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0. Introduction and Summary. A sequence of distribution functions

{Fn} belongs to the domain of attraction of a non-degenerate
distribution function G ( notation {Fn}é-D(G)) when it is possible

to choose sequences {an} (an >0, n=1,2,3,...) and {bn} such that
+
(1) Fn(anx bn) > G(x)

in the weak sense. A well-known theorem of Gnedenko states to which
extent we may change the sequences of stabilizing constants. Ve give
the theorem in its extended form (see [1], p.246).

Theorem 1. If (1) holds, we have
*®
(2) Flox+8)~>G(x)
weakly (where G* is non-degenerate) iff
-1
(3) o v A.an > & (B -b )~+>B for n » =

and

¢®(x) = G(Ax + B).

In this report we give an explicite expression of the constants a, and
bn as functions of the given distribution functions Fn when G is
one-to-one. As an example we consider the case Fn = F" where'F is
a given distribution function; then Gnedenko's expression for
stabilizing constants for maxima of independent random variables is
seen to be a special case of theorem 2. There is also an application
concerning stabilization by moments.

Finally we give a connection between quantiles and centering

constants used with the weak law of large numbers.
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1. Choice of stabilizing constants. For a sequence of distribution functions

{Fn} satisfying (1) it is not true in general that (1) holds with

®
bn =u = J x d Fn(x)
and -
o 2 2 2
& =o' = J X an(x) -1 J x an(x)} R

even if un and 9, exist for every n. Defining

Fx) = (1-2) F(x) + & Ux - n)

1
n n

where F(x) is an arbitrary distribution function with p = 0 and

c =1, we have

Fn(x)—-+ F(x)

weakly, so (1) holds with a =1 but

o —

R A

a n

n
We formulate a theorem giving the stabilizing constants as functions
of Fn for a class of limit distributions. The formulation involves
quantiles; the precise definition of a quantile does not matter.
However, it is convenient to have a definition which determines the
quantile uniquely. For each o (0 < a < 1) we define for the

distribution function Fn

(L) ga(n) = inf {x | Fn(x) > a} .
Then
(5) F (e ™ _0) <a<r (g™,

n o - n ‘o
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Theorem 2. Suppose that the distribution function G is continuous

on the whole real line and strictly increasing on

{x | 0 <a(x) <1}, If {F }ED(G) then
(6) Fn(anx + bn) + G(ax + b)
weakly (hence for all x), with

(7)

a

I
¥y

n "B a >

and o and B arbitrary (provided 0 < a < B < 1).

g?oof.

Given

(8) Fn(aé x + bé) > G(x)

weakly with sequences aé > 0 end bé , for every pair of positive

numbers e, and ¢, there is a positive integer n_ such that for

1 2 0
n_>__n0
1 - 1 -
Fn(an (b e1) + bn) < a(p 51) + €,
(9)
] | -
Fn(an (b + e1) + bn) > G(b + 21) Ese
Choosing
e, = min {G(b) - G(b - e1), G(b + 31) - G(p)} > 0,
we have
U - t ' U
(10) Fn(an(b 51) + bn) < Fn(an(b + 81) + bn).

From (5) it follows in view of the continuity of G

(11) F (b -0) <aG(b) <F (b

n n - n

n) n=1,2,3,...



=l

Combining (10) and (11) we obtain

al - 1 1 ' =
an(b e)+bn<bnian(b+e)+bn n=1,2,3, veu ,

1 1

SO

(12) b - Db
n n . b o+ ®

a'
n

Starting in (9) with a+b instead of b we obtain

(13) a b b!

Application of theorem 1 gives the statement of the theorem.

Remark. A slight adaptation of the proof shows that the reqpirements

on G can be weakened to the following ones:

8. £, < £g 3 here £ = inf < x | G(x) > a },
b. There exists no € > 0 such that G is constant on [Ea, ga + ¢€)
+ ' L
and [;B’ Eg €)
As an application we prove Gnedenko's theorem about choosing
stabilizing constants for sequences Fn = F* attracted by the double~

exponential law (Eﬂ p.4L6).

