STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

AMSTERDAM
AFDELING MATHEMATISCHE STATISTIEK

S 410

Quantiles and stabilizing constants
L. de Haan

August 1969
0. Introduction and Summary. A sequence of distribution functions $\left\{F_{n}\right\}$ belongs to the domain of attraction of a non-degenerate distribution function G (notation $\left\{F_{n}\right\} \in D(G)$) when it is possible to choose sequences $\left\{a_{n}\right\}\left(a_{n}>0, n=1,2,3, \ldots\right)$ and $\left\{b_{n}\right\}$ such that

$$
\begin{equation*}
F_{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x) \tag{1}
\end{equation*}
$$

in the weak sense. A well-known theorem of Gnedenko states to which extent we may change the sequences of stabilizing constants. We give the theorem in its extended form (see [1], p.246).
Theorem 1. If (1) holds, we have

$$
\begin{equation*}
F_{n}\left(\alpha_{n} x+\beta_{n}\right) \rightarrow G^{*}(x) \tag{2}
\end{equation*}
$$

weakly (where $G^{\#}$ is non-degenerate) iff

$$
\begin{equation*}
a_{n} \sim A \cdot a_{n}, a_{n}^{-1}\left(\beta_{n}-b_{n}\right) \rightarrow B \quad \text { for } n \rightarrow \infty \tag{3}
\end{equation*}
$$

and

$$
G^{*}(x)=G(A x+B)
$$

In this report we give an explicite expression of the constants a_{n} and b_{n} as functions of the given distribution functions F_{n} when G is one-to-one. As an example we consider the case $F_{n}=F^{n}$ where F is a given distribution function; then Gnedenko's expression for stabilizing constants for maxima of independent random variables is seen to be a special case of theorem 2. There is also an application concerning stabilization by moments.

Finally we give a connection between quantiles and centering constants used with the weak law of large numbers.

1. Choice of stabilizing constants. For a sequence of distribution functions $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ satisfying (1) it is not true in general that (1) holds with
and

$$
b_{n}=\mu_{n}=\int_{-\infty}^{\infty} x d F_{n}(x)
$$

$$
a_{n}^{2}=\sigma_{n}^{2}=\int_{-\infty}^{\infty} x^{2} d F_{n}(x)-\left\{\int_{-\infty}^{\infty} x d F_{n}(x)\right\}^{2}
$$

even if μ_{n} and σ_{n} exist for every n. Defining

$$
F_{n}(x)=\left(1-\frac{1}{n}\right) F(x)+\frac{1}{n}(x-n)
$$

where $F(x)$ is an arbitrary distribution function with $\mu=0$ and $\sigma=1$, we have

$$
F_{n}(x) \longrightarrow F(x)
$$

weakly, so (1) holds with $a_{n}=1$ but

$$
\frac{\sigma_{n}}{a_{n}}=\sqrt{n-\frac{1}{n}} \rightarrow \infty
$$

We formulate a theorem giving the stabilizing constants as functions of F_{n} for a class of limit distributions. The formulation involves quantiles; the precise definition of a quantile does not matter. However, it is convenient to have a definition which determines the quantile uniquely. For each $\alpha(0<\alpha<1)$ we define for the distribution function F_{n}

$$
\begin{equation*}
\xi_{\alpha}^{(n)}=\inf \left\{x \mid F_{n}(x) \geq \alpha\right\} . \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{n}\left(\xi_{\alpha}(n)-0\right) \leq \alpha \leq F_{n}\left(\xi_{\alpha}^{(n)}\right) \tag{5}
\end{equation*}
$$

Theorem 2. Suppose that the distribution function G is continuous on the whole real line and strictly increasing on
$\{x \mid 0<G(x)<1\}$. If $\left\{F_{n}\right\} \in D(G)$ then

$$
\begin{equation*}
F_{n}\left(a_{n} x+b_{n}\right) \rightarrow G(a x+b) \tag{6}
\end{equation*}
$$

weakly (hence for all x), with

$$
b_{n}=\xi_{\alpha}(n) \quad, \quad b=G^{-1}(\alpha)
$$

$$
\begin{equation*}
a_{n}=\xi_{\beta}^{(n)}-\xi_{\alpha}^{(n)}, \quad a=G^{-1}(\beta)-b \tag{7}
\end{equation*}
$$

and α and β arbitrary (provided $0<\alpha<\beta<1$).

