
STICHTING 

MATHEMATISCH CENTRUM 
2e BOERHAAVESTRAAT 49 

AMSTERDAM 

AFDELING MATHEMATISCHE STATISTIEK 

S 410 

Quantiles and stabilizing constants 

by 

L. de Haan 

August 1969 



-1-

O. Introduction and Summarz. A sequence of distribution functions 

{F} belongs to the domain of attraction of a non-degenerate 
n 

distribution function G ( notation {F }G.D(G)) when it is possible n 
to choose sequences {a} (a > O, n = 1,2,3, ••• ) and {b} such that n n n 

( 1 ) F (a X + b ) ➔ G(x) 
n n n 

in the weak sense. A well-known theorem of Gnedenko states to which 

extent we may change the sequences of stabilizing constants. He give 

the theorem in its extended form (see [1}, p.246). 

Theorem 1. If (1) holds, we have 

( 2) F (ax+ B ) ➔ a*(x) 
n n n 

weakly (where a* is non-degenerate) iff 

(3) a 'v A.a 
n n 

- 1 (B - b) ➔ B 'an n n for n ➔ 00 

and 

G*(x) = G(Ax + B). 

In this report we give an explicite expression of the constants a 
n 

b n as functions of the given distribution functions F when G is n 

and 

one-to-one. As an example we consider the case F n 
= Fn where·F is 

a given distribution function; then Gnedenko's expression for 

stabilizing constants for maxima of independent random variables is 

seen to be a special case of theorem 2. There is also an application 

concerning stabilization by moments. 

Finally we give a connection between quantiles and centering 

constants used with the weak law of large numbers. 
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1. ~_ice of stabilizing constants. For a sequence of distribution functions 

{F} satisfying (1) it is not true in general that (1) holds with 
n 

bn = µn = r x d F n (x) 

and -oo 

00 00 

2 2 I x2 dF (x) - { I 2 a = 0 = xdF(x)}, n n n n 
-00 _oo 

even ifµ and 0 exist for every n. Defining n n 

F (x) = (1 - .:!.) F(x) + _:1_ ~(x - n) n n n 

where F(x) is an arbitrary distribution function withµ= 0 and 

o = 1, we have 

F (x).- F(x) 
n 

weakly, so (1) holds with a = 1 but 
n 

0 
n 

a 
n 

= / n 
1 

--➔ oo 
n 

He forI!l.ulate a theorem giving the stabilizing constants as functions 
-

of F for a class of limit distributions. The formulation involves 
n 

quantiles; the precise definition of a quantile does not matter. 

However, it is convenient to have a definition which determines the 

quantile uniquely. For each a (0 <a< 1) we define for the 

distribution function F 

(4) 
Then 

( 5) 

n 

~ (n) = inf {x 
a 

F (~ (n) - 0) 
n a < a 

F (x) > a} 
n 

< F (~ (n)). 
- n a 
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_!~eorem 2. Suppose that the distribution function G is continuous 

on the whole real line and strictly increasing on 

{x I O < G(x) < 1}. If {F }£D(G) then 
n 

(6) F (a X + b ) ➔ G(ax + b) 
n n n 

weakly (hence for all x), with 

b = E;,a 
(n) b = G-· 1(a) 

n 
(7) 

a = E;, (3 
(n) 

- E;, 
(n) a= G- 1 ( f3) -b 

n a 

and a and f3 arbitrary (provided O <a< f3 < 1). 

Proof. 

Given 

(G) F (a' x + b') + G(x) 
n :n n 

weakly with sequences a' > 0 end b' for every pair of positive 
n n ' 

numbers E 1 and E2 there is a positive integer n0 such that for 

n .:_ n0 

(9) 

Choosing 

E2 = min {G(b) - G(b - E1), G(b + E1) - G(b)} > o, 

we have 

( 10) F ( a ' ( b - E ) + b ' ) < F ( a ' ( b + E 1 ) + bn' ) • n n 1 n n n 

Fron ( 5) it follows in view of the continuity of G 

( 11 ) F (b - 0) < G(b) < F (b ) 
n n - - n n n = 1,2,3, ••• 
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Combining (10) and (11) we obtain 

so 

( 12) 

an'(b - e: 1 ) + b' < b < a'(b + e: 1 ) + b' n n- n n 

b - b' n n 

a' n 

--+-b n + 00 

Starting in (9) with a+b ~nstead of b we obtain 

( 13) a b b 1 

..E. + n - ~ + a+b n + 00 • 

a' a' n n 

n = 1 ,2 ,3, . . . , 

Application of theorem 1 gives the statement of the theorem. 

~~-~• A slight adaptation of the proof shows that the r~uirements 

on G can be weakened to the following ones: 

a. ~a< ~S; here ~a= inf < x I G(x) ~a}. 

b. There exists no e: > 0 such that G is constant on [~ , ~ + e:) 
a a 

and [~a, ~ S + . e:). 

As an application we prove Gnedenko's theorem about choosing 
n stabilizing constants for sequences F = F attracted by the doublen 

exponential law ( [2) p.446). 