Corollary 1. If for a distribution function F the sequence (F'} is

in the domain of

(1k) G(x) = exp{-e™*}
then
(15) Fn(anx + bn) + G(x) for x all x, n » =
with
(16) b =inf {x | F(x) > 1 - -:;}
. 1
and & = inf {x | F(x) > 1 - EE& - bn n=1,2,3, oee
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Proof. It is not difficult to see that theorem 2 holds with

(17) b =¢&

and

when a 3o and 8 — B (n » »). Applying the adapted theorem 2
with
_ 1\n _ 1 \n
o, = (1-2)"and 8 = (1 -—-)
we obtain (16).

Remark. Obviously (15) and (16) are also true for the two other

possible types of limit laws G.

Another application concerns stabilization by moments.

Corollary 2. If

(18) Fn(onx + bn) — G(x)

for all x, where G is one-to-one and bn arbitrary, then there exists

a B such that

(19) En(onx + “n) —— G(x + B).

Proof. Let {Xn} be random variables with distribution functions
{Fn} and

(20)
X - g(n)
y = > ¢ (n = 1,2,3, +.).
n (nj (n) 9& 90
g5 - &,
Then
(21 - gén) o,
uyy) = ETETij;?h) and o(Y,) = () _ () :
B o B a
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From (18) and theorem 2 it follows that for some positive A

The inequality (n)
1 My m gy _1
-(1 -a)7% < —— <a’
R — o —_—
n
(see [3] p.2L4) gives that the sequence {u (Yn)} is bounded so that

D
( from (22)) the sequence {E Yi} is bounded; hence the sequence

(n)

u -
Wy, = 45 E—
& - &g

converges. Application of theorem 1 gives (19).

2. Weak law of large numbers.

A sequence of distribution functions {Fn} is said to satisfy the
weak law of large numbers if there is a sequence of real numbers

{bp} such that

(23) Foo(x+b ) ——(x)
for x + 0.

Theorem 3. For a sequence of distribution functions {Fn} the
following propositions are equivalent:

a. The sequence {Fn} satisfies the weak law of large numbers.
b. For each a (0 < a < 1)

(n)
0 )

— \(x)

(24) Fn(x + g

for x # 0.
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c. For each oo and B (0 < a < B < 1)

(25) vim (5{™ - (™)

n->o

Proof.
b =)a: Trivial.
a =Hb: Choose o (0<a<1)and € (¢ > 0) ; from

. r 0 for x <O
(26) lim Fn(x + bn) =4L

n->o 1 for x>0

it follows that when n > ng

- € + + .
Fn( € bn) < e < Fn(e: bn)

Applying (5) we have

(27) b - e < gl

<b + €,
o n

hence for each x

(n))

Fn(x - e+ bn) <F (x+¢g

From this and (26) we obtain (24).
a,b ==)c: relation (27) gives

<F(x+e+b).
- n n

(n)

lim {Ea

n--e

- b } =0.
n

As o is arbitrary we have (25).
c=db: Choose o (0 < a < 1), x > 0 and € > O arbitrary and €, such

that 0 < 51 < X.

Relation (25) implies for n > n,

gln) _ . < g ()

1-€



hence by (5)

1 -¢c< Fn(Egrjg) <F (x-e + Egr_li)

<1,

(n)
an)

1Fn(x +

so for x > O

(n))

Qo

= 1‘

lim F (x + £
nyo O

Analogously one proves (24) for x < 0.

By a simple transformation we can restate the results of theorem 3
as conditions for a sequence of distribution functions {Fn} concen-
trated on the non-negative half-axis which is relatively stable i.e.
for which

Fn(anx) — (x - 1)

weakly for suitably chosen positive constants {an}.

Theorem 4. For a sequence of distribution functions {Fn} with
Fn(O—) =0 forn=1,2,3, ... the following propositions are equi-
valent:

a. The sequence {Fn} is relatively stable.

b. For each o (0 < a < 1)

P (x £")) — ((x - 1)
for x + 1.

c. For each o and B (0 < a < B < 1)

(n)
g

ain)

= 1.

lim

n->c
Proof. A sequence {Fn} satisfies the conditions of theorem 4 iff the
sequence {Gn} defined by

G (x) = F (&%)

n n
satisfies the conditions of theorem 3.

As in section 1 the results of Gnedenko ([2] p.lL26) concerning the

law of large numbers and the relative stability of the sequence of
maxima of independent identically distributed random variables can be

seen as corollaries to the theorems 3 and k4.
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