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Abstract
We describe a general method that allows experimenters to quantify the evidence from the data of a direct replication attempt
given data already acquired from an original study. These so-called replication Bayes factors are a reconceptualization of
the ones introduced by Verhagen and Wagenmakers (Journal of Experimental Psychology: General, 143(4), 1457–1475
2014) for the common t test. This reconceptualization is computationally simpler and generalizes easily to most common
experimental designs for which Bayes factors are available.
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The past 5 years have witnessed a dramatic increase
in interest for replication studies, largely in response
to psychology’s “crisis of confidence” (e.g., Pashler &
Wagenmakers, 2012). While this crisis is not unique to
the field of psychology by any means, psychologists have
been at the forefront of efforts to assess and improve
reproducibility in science by way of large-scale replication
initiatives, such as the Reproducibility Project: Psychology
(Open Science Collaboration, 2015), the Social Psychology
special issue on replication (Nosek & Lakens, 2014), and
the various ManyLabs efforts (Ebersole et al., 2016; Klein
et al., 2014). Although the importance of direct replication
has been contested by some (for an overview of the most
common arguments see Zwaan, Etz, Lucas, & Donnellan,
2017), the increasing prominence of replication studies has
prompted researchers to examine the question of how to
assess, statistically, the degree to which a replication study
succeeds or fails.
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A number of complementary questions may arise when
evaluating replication studies:

1. Completely ignoring the data of the original study, what
is the evidence that the effect is present or absent in the
replication attempt? (e.g., Marsman et al., 2017).

2. Taking the data of the original study fully into account,
what is the evidence that the effect is present or
absent in the replication attempt? (e.g., Verhagen &
Wagenmakers, 2014).

3. Pooling the data from the original study and the
replication attempt, what is the evidence that the effect
is present or absent? (e.g., Scheibehenne, Jamil, &
Wagenmakers, 2016).

4. Comparing the data from the original study and the
replication attempt, what is the evidence that the
effect sizes are similar or dissimilar? (e.g., Bayarri &
Mayoral, 2002).

Here we focus on answering the second question using
the “replication Bayes factor”, which can be conceptualized
as contrasting the position of a hypothetical skeptic and
proponent:

“The 1st hypothesis is that of the skeptic and holds
that the effect is spurious; this is the null hypothesis
that postulates a zero effect size, H0 : δ = 0. The
2nd hypothesis is that of the proponent and holds
that the effect is consistent with the one found in the
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original study, an effect that can be quantified by a
posterior distribution. Hence, the 2nd hypothesis—
the replication hypothesis—is given by Hr : δ ∼
‘posterior distribution from original study.’ The
weighted-likelihood ratio [i.e., the replication Bayes
factor] between H0 and Hr quantifies the evidence
that the data provide for replication success and
failure.” (Verhagen & Wagenmakers, 2014, p. 1457)

Verhagen and Wagenmakers (2014) proposed this repli-
cation Bayes factor in the context of the t test, and Wagen-
makers et al. (2016b) extended it to the correlation test. The
main idea is intuitive: first the original result is summarized
by its posterior distribution, and, subsequently, this poste-
rior is used as a prior for the replication attempt. Despite its
intuitive appeal in terms of the coherent updating of infor-
mation, the replication Bayes factor comes with at least
three challenges: (1) the procedure is not exact, as the pos-
terior distribution from the original study often needs to be
approximated by a convenient function; (2) the procedure
requires technicalities and is not easy to apply; (3) the proce-
dure does not generalize well to more complicated designs
such as ANOVA (but see George, Ročková, Rosenbaum,
Satopää, & Silber, 2017; Harms, 2016; Wagenmakers, Ver-
hagen, & Ly, 2016b).

Here we outline an alternative procedure that solves these
challenges. Specifically, the rules of Bayesian updating
reveal that the replication Bayes factor quantifies the change
in evidence provided by the replication experiment, given
that the evidence provided by the original study is already
available. This means that any software package that is able
to output ordinary Bayes factors can also be used to provide
replication Bayes factors, by simply feeding it the combined
data set.

Below we first describe the Bayes factor in general terms;
subsequently we outline the new conceptualization of the
replication Bayes factor and then apply it to a number
of concrete examples. We end by discussing the method’s
limitations and future challenges.

The Bayes factor

The Bayes factor is “fundamental to the Bayesian compar-
ison of alternative statistical models” (O’Hagan & Forster,
2004, p. 55) and it represents “the standard Bayesian solu-
tion to the hypothesis testing and model selection problems”
(Lewis & Raftery, 1997, p. 648) and “the primary tool
used in Bayesian inference for hypothesis testing and model
selection” (Berger, 2006, p. 378).