Proof.
Given

$$
\begin{equation*}
F_{n}\left(a_{n}^{\prime} x+b_{n}^{\prime}\right) \rightarrow G(x) \tag{8}
\end{equation*}
$$

weakly with sequences $a_{n}^{\prime}>0$ end b_{n}^{\prime}, for every pair of positive numbers ε_{1} and ε_{2} there is a positive integer n_{0} such that for $\mathrm{n} \geq \mathrm{n}_{\mathrm{C}}$

$$
F_{n}\left(a_{n}^{\prime}\left(b-\varepsilon_{1}\right)+b_{n}^{\prime}\right)<G\left(b-\varepsilon_{1}\right)+\varepsilon_{2}
$$

(9)

$$
F_{n}\left(a_{n}^{\prime}\left(b+\varepsilon_{1}\right)+b_{n}^{\prime}\right)>G\left(b+\varepsilon_{1}\right)-\varepsilon_{2} .
$$

Choosing

$$
\varepsilon_{2}=\min \left\{G(b)-G\left(b-\varepsilon_{1}\right), G\left(b+\varepsilon_{1}\right)-G(b)\right\}>0,
$$

we have

$$
\begin{equation*}
F_{n}\left(a_{n}^{\prime}\left(b-\varepsilon_{1}\right)+b_{n}^{\prime}\right)<F_{n}\left(a_{n}^{\prime}\left(b+\varepsilon_{1}\right)+b_{n}^{\prime}\right) \tag{10}
\end{equation*}
$$

From (5) it follows in view of the continuity of G

$$
\begin{equation*}
F_{n}\left(b_{n}-0\right) \leq G(b) \leq F_{n}\left(b_{n}\right) \quad n=1,2,3, \ldots . \tag{11}
\end{equation*}
$$

Combining (10) and (11) we obtain

$$
a_{n}^{\prime}\left(b-\varepsilon_{1}\right)+b_{n}^{\prime}<b_{n} \leq a_{n}^{\prime}\left(b+\varepsilon_{1}\right)+b_{n}^{\prime} \quad n=1,2,3, \cdots,
$$

so
(12)

Starting in (9) with $a+b$ instead of b we obtain

$$
\begin{equation*}
\frac{a_{n}}{a_{n}^{\prime}}+\frac{b_{n}-b_{n}^{\prime}}{a_{n}^{\prime}} \rightarrow a+b n \rightarrow \infty \tag{13}
\end{equation*}
$$

Application of theorem 1 gives the statement of the theorem.

Remark. A slight adaptation of the proof shows that the requirements on G can be weakened to the following ones:
a. $\xi_{\alpha}<\xi_{\beta}$; here $\left.\xi_{\alpha}=\inf <x \mid G(x) \geq \alpha\right\}$.
b. There exists no $\varepsilon>0$ such that G is constant on $\left[\xi_{\alpha}, \xi_{\alpha}+\varepsilon\right.$) and $\left[\xi_{\beta}, \xi_{\beta}+{ }^{\prime}\right)$.
As an application we prove Gnedenko's theorem about choosing stabilizing constants for sequences $F_{n}=F^{n}$ attracted by the double. exponential law ([2] p.446).

Corollary 1. If for a distribution function F the sequence $\left\{F^{n}\right\}$ is in the domain of

$$
\begin{equation*}
G(x)=\exp \left\{-e^{-x}\right\} \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x) \quad \text { for } x \text { all } x, n \rightarrow \infty \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{n}=\inf \left\{x \left\lvert\, F(x) \geq 1-\frac{1}{n}\right.\right\} \tag{16}
\end{equation*}
$$

and

$$
a_{n}=\inf \left\{x \left\lvert\, F(x) \geq 1-\frac{1}{n e}\right.\right\}-b_{n} \quad n=1,2,3, \ldots
$$

