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Pearson’s correlation is one of the most common measures of lin-
ear dependence. Recently, Bernardo (11th International Workshop on
Objective Bayes Methodology, 2015) introduced a flexible class of pri-
ors to study this measure in a Bayesian setting. For this large class of
priors, we show that the (marginal) posterior for Pearson’s correlation
coefficient and all of the posterior moments are analytic. Our results
are available in the open-source software package JASP.
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1 Introduction

Pearson’s product–moment correlation coefficient 𝜌 is a measure of the linear depen-
dency between two random variables. Its sampled version, commonly denoted by r, has
been well studied by the founders of modern statistics such as Galton, Pearson, and
Fisher. Based on geometrical insights, Fisher (1915, 1921) was able to derive the exact
sampling distribution of r and established that this sampling distribution converges to
a normal distribution as the sample size increases. Fisher’s study of the correlation has
led to the discovery of variance-stabilizing transformations, sufficiency (Fisher, 1920),
and, arguably, the maximum likelihood estimator (Fisher, 1922; Stigler, 2007). Sim-
ilar efforts were made in Bayesian statistics, which focus on inferring the unknown
𝜌 from the data that were actually observed. This type of analysis requires the statis-
tician to (i) choose a prior on the parameters, thus, also on 𝜌, and to (ii) calculate the
posterior. Here we derive analytic posteriors for 𝜌 given a large class of priors that
include the recommendations of Jeffreys (1961), Lindley (1965), Bayarri (1981),
and, more recently, Berger and Sun (2008) and Berger et al. (2015). Jeffreys’s work
on the correlation coefficient can also be found in the second edition of his book (Jef-
freys, 1961), originally published in 1948; see Robert et al. (2009) for a modern re-read
of Jeffreys’s work. An earlier attempt at a Bayesian analysis of the correlation coeffi-
cient can be found in Jeffreys (1935). Before presenting the results, we first discuss
some notations and recall the likelihood for the problem at hand.
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2 Notation and result

Let (X1,X2)′ have a bivariate normal distribution with mean 𝜇 = (𝜇1, 𝜇2)′ and
covariance matrix

Σ =
(

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

)
,

where 𝜎2
1 and 𝜎2

2 are the population variances of X1 and X2, and where 𝜌 is

𝜌 =
Cov(X1,X2)

𝜎1𝜎2
=

E(X1X2) − 𝜇1𝜇2

𝜎1𝜎2
. (1)

Pearson’s correlation coefficient 𝜌 measures the linear association between X1 and X2.
In brief, the model is parametrized by the five unknowns 𝜃 = (𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌).

Bivariate normal data consisting of n pairs of observations can be sufficiently
summarized as y = (n, x̄1, x̄2, s1, s2, r), where

r =
∑n

j=1(x1j − x̄1)(x2j − x̄2)
ns1s2

is the sample correlation coefficient, x̄i = 1
n

∑n
j=1 xij the sample mean, and s2

i =
1
n

∑n
j=1(xij − x̄i)2 the average sums of squares. The bivariate normal model implies that

the observations y are functionally related to the parameters by the following likelihood
function:

f (y | 𝜃) =(2𝜋𝜎1𝜎2

√
1 − 𝜌2

)−n

× exp
(
− n

2(1−𝜌2)

[
(x̄1−𝜇1)2

𝜎2
1

−2𝜌 (x̄1−𝜇1)(x̄2−𝜇2)
𝜎1𝜎2

+ (x̄2−𝜇2)2

𝜎2
2

])
× exp

(
− n

2(1 − 𝜌2)

[( s1

𝜎1

)2 − 2𝜌
( rs1s2

𝜎1𝜎2

)
+
( s2

𝜎2

)2
])

.

