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ABSTRACT
City transit maps are one of the important resources for public
navigation in today’s digital world. However, the availability of
transit maps for many developing countries is very limited, pri-
marily due to the various socio-economic factors that drive the
private operated and partially regulated transport services. Public
transports at these cities are marred with many factors such as
uncoordinated waiting time at bus stoppages, crowding in the bus,
sporadic road conditions etc., which also need to be annotated so
that commuters can take informed decision. Interestingly, many
of these factors are spatio-temporal in nature. In this paper, we
develop CityMap, a system to automatically extract transit routes
along with their eccentricities from spatio-temporal crowdsensed
data collected via commuters’ smart-phones. We apply a learning
based methodology coupled with a feature selection mechanism to
�lter out the necessary information from raw smart-phone sensor
data with minimal user engagement and drain of ba�ery power.
A thorough evaluation of CityMap, conducted for more than two
years over 11 di�erent routes in 3 di�erent cities in India, show
that the system e�ectively annotates bus routes along with other
route and road features with more than 90% of accuracy.
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1 INTRODUCTION
Smartly annotated transit map [10, 19] is an important facility for
navigation planning and assistance, which is useful for commuters,
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transit operators, city transport authorities as well as various gov-
ernment agencies. In recent times, Google transit provides a nice
visualization of transit mapping system for various cities through-
out the globe, however only limited towards the cities of developed
countries [2]1. Close investigations reveal that extending the tran-
sit map systems for developing countries face multiple challenges,
broadly classi�ed into two major areas – (i) transit system related
challenges and (ii) infrastructure related challenges.

Challenges in transit system: (a) In most of the cities of devel-
oping countries, the public transport systems are usually managed
through a public-private partnership model [4, 27]. �is intro-
duces a competitive environment for pro�t, where multiple owners
run buses between the same pair of locations following di�erent
bus routes [27], which are uncoordinated and may have di�erent
features like stoppage pro�le and travel time. (b) Moreover, the
types of buses may also vary widely; for instance, air-conditioned
(AC) vs non air-conditioned (non-AC) buses; mini-buses vs normal
buses etc [6]. (c) the bus stoppages and congestion in a route are
not always �xed; buses may provide additional stoppages during
busy hours based on passenger demand, and skip stops during the
non-busy hours [24]. �is (dynamic) information needs to be cor-
rectly annotated on the transit map, as these factors may severely
impact the navigation planning of the commuters as mentioned
in the Commuter Pain Survey by IBM [1]. Challenges in road
infrastructure: (a) In developing countries, road infrastructure
is challenging due to the presence of bad road patches, frequent
speed breakers, sharp turns and congested areas, which impact the
travel time and the comfort of the commuters. A transit map should
annotate such eccentricities on the routes, such that commuters
can choose the desired route while planning. (b) �e aforesaid road
information needs to be comprehensively collected in seamless
manner, without relying on a �xed group of volunteers. (c) Since
the condition of road changes over time, the information should be
collected in real time, to cope up with this dynamicity.

Development of a scalable system to generate city transit map
requires (i) automatic discovery of the public bus routes in a city, (ii)
extracting their road and route speci�c characteristics, and (iii) ren-
dering this information correctly on the discovered routes. Notably,
rapid penetration of smart-phones equipped with onboard sensors
opens up an opportunity to collect rich spatial data from the daily
commuters in a city. We may rely on crowdsensing to populate the
information repository containing sensor log collected from smart-
phones of the commuters. Deep analysis of the collected sensor
signatures reveals several road and route speci�c characteristics
(say potholes, speed breakers, bus-stops etc), termed as Point of
Concerns (PoCs). One may leverage on these PoCs to develop a

1Google transit is available only in 1.1%, 2.7% and 11.5% cities of Africa, South
America and Asia, respectively, in contrast to 75.9% of the cities of North America
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Table 1: Comparing CityMap with respect to di�erent existing works, which focus on road surface monitoring and route map generation

Study Name Brief description Crowd-
sourcing

Anomaly
Detection

Machine
Learning

End to End
Route map
generation

Map Anno-
tation

Map suit-
able for
public
transport?

UrbanEye [24] An energy-e�cient, outdoor localization system for route navigation and travel
time prediction for the city commuters

No Yes No No No NA

Wolverine [7] Identi�es frequent braking events, which indicate congested tra�c conditions and
bumps on the roads to characterize the type of road using smart-phone sensors

No Yes Yes No No NA

Dejavu [5] A system that uses standard cell-phone sensors to provide accurate and energy-
e�cient outdoor localization suitable for car navigation.

Yes Yes No No No NA

EasyTracker [8] An automatic system for low-cost, real-time transit tracking, mapping and arrival
time prediction

No No No Yes No Yes

Mining driving routes
[15]

Uses solely the accelerometer and gyroscope of the user�s phone to detect repeated
driving routes.

No No No Yes No No

Anomaly detection[20] Explores the possibility of road anomaly detection via motorcycle-based mobile
device using supervised and unsupervised machine learning techniques

No Yes Yes No No NA

methodology to discover the bus routes from the spatio-temporally
crowdsense data, extract the route speci�c features (say congestion
in a route, possibility of ge�ing a place to sit, average waiting time
at a bus stop etc) and annotate the bus routes with these information.
�is paper takes an important step towards this direction.