Developed and promoted by Jeffreys (1961), the Bayes
factor contrasts the predictive performance of two competing
models (Etz & Wagenmakers, 1995; Kass & Raftery, 2017;

Ly, Verhagen, & Wagenmakers, 2016a, b). Here we focus
on the standard scenario that features a null hypothesis, H0,
which stipulates the absence of an effect, and an alternative
hypothesis, H1, which stipulates the presence of an effect.
Both hypotheses are falsifiable in the sense that they make
specific predictions about the to-be-observed data. This is
accomplished by assigning the model parameters specific
values, or—in case the values are unknown and require
estimation from the data—entire distributions. For instance,
in the case of the t test, H0 assigns effect size δ in the
population a single specific value, namely δ = 0 (i.e., the
effect is absent); in contrast, H1 assigns effect size δ a distri-
bution that reflects the uncertainty about the true effect (e.g.,
δ ∼ N (0, 1); i.e., the effect is present but likely to be small).

When the competing hypotheses have been adorned
with prior distributions, so as to allow concrete predictions
about to-be-observed data, the evidence provided by the
actually observed data d is given by the hypotheses’ relative
predictive adequacy for those data (Wagenmakers et al.,
2016a):

P(H1 | d)

P (H0 | d)
︸ ︷︷ ︸

Posterior model odds

= p(d |H1)

p(d |H0)
︸ ︷︷ ︸

Predictive
updating factor

× P(H1)

P (H0)
︸ ︷︷ ︸

Prior model odds

(1)

The predictive updating factor—henceforth the Bayes
factor—quantifies the change in beliefs about the relative
plausibility of the competing hypotheses brought about
by the observed data. The prediction that a hypothesis
makes for the observed data is obtained by averaging the
predictions across the parameter space, weighted by the
prior plausibility of the parameter values. For a single
hypothesis, this average predictive adequacy is also known
as the marginal likelihood or the prior predictive likelihood:

p(d)
︸︷︷︸

Average
predictive adequacy

=

Summed across
all values of θ

︷ ︸︸ ︷

∫

�

f (d | θ)
︸ ︷︷ ︸

likelihood
for a specific θ

π(θ)
︸︷︷︸

weighted by the
prior plausibility
of that θ .

d θ . (2)

The Bayes factor is the ratio of the average predictive
adequacies for the two competing models:

BF10(d)= p(d |H1)

p(d |H0)
=

∫

�1
f (d | θ1,H1) π(θ1 |H1)dθ1

∫

�0
f (d | θ0,H0) π(θ0 |H0) d θ0

,

(3)

where θ1 is the parameter vector under H1 , and θ0 is
the (typically shorter) parameter vector under H0. Thus,
when BF10(d) = 3, the data d are three times more likely
under H1 than under H0, and when BF10(d) = 0.125 (or
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equivalently, BF01(d) = 1/BF10(d) = 8), the data are eight
times more likely under H0 than under H1.

The Bayes factor offers several advantages for the
analysis of empirical data (e.g., Dienes, 2014; Rouder,
2014; Schönbrodt & Wagenmakers, 2018; Wagenmakers,
Marsman, et al., 2018a). Specifically, the Bayes factor
allows the researcher to quantify evidence to discriminate
between absence of evidence (i.e., BF01(d) ≈ 1) versus
evidence of absence (i.e., BF01(d) � 1). The Bayes
factor also allows one to monitor the evidence as the data
come in (Gronau and Wagenmakers, 2017) and to design
experiments in order to ensure compelling evidence. Finally,
the Bayes factor can also be used to quantify replication
success, a topic to which we turn next. For a more
detailed introduction to the various fundamental Bayesian
concepts, see Wagenmakers et al. (2018a), Wagenmakers
et al. (2018b), and Etz and Vandekerckhove (2018).

Bayesian updating in action

For concreteness, consider the article by Krupenye et al.
(2016) titled “Great apes anticipate that other individuals
will act according to false beliefs”. In two experiments, the
authors used

“(...) an anticipatory looking test (originally developed
for human infants) to show that three species of great
apes reliably look in anticipation of an agent acting
on a location where he falsely believes an object to
be, even though the apes themselves know that the
object is no longer there. Our results suggest that great
apes also operate, at least on an implicit level, with
an understanding of false beliefs.” (Krupenye et al.,
2016, p. 110).

The Krupenye et al. (2016) article presents two
experiments. In each experiment, the apes could either
look at the target or at the distractor. Here we start by
presenting a Bayesian reanalysis of the first experiment. In
this experiment:

“(...) we tested 40 apes [19 chimpanzees, 14 bonobos,
and 7 orangutans (...)]. Thirty subjects looked to either
the target or the distractor during the central-approach
period. Of these 30, 20 looked first at the target (P =
0.098, two-tailed binomial test)” (Krupenye et al.,
2016, p. 113).