(2)

For inference we use the following class of priors:

𝜋𝜂(𝜃) ∝ (1 − 𝜌2)𝛼−1(1 + 𝜌2)
𝛽

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜋𝛼,𝛽 (𝜌)

𝜎𝛾−1
1

⏟⏟⏟
𝜋𝛾 (𝜎1)

𝜎𝛿−1
2

⏟⏟⏟
𝜋𝛿 (𝜎2)

, (3)

where 𝜂 denotes the hyperparameters, that is, 𝜂 = (𝛼, 𝛽, 𝛾, 𝛿). This class of priors is
inspired by the one that José Bernardo (2015) used in his talk on reference priors for
the bivariate normal distribution at the ‘11th International Workshop on Objective
Bayes Methodology in honor of Susie Bayarri’. This class of priors contains certain
recommended priors as special cases.

If we set 𝛼 = 1, 𝛽 = 𝛾 = 𝛿 = 0 in Equation (3), we retrieve the prior that
Jeffreys recommended for both estimation and testing (Jeffreys, 1961, pp. 174–179
and 289–292). This recommendation is not the prior derived from Jeffreys’s rule based
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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on the Fisher information (e.g., Ly et al., 2017), as discussed in Berger and Sun (2008).
With 𝛼 = 1, 𝛽 = 𝛾 = 𝛿 = 0, thus, a uniform prior on 𝜌, Jeffreys showed that the
marginal posterior for 𝜌 is approximately proportional to ha(n, r | 𝜌), where

ha(n, r | 𝜌) = (1 − 𝜌2)
n−1

2 (1 − 𝜌r)
3−2n

2 ,

represents the 𝜌-dependent part of the likelihood Equation (2) with 𝜃0 = (𝜇1, 𝜇2, 𝜎1, 𝜎2)
integrated out. For n large enough, the function ha is a good approximation to the true
reduced likelihood h𝛾,𝛿 given below.†

If we set 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0 in Equation (3), we retrieve Lindley’s reference prior for
𝜌. Lindley (1965, pp. 214–221) established that the posterior of tanh−1(𝜌) is asymptoti-
cally normal with mean tanh−1(r) and variance n−1, which relates the Bayesian method
of inference for 𝜌 to that of Fisher. In Lindley’s (1965, p. 216) derivation, it is explicitly
stated that the likelihood with 𝜃0 integrated out cannot be expressed in terms of ele-
mentary functions. In his analysis, Lindley approximates the true reduced likelihood
h𝛾,𝛿 with the same ha that Jeffreys used before. Bayarri (1981) furthermore showed that
with the choice 𝛾 = 𝛿 = 0, the marginalization paradox (Dawid et al., 1973) is avoided.

In their overview, Berger and Sun (2008) showed that for certain a, b with 𝛼 =
b∕2 − 1, 𝛽 = 0, 𝛾 = a − 2, and 𝛿 = b − 1, the priors in Equation (3) correspond to
a subclass of the generalized Wishart distribution. Furthermore, a right-Haar prior
(e.g., Sun and Berger, 2007) is retrieved when we set 𝛼 = 𝛽 = 0, 𝛾 = −1, 𝛿 = 1
in Equation (3). This right-Haar prior then has a posterior that can be constructed
through simulations, that is, by simulating from a standard normal distribution
and two chi-squared distributions (Berger and Sun, 2008, Table 1). This construc-
tive posterior also corresponds to the fiducial distribution for 𝜌 (e.g., Fraser, 1961;
Hannig et al., 2006). Another interesting case is given by 𝛼 = 0, 𝛽 = 1, 𝛾 = 𝛿 = 0,
which corresponds to the one-at-a-time reference prior for 𝜎1 and 𝜎2; see also Jeffreys
(1961 p. 187).

The analytic posteriors for 𝜌 follow directly from exact knowledge of the reduced
likelihood h𝛾,𝛿(n, r | 𝜌), rather than its approximation used in previous work. We give
full details, because we did not encounter this derivation in earlier work.