Proof. It is not difficult to see that theorem 2 holds with

$$
\begin{equation*}
b_{n}=\xi_{a_{n}}^{(n)} \tag{17}
\end{equation*}
$$

and

$$
a_{n}=\xi_{\beta_{n}}^{(n)}-b_{n},
$$

when $\alpha_{n} \longrightarrow \alpha$ and $\beta_{n} \longrightarrow \beta \quad(n \rightarrow \infty)$. Applying the adapted theorem 2 with

$$
\alpha_{n}=\left(1-\frac{1}{n}\right)^{n} \text { and } \beta_{n}=\left(1-\frac{1}{n e}\right)^{n}
$$

we obtain (16).

Remark. Obviously (15) and (16) are also true for the two other possible types of limit laws G.

Another application concerns stabilization by moments.

Corollary 2. If

$$
\begin{equation*}
F_{n}\left(\sigma_{n} x+b_{n}\right) \longrightarrow G(x) \tag{18}
\end{equation*}
$$

for all x, where G is one-to-one and b_{n} arbitrary, then there exists a B such that

$$
\begin{equation*}
F_{n}\left(\sigma_{n} x+\mu_{n}\right) \longrightarrow G(x+B) . \tag{19}
\end{equation*}
$$

Proof. Let $\left\{X_{n}\right\}$ be random variables with distribution functions $\left\{\mathrm{F}_{\mathrm{n}}\right.$ \} and
(20)

$$
Y_{n}=\frac{X_{n}-\xi_{\alpha}^{(n)}}{\xi_{\beta}^{(n)}-\xi_{\alpha}^{(n)}} \quad(n=1,2,3, \ldots)
$$

Then
(21)

$$
\mu\left(Y_{n}\right)=\frac{\mu_{n}-\xi_{\alpha}^{(n)}}{\xi_{\beta}^{(n)}-\xi_{\alpha}^{(n)}} \quad \text { and } \quad \sigma\left(Y_{n}\right)=\frac{\sigma_{n}}{\xi_{\beta}^{(n)}-\xi_{\alpha}^{(n)}}
$$

From (18) and theorem 2 it follows that for some positive A

$$
\begin{equation*}
\sigma\left(Y_{n}\right) \longrightarrow A . \tag{22}
\end{equation*}
$$

The inequality

$$
-(1-\alpha)^{-\frac{1}{2}} \leq \frac{\mu_{n}-\xi_{\alpha}^{(n)}}{\sigma_{n}} \leq \alpha^{-\frac{1}{2}}
$$

(see [3] p. 244) gives that the sequence $\left\{\mu\left(Y_{n}\right)\right\}$ is bounded so that (from (22)) the sequence $\left\{E Y_{n}^{2}\right\}$ is bounded; hence the sequence

$$
\mu\left(Y_{n}\right)=\frac{\mu_{n}-\xi_{\beta}^{(n)}}{\xi_{\alpha}^{(n)}-\xi_{\beta}^{(n)}}
$$

converges. Application of theorem 1 gives (19).

2. Weak law of large numbers.

A sequence of distribution functions $\left\{F_{n}\right\}$ is said to satisfy the weak law of large numbers if there is a sequence of real numbers $\left\{b_{n}\right\}$ such that

$$
\begin{equation*}
F_{n}\left(x+b_{n}\right) \longrightarrow(x) \tag{23}
\end{equation*}
$$

for $\mathrm{x} \neq 0$.

Theorem 3. For a sequence of distribution functions $\left\{F_{n}\right\}$ the following propositions are equivalent:
a. The sequence $\left\{F_{n}\right\}$ satisfies the weak law of large numbers.
b. For each α ($0<\alpha<1$)

$$
\begin{equation*}
F_{n}\left(x+\xi_{\alpha}^{(n)}\right) \longrightarrow \backslash(x) \tag{24}
\end{equation*}
$$

for $\mathrm{x} \neq 0$.
c. For each α and $\beta(0<\alpha<\beta<1)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\xi_{\beta}^{(n)}-\xi_{\alpha}^{(n)}\right)=0 \tag{25}
\end{equation*}
$$