Now we reanalyze these results from a Bayesian
perspective using the Summary Stats module in JASP
(jasp-stats.org; JASP Team, 2018; Ly et al., in press). In our
reanalysis, we assume that the data we observe are binomial
and governed by a population parameter θ , the unknown
proportion of apes in the population who first look at the

target. The hypothesis that the apes are performing at chance
level is specified as H0 : θ = 0.5. This hypothesis is
contrasted with H1, the hypothesis that θ can take on values
other than 0.5. For illustrative purposes, under H1 we assign
θ a default prior distribution of Beta(1, 1) that is uniform
across the interval from 0 to 1. With the model in place, our
uncertainty about the unknown parameter θ is then updated
by the data (i.e., 20 out of 30 looks at the target), and this
yields the results shown in Fig. 1.

In Fig. 1, consider the two grey dots that mark the
height of the prior and posterior distribution at θ = 0.5,
the null hypothesis of chance performance. These heights
can be used to obtain the Savage–Dickey representation of
the Bayes factor, an intuitive depiction of its strength and
direction: If the dot at θ = 0.5 gets higher from prior to
posterior, the Bayes factor will provide evidence in favor
of the null hypothesis (and vice-versa); moreover, the ratio
of the heights of the dots exactly equals the Bayes factor
(Dickey & Lientz, 1970; Wagenmakers et al., 2010). In this
analysis, the two dots are almost at an equal height, and the
Bayes factor obtained is BF10(d) = 1.153, which indicates
that the data are non-diagnostic in choosing between the two
hypotheses under scrutiny.

We may have gained hardly any evidence for the one
hypothesis over the other. However, assume we know that
the null hypothesis is false, uninteresting, or generally
unworthy of attention. Then we are left with H1, and the
corresponding posterior information about θ is shown as
the full curve in Fig. 1. The area under this curve to the
right of θ = 0.5 is much larger than the area to the left of
θ = 0.5; consequently, if we discard the null hypothesis
that the apes are performing at chance, thus, only take
H1 into consideration, the previously non-diagnostic data
inform us that θ is likely to be higher than 0.5 (see also

Fig. 1 Bayesian reanalysis of the results from the first experiment in
Krupenye et al. (2016), where 20 out of 30 apes (≈ 67%) first looked
at the target. Figure from JASP

jasp-stats.org
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Etz & Vandekerckhove, 2018, Example 5); indeed, the 95%
credible interval ranges from 0.486 to 0.808.

The idea of Verhagen and Wagenmakers was to use this
posterior from the first experiment as an informed prior for
a second experiment. This is in accordance with Bayesian
parameter updating and the adage “today’s posterior is
tomorrow’s prior” (Lindley, 1972, p. 2). The resulting
“replication Bayes factor” quantifies the relative predictive
adequacy of the null hypothesis versus an alternative
hypothesis that is completely informed by the knowledge of
the parameter obtained from the first study.

To demonstrate the procedure, consider the second
experiment conducted by Krupenye et al. (2016):

“In experiment two, we tested 30 subjects (29 from
experiment one, plus one additional bonobo). Twenty-
two apes made explicit looks to the target or the
distractor during this period. Of these 22, 17 looked
first at the target (P = 0.016, two-tailed binomial
test)” (Krupenye et al., 2016, p. 113).

In order to compute the replication Bayes factor, we
take the posterior distribution from Experiment 1 (i.e., the
solid line in Fig. 1), and use it as a prior distribution
for the analysis of the second experiment. Recall that the
original uniform prior was a Beta(1, 1) distribution; after
incorporating the 20 successes and ten failures from the
first experiment, the posterior remains a beta distribution,
namely, Beta(1 + 20, 1 + 10). This distribution can be
specified in the Summary Stats module of JASP.

The result is displayed in Fig. 2. The dashed line
quantifies the knowledge of an idealized proponent, who
believes the effect is present and has access to the data from
Experiment 1. The solid line is the posterior distribution
when this knowledge has been updated using the data from
Experiment 2. This posterior distribution does not assign
much mass to values of θ near 0.5, and consequently the
replication Bayes factor is relatively strong: the data are
about 16 times more likely under the proponent’s Hr than
under the skeptic’s H0.

This process of updating to a posterior and then using it
as a prior for the analysis of the next experiment is relatively
straightforward for this simple example. For more complex
models, however, the process can be burdensome, approxi-
mate, and intricate. In the remainder of this paper, we
will propose an easier, more exact way forward that focuses
on updating the evidence rather than the parameter priors.