In this paper, we develop CityMap, a crowdsensing based transit
system, which can seamlessly sense the road & tra�c condition of
a city and render the route transit information. �e architecture of
CityMap is composed into two major modules – (a) database gen-
eration from crowdsensed repository, and (b) route discovery. In
principle, smart-phone sensors provide unique signature to identify
the PoCs such as speed breakers, turns, congestions etc to populate
the database. However in practice, variability in sensor recording
for di�erent types of vehicles makes the detection methodology
challenging. For example, the accelerometer readings vary for the
same speed breakers, if recorded from a mini-bus vis-a-vis from a
normal bus. Moreover, problem may arise due to signi�cant bat-
tery consumption while continuous sensing is done to build up
the crowdsensed repository (§3). In CityMap (database generation
module), we implement a smart crowdsensing technique to collect
sensor data from smart-phones only when commuters travel in a
bus. Additionally, we develop a machine learning based classi�er
to identify PoCs observed in a route, which is smart enough to
dynamically adapt itself depending on the city, vehicle and the envi-
ronment. In Route discovery module, we leverage on detected PoCs
to discover the routes and annotate the route map. Route discovery
is challenging since there can be multiple routes between the same
location pairs, and also a commuter may not board and alight only
at the terminal stops. We implement the following three steps to
discover routes – (a) identifying route trajectories from PoCs, (b)
constructing route segments from trajectories, (c) stitching of route
segments to generate a complete route (§4). Finally, we evaluate
CityMap using data collected for 25 months from three di�erent
cities in India, and demonstrate that CityMap performs 65% be�er
than the competing approaches, while CityMap consumes less bat-
tery power (§5). Delving deep, we exclusively evaluate individual
components of CityMap demonstrating how correctly we can iden-
tify the PoCs, construct the route segments and �nally stitch the
segments to discover and annotate the complete routes(§6).

2 RELATEDWORKS
Mobile sensing has been used in several applications related to
user activity monitoring and to collect movement statistics of

pedestrians as well as while traveling through vehicles. Several
works[23, 28] rely completely on GPS, while a number of stud-
ies [7, 13, 24] have utilized inertial sensors in smart-phones, like
accelerometer, gyroscope, compass etc., to identify unique road
signatures. [5, 9, 11, 15] use these inertial sensors for navigation
purposes in the absence of GPS. Works like [8, 12] generate route
maps from smart-phone data or opportunistic GPS traces. Our
work [22] proposes a crowdsource based solution, CrowdMap, which
seamlessly collects travel data and generates the trajectory followed
by the user.

Nevertheless, the limitations of these existing works are – (i) they
primarily rely on war-driving data, and so there is signi�cantly less
possibility of noise, (ii) the developed mechanisms are limited to
particular scenarios of smoothed data (like taxi movement in a city
of a developed country), and (iii) uncertainty is not prevailing in city
scale, and therefore combining the existing solutions of di�erent
subproblems (like inferring road conditions [15] or producing route
maps [12] etc.) does not lead to the end-to-end solution in the
scenario of a developing region. A summary of the existing works,
which are closely related to the di�erent modules of CityMap, is
given in Table 1.

3 MOTIVATION, OPPORTUNITIES AND
CHALLENGES

�e prime motivation of this paper stems from the inherent limita-
tions of Google transit information; we observe this facility absent
for most of the cities across the globe. For instance, only 13 cities in
India have Google Transit information available [2] against almost
495 cities. Notably, this coverage is pre�y low for Asian, African
and South American cities. One major reason behind this fact is
that, the public transport in most of these cities are not centrally
organized, rather privately owned, and hence, it is di�cult to sys-
tematically gather information about all these routes [14, 17]. We
explore the development of a crowdsensing based application which
a commuter can install in her smart-phone. While commuting in a
bus, this app can seamlessly log the information about the routes
and update the transit information. In this solution, e�ectively no
centralized system is required as it leverages on the crowdsensing to
collect spatial data with transit information annotated. Distributing
this application to a wide number of users would help to build the
transit maps very fast.
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Figure 1: Every PoC registers unique signatures.

3.1 Opportunities for route discovery
Close inspections reveal that discovery of a new routes and dis-
crimination between a pair of routes rely on the identi�cation of
Points of Concerns (PoC) present on a speci�c route. We de�ne these
Points of Concerns (PoC) of a route with the help of the features
such as speed breakers, turns, bus stops, which render route speci�c
signatures on smart-phone sensors. �is can be observed from Fig
1, where compass reading changes sharply for turns and for speed
breakers there is high peak in accelerometer’s z-axis. As for stops,
we observe the changes in acceleration along y and z-axis. Zero
acceleration along y-axis and negligible variation along z-axis is
tagged as a signature for bus stop. Based on the sensor log collected
from the commuters, a classi�er can be designed to uniquely iden-
tify these Points of Concerns (PoC) from the aforementioned sensor
signatures. Once identi�ed, the PoCs on a route can be put together
to generate the complete trajectory with some approximation and
matched to a route. Hence, if a trajectory has a similar set of PoCs,
it can be linked to a bus route which has similar set of PoCs at
similar coordinates.
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Figure 2: Impact on speed breaker signature in di�erent scenarios

3.2 Challenges
However, the aforesaid approach comes with several challenges
linked to it. We start with the challenges linked to crowdsensing.
(a) It is di�cult to collect crowd data if the application requires
user intervention, or hogs the smart-phones ba�ery power. In such
scenarios, the commuter would rather prefer not to install and run

