >0 for all k > 1.

Let {tk,} and {t, ,} denote the elements of {tk} such that

k"
C(tk.) < C(to) - € (5.11)
and

ot ) =2 oty + e (5.12)

kll

Suppose tkl > tO as k' > «», In view of (5.11)

V(C(to) - a,tk,) =1 for all k'
and hence

V(C(to) - eity) =1

which is impossible in view of the definition of c(to).

Next, suppose that tk" -+ tO as k" - «, By (5.10) and (5.12) we have

for each k"

V(C(to),t ) < c(=8(z(t ,) - C(to)))

k" kll

< c(-8¢).

Hence, letting k" tend to infinity we obtain

V(C(to),to) < c(=8e) <1
which is again incompatible with the definition of c(to).
6. BEHAVIOUR AS t » o

Consider the stationary problem corresponding to Problem I:
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Ju =0 0<x<1
XX

u(0) = -1; u(l) = 1.
Plainly the unique solution u of this ?roblem is given by
u(x) = 2x - 1 0<x<1.

In this section we shall show, that if u is a weak solution of Problem I,

then

clu(x,t)) - c(u(x)) as t > o,

uniformly with respect to x ¢ [0,1]. In addition we shall derive estimates
for the rate of convergence, first in terms of a weighted Ll—norm and then
in terms of the supremum norm. Finally, if ué > 8§ >0 for some § > 0, we

shall show that

zie) - % = o(lc take™E) ) as £ > w,

where X and K are constants defined in Theorem 13.

. LEMMA 7. Let u, and u, be weak solutions of Problem I, corresponding to the

1 2
initial values Vo1” respectively Voor Suppose Vo1 P VOé and the conditions
of the maximum principle (Theorem 3) are satisfied. Then

1 1

I n(x){c(u, (x,t))-c(u,(x,t)) }ax < r n(x){v,, (x)-v__(x)}ax e-ﬂzt/K

17 2 J 01 02 :
0 ’ 0
t >0,

where n(x) = sin mx.

PROOF. Let un1 and un2 be the solutions of Problem I(n) with initial values

Uon1 and u0n2' As we saw in the proof of Theorem 3 it is possible to choose

u01 and u02 such that u0n1 > u0n2

for u from the one for u we obtain
“nl n2

for all n 2> 1. Subtracting the equation

{cn(unl)-cn(unZ)}t = (unl—unz)xx in QT' (6.1)

We multiply (6.1) by n(x) = sin m x and we integrate over (0,1). This yields
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1 , 1
4 n{c (u ,)-c (u .)}dx =- ﬂz n(u ,-u .)dx (6.2)
dat n nl n n2 nl n2 :
0 0
i > >
However, because by construction uOnl = u0n2' and hence un1 > un2 we have

for each n =2 1,

c_(u,) - cn(u' ) < K(u_j-u ).

n nl n2 n2
Hence, writing
1
¢
o(t) = J n{cn(unl)—cn(unz)}dx
0
we obtain
2

' L
®'(t) < 7 . &(t)

and therefore

2
5(t) < o(0)e " H/K,

Passing to the limit we obtain, in view of Lemma 5 the desired estimate.

THEOREM 12. Let the conditions of Theorem 1 be satisfied, and let u be the

- weak solution of Problem I with initial value v.. Then there exists a con-

0
stant C, which only depends on VO’ such that
: - —W2t/K
J n(x) |cu(x,t)) - cu(x))|ax < C e t >0 (6.3)
0
where u(x) = 2x-1.

+ ——
PROOF. Define two initial values v0 and vO such that

max{vo,c(a)}

| o +
1\

<
o
IA

min{vo,c(ﬁ)}

and such that there exist corresponding functions ug and u; which satisfy

+ -
H2a.b. This is clearly always possible. Let u and u be the weak solutions

. +
of Problem I, emanating from v 0

0’ respectively v

. Then, by Theorem 3, we

have in O
QT
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c(u+) max{c(u),c(u)}

v

IA

c(u-) min{C(u) Ic(a) }I

and hence
pu— + -—
[c(u)—c(u)| < c(u)-c(u).
Lemma 7, applied to the solutions u+ and u now yields (6.3).

The integral estimate obtained in Theorem 12 can readily be turned

into a pointwise estimate by means of Lemma 3 and the following proposition.

PROPOSITION 2. Let f ¢ H1(0,1) have the following properties:

(i) £(0) £f(1) = 0 and £(x) 2 0 on (0,1);

(ii) |f'] £ A a.e. on [0,1] and

(iii) [1£(x) sinmxdx < €. Then
0
3.2 1/3

|£(x)| < (727

(6.4)

IA
—

for 0 £ x

We leave the proof to the reader.

THEOREM 13. Let the conditions of Theorem 1 be satisfied, and let u be the

~weak solution of Problem I corresponding to the initial value vy Then

|c(u(x,t)) - clu(x))| < Ke Mt 0

IA
b

IA
-

t >0, (6.5)

1/3 -
where K = (%KZ (L+2)20) and X = T /3K.

PROOF. Define

w(x,t) = |c(ulx,t))-c(u(x))].

Then w(-.,t) satisfies the hypotheses of Proposition 2, with A = K(L+2) on
[0,»). Thus (6.5) follows from Theorem 12 and Proposition 2.

‘We conclude this section with an estimate for the behaviour of z(t)

as t > o,

THEOREM 14. Let Hla-c and H2a,b be satisfied, and let vO be such that uO

can be chosen so that ué(x) 268 >0 a.e. on (0,1). Then there exists a
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constant p > O such that
Iz < plctake™8| £ 0.

PROOF. Fix t > 0. Suppose f(t) = %. Tﬁen, because u_ > § in D we obtain
v(k,t) < c(8(s-z(t))). (6.6)

On the other hand, by Theorem 13

vis,t) = v - Ke ME, (6.7)

where v = c(u). Thus (6.6) and (6.7) together imply

c(§(-z(£))) 21 - Ke At

or
1

c(t) -% <- Ec—l(l—Ke—At). (6.8)

Next, assume that ¢(t) < %. Then, by Theorem 13

v(z(t),t) - v(z(t)) < ke 't
oxr ’
() = 1 - Ke 't
and therefore
C(t)- > ye L(1-Ke %), (6.9)

Setting p = max{%,-%} we obtain from (6.8) and (6.9) the desired estimate.
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