The replication Bayes factor
reconceptualized

The example above demonstrated how the replication Bayes
factor can be obtained by a standard Bayesian parameter

Fig. 2 Bayesian reanalysis of the results from the second experiment
in Krupenye et al. (2016)—where 17 out of 22 apes (≈ 77%) first
looked at the target—after having updated θ using the data from the
first experiment. Figure from JASP

updating process, that is, by using the posterior distribution
from the first experiment as a prior distribution for the
replication test of the second experiment.

However, there exists a simpler way to obtain the
replication Bayes factor, one that does not explicitly require
the parameter updating process. To explain this alternative
method, we revisit Krupenye et al. (2016) and analyze the
data from both experiments together (i.e., 20 + 17 = 37
first looks at the target out of 30 + 22 = 52 trials).
Figure 3 shows the results. The posterior distribution equals
the one shown in Fig. 2; in other words, it does not matter
whether the original prior distribution is updated in two
steps—first the data from Experiment 1, then the data from
Experiment 2—or all at once. Crucially, this property also
holds for the Bayes factor (e.g., Jeffreys, 1938, pp. 190–
192). The Bayes factor for the combined result, shown
in Fig. 3, equals 18.961. The Bayes factor for the first
experiment equals 1.153 (see Fig. 1), and the Bayes factor
for the second experiment—after updating based on the
knowledge obtained in the first experiment—equals 16.448
(see Fig. 2).1 Multiplying these two Bayes factors yields
1.153 × 16.448 = 18.965, the same result as is obtained
when all data are analyzed at once.2

1For a warning concerning the multiplication of Bayes factors that
have not been properly updated, see Jeffreys (1938, pp. 190–192, 1961,
Section 6.0), and Wagenmakers et al. (2015).
2The difference between 18.965 and 18.961 is due to rounding and
vanishes as the number of decimal places in the calculation are
increased. The number of decimal places that are displayed in JASP
can be increased in the preference window.
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Fig. 3 Bayesian reanalysis of the results from the first and second
experiment in Krupenye et al. (2016) combined, where 37 out of 52
apes (≈ %71) first looked at the target. Figure from JASP

In other words, the multiplication of component Bayes
factors, when properly updated, yields the complete Bayes
factor:

BF10(dorig, drep)
︸ ︷︷ ︸

Complete BF

= BF10(dorig)
︸ ︷︷ ︸

BF original
experiment

× BF10(drep | dorig)
︸ ︷︷ ︸

Replication BF

, (4)

where dorig denotes the data from the original study, and
drep the data from the replication attempt. Note that the
replication Bayes factor is the change in the Bayes factor
due to the observation of the replication data, and quantifies
the additional evidence for the alternative hypothesis given
what was already observed in the original study.

Rearranging (4) then yields the crucial identity

BF10(drep | dorig) = BF10(dorig, drep)

BF10(dorig)
, (5)

which shows that the replication Bayes factor may be
obtained by dividing the complete Bayes factor by the
Bayes factor from the original experiment. Importantly,
the replication Bayes factor is obtained much easier by
updating the evidence than by updating the parameters,
as the evidence-updating procedure does not require the
researcher to approximate the posterior from the original
study and specify it in a software program. For complex
models, this requirement is prohibitive. We now turn to
additional examples that demonstrate the ease with which
the evidence-updating (henceforth “EU”) replication Bayes
factor can be obtained.

Example 1: a t test to assess whether
superstition improves performance

Consider perhaps the most routine replication scenario, one
where a researcher conducts a replication of a study whose
analysis featured a t test. For a common t test, JASP allows
the specification of a Cauchy, t , or normal prior for the
effect size δ and the user is free to specify the center and
scale of this prior (for technical details see Gronau, Ly, &
Wagenmakers, 2017a). However, in contrast to parameter
θ from the binomial test, the posterior for δ in a t test
has no known distributional form. The applied scientist is
therefore unable to use the posterior as a prior to calculate a
replication Bayes factor in JASP.

To overcome this hurdle, Verhagen and Wagenmakers
(2014) proposed to approximate the posterior on effect
size obtained from the t test with a normal distribution;
this normal distribution is then used as a prior for
the analysis of the replication experiment. Unfortunately,
this approximation in the intermediate step between the
original and the replication study makes this method
computationally involved and hard to generalize to other
designs.