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200  250

S
p

e
e

d
 (

m
/s

)

Time (in sec)

Route 1 Bus 1
Route 1 Bus 2
Route 2 Bus 1
Route 2 Bus 2

Figure 3: Variation of speed over two di�erent routes for two di�er-
ent buses

the application itself. Moreover, the system should intelligently
decide to collect data when commuter embark the bus and stop
logging a�er alighting. (b) �e detection of PoC(s) has challenges
of its own. We may �x a set of static thresholds to identify the PoCs,
however these thresholds would vary between cities. (c) Existence
of di�erent categories of buses also adds up to the challenges, as
each of these also show variable signatures for the PoCs. �is is
evident from Fig 2(a), where we show the signature observed from
di�erent types of buses at the same speed breaker. Evidently, the
high peaks indicate the position of the speed breaker. Nevertheless,
one can notice that the range and characteristics of this peak varies
across di�erent categories of buses (say mini bus and AC bus).
Additionally the position of the commuter in the bus also a�ects
the sensor signatures as we have shown in Fig 2(b). (d) Laying down
the PoCs to generate the trajectory is quite straightforward, but it
is also required to estimate the intermediate points as these PoCs
would be far apart usually. (e) Mapping of the trajectories with
already discovered routes results in the construction and updating
of routes. While linking the trajectory to a route, it is possible that
two routes have overlapping segments. For instance, consider two
bus routes R1 : A−B −C −D and R2 : A−B − E − F , and a user has
discovered a trajectory A1 − B1 similar to the route segment A − B.
�e question arises, should we link the trajectory A1 − B1 to route
R1 or route R2. One possibility is to use features like speed of the
bus, jerkiness of the bus etc. to characterize the routes and match
the trajectories to the route which have be�er match. However
as can be seen in Fig 3, there is no distinct characteristics to be
identi�ed leveraging directly on the amplitude of these features. (f)
Moreover, these features vary both temporally and spatially which
needs to be addressed too. (g) Finally, commuters do not always
travel the complete route. In those cases, the disjoint trajectories
should be stitched together to generate the complete route.

4 SYSTEM DESCRIPTION
�e overall system architecture of CityMap can be broadly divided
into two modules – (a) Database Generation, and (b) Route Dis-
covery, as shown in Fig. 4. �e data is collected through CityMap
smart-phone app and transferred to a remote database server. Based
on the collected data, the CityMap server-side system generates the
annotated transit map that can be rendered through both smart-
phones as well as web applications.

4.1 Database generation
�e rich database is the core part of the system. In order to con-
struct the spatio-temporal database for transit system, we rely on
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Figure 4: CityMap System Architecture

smart-phone based crowdsensing. We develop a data collection
module, which accomplishes the following tasks – (a) intelligently
identi�es when to start and stop data logging, which can help to
automatically start the data collection by detecting boarding and
alighting of a passenger; (b) logs the sensor data from commuters’
smart-phones, detects signatures to identify PoCs on the �y, and
tags them with GPS coordinates; and (c) Identi�es the route speci�c
features for discrimination, considering the spatio-temporal aspects
of the features.
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Figure 6: Accelerometer readings when user is boarding, in a bus
and alighting from the bus [22]

4.1.1 Crowd-sourced data collection. We implement a spe-
cialized application by substantially extending our earlier work [22]
with be�er adaptability for di�erent cities and various types of
vehicles. �is smart-phone application is distributed amongst gen-
eral commuters for route data collection. �is application is non-
intrusive as the commuter need not have to engage with the ap-
plication. For instance, data sampling takes place only when the
commuter is inside a bus, which the application can intelligently
identify. As can be observed in Fig. 5, buses generate distinctive
audio signatures (re�ected in average decibel values) and hence
are easily distinguishable. Moreover, leveraging on the distinct
accelerometer signatures shown in Fig. 6, we can uniquely identify
when to start and stop the data logging. Next, we demonstrate

the automatic detection of PoCs (speed breakers, turns, bus stops)
and the subsequent annotation of PoCs with the GPS co-ordinates.
Precisely, GPS is only switched on when a PoC is detected.

Detection of PoCs: We develop a support vector machine
(SVM) based classi�er to identify the PoCs observed in a route. We
learn the features (Table 2) to detect speed breaker, turns and bus
stops. Notably, detection of PoCs simply based on the static thresh-
olds (as shown in Fig. 1) is di�cult under automated crowdsensing.
�is threshold varies across di�erent cities and even between buses
as shown in Fig. 2. Hence, the classi�er should be smart enough to
dynamically adapt itself depending on the city, vehicle and the en-
vironment, which is the motivation behind using SVM in this case.
In this classi�er, we leverage on the mean and standard deviation
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Figure 7: (a) Z-axis accelerometer reading for detecting a speed
breaker: B1, B2 and B3 - same speed breaker, di�erent buses, T1 -
turn, N1, N2 - no PoCs; (b) Compass reading for turns

of z-axis acceleration along with a peak function, which looks for
available peak as shown in Fig. 1, to detect speed breakers. As can
be seen in Fig. 7(a), mean and standard deviation show a distinct
characteristic. However, we have included the peak function to
mitigate the false positives that can occur due to the driving be-
havior. Similarly, we rely on the mean and standard deviation of
compass readings for detecting turns. It can be observed from Fig.
7(b) that these features are quite discriminating in identifying turns.
In order to detect bus stops, we compute the mean and the standard
deviation of z-axis and y-axis acceleration. It is important to note
that the training of the classi�er is done o�ine at a remote CityMap
server, and the trained SVM module is periodically updated to the
smart-phone app for online classi�cation. Hence, the SVM based
classi�cation wouldn’t slow down the application.