Theorem 1: The reduced likelihood h𝛾,𝛿(n, r | 𝜌). If |r| < 1, n > 𝛾+1, and n > 𝛿+1, then
the likelihood f (y | 𝜃) times the prior Equation (3) with 𝜃0 = (𝜇1, 𝜇2, 𝜎1, 𝜎2) integrated
out is a function f𝛾,𝛿 that factors as

f𝛾,𝛿(y | 𝜌) = p𝛾,𝛿(y0)h𝛾,𝛿(n, r | 𝜌). (4)

The first factor is the marginal likelihood with 𝜌 fixed at zero, which does not depend
on r nor on 𝜌, that is,

p𝛾,𝛿(y0) = ∫ ∫ ∫ ∫ f (y | 𝜃0, 𝜌 = 0)𝜋𝛾 (𝜎1)𝜋𝛿(𝜎2)d𝜇1d𝜇2d𝜎1d𝜎2

= 2
−𝛾−𝛿−4

2 𝜋1−n

n
(ns2

1)
1+𝛾−n

2 (ns2
2)

1+𝛿−n
2 Γ

( n−𝛾−1
2

)
Γ
( n−𝛿−1

2

)
,

(5)

†We thank an anonymous reviewer for clarifying how Jeffreys derived this approximation.
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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where y0 = (n, x̄1, x̄2, s1, s2). We refer to the second factor as the reduced likelihood, a
function of 𝜌 which is given by a sum of an even function and an odd function, that is,
h𝛾,𝛿 = A𝛾,𝛿 + B𝛾,𝛿, where

A𝛾,𝛿(n, r | 𝜌) = (1 − 𝜌2)
n−𝛾−𝛿−1

2 2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 1
2
; r2𝜌2), (6)

B𝛾,𝛿(n, r | 𝜌) = 2r𝜌(1 − 𝜌2)
n−𝛾−𝛿−1

2 W𝛾,𝛿(n)2F1

( n−𝛾
2
, n−𝛿

2
; 3

2
; r2𝜌2) (7)

where W𝛾,𝛿(n) =
[
Γ
( n−𝛾

2

)
Γ
( n−𝛿

2

)]/[
Γ
( n−𝛾−1

2

)
Γ
( n−𝛿−1

2

)]
and where 2F1 denotes Gauss’

hypergeometric function.

Proof. To derive f𝛾,𝛿(y | 𝜌), we have to perform three integrals: (i) with respect to
𝜋(𝜇1, 𝜇2) ∝ 1, (ii) 𝜋𝛾 (𝜎1) ∝ 𝜎𝛾−1

1 , and (iii) 𝜋𝛿(𝜎2) ∝ 𝜎𝛿−1
2 .

(i) The integral with respect to 𝜋(𝜇1, 𝜇2) ∝ 1 yields

f (y | 𝜎1, 𝜎2, 𝜌) =
(

2𝜋
√

1−𝜌2𝜎1𝜎2

)1−n

n
exp

( −n
2(1−𝜌2)

[ s2
1

𝜎2
1

− 2𝜌 rs1s2

𝜎1𝜎2
+ s2

2

𝜎2

])
, (8)

where we abbreviated f (y | 𝜎1, 𝜎2, 𝜌) = ∫ ∞
−∞ ∫ ∞

−∞ f (y | 𝜃0, 𝜌)d𝜇1d𝜇2. The factor
p𝛾,𝛿(y0) follows directly by setting 𝜌 to zero in Equation (8) and two independent
gamma integrals with respect to 𝜎1 and 𝜎2 resulting in Equation (5). These gamma
integrals cannot be used when 𝜌 is not zero. For f𝛾,𝛿(y | 𝜌), which is a function of
𝜌, we use results from special functions theory.

(ii) For the second integral, we collect only that part of Equation (8) that involves 𝜎1

into a function g, that is,

∫
∞

0
g(y | 𝜎1)𝜋𝛾 (𝜎1)d𝜎1 = ∫

∞

0
𝜎𝛾−n

1 exp
(
− ns2

1

2(1−𝜌2)
1
𝜎2

1

+ ns1s2

𝜎2(1−𝜌2)
r𝜌 1

𝜎1

)
d𝜎1.