To illustrate the simplicity of the EU replication Bayes
factor, we revisit a recently published replication study
by Calin-Jageman and Caldwell (2014) on the effect of
superstition and performance in golf players (Damisch et al.,
2010). The authors summarized the background as follows:

“Can superstitions actually improve performance?
Damisch et al. (2010) reported a striking experiment
in which manipulating superstitious feelings markedly
increased golfing ability. Participants attempted ten
putts, each from a distance of 100 cm. Some
participants were primed for superstition prior to the
task by being told ‘Here is the ball. So far it has turned
out to be a lucky ball.’ Controls were simply told
‘This is the ball everyone has used so far.’ Remarkably,
this manipulation produced a substantial increase in
golf performance: Controls made 48% of putts while
superstition-primed participants made 65% of putts
(d = 0.83, 95% CI [0.05, 1.60]).” (Calin-Jageman &
Caldwell, 2014, p. 239)

A classical t test3 of the original data resulted in a
statistically significant result, t (26) = 2.14, p = .042, d =
0.83. As shown in Fig. 4, a Bayesian independent-samples
t test using the JASP Summary Stats module returns
BF10(dorig) = 1.820, a level of evidence that is not
compelling. Calin-Jageman and Caldwell (2014) performed

3This analysis is consistent with the one used in the original
experiment and the replication attempt. A more appropriate statistical
analysis arguably uses a hierarchical binomial model.
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Fig. 4 Bayesian reanalysis of the original results from Experiment 1
of Damisch et al. (2010), where golfers who played with a “lucky” ball
made more putts (t (26) = 2.14, p = .042, d = 0.83). Figure from
JASP

a direct replication of this work. Their Experiment 1
featured 58 control participants and 66 “superstition-
activated” participants. The latter group outperformed the
controls by only 2%, a result that is not statistically
significant (i.e., t (122) = 0.29, p = .77, d = 0.05).

To compute the EU replication Bayes factor, we first
need to compute the complete Bayes factor for these two
data sets. Since both the original and replication papers
report the raw means and standard deviations for each of
the two groups (which are sufficient statistics for the t test,
see Ly, Marsman, Verhagen, Grasman, & Wagenmakers,
2017), we can straightforwardly compute the overall t value
for the combined data (see Appendix A for a description
of the algebra involved); this yields an overall t =
1.14, which corresponds to a complete Bayes factor of
BF10(dorig, drep) = 0.318. The replication Bayes factor can
now be obtained by simply dividing the complete Bayes
factor by the Bayes factor from the original data alone
and leads to BF10(drep | dorig) = 0.175. In other words,
the skeptic’s null hypothesis predicted the data from the
replication attempt 1/0.175 = 5.72 times better than the
proponent’s alternative hypothesis informed by the original
data set.

Example 2: a contingency table analysis
to test whether more valuable stimuli
are judged to be relatively rare

The previous example featured a t test and therefore the
replication Bayes factor could also have been approximated
using the parameter-updating procedure outlined in Verha-
gen and Wagenmakers (2014). We now turn to an example

Table 1 Data from Dai et al. (2008), who concluded that endowing a
category may lead participants to judge that category to be relatively
rare

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 15 12 27

Birds 8 21 29

Total 23 33 56

for which this parameter-updating procedure is problematic:
the default Bayesian test for independence in a contingency
table (Gunel & Dickey, 1974; Jamil et al., 2017).

The test for independence involves the construction of
a model that is more complex than the models used for
the t test. Consequently, in JASP, the researcher can only
input a parameter that governs the relative concentration of
the joint prior distribution, and—for the special case of a
2 × 2 table—receive a posterior distribution for the log-
odds ratio, a derived summary measure that quantifies the
degree of association. This generic setup does not allow
researchers to obtain a joint parameter posterior from past
studies and use it as a prior for current studies, frustrating
the parameter-updating version of the replication Bayes
factor.

However, a contingency table replication test is straight-
forwardly implemented by using the EU replication Bayes
factor, as we now demonstrate by an example taken from
the Reproducibility Project: Psychology (RP:P; Open Sci-
ence Collaboration, 2015). As part of the RP:P, Fuchs, Estel,
and Göllner performed a replication of a study by Dai et al.
(2008), who

“(. . . ) tested a novel heuristic for making judgments of
relative frequency. According to this so-called value
heuristic, ‘people judge the frequency of a class of
objects on the basis of the subjective value of the
objects’ (p. 18). Based on the principle that scarcity
increases an object’s value, the authors [Dai et al.]
formulate the hypothesis that individuals will assess

Table 2 Data from the replication experiment by Fuchs and colleagues

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 11 16 27

Birds 14 10 24

Total 25 26 51

The data do not support the original finding of Dai et al. (2008)
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Table 3 Data from the original and replication experiment combined

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 26 28 54

Birds 22 31 53

Total 48 59 107

Note that this pooling procedure assumes that the data are
exchangeable, that is, it presumes that the replication study is direct
and close

more valuable stimulus classes to be less frequent even
when value is not diagnostic of frequency.”