-~orollary 1. If for a distribution function F the sequence {Fn} is 

in the domain of 

( 14) 

then 

( 15) 

with 

( 16) 

and 

G(x) = exp{-e-x} 

n 
F (a X + b) + G(x) 

n n 

b = inf {x 
n 

a = inf {x 
n 

F(x) > 1 

F(x) > 1 

for x all x, n + 00 

- .!.} 
n 

- _1 } - b 
ne n n = 1 ,2 ,3, ••• 
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Proof. It is not difficult to see that theorem 2 holds with 

( 17) 

and 

b = ~(n) 
n a n. 

a = ~(n) - b 
n Sn n 

when an~ a and Sn:....-+ S (n + 00 ). Applying the adapted theorem 2 

with 

a = (1 - .!.)n and S = (1 - -1 )n n n n ne 

we obtain ( 16). 

Remark. Obviously (15) and (16) are also true for the two other 

possible types of limit laws G. 

Another application concerns stabilization by moments. 

Coro_llary 2. If 

( 10) F (ax+ b) -r G(x) n n n 

for all x, where G is one-to-one and b arbitrary, then there exists n 
a B such that 

( 19) ~ (a X + µ ) - G(x + B). n n n 

Proof. Let {X} be random variables with distribution functions 
--- n 
{F} and 

n 

(20) 

Then 

( 21) 

X - ~(n) 
y =-n __ a __ 

n ~(n) ~(n) 
S a 

(n = 1,2,3, •• ). 

on 
and o ( Y ) = --,---.----.--.-

n ~(n) ~(n) 
a a 
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From (10) and theorem 2 it follows that for some positive A 

(22) 

The inequality 

cr(Y) - A. n 

(see [3J p.244) gives that the sequence {µ (Y )} is bounded so that 
n 

( from (22)) the sequence {E Y2} is bounded; hence the sequence 
n 

µ(Y) 
n = ~(n) _ ~(n) 

Ci. s 

converges. Application of theorem 1 gives (19), 

2, Weak law of large numbers, 

A sequence of distribution functions {F} is said to satisfy the 
n 

weak law of large numbers if there is a sequence of real numbers 

{b} such that 
r. 

(23) F (x + b ) 
n n 

---\,(X) 

for x f 0. 

Theorem 3, For a sequence of distribution functions {F} the 
n 

following propositions are equivalent: 

a. The sequence {F} satisfies the weak law of large numbers. 
n 

b. For each a (0 <a< 1) 

(24) F (x + ~(n)) 
n a 

\( X) 

for x f O. 
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c. For each a and S (0 <a< S < 1) 

(25) 

Proof. 

b ~ a: Trivial. 

lim 
n-+<><> 

a ~b: Choose a (0 <a< 1) and E (E > 0) ; from 

(26) lim 
n-+<><> 

F (x + b) 
n n 

it follows that when n ~ n0 

r 0 

=1 
for x < 0 

for x > 0 

F ( - E + b) < c < F (E + b ). 
n n n n 

Applying (5) we have 

(27) b - E < n 
E,;(n) < b + E, 

a n 

hence for each x 

F (x - E + b) < F (x + E,;(n)) < F (x + E + b ). 
n n-n a -n n 

From this and (26) we obtain (24). 

a,b ~c: relation (27) gives 

As a is arbitrary we have (25). 

b} = 0, 
n 

c~b: Choose a (0 <a< 1), x > 0 and E > 0 arbitrary and E1 such 

that O < E 1 < X • 

Relation (25) implies for n ~ n0 

E,;(n) - E < 
1-E 1 

E,; (n) 
a 
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hence by (5) 

1 - e: < F (E,;(n)) < F (x - e: 1 + E,;(n)) < F (x + E,;(n)) < 1, 
n 1-e: - n 1-e: - n a 

so for x > 0 

lim F (x + E,;(n)) = 1. 
n a 

n+oo 

Analogously one proves (24) for x < 0. 

By a simple transformation we can restate the results of theorem 3 

as conditions for a sequence of distribution functions {F} concen-
n 

trated on the non-negative half-axis which is relatively stable i.e. 

for which 

F (ax)- l(x-1) 
n n 

weakly for suitably chosen positive constants {a}. 
n 

Theorem 4. For a sequence of distribution functions {F} with 
n 

F (0-) = 0 for n = 1,2,3, ... the following propositions are equi
n 

valent: 

a. The sequence {F} is relatively stable. 
n 

b. For each a (0 <a< 1) 

for x + 1. 

c. For each a and S (0<a<S<1) 

lim 
n+oo 

Proof. A sequence {F} satisfies the conditions of theorem 4 iff the 
n 

sequence {G} defined by n 

G (x) = F ( ex) 
n n 

satisfies the conditions of theorem 3, 

As in section 1 the results of Gnedenko ( [2] p.426) concerning the 

law of large numbers and the relative stability of the sequence of 

maxima of independent identically distributed random variables can be 

seen as corollaries to the theorems 3 and 4. 
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