The assumption n > 𝛾+1 and the substitution u = 𝜎−1
1 allow us to solve this inte-

gral using Lemma A.1, which we distilled from the Bateman manuscript project
(Erdélyi et al., 1954), with a = ns2

1

2(1−𝜌2)
, b = − ns1s2

(1−𝜌2)𝜎2
r𝜌 and c = n − 𝛾 − 1. This

yields

∫
∞

0
g(y | 𝜎1)𝜋𝛾 (𝜎1)d𝜎1 = 2

n−𝛾−3
2

( 1−𝜌2

ns2
1

) n−𝛾−1
2

[
Å𝛾 + B̊𝛾

]
, (9)

where

Å𝛾 =Γ
( n−𝛾−1

2

)
1F1

( n−𝛾−1
2

; 1
2
; ns2

2(r𝜌)
2

2(1−𝜌2)
1
𝜎2

2

)
, (10)

B̊𝛾 =
√

2ns2
2(r𝜌)

2

(1−𝜌2)
𝜎−1

2 Γ
( n−𝛾

2

)
1F1

( n−𝛾
2

; 3
2
; ns2

2(r𝜌)
2

2(1−𝜌2)
1
𝜎2

2

)
, (11)

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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and where 1F1 denotes the confluent hypergeometric function. The functions Å𝛾

and B̊𝛾 are the even and odd solutions of Weber’s differential equation in the

variable z = (r𝜌)2 ns2
2

2(1−𝜌2)𝜎2
2

, respectively.

(iii) With f𝛾 (y | 𝜎2, 𝜌) = ∫ ∞
0 f (y | 𝜎1, 𝜎2, 𝜌)𝜋𝛾 (𝜎1)d𝜎1, we see that f𝛾,𝛿(y | 𝜌) follows from

integrating 𝜎2 out of the following expression:

f𝛾 (y | 𝜎2, 𝜌)𝜋𝛿(𝜎2) = 2
−n−𝛾−1

2
𝜋1−n

n
(ns2

1)
1+𝛾−n

2 (1−𝜌2)
−𝛾
2
[
Ă𝛾 (y | 𝜎2, 𝜌)+B̆𝛾 (y | 𝜎2, 𝜌)

]
,

where

Ă𝛾 =Γ
( n−𝛾−1

2

)
k(n,r | 𝜌,𝜎2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜎𝛿−n
2 e

−
ns2

2

2(1−𝜌2)
1
𝜎2

2 1F1

( n−𝛾−1
2

; 1
2
; (r𝜌)2 ns2

2

2(1−𝜌2)
1
𝜎2

2

)
,

B̆𝛾 =(
2ns2

2

1−𝜌2 )
1
2 r𝜌Γ

( n−𝛾
2

)
𝜎𝛿−n−1

2 e
−

ns2
2

2(1−𝜌2)
1
𝜎2

2 1F1

( n−𝛾
2

; 3
2
; (r𝜌)2 ns2

2

2(1−𝜌2)
1
𝜎2

2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

l(n,r | 𝜌,𝜎2)

.

(12)

Hence, the last integral with respect to 𝜎2 only involves the functions k and l in

Equation (12). The assumption n > 𝛿+1 and the substitution t = ns2
2

2(1−𝜌2)
𝜎−2

2 , thus,

d𝜎2 = − 1
2

√
ns2

2

2(1−𝜌2)
t−

3
2 dt allow us to solve this integral using Equation (7.621.4)

from Gradshteyn and Ryzhik (2007, p. 822) with s = 1, k̃ = (r𝜌)2. This yields

∫
∞

0
k(n, r | 𝜌, 𝜎2)d𝜎2 = 2

n−𝛿−3
2

( 1−𝜌2

ns2
2

) n−𝛿−1
2 Γ

( n−𝛿−1
2

)
× 2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 1
2
; r2𝜌2),

∫
∞

0
l(n, r | 𝜌, 𝜎2)d𝜎2 = 2

n−𝛿−2
2

( 1−𝜌2

ns2
2

) n−𝛿
2 Γ

( n−𝛿
2

)
2F1

( n−𝛾
2
, n−𝛿

2
; 3

2
; r2𝜌2).

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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After we combine the results, we see that f𝛾,𝛿(y | 𝜌) = Ã𝛾,𝛿(y | 𝜌)+ B̃𝛾,𝛿(y | 𝜌), where

Ã𝛾,𝛿(y | 𝜌)
p𝛾,𝛿(y0)

=(1 − 𝜌2)
n−𝛾−𝛿−1

2 2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 1
2
; r2𝜌2),

B̃𝛾,𝛿(y | 𝜌)
p𝛾,𝛿(y0)

=2r𝜌(1 − 𝜌2)
n−𝛾−𝛿−1

2 W𝛾,𝛿(n) 2F1

( n−𝛾
2
, n−𝛿

2
; 3

2
; r2𝜌2).