The data from Dai and colleagues’ original study are
presented in Table 1. The raw data suggest that endowing a
category leads participants to judge that category as having
fewer occurrences, in line with their original hypothesis.
Subjecting this original finding to a classical contingency
table test results in χ2(1, 56) = 4.51, p = .037, and a
default Bayesian reanalysis (Gunel & Dickey, 1974) using
JASP yields BF10(dorig) = 2.880.

The data from Fuchs and colleagues’ replication attempt
are shown in Table 2. A classical contingency table
test applied to these data returns χ2(1, 51) = 1.57,
p = .21, which is not statistically significant. To
reanalyze this data using our EU replication Bayes
factor, we first combine the data into a single sample
(see Table 3) and compute the complete Bayes factor,
BF10(dorig, drep) = 0.298. To obtain the replication Bayes
factor, we simply divide BF10(dorig, drep) by BF10(dorig),
which yields BF10(drep | dorig) = 0.103. This means that the
replication data are predicted 1/0.103 = 9.71 times better
by the null hypothesis than by the alternative hypothesis
informed by the original data set.4

4It is worth noting that the replication Bayes factor in this example
can be well approximated by a Bayes factor based on a normal prior
and a normal likelihood (possibly after a suitable transformation of
the parameters and the data; see Dienes & Mclatchie, 2018), as was
brought to our attention by a reviewer. The normal prior is used as
an approximation of the posterior (as in Verhagen & Wagenmakers,
2014), and the normal likelihood is used as an approximation to
the exact likelihood. Specifically, the reviewer approximated the
likelihood by a normal distribution with a mean of −0.711 (i.e., the
logarithm of the observed odds ratio in the replication study) and a
standard deviation of 0.5699, and used as prior a normal distribution
based on the logarithm of the odds ratio of 1.188, and a standard
error of 0.568 as was observed from the original study. The reviewer
then used the calculator proposed by Dienes (2008, 2014) and Dienes
et al. (2018), which resulted in a Bayes factor of 0.10. See van Doorn
et al. (2016) for a similar use of approximating normal likelihood
to compute Bayes factors, and Ly et al. (2017) for some theoretical
background.

Conclusions

The replication Bayes factor (Verhagen & Wagenmakers,
2014) provides an intuitive measure of replication success:
rather than ignoring the original study, the replication Bayes
factor uses the posterior distribution obtained from the
original study as a prior distribution for the test of the data
from the replication study.

Here we provided an additional perspective on the
replication Bayes factor, namely as the change in evidence
brought about by observing the results from the replication
study. The advantage of this “evidence-updating” or EU
perspective on the replication Bayes factor is that it does not
require approximations, and that it can be easily applied to
complex models. One reviewer noted that the EU replication
Bayes factor follows directly from the general properties
of the Bayes factor. Although this assessment is correct,
we nevertheless believe that the EU replication Bayes
factor represents a conceptual and practical advance. As is
often the case in probability theory, solutions appear trivial
only after they have been derived. In this particular case,
Verhagen and Wagenmakers (2014) were unaware of the EU
replication Bayes factor; in general, it is not immediately
obvious that the parameter updating step—an integral part
of the original Verhagen and Wagenmakers method—can be
entirely omitted.

Both the original parameter-updating version and the
current EU version of the replication Bayes factor are
based on the idea of evidence synthesis and scientific
learning (e.g., Marsman, Ly, & Wagenmakers, 2016;
Scheibehenne et al., 2016; Silber et al., 2016). With more
than two studies, the proposed method is similar to a
fixed-effects meta-analysis that assumes the data to be
exchangeable.5

As with any statistical method, it can become vulnerable
when its core assumptions are violated. For the EU
replication Bayes factor, the most serious threat to its
validity arises when the replication is not close, and aspects
differ that the model assumes to be the same. Consider
the t test. The parameter-updating version updates only
the test-relevant parameter δ, but the nuisance parameters
(e.g., the grand mean, which is common to H0 and H1),
were not updated. This small omission is rectified by the
EU version that automatically and implicitly updates the
joint prior for all model parameters. However, this updating
of nuisance parameters also creates a lack of robustness:
when the nuisance parameters do undergo a large change
from original to replication study, the results can be

5For an extension of the methodology to random-effects models and
model-averaging, see Gronau et al. (2017b) and Scheibehenne et al.
(2017).
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misleading. For instance, assume that a replication attempt
successfully reproduces the main effect of condition, but
all participants are 150 ms slower. When the raw data
from the two studies are combined, this artificially inflates
the variance and may make it appear as if the replication
failed.

