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Bayes factors quantify the evidence in support of the null (absence of an effect) or the

alternative hypothesis (presence of an effect). Based on commonly used cut-offs, Bayes

factors between 1/3 and 3 are interpreted as evidentially weak, and one typically

concludes there is an absence of evidence. In this commentary on Warmelink,

Subramanian, Tkacheva, and McLatchie (Legal Criminol Psychol 24, 2019, 258), we

discuss how a Bayesian report can be made more informative. Firstly, this implies a

departure from the labels provided by commonly used cut-offs when reporting Bayes

factors. Instead, we encourage researchers to report the value of the Bayes factors, or to

convert these values into nominal support for the hypotheses. Secondly, researchers can

provide recommendations to design follow-up studies by examining the posterior

distribution of the magnitude of the effect size. Lastly, we show how individual Bayes

factors can be evaluated in the context of