Proof.
$b \Rightarrow a: T r i v i a l$.
$a \Longrightarrow b:$ Choose
$\alpha(0<\alpha<1)$ and $\varepsilon(\varepsilon>0)$; from

$$
\lim _{n \rightarrow \infty} F_{n}\left(x+b_{n}\right)= \begin{cases}0 & \text { for } x<0 \tag{26}\\ 1 & \text { for } x>0\end{cases}
$$

it follows that when $n \geq n_{0}$

$$
F_{n}\left(-\varepsilon+b_{n}\right)<c<F_{n}\left(\varepsilon+b_{n}\right)
$$

Applying (5) we have

$$
\begin{equation*}
b_{n}-\varepsilon<\xi_{\alpha}^{(n)}<b_{n}+\varepsilon \tag{27}
\end{equation*}
$$

hence for each x

$$
F_{n}\left(x-\varepsilon+b_{n}\right) \leq F_{n}\left(x+\xi_{\alpha}^{(n)}\right) \leq F_{n}\left(x+\varepsilon+b_{n}\right)
$$

From this and (26) we obtain (24).
$a, b \Longrightarrow c: r e l a t i o n(27)$ gives

$$
\lim _{n \rightarrow \infty}\left\{\xi_{\alpha}^{(n)}-b_{n}\right\}=0
$$

As α is arbitrary we have (25).
$c \Rightarrow 1 b: C h o o s e \alpha(0<\alpha<1), x>0$ and $\varepsilon>0$ arbitrary and ε_{1} such that $0<\varepsilon_{1}<x$.
Relation (25) implies for $n \geq n_{0}$

$$
\xi_{1-\varepsilon}^{(n)}-\varepsilon_{1}<\xi_{\alpha}^{(n)}
$$

hence by (5)

$$
1-\varepsilon<F_{n}\left(\xi_{1-\varepsilon}^{(n)}\right) \leq F_{n}\left(x-\varepsilon_{1}+\xi_{1-\varepsilon}^{(n)}\right) \leq F_{n}\left(x+\xi_{\alpha}^{(n)}\right) \leq 1
$$

so for $\mathrm{x}>0$

$$
\lim _{n \rightarrow \infty} F_{n}\left(x+\xi_{\alpha}^{(n)}\right)=1
$$

Analogously one proves (24) for $x<0$.
By a simple transformation we can restate the results of theorem 3 as conditions for a sequence of distribution functions $\left\{F_{n}\right\}$ concentrated on the non-negative half-axis which is relatively stable i.e. for which

$$
F_{n}\left(a_{n} x\right) \longrightarrow(x-1)
$$

weakly for suitably chosen positive constants $\left\{a_{n}\right\}$.

Theorem 4. For a sequence of distribution functions $\left\{F_{n}\right\}$ with $F_{n}(0-)=0$ for $n=1,2,3, \ldots$ the following propositions are equivalent:
a. The sequence $\left\{F_{n}\right\}$ is relatively stable.
b. For each α ($0<\alpha<1$)

$$
F_{n}\left(x \cdot \xi_{\alpha}^{(n)}\right) \longrightarrow(x-1)
$$

for $\mathrm{x} \neq 1$.
c. For each α and $\beta(0<\alpha<\beta<1)$

$$
\lim _{n \rightarrow \infty} \frac{\xi_{\beta}^{(n)}}{\xi_{\alpha}^{(n)}}=1
$$

Proof. A sequence $\left\{F_{n}\right\}$ satisfies the conditions of theorem 4 iff the sequence $\left\{G_{n}\right\}$ defined by

$$
G_{n}(x)=F_{n}\left(e^{x}\right)
$$

satisfies the conditions of theorem 3 .
As in section 1 the results of Gnedenko ([2] p.426) concerning the law of large numbers and the relative stability of the sequence of maxima of independent identically distributed random variables can be seen as corollaries to the theorems 3 and 4.

References

[1] Feller, W. (1966). An introduction to probability theory and its applications 2. Wiley, New-York.
[2] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Annals of Math. 44 423-453.
[3] Loève, M. (1963). Probability theory, van Nostrand, New-York.