A similar warning applies for a correlation test, where the
parameter of interest—the correlation coefficient ρ—may
be of similar magnitude in the original and the replication
study, but global changes in the location parameters of
the bivariate normal distribution can skew the outcome of
the EU replication Bayes factor. For instance, suppose one
studies the relation between income and body weight. The
replication attempt finds the same correlation but on average
participants make $10,000 more and weigh 15 pounds less.
Visually, this yields two clouds of points; each may have the
same shape and orientation, but pooling the raw data may
create a misleading impression.

The solution to this lack of robustness is two-
fold. First, users must be aware that this is a poten-
tial problem. Second, the data may be transformed to
absorb any changes in nuisance parameters. For instance,
correlational data may be mean-centered before being
combined.

Another vulnerability of the replication Bayes factor
(regardless of whether it is the parameter-updating version
or the EU version) is that, in rare cases, it brings
about a replication paradox. The paradox is that when a
replication attempt strongly suggests that the results go
in the direction opposite to the one found in the original
study, the replication Bayes factor may yield compelling
evidence in favor of the alternative hypothesis that the
effect has successfully replicated. As with all uses of
probability theory, such paradoxes reveal a lack of proper
understanding. Appendix C illustrates the paradox and
explains that it can be resolved by imposing an order
restriction.

No single measure of replication success suffices to
address all questions that surround the interpretation of
a replication attempt. We advocate an inclusive approach
to the statistical assessment of replication success, and
we hope that the EU replication Bayes factor can be
one of many tools that are at researchers’ disposal, to
be applied not just across laboratories but also within
laboratories.
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Appendix A: Deriving the t value across
both data sets

The two-sample t-statistic over the combined data dall =
(dorig, drep) can be computed from the sample means and
variances of the two data sets

dorig = (norig,x, x̄orig, s
2
orig,x, norig,y, ȳorig, s

2
orig,y), (6)

drep = (nrep,x, x̄rep, s
2
rep,x, nrep,y, ȳrep, s

2
rep,y), (7)

where norig,x, norig,y are the sample sizes, x̄orig, ȳorig are
the sample means, and s̄2

orig,x, s̄
2
orig,y the (unbiased) sample

variances of the first (i.e., “x”) and second group (i.e.,
“y”) from the original data set. The same symbols with
orig replaced by rep have an analogous meaning. The
combined two-sample t-statistic under the assumption of
equal population variance is then given by

tall = x̄all − ȳall
√

s2[ 1
nall,x

+ 1
nall,y

]
, (8)

where nall,x = norig,x + nrep,x and nall,y = norig,y + nrep,y

are the combined sample sizes of the first and second group
respectively, and where

x̄all = norig,x x̄orig + nrep,x x̄rep

nall,x
, (9)

ȳall = norig,y ȳorig + nrep,y ȳrep

nall,y
, (10)

are the combined means of the two groups and

s2 = 1

nall,x + nall,y − 2

[nall,x
∑

i=1

(xi −x̄all)
2+

nall,y
∑

i=1

(yi −ȳall)
2

]

,

(11)

the combined (pooled) sample variance, where

nall,x
∑

i=1

(xi −x̄all)
2 = νorig,xs

2
orig,x + norig,x x̄

2
orig

+νrep,xs
2
rep,x + nrep,x x̄

2
rep − nall,x x̄

2
all (12)

nall,y
∑

i=1

(yi −ȳall)
2 = νorig,ys

2
orig,y + norig,y ȳ

2
orig

+νrep,ys
2
rep,y + nrep,y ȳ

2
rep − nall,y ȳ

2
all (13)
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are the combined sums of squares of the first and second
group, respectively, with νorig,x = norig,x − 1 and νorig,y =
norig,y − 1 denoting the degrees of freedom.

Proof The combined mean of the first group follows from
the equality

nallx̄all =
nall,x
∑

i=1

xi = norig,x x̄orig + nrep,x x̄rep, (14)

and the combined mean of the second group can be derived
analogously. Recall that the sums of squares

∑

(xi − x̄)2

equals the sum of the squares centered at zero minus n times
the square of the mean, that is,

νorig,x s2
orig,x =

norig,x
∑

i=1

(xorig,1 − x̄orig)
2 =

(norig,x
∑

i=1

x2
orig,i

)

− norig,x x̄2
orig. (15)

The same holds for the sums of squares of the replication
data and the combined data dall. As such, we can write the
first sums of squares in the numerator of s2 as
nall,x
∑

i=1

(xi −x̄all)
2 = νorig,xs

2
orig,x + norig,x x̄

2
orig

+νrep,xs
2
rep,x + nrep,x x̄

2
rep − nall,x x̄

2
all (16)

and the derivation is similar for y.

Appendix B: Replication Bayes factors
as conditional Bayes factors

Let dorig, drep be exchangeable and write π(θ0 | dorig) and
π(θ1 | dorig) for the posterior for the parameters of the null
model and alternative model respectively. Thus,

π(θj | dorig)= f (dorig | θj )π(θj )
∫

f (dorig | θj )π(θj )dθj

= f (dorig | θj )π(θj )

p(dorig |Hj )

(17)

where p(dorig |Hj ) is the marginal likelihood of hypothesis
Hj . The procedure that uses the posterior based on the
original data set dorig as a prior for the replication data set
can now be rewritten as

BFr0(drep) =
∫

f (drep | θ1)π(θ1 | dorig)dθ1
∫

f (drep | θ0)π(θ0 | dorig)dθ0
, (18)

= p(dorig |H0)

p(dorig |H1)

∫

f (drep | θ1)f (dorig | θ1)π(θ1)dθ1
∫

f (drep | θ0)f (dorig | θ0)π(θ0)dθ0
, (19)

= BF01(dorig)BF10(dorig, drep) = BF10(dorig, drep)

BF10(dorig)
, (20)

= BF10(dorig | drep). (21)

Hence, the parameter-updating and evidence-updating
replication Bayes factor are equivalent to each other under
the assumption that dorig and drep are exchangeable and the
fixed effect assumption.

Fig. 5 A replication paradox. In the first experiment by Krupenye
et al. (2016), 20 out of 30 apes (i.e., ≈ 67%) had looked at the target
first; in a hypothetical replication experiment, only five out of 50 apes
did so (i.e., 10%). The effect in the hypothetical replication attempt
goes in the direction opposite to that of the original study, and yet
the replication Bayes factor indicates strong support in favor of the
proponent’s alternative hypothesis. Figure from JASP

Appendix C: Replication paradox
and solution

Regardless of whether it is calculated from parameter-
updating or evidence-updating, the replication Bayes factor
can produce a paradoxical result whenever the data from
a replication attempt strongly indicate that the result is in
the direction opposite of the one obtained in the original
experiment. Here we illustrate the paradox and explain its
resolution.

For concreteness, assume that the original experiment
is the first study of Krupenye et al. (2016), where 20 out
of 30 apes first looked at the target (see Fig. 1). Now
imagine a hypothetical replication in which only five out
of 50 apes look at the target, contradicting the direction of
the original effect. One may intuit that this disappointing
result indicates compelling evidence against the proponent’s
alternative hypothesis as given by the posterior distribution
from Fig. 1. Surprisingly, however, Fig. 5 indicates that the
Bayes factor is 35.6 in favor of the proponent’s alternative
hypothesis.

The key insight is to realize that the replication Bayes
factor—just as other Bayes factors—quantifies relative
evidence. With only five out of 50 looks at the target, the
null hypothesis utterly fails to account for the data. The
proponent’s Hr as specified by the dashed line in Fig. 5 also
predicts these data poorly but not across all of its parameter
space; indeed, Hr has some prior mass on values of θ below
0.5. This resolves the paradox. The surprise at the support
for the proponent’s hypothesis (when the replication results
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Fig. 6 A replication paradox resolved. In the first experiment by
Krupenye et al. (2016), 20 out of 30 apes (i.e., ≈ 67%) had looked at
the target first; in a hypothetical replication experiment, only five out
of 50 apes did so (i.e., 10%). The effect in the hypothetical replication
attempt goes in the direction opposite to that of the original study. By
imposing an order restriction and allowing θ to take on only values
larger than 0.5, the replication Bayes factor now indicates strong
support in favor of the skeptic’s null hypothesis. Figure from JASP

contra-indicate the direction found in the original study)
reflects the implicit notion that the proponent’s hypothesis
ought to have a direction. Specifically, in the Krupenye et al.
(2016) example, the authors clearly had a direction in mind
when they discussed their findings. Consider the same test
but now impose the restriction that θ ≥ 0.5. The result is
shown in Fig. 6; now the Bayes factor is 72 in favor of the
null hypothesis.

Generally, we advocate the use of order restrictions to
create more informative tests of the underlying theory (e.g.,
Matzke et al., 2015). However, it should be kept in mind that
such order restrictions blind the researcher to the possibility
that the effect might actually go in the direction opposite
to that postulated by theory. When the data suggest that
this may indeed be the case, follow-up experiments may
instantiate this novel prediction as a new hypothesis and
examine its adequacy.
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