Hence, f𝛾,𝛿(y | 𝜌) is of the asserted form. Note that A𝛾,𝛿 = Ã𝛾,𝛿 (y | 𝜌)
p𝛾,𝛿 (y0)

is even, while
B̃𝛾,𝛿 (y | 𝜌)
p𝛾,𝛿 (y0)

is an odd function of 𝜌.

This main theorem confirms Lindley’s insights; h𝛾,𝛿(n, r | 𝜌) is indeed not express-
ible in terms of elementary functions, and the prior on 𝜌 is updated by the data only
through its sampled version r and the sample size n. As a result, the marginal likeli-
hood for data y then factors into p𝜂(y) = p𝛾,𝛿(y0)p𝛼,𝛽(n, r ; 𝛾, 𝛿), where p𝛼,𝛽(n, r ; 𝛾, 𝛿) =∫ h𝛾,𝛿(n, r | 𝜌)𝜋𝛼,𝛽(𝜌)d𝜌 is the normalizing constant of the marginal posterior of 𝜌. More
importantly, the fact that the reduced likelihood is the sum of an even function and
an odd function allows us to fully characterize the posterior distribution of 𝜌 for the
priors Equation (3) in terms of its moments. These moments are easily computed, as
the prior 𝜋𝛼,𝛽(𝜌) itself is symmetric around zero. Furthermore, the prior 𝜋𝛼,𝛽(𝜌) can be
normalized as

𝜋𝛼,𝛽(𝜌) =
(1 − 𝜌2)𝛼−1(1 + 𝜌2)

𝛽

2

( 1
2
, 𝛼
)

2F1

(
− 𝛽

2
, 1

2
; 1

2
+ 𝛼 ; −1

) , (13)

where (u, v) = Γ(u)Γ(v)
Γ(u+v)

denotes the beta function. The case with 𝛽 = 0 is also known as
the (symmetric) stretched beta distribution on (−1, 1) and leads to Lindley’s reference
prior when we ignore the normalization constant, that is, ( 1

2
, 𝛼
)
, and, subsequently,

let 𝛼 → 0.

Corollary 1: Characterization of the marginal posteriors of 𝜌. If n > 𝛾 + 𝛿 − 2𝛼 + 1,
then the main theorem implies that the marginal likelihood with all the parameters
integrated out factors as p𝜂(y) = p𝛾,𝛿(y0)p𝛼,𝛽(n, r ; 𝛾, 𝛿) where

p𝛼,𝛽(n, r ; 𝛾, 𝛿) = ∫
1

−1
h𝛾,𝛿(n, r | 𝜌)𝜋𝛼,𝛽(𝜌) d𝜌 = ∫

1

−1
A𝛾,𝛿(n, r | 𝜌)𝜋𝛼,𝛽(𝜌)d𝜌, (14)

defines the normalizing constant of the marginal posterior for 𝜌. Observe that the
integral involving B𝛾,𝛿 is zero, because B𝛾,𝛿 is odd on (−1, 1). More generally, the kth
posterior moment of 𝜌 is

E(𝜌k | n, r) =

⎧⎪⎪⎨⎪⎪⎩

1
p𝛼,𝛽 (n,r ; 𝛾,𝛿)

1∫
−1

𝜌kA𝛾,𝛿(n, r | 𝜌)𝜋𝛼,𝛽(𝜌)d𝜌 if k is even,

1
p𝛼,𝛽 (n,r ; 𝛾,𝛿)

1∫
−1

𝜌kB𝛾,𝛿(n, r | 𝜌)𝜋𝛼,𝛽(𝜌)d𝜌 if k is odd.

(15)

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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These posterior moments define the series

E(𝜌k | n, r) =

⎧⎪⎪⎨⎪⎪⎩

1
C𝛼,𝛽

∞∑
m=0

(
n−𝛾−1

2

)
m

(
n−𝛿−1

2

)
m(

1
2

)
m

m!
ak,mr2m if k is even,

2W𝛾,𝛿 (n)
C𝛼,𝛽

∞∑
m=0

(
n−𝛾

2

)
m

(
n−𝛿

2

)
m(

3
2

)
m

m!
bk,mr2m+1 if k is odd,

(16)

where C𝛼,𝛽 = ( 1
2
, 𝛼
)

2F1

(−𝛽
2
, 1

2
; 𝛼 + 1

2
; −1

)
is the normalization constant of the prior

Equation (13), W𝛾,𝛿(n) is the ratios of gamma functions as defined under Equation (7),
and (x)m = Γ(x+m)

Γ(x)
= x(x + 1)(x + 2)… (x + m − 1) refers to the Pochhammer symbol

for rising factorials. The terms ak,m and bk,m are

ak,m = ( 1
2
+ k+2m

2
, 𝛼 + n−𝛾−𝛿−1

2

)
2F1

(−𝛽
2
, k+2m+1

2
; k+2m+2𝛼+n−𝛾−𝛿

2
; −1

)
,

bk,m = ( 1
2
+ k+2m+1

2
, 𝛼 + n−𝛾−𝛿−1

2

)
2F1

(−𝛽
2
, k+2m+2

2
; k+2m+2𝛼+n−𝛾−𝛿+1

2
; −1

)
.

The series defined in Equation (16) are hypergeometric when 𝛽 is a non-negative
integer.

Proof. The series E(𝜌k | n, r) result from term-wise integration of the hypergeometric
functions in A𝛾,𝛿 and B𝛾,𝛿. The assumption n > 𝛾 + 𝛿 − 2𝛼 + 1 and the substitution
x = 𝜌2 allow us to solve these integrals using Equation (3.197.8) in Gradshteyn and
Ryzhik (2007, p. 317) with their 𝛼̃ = 1, u = 1, 𝜆 = 𝛽

2
, 𝜇 = 𝛼+ n−𝛾−𝛿−1

2
and 𝜈 = 1

2
+ k+2m

2
when k is even, while we use 𝜈 = 1

2
+ k+2m+1

2
when k is odd. A direct application of the

ratio test shows that the series converge when |r| < 1.

3 Analytic posteriors for the case 𝛽 = 0

For most of the priors discussed earlier, we have 𝛽 = 0, which leads to the following
simplification of the posterior.

Corollary 1: Characterization of the marginal posteriors of 𝜌, when 𝛽 = 0. If n >
𝛾 + 𝛿 − 2𝛼 + 1 and |r| < 1, then the marginal posterior for 𝜌 is

𝜋(𝜌 | n, r) = (1 − 𝜌2)
2𝛼+n−𝛾−𝛿−3

2

p𝛼(n, r ; 𝛾, 𝛿)( 1
2
, 𝛼
)

×
[

2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 1
2
; r2𝜌2) + 2r𝜌W𝛾,𝛿(n) 2F1

( n−𝛾
2
, n−𝛿

2
; 3

2
; r2𝜌2)],

(17)
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where p𝛼(n, r ; 𝛾, 𝛿) refers to the normalizing constant of the (marginal) posterior of 𝜌,
which is given by

p𝛼(n, r ; 𝛾, 𝛿) = ( 1
2
, 𝛼 + n−𝛾−𝛿−1

2

)
2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 𝛼 + n−𝛾−𝛿
2

; r2)∕( 1
2
, 𝛼
)
.

More generally, when 𝛽 = 0, the kth posterior moment is

( 1
2
+ k

2
, 𝛼 + n−𝛾−𝛿−1

2

)
3F2

( k+1
2
, n−𝛾−1

2
, n−𝛿−1

2
; 1

2
, k+2𝛼+n−𝛾−𝛿

2
; r2

)
( 1

2
, 𝛼 + n−𝛾−𝛿−1

2

)
2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 2𝛼+n−𝛾−𝛿
2

; r2
) ,

when k is even, and

2rW𝛾,𝛿(n)
( 1

2
+ k+1

2
, 𝛼 + n−𝛾−𝛿−1

2

)
3F2

( k+2
2
, n−𝛾

2
, n−𝛿

2
; 3

2
, k+2𝛼+n−𝛾−𝛿+1

2
; r2

)
( 1

2
, 𝛼 + n−𝛾−𝛿−1

2

)
2F1

( n−𝛾−1
2

, n−𝛿−1
2

; 2𝛼+n−𝛾−𝛿
2

; r2
) ,

when k is odd.

Proof. The assumption n > 𝛾 + 𝛿 − 2𝛼 + 1 and the substitution x = 𝜌2 allow us to use
Equation (7.513.12) in Gradshteyn and Ryzhik (2007, p. 814) with 𝜇 = 𝛼 + n−𝛾−𝛿−1

2
and 𝜈 = 1

2
+ k

2
when k is even, while we use 𝜈 = 1

2
+ k+1

2
when k is odd. The normalizing

constant of the posterior p𝛼(n, r ; 𝛾, 𝛿) is a special case with k = 0.

The marginal posterior for 𝜌 updated from the generalized Wishart prior, the
right-Haar prior, and Jeffreys’s recommendation then follow from a direct substitu-
tion of the values for 𝛼, 𝛾, and 𝛿 as discussed under Equation (3). Lindley’s reference
posterior for 𝜌 is given by

2F1

( n−1
2
, n−1

2
; 1

2
; r2𝜌2

)
+ 2r𝜌W0,0(n)2F1

( n
2
, n

2
; 3

2
; r2𝜌2

)
( 1

2
, n−1

2

)
2F1

( n−1
2
, n−1

2
; n

2
; r2

) (1 − 𝜌2)
n−3

2 ,

which follows from Equation (17) by setting 𝛾 = 𝛿 = 0 and, subsequently, letting 𝛼 → 0.
Lastly, for those who wish to sample from the posterior distribution, we suggest

the use of an independence-chain Metropolis algorithm (Tierney, 1994) using Lind-
ley’s normal approximation of the posterior of tanh−1(𝜌) as the proposal. This method
could be used when Pearson’s correlation is embedded within a hierarchical model, as
the posterior for 𝜌 will then be a full conditional distribution within a Gibbs sampler.
For 𝛼 = 1, 𝛽 = 𝛾 = 𝛿 = 0, n = 10 observations and r = 0.6, the acceptance rate of
the independence-chain Metropolis algorithm was already well above 75%, suggest-
ing a fast convergence of the Markov chain. For n larger, the acceptance rate further
increases. The R code for the independence-chain Metropolis algorithm can be found
on the first author’s home page. In addition, this analysis is also implemented in the
open-source software package jasp (https://jasp-stats.org/).
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Appendix A:A Lemma distilled from the Bateman project

Lemma A.1. For a, c > 0, the following equality holds:

∫
∞

0
uc−1 exp

(
− au2 − bu

)
du = 2−1a−

c
2

[
Å(a, b, c) + B̊(a, b, c)

]
, (A.1)

that is, the integral is solved by the functions

Å(a, b, c) =Γ
( c

2

)
1F1

( c
2
; 1

2
; b2

4a

)
,

B̊(a, b, c) = − b√
a
Γ
( c+1

2

)
1F1

( c+1
2

; 3
2
; b2

4a

)
,

(A.2)

which define the even and odd solutions to Weber’s differential equation in the variable
z = b√

2a
, respectively.

Proof. By Erdélyi et al. (1954, p 313, Equation (13)), we note that

∫
∞

0
uc−1exp

(
− au2 − bu

)
dv = (2a)

−c
2 Γ(c) exp

( b2

8a

)
D−c

( b√
2a

)
, (A.3)

where D𝜆(z) is Whittaker’s (1902) parabolic cylinder function (Abramowitz and
Stegun, 1992). By virtue of Equation (4) on p. 117 of Erdélyi et al. (1981), we can
decompose D𝜆(z) into a sum of an even function and an odd function. Replacing
this decomposition for D𝜆(z) in Equation (A.3) and an application of the duplication
formula of the gamma function yields the statement.
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