Table 2: Features used to classify PoCs from sensor data (µ : mean,
σ : standard deviation, peakaccz : peak observed in z-axis acceler-
ation, com : compass readings; �e sample size for mean and stan-
dard deviation calculation is of 25 readings)

PoC Features
Speed Breaker µaccz , σaccz , peakaccz

Turn µcom , σcom ,
Stops µaccz , σaccz , µaccy , σaccy

Once the PoCs are identi�ed, the smart-phone app transfers the
geo-tagged PoC data to a remote CityMap server. We then process
the data at the CityMap server to identify the annotated bus routes
based on the route speci�c features, as discussed next.
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Figure 8

4.1.2 Feature identification for bus route characteriza-
tion. Each route R can be uniquely characterized with the help
of a suite of features FR . In the following, we propose the features
to annotate the route map as well as to distinguish the bus routes.

Speed of the vehicle (v): Let a(t ) be the acceleration reading
at time t . �en, the average speed of the vehicle is calculated as v
=
∫ 1

0 a(t )dt . �is value is re-calibrated every time a GPS polling is
done. Buses follow di�erent speed at di�erent routes, hence it can
be used as a discriminating signature.

Speed before approaching a PoC (vlm ): We compute this
features as, vlm = 1

5 (
∑15
n=10 (

∫ n+1
n adt )), which depicts the average

speed of the vehicle 10s before approaching a PoC, calculated over 5
samples. �e speed with which a bus approaches a PoC is crucial in
many scenarios, like when taking a turn, a very high speed would
be dangerous.

Average waiting time at a bus stop (tw ): Assuming wait
time at a bus stop as t , we compute average waiting time tw =

1
|tr ips | (

∑
tr ips t ), where |trips | represents the number of trips. Dif-

ferent buses have di�erent wait time at the same bus stops, hence
this feature can characterize a route.

Probability of sitting (psit ): Fig. 8a shows the signatures when
the user is standing for sometime a�er ge�ing in the bus, and then
gets a vacant seat to sit down. It is easily visible that when the
user is standing, the acceleration values are more pronounced with
multiple peaks and dips. We tag a trip as tripsat if the user gets a
seat, then psit = |tr ipsat |

|tr ips | . �is feature is important because ge�ing
a seat is a major concern for many passengers [1].

Jerkiness of the bus (J ): Jerk is given asda(t )/dt and jerkcr it ical
is when jerk ≤ −9.9m/s3[18], within a sampling window of 5s . We
compute jerkiness as, J = |jerkcr it ical |

|samples | Jerkiness is an important
feature as it helps in determining the road condition as well as
driving behavior.

Probability of skipping a bus stop (pskip ): We label a stop

as Si , where i is the stop number, then pskip =
|S iskipped |
|tr ips | . Many

commuters would be concerned whether the bus will skip there
stop, especially in crowded buses, thus we include this feature in
our study.

Congestion (C): Congestion has a continuous stop-move-stop-
move pa�ern, which we detect using accelerometer readings, as
shown in Fig. 8b. �e region close to zero are the ones when the
bus is not moving, and the other are when it is mobile. However
these have peaks because of the sudden brakes. Let the time period
for the stop-move pa�ern be tsm , then we have medium congestion

when 1min ≤ tsm < 5min → Chiдh and high congestion when
tsm ≥ 5min → Chiдh

In a nutshell, a route R can be represented as the feature suite
FR = {t

R
w ,p

R
sit ,v

R ,vRlm , J
R ,pRskip ,C

R }.
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4.1.3 Capturing temporal and spatial variations. Tempo-
ral variation: Fig 9 demonstrates the fact that the tra�c in a route
varies widely at di�erent times of the day, depending on factors
like congestion, importance of a bus stop, probability of si�ing etc.
Hence a gross aggregation (in terms of average) of the aforesaid
features F for a route will lead to highly erroneous signatures. In
order to capture this temporal variation, we split the day into mul-
tiple time zones, (i) the busy hours (7am to 12pm and 5pm to 9pm)
and (ii) the remaining non-busy hours. We calculate the features
in F for each of the time zones separately while populating the
database and classifying routes.

Spatial variation: A similar variation is observed in di�erent
route segments too, which is evident from Fig. 9(b), where we
show the variation in features in three stretches at the start, an
intermediate stretch and close to the end of the route. Calculating
the feature value averaged over the complete route would never be
a proper measurement of route features lest we divide the complete
route into multiple segments. We �rst divide the segments between
any two set of PoCs. A�er this segmentation, if some segments are
larger than 3km, we again divide them into smaller segments of
approximately equal lengths.

4.2 Route discovery
�e detected set of PoCs can now be used to discover the routes
and annotate the route map. In order to accomplish this task, the
following steps need to be performed – (a) discovering route trajec-
tories from PoCs, (b) mapping the trajectory with the existing bus
routes to construct a route segment, (c) stitching of route segments
to generate a complete route.

4.2.1 Trajectory discovery. �e system utilizes the sequence
of GPS annotated PoCs to generate the travel trajectories. �is
is accomplished in two steps – (a) �rst, laying down the PoCs to
construct the route segment, and (b) estimating the intermediate co-
ordinates using Vincenty’s formula [25]. However, this estimation
adds some error which could get accumulated to give unusable esti-
mations. We thus introduce an error correction technique following
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Figure 10: Trajectory generation procedure

coordinate geometry principle and Google Snap-to-Road API [3].
Consider Fig. 10, P[i-1] is the last estimated location and L[j] is the
next PoC. Using Vincenty’s formula, the point P is estimated. Here
if we use Snap-to-Road, the point will fall on the road H. Hence,
we project the point P on the line joining P[i-1] and L[j], and then
use Snap-to-Road to estimate the point P[i] that lies on the target
road. Once the trajectory is generated, the next task is to include
this trajectory into one of the possible routes.
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Figure 11: Variation of speed a�er DWT for di�erent data

4.2.2 Constructing route segment: Inclusion of trajectory
to a route. Considering the data obtained from the individual com-
muter in a controlled environment, embedding it on the map is a
simple task of just listing down and tagging the map with the PoC
information. A major issue arises when working in real environ-
ment with the collected crowd-sourced data for public buses with
minimal GPS information; it becomes di�cult for the system to
identify the bus route unless explicitly tagged. �is is important
since in the next step, discovered trajectories need to be stitched
together to generate the complete route, and this stitching relies
completely on the disambiguation of trajectories. We employ Dis-
crete Wavelet Transforms (DWT) to map each trajectory with the
respective route. In principle, a feature, say speed of the bus, would
have high correlation for the buses traveling in the same route
while low correlation with the buses running in di�erent routes.
Observing this correlation is rather challenging in the amplitude
domain, as shown in Section 3. We transform the features using
DWT to capture the frequency domain insights, and then compute
the correlation. In Fig. 11, we plot the variation of speed a�er
performing DWT for a set of 4 data samples, 2 belonging to a single
route. �is result demonstrates the fact that the buses running in
same routes are highly correlated with almost similar peaks and
dips as well as variation. Following this principle, we employ a
strategy to map a discovered trajectory xi j to a speci�c route T.

�e trajectory xi j can be represented with the help of the feature
suite F

i j
x = {v

i j ,v
i j
lm ,p

i j
sit ,p

i j
skip , J

i j }. Now, for each feature in F
i j
x ,

we compute DWT and estimate the Pearson Coe�cient of the same

for every route T ∈ <, where < is the database of routes. It is
expected that if this trajectory xi j is a part of a speci�c route T, the
correlation between xi j and for the matching route T will be high.
Precisely, we compute the correlation coe�cient for all the routes
in < and select the one for which the correlation is highest. We
claim that a trajectory xi j is part of a route T ∈ <, if for three or
more features in F

i j
x , the calculated Pearson Coe�cient between T

and< is greater than a threshold ξ . Once a discovered trajectory
xi j gets included as a part of a route T, we call it as a route segment
of T.

Figure 12: �e trails T1 and T2 are from di�erent users and need to
be stitched together to get the route A-B-D-E

4.2.3 Map stitching for bus routes. Since commuters travel
di�erent segments of a bus route and may not travel the entire end
to end route, it is essential to identify the di�erent route segments
accurately and combine them to construct the complete bus route.
Consider the road network given in Fig. 12. A commuter may follow
route segmentT 1 from pointA to point D, while another commuter
may go through segment T2 which is from point B to point E via
point D. We aim to stitch segments T 1 and T 2 to get the complete
bus route. Here we take a conservative approach, where we stitch
two route segments only if they are overlapped, as in the case of
Fig. 12.

Challenge and opportunity: Nevertheless, �nding overlaps
in route segments is not always su�cient, as there can be two
di�erent routes having overlap between them. Considering Fig. 12,
assume there are two bus routes –A−B−C−E−F andA−B−D−E−F .
Now if a commuter travels from A to B only, the segment A − B
matches with both the bus routes. However, we may leverage on
the fact that buses at di�erent routes exhibit diverse route speci�c
characteristics which can be captured in the features suite F of a
route (say speeds, waiting time at the stoppages, probability of bus
stops skipped etc), as introduced earlier. In this line, we propose
the map stitching algorithm, as given in Algorithm 1.
Algorithm: �e Algorithm takes input POCx – the list containing
coordinates of PoCs encountered in the route segment. It utilizes
RouteLog table that contains details (POCR , FR ) of every route R
encountered so far. �e algorithm runs in two phases – (1) road
matching and (2) route characteristics matching. In the roadmatching
phase, the route segment T is compared with all the bus routes in
RouteLog to check whether they follow the same or an overlapping
road segment. However, as the location points may not be exactly
same due to GPS error, we apply longest common subsequence (LCSS)
trajectory comparison algorithm to determine possible matching
road segments [26]. In order to �nd the matching road segments,
the number of common PoCs in POCx and POCR is computed
An existing bus route T ∈ < is considered to be a candidate for
matching road segment if the following conditions are satis�ed – (a)
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Algorithm 1: Map Stitching Algorithm
Input: RouteLog Table that contains details (POCR , FR ) of every route R encountered so

far, T – the detected route segment,< – the existing database of the routes
Output: Include the route segment T as a part of existing route or generate a new route –

Update the route database<
/* Route matching */

D← Φ;
foreach T ∈ < do

if ∃ common PoC subsequences POCT ∈ T and POCT ∈ T and
LCSS-Distance(POCT, POCT )≤ ζ then
D← D ∪ T;

/* Route characteristic matching */

if D , Φ then
Compute DWT for [v, vlm, psit , pskip , J ] of the route segment
ρmax ← 0 ; /* temporary variable */

Tsel ← Φ ; /* temporary variable for route */

foreach T ∈ D do
Compute DWT for (v, vlm, psit , pskip , J ) for T
/* Compute Pearson Correlation Coefficient between the DWT of T

and T */

[PCCv , PCCvlm , PCCpsit , PCCpskip , PCC J ]← Pearson Correlation
Coe�cient for v, vlm, psit , pskip , J between the trajectory and T

count ← Number of features i such that PCCi > ξ ; /* ξ is a threshold

on Correlation Coefficient */
topmean ←Mean of top 3 PCCi
if count >= 3 and topmean > ρmax then

ρmax ← topmean
Tsel ← T

if Tsel , Φ then
/* There is a match with an existing bus route */
Update RouteLog table for route Tsel with averaging the features of T and
Tsel ;

else
/* This is a probable new bus route -- keep it in data store for

off-line processing */

Add T to the NewRoute table along with bus features;

else
/* A new road has been discovered -- keep it in data store for off-line

processing */

Add T to the NewRoute table along with bus features;

there exists common PoC subsequences among T and T, and the
subsequence length is more than κ, and (b) the LCSS distance [26]
among the common PoC subsequences of T and T is less than
a threshold ζ , where we set κ and ζ values following [26]. �e
next step is determined based on the output of road matching. As
mentioned earlier there can be more than one match, as the route
segment T can be a part of multiple bus routes. If there is no
match, then the route segment is included in an o�-line database
as a probable new bus route. Here we take a conservative approach
to include new bus routes, as there is always possibility of noise
within the crowdsensed data. We process this o�-line database
periodically, only if we get number of travel traces at a particular
road more than a threshold. Next, we proceed to compare route
speci�c characteristics as a matching route segment might be a
completely new route. Route classi�cation is employed to get the
possible routes with which this segment matches. Out of this set
of routes, we select the one for which the mean value of top three
Pearson Correlation Coe�cient is maximum. If no such route
segment is identi�ed, T is probably a new bus route, and we keep
it for o�-line processing. Otherwise, we identify the additional
route segment between T and Tsel and add it to the map. At the
same time, we update the location of common PoCs as well as
the bus features between T and Tsel , by computing the average
of PoC locations and feature vectors. �is gives us the complete

set of annotated bus routes encountered so far by the CityMap
application.

5 EVALUATION OF CITYMAP
In this section, we evaluate the overall performance of CityMap.
First, we measure the elegance of CityMap in (i) correctly detecting
bus routes and (ii) estimating the extent of mismatch between the
detected route and the original route. Next, we show the perfor-
mance of CityMap against a competing algorithm which is driven
by hidden Markov model [16].

5.1 Experimental setup
We conducted experiments from March 2015 to May 2017 in the
cities of Kolkata (KOL), Bhubaneswar (BBS) and Durgapur (DGP),
three cities in the eastern part of India. �e data is available online
at [21]. We engaged 30 volunteers, who were all college students
in the age group of 18-25 years, to conduct the experiment. We
distributed the data collection application among all these 30 sub-
jects. �e �rst three months of the experiment involved logging
continuous GPS information to construct the ground truth infor-
mation. Additionally, subjects were asked to label the mode of
transport they availed and the speci�c PoCs they encountered in
the route. �e devices employed in this experiment ranged from
low-end Android devices (JellyBean to Marshmallow) to high-end
ones. We conducted the experiments in 11 di�erent bus routes of
the aforementioned three cities. As a sample, detailed statistics of 6
bus routes (out of these 11) are shown in Table 3.

Table 3: Route details (N : Route name – city in brackets, L: Route
length, T : Daily avg. travel duration)

N L (km) T (hour) N L (km) T (hour)
K1 (KOL) 17 3.12 K2 (KOL) 14 2.76
K3 (KOL) 20 4.32 K4 (KOL) 10 0.48
B (BBS) 19 1.20 D (DGP) 22 3.84

5.2 Performance of bus route detection
First, we evaluate the overall performance of CityMap by measuring
the accuracy of bus route detection. We perform the comparison of
CityMap against the ground truth information collected in the �rst
three months period, where the volunteers tagged the bus number
every time they traveled. We compute three classical parameters –
precision (P), recall (R) and overall accuracy (A) to evaluate CityMap.
CityMap has an average precision of 93%, 91% recall and accuracy
of 87% in detecting the correct bus routes over all the cities. Ta-
ble 4 summarizes these three parameters over two typical routes in
Kolkata (KOL), Bhubaneswar (BBS), and Durgapur (DGP) chosen ju-
diciously. We select bus routes S9 & S4 in KOL and A1 & A2, which
have an overlapping patch of around 8 and 10 km respectively, and
306 & 207 in BBS which follow the same road throughout. �e table
shows that the detection accuracy is more than 90% in KOL and
more than 80% in BBS and DGP.

5.2.1 Route mismatch fraction. Next, we investigate the ex-
tent of mismatch between the estimated route and the original route,
by computing the length of non-overlapping portions between the
two, normalized by total route length. For this, we measure route
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Table 4: Accuracy of Bus Route Di�erentiation

City Route Number

BBS
306 207

P R A P R A
0.93 0.88 0.83 0.92 0.92 0.85

KOL
S9 S4

P R A P R A
1 0.9 0.9 0.96 0.96 0.93

DGP
A1 A2

P R A P R A
0.92 0.92 0.86 0.93 0.93 0.88

mismatch fraction (RMF) as de�ned in [16]. Let δm be the total
length of the segment, which does not overlap with the actual
route, and δ be the total length of the route. We compute RMF
(γ ) as, γ = δm

δ . In Fig. 13(a), we evaluate RMF for four routes in
Kolkata and one route each in Bhubaneswar and Durgapur. �e
low RMF values for routes K2 and K3 can be linked to the higher
landmark density. K2 and K3 have landmark density of 6.2/km
and 5.78/km, whereas the values for B, K1, K4 and D are 3.54/km,
3.43/km, 3.27/km and 3.82/km
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5.3 Competing heuristic
We evaluate the performance of CityMap against a baseline algo-
rithm proposed in [16], which mostly relies on the hidden Markov
model. �e evaluation has been performed from the perspective of
accurate route discovery and the cost paid in terms of energy drain.
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Figure 14: Comparison with the competing system

5.3.1 Route detection. �e competing heuristics only takes
into account the time stamped GPS information and hence fails
while classifying the overlapping segments of two routes (Fig. 14(a)).
We have used two variations of the competing system. First is the
case when continuous GPS sampling is done, and second is with
a GPS sampling period of 45s . As can be observed in Fig. 14(a),
absence of the classi�cation module in competing algorithm results

in higher values of RMF, as many of the trajectories although cor-
rectly stitched are not classi�ed to the correct route. In contrast,
CityMap demonstrates an accuracy higher than 80%.

5.3.2 Energy consumption. Fig. 14(b) illustrates the energy
consumed by CityMap for di�erent routes. We implement the fol-
lowing two baselines for comparison: (i) GPS being used throughout
the route, which is the best case for the competing system and (ii)
GPS sampled for every 45s . It is evident that the energy consump-
tion for CityMap is considerably low.

6 DISSECTING CITYMAP
In this section, we evaluate the two major components of CityMap
(a) Database generation and (b) Route discovery. Next, we illustrate
the importance of the crowdsensing on the performance of CityMap
and also reveal the importance of features suite FR .

6.1 Evaluation: Database generation
First, we show the accuracy of detecting PoCs (viz, speed break-
ers, turns and bus stops) and next, demonstrate the correctness of
congestion identi�cation. �is evaluation is necessary to correctly
discover the routes and annotate its eccentricities on the route map.

6.1.1 Ground truth generation. As mentioned in the exper-
imental setup, the ground truth data of the PoCs were collected
from the information tagged by the subjects during the �rst three
months of trail collection. Table 5 enumerates the ground truth
PoC information for di�erent cities. In case of congestion, we rely
on Google map to check which parts of the routes were moderately
or highly congested for two times of the day (morning or evening).

Table 5: Ground truth details from di�erent cities. PoCs are in num-
bers and congestion patches are in Km.

City Turns Speed
Breakers

Bus
Stop

Morning (Km.) Evening (Km.)
Medium High Medium High

BBS 13 5 25 6 2 7 3
KOL 44 15 204 19 8 20 10
DGP 32 10 49 0.5 0 1.5 0

Table 6: PoC detection performance (P: Precision, R: Recall and A:
Accuracy)

City Turns Speed Breakers Bus Stops
P R A P R A P R A

BBS 0.93 1 0.93 0.94 1 0.94 0.93 0.9 0.84
KOL 0.98 1 0.98 1 1 1 0.97 0.96 0.93
DGP 0.97 0.97 0.94 0.93 1 0.93 0.94 0.96 0.91

Table 7: Comparison using classi�er and static thresholds

City Classi�er Average Static Best Static
T B S T B S T B S

BBS 0.93 0.94 0.84 0.93 0.8 0.84 0.62 0.4 0.84
KOL 0.98 1 0.93 0.89 0.75 0.93 0.98 1 0.93
DGP 0.94 0.93 0.91 0.81 0.6 0.91 0.63 0.3 0.91
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Figure 15: Ratio of detection of congested patches

6.1.2 Detection of PoCs. Accurate detection of PoCs is impor-
tant for the correct route discovery. In Table 6, we present accuracy
of the classi�er in detecting various PoCs in di�erent cities. We
compute the precision, recall and accuracy values for all the three
types of PoCs. It can be noticed that turns and speed breakers are
easily detected with very high accuracy. Next, we evaluate the
performance of the classi�er against the simple baseline with static
thresholds. Table 7 exhibits the accuracy of the PoC detection for
three competing cases – (a) our proposed SVM based classi�er, (b)
considering the average of the (static) thresholds calculated for the
three respective cities and apply this (average) threshold for detec-
tion of PoCs, and (c) only considering the static threshold which
gives the best results in any one of the target cities and apply that
to other cities (in our case, threshold for Kolkata). �e approach of
selecting the best threshold is common with competing endeavors
like Dejavu [5] and Nericell [13]. We observe that the accuracy
drops considerably for the static threshold based baselines.

6.1.3 Detection of congestion a�ected areas. We propose
the following three metrics to evaluate the accuracy.

α =
λdetH + λdetM

λ
, β =

λdetH
λactH

, χ =
λdetM
λactM

where, λdetH /M is the length of a route tagged highly/medium con-
gested by our system, λactH /M is the length of route tagged as highly/
medium congested from Google map, and λ is the total length of
the congested route. Notably, in Fig. 15, we evaluate the detection
accuracy for two times of a day; in morning and evening. Occa-
sionally, we observe the value greater than 1, which implies that
an extra stretch of the route was detected as congested.

6.2 Evaluation: Route discovery
In the following, we exclusively evaluate the individual steps of the
route discovery module.

6.2.1 Accuracy of trajectory discovery. In Fig. 16(a), we
exhibit the localization accuracy for trajectory discovery. We take
the GPS data collected in the �rst three months as ground truth
and compare the accuracy with respect to this. It is comforting for
us to note that the error never goes beyond 6m. It is quite evident
that inclusion of error correction schemes following coordinate
geometry and Snap-to-Road substantially improves the accuracy.

6.2.2 Accuracy of constructing route segments. Next, we
investigate how accurately we can map and include the discovered
trajectories with the respective routes and subsequently construct
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the route segments. Fig. 16(b) shows the fraction of trajectories
which are erroneously not included in the correct route and Fig.
17(a) shows the average length of such erroneously classi�ed trajec-
tories. �is is important to note that routes like K3 have lower error
than route K2, but exhibits longer average error length. �e errors
observed in the �nally discovered routes thus display a trade-o�
between these two values. Evidently, in Fig 17(a), we observe that
the route K4 shows lower percentage error compared to D, however
higher error in average length. Hence, eventually, D manifests
lower RMF compared to K3.
Selection of threshold ξ : We empirically choose the threshold ξ
for classi�cation of route segments. We claim that the classi�ca-
tion is a success when the trajectory is correctly matched with an
existing bus route. An error occurs if the trajectory is matched with
a bus route where it is not a part of. We observed that both error
and success decrease considerably when ξ is increased from 0 to
0.5. Error falls from 60% to mere 6%, whereas success falls to 80%
from 100%. �is decrease in success becomes higher with almost
static error with further changes in ξ . We �x 0.5 for the threshold
ξ , as we observe minimum error while a�aining high success.

6.2.3 Accuracy ofmap stitching. Finally we evaluate the per-
formance of the map stitching heuristics. �e overall accuracy of
CityMap does not always manifest the accomplishment of the map
stitching heuristics. Since one may discover multiple overlapping
route segments for di�erent routes, there is a possibility that even if
a trajectory is classi�ed to a wrong route, as the segments overlap,
the stitching is perfect. We calculate the percentage of such cases
in Fig. 17(b) to exclusively evaluate map stitching. Comparing this
result with Fig. 16(b), we observe that the stitching accuracy is
linked to the accuracy of route classi�cation. �is is an important
reason why CityMap fared well compared to [16].
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6.3 Insights of CityMap
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6.3.1 Impact of data accumulation. �e success of a crowd-
sensing application depends upon its performance improvement
with peoples’ participation. Fig. 18 manifests the fact that stretching
the experiment period (aka gathering more volume of data) helps
to improve the performance in the light of RMF. �e results are
shown for a trail collection duration of 1, 5, 10 and 20 days. It is
evident that the accuracy of CityMap improves, and RMF reduces
in all the cases as more data being added.

6.3.2 Feature analysis. In this experiment, we eliminate one
of the features from suite F = {v,vlm ,psit ,pskip , J ,C} and run the
algorithm to rank the features based on importance. We exhibit
the results for two scenarios. (a) One is for the route for which
we got the worst result, i.e. K4, because we believe the reason for
the bad results could be ampli�ed and (b) we compute the average
RMFs of all the routes. We observe from Fig. 13(b) that pskip a�ects
the value of RMF minimum. �is is rather intuitive because the
non-popular bus stops are usually skipped in all the routes with few
exceptions. psit impacts the result most, which can be linked to
the fact that the probability of ge�ing a seat is highly route speci�c.
J and vlm have similar impact almost as both of these features are
linked to driver behavior and hence speci�c to the route the driver
follows. v also doesn’t have very high impact because majority of
the buses have almost similar speed range.

7 CONCLUSION
In this paper, we have developed CityMap, a system to automati-
cally extract spatio-temporal transit information from smart-phone
sensor data and to annotate them on the route map. In order to build
up this system, we have relied on crowdsensed data, and therefore,
we have considered the factors like zero user engagements, minimal
usage of smart-phone resources, extendability and robustness of
the system over multiple cities, possibility of having noisy data,
and the requirement to generate rich transit information for the
commuters to take correct decision during travel. We have done
a thorough testing of the system over multiple routes at multiple
cities, and observed the system performance to be signi�cantly
be�er than the competing baselines. Apart from discovering the
bus routes, CityMap also extracts various road speci�c features to
characterize the comfort during a journey (say, sharp turns, bad
road patches, frequent speed breakers etc.) and the route speci�c
features (say, bus stoppages and their waiting times, crowding in a
bus etc.), relying on which a commuter can decide the most suitable
route among multiple possibilities to reach the destination.
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