STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING MATHEMATISCHE STATISTIEK

s 410

4

Quantiles and stabilizing constants

Ъy

L. de Haan

August 1969

0. Introduction and Summary. A sequence of distribution functions $\{F_n\}$ belongs to the domain of attraction of a non-degenerate distribution function G (notation $\{F_n\} \in D(G)$) when it is possible to choose sequences $\{a_n\}$ ($a_n > 0$, n = 1, 2, 3, ...) and $\{b_n\}$ such that

(1)
$$F_n(a_n x + b_n) \rightarrow G(x)$$

in the weak sense. A well-known theorem of Gnedenko states to which extent we may change the sequences of stabilizing constants. We give the theorem in its extended form (see [1], p.246). Theorem 1. If (1) holds, we have

(2)
$$F_n(\alpha_n \mathbf{x} + \beta_n) \rightarrow G^{\mathbf{x}}(\mathbf{x})$$

weakly (where $G^{\mathbf{x}}$ is non-degenerate) iff

(3)
$$\alpha_n \sim A \cdot a_n$$
, $a_n^{-1} (\beta_n - b_n) \rightarrow B$ for $n \rightarrow \infty$

and

$$G^{\mathbf{x}}(\mathbf{x}) = G(\mathbf{A}\mathbf{x} + \mathbf{B}).$$

In this report we give an explicite expression of the constants a_n and b_n as functions of the given distribution functions F_n when G is one-to-one. As an example we consider the case $F_n = F^n$ where F is a given distribution function; then Gnedenko's expression for stabilizing constants for maxima of independent random variables is seen to be a special case of theorem 2. There is also an application concerning stabilization by moments.

Finally we give a connection between quantiles and centering constants used with the weak law of large numbers.

1. Choice of stabilizing constants. For a sequence of distribution functions $\{F_n\}$ satisfying (1) it is not true in general that (1) holds with

$$b_n = \mu_n = \int_{-\infty}^{\infty} x dF_n(x)$$

and

$$a_n^2 = \sigma_n^2 = \int_{-\infty}^{\infty} x^2 dF_n(x) - \{\int_{-\infty}^{\infty} x dF_n(x)\}^2,$$

even if μ_n and σ_n exist for every n. Defining

$$F_n(x) = (1 - \frac{1}{n}) F(x) + \frac{1}{n} (x - n)$$

where F(x) is an arbitrary distribution function with $\mu = 0$ and $\sigma = 1$, we have

$$F_n(x) \longrightarrow F(x)$$

weakly, so (1) holds with $a_n = 1$ but

$$\frac{\sigma_n}{a_n} = \sqrt{n - \frac{1}{n}} \to \infty$$

We formulate a theorem giving the stabilizing constants as functions of F_n for a class of limit distributions. The formulation involves quantiles; the precise definition of a quantile does not matter. However, it is convenient to have a definition which determines the quantile uniquely. For each α (0 < α < 1) we define for the distribution function F_n

(4)
$$\xi_{\alpha}^{(n)} = \inf \{x \mid F_n(x) \geq \alpha\}$$
.

Then

(5) $F_n(\xi_\alpha^{(n)} - 0) \leq \alpha \leq F_n(\xi_\alpha^{(n)}).$

<u>Theorem 2</u>. Suppose that the distribution function G is continuous on the whole real line and strictly increasing on $\{\mathbf{x} \mid 0 < G(\mathbf{x}) < 1\}$. If $\{F_n\} \in D(G)$ then

(6)
$$F_n(a_n x + b_n) \rightarrow G(ax + b)$$

weakly (hence for all x), with

(7)
$$b_{n} = \xi_{\alpha}^{(n)}, \quad b = G^{-1}(\alpha)$$
$$a_{n} = \xi_{\beta}^{(n)} - \xi_{\alpha}^{(n)}, \quad a = G^{-1}(\beta) - b$$

and α and β arbitrary (provided 0 < α < β < 1).

Proof. Given

(8) $F_n(a_n^{\dagger} x + b_n^{\dagger}) \rightarrow G(x)$

weakly with sequences $a_n' > 0$ end b_n' , for every pair of positive numbers ϵ_1 and ϵ_2 there is a positive integer n_0 such that for $n \ge n_0$

$$F_n(a_n^{\dagger}(b - \epsilon_1) + b_n^{\dagger}) < G(b - \epsilon_1) + \epsilon_2$$

(9)

$$F_n(a_n'(b + \epsilon_1) + b_n') > G(b + \epsilon_1) - \epsilon_2$$

Choosing

$$\epsilon_2 = \min \{G(b) - G(b - \epsilon_1), G(b + \epsilon_1) - G(b)\} > 0,$$

we have

(10)
$$F_n(a_n'(b - \epsilon_1) + b_n') < F_n(a_n'(b + \epsilon_1) + b_n').$$

From (5) it follows in view of the continuity of G

(11)
$$F_n(b_n - 0) \le G(b) \le F_n(b_n)$$
 $n = 1, 2, 3, ...$

Combining (10) and (11) we obtain

$$a'_{n}(b - \epsilon_{1}) + b'_{n} < b_{n} \le a'_{n}(b + \epsilon_{1}) + b'_{n}$$
 $n = 1,2,3, ...,$

so

(

12)
$$\frac{b - b'}{n - n} \longrightarrow b \qquad n \to \infty$$
$$a'_n$$

Starting in (9) with a+b instead of b we obtain

(13)
$$\frac{a}{n} + \frac{b}{n-n} + \frac{b'}{n} \rightarrow a+b \quad n \rightarrow \infty.$$
$$a'_{n} \qquad a'_{n}$$

Application of theorem 1 gives the statement of the theorem.

Remark. A slight adaptation of the proof shows that the requirements on G can be weakened to the following ones:

- a. $\xi_{\alpha} < \xi_{\beta}$; here $\xi_{\alpha} = \inf < x | G(x) \ge \alpha \}$. b. There exists no $\varepsilon > 0$ such that G is constant on $[\xi_{\alpha}, \xi_{\alpha} + \varepsilon)$ and $[\xi_{\beta}, \xi_{\beta} + \epsilon)$.

As an application we prove Gnedenko's theorem about choosing stabilizing constants for sequences $F_n = F^n$ attracted by the doubleexponential law ([2] p.446).

Corollary 1. If for a distribution function F the sequence $\{F^n\}$ is in the domain of

(14)then

(15)
$$F^{n}(a_{n}x + b_{n}) \rightarrow G(x)$$
 for x all x, $n \rightarrow \infty$

 $G(\mathbf{x}) = \exp\{-e^{-\mathbf{x}}\}$

(16)
$$b_n = \inf \{x \mid F(x) \ge 1 - \frac{1}{n}\}$$

and
$$a_n = \inf \{x \mid F(x) \ge 1 - \frac{1}{ne}\} - b_n$$
 $n = 1, 2, 3, ...$

Proof. It is not difficult to see that theorem 2 holds with

(17)
$$b_n = \xi_{\alpha_{n-1}}^{(n)}$$

and

$$a_{n} = \xi_{\beta_{n}}^{(n)} - b_{n}$$
,

when $\alpha_n \longrightarrow \alpha$ and $\beta_n \longrightarrow \beta$ $(n \to \infty)$. Applying the adapted theorem 2 with

$$\alpha_{n} = (1 - \frac{1}{n})^{n}$$
 and $\beta_{n} = (1 - \frac{1}{ne})^{n}$

we obtain (16).

Remark. Obviously (15) and (16) are also true for the two other possible types of limit laws G.

Another application concerns stabilization by moments.

(18) $F_n(\sigma_n x + b_n) \longrightarrow G(x)$

for all x, where G is one-to-one and b_n arbitrary, then there exists a B such that

(19)
$$\mathbf{F}_{\mathbf{n}}(\sigma_{\mathbf{n}}\mathbf{x} + \mu_{\mathbf{n}}) \longrightarrow \mathbf{G}(\mathbf{x} + \mathbf{B}).$$

<u>Proof.</u> Let $\{X_n\}$ be random variables with distribution functions $\{F_n\}$ and

(20)

$$Y_{n} = \frac{X_{n} - \xi_{\alpha}^{(n)}}{\xi_{\beta}^{(n)} - \xi_{\alpha}^{(n)}} \qquad (n = 1, 2, 3, ..).$$

•

Then

(21)
$$\mu(\Upsilon_{n}) = \frac{\mu_{n} - \xi_{\alpha}^{(n)}}{\xi_{\beta}^{(n)} - \xi_{\alpha}^{(n)}} \text{ and } \sigma(\Upsilon_{n}) = \frac{\sigma_{n}}{\xi_{\beta}^{(n)} - \xi_{\alpha}^{(n)}}$$

From (18) and theorem 2 it follows that for some positive A

(22)
$$\sigma(Y_n) \longrightarrow A.$$

The inequality

$$-(1 - \alpha)^{-\frac{1}{2}} \leq \frac{\mu_n - \xi_\alpha^{(n)}}{\sigma_n} \leq \alpha^{-\frac{1}{2}}$$

(see [3] p.244) gives that the sequence { μ (Y_n)} is bounded so that (from (22)) the sequence {E Y_n²} is bounded; hence the sequence

$$\mu(\mathbf{Y}_{n}) = \frac{\mu_{n} - \xi_{\beta}^{(n)}}{\xi_{\alpha}^{(n)} - \xi_{\beta}^{(n)}}$$

converges. Application of theorem 1 gives (19).

2. Weak law of large numbers.

A sequence of distribution functions $\{F_n\}$ is said to satisfy the weak law of large numbers if there is a sequence of real numbers $\{b_n\}$ such that

(23)
$$F_n (x + b_n) \longrightarrow (x)$$

for $x \neq 0$.

<u>Theorem 3</u>. For a sequence of distribution functions $\{F_n\}$ the following propositions are equivalent:

a. The sequence $\{F_n\}$ satisfies the weak law of large numbers. b. For each α (0 < α < 1)

(24)
$$F_n(x + \xi_{\alpha}^{(n)}) \longrightarrow \chi(x)$$

for $x \neq 0$.

c. For each α and β (0 < α < β < 1)

(25)
$$\lim_{n \to \infty} (\xi_{\beta}^{(n)} - \xi_{\alpha}^{(n)}) = 0$$

Proof. b \Rightarrow a: Trivial. a \Rightarrow b: Choose $\alpha (0 < \alpha < 1)$ and $\varepsilon (\varepsilon > 0)$; from

(26)
$$\lim_{n \to \infty} F_n(x + b_n) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x > 0 \end{cases}$$

it follows that when $n \ge n_0$

$$F_{n}(-\epsilon+b_{n}) < c < F_{n}(\epsilon+b_{n}).$$

Applying (5) we have (27) $b_n - \varepsilon < \xi_{\alpha}^{(n)} < b_n + \varepsilon$,

hence for each x

s,

$$F_{n}(x - \varepsilon + b_{n}) \leq F_{n}(x + \xi_{\alpha}^{(n)}) \leq F_{n}(x + \varepsilon + b_{n}).$$

From this and (26) we obtain (24).
a,b \Longrightarrow c: relation (27) gives

$$\lim_{n\to\infty} \{\xi_{\alpha}^{(n)} - b_n\} = 0.$$

As α is arbitrary we have (25). $c \Rightarrow b$: Choose α (0 < α < 1), x > 0 and ε > 0 arbitrary and ε_1 such that 0 < ε_1 < x. Relation (25) implies for $n \ge n_0$

$$\xi_{1-\varepsilon}^{(n)} - \varepsilon_1 < \xi_{\alpha}^{(n)}$$
,

hence by (5)

$$1 - \varepsilon < F_n(\xi_{1-\varepsilon}^{(n)}) \leq F_n(x - \varepsilon_1 + \xi_{1-\varepsilon}^{(n)}) \leq F_n(x + \xi_\alpha^{(n)}) \leq 1,$$

so for x > 0

$$\lim_{n\to\infty} F_n(x + \xi_{\alpha}^{(n)}) = 1.$$

Analogously one proves (24) for x < 0.

By a simple transformation we can restate the results of theorem 3 as conditions for a sequence of distribution functions $\{F_n\}$ concentrated on the non-negative half-axis which is relatively stable i.e. for which

$$F_n(a_n x) \longrightarrow ((x - 1))$$

weakly for suitably chosen positive constants {a_}}.

<u>Theorem 4</u>. For a sequence of distribution functions $\{F_n\}$ with $F_n(0-) = 0$ for $n = 1,2,3, \ldots$ the following propositions are equivalent:

a. The sequence $\{F_n\}$ is relatively stable. b. For each α (0 < α < 1)

$$F_n(x, \xi_{\alpha}^{(n)}) \longrightarrow (x - 1)$$

for $x \neq 1$.

c. For each α and β (0 < α < β < 1)

$$\lim_{n\to\infty} \frac{\xi_{\beta}^{(n)}}{\xi_{\alpha}^{(n)}} = 1.$$

<u>Proof</u>. A sequence $\{F_n\}$ satisfies the conditions of theorem 4 iff the sequence $\{G_n\}$ defined by

$$G_n(x) = F_n(e^x)$$

satisfies the conditions of theorem 3.

As in section 1 the results of Gnedenko ([2] p.426) concerning the law of large numbers and the relative stability of the sequence of maxima of independent identically distributed random variables can be seen as corollaries to the theorems 3 and 4. References

[1] Feller, W. (1966). An introduction to probability theory and its applications <u>2</u>. Wiley, New-York.

[2] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Annals of Math. <u>44</u> 423-453.

[3] Loève, M. (1963). Probability theory. van Nostrand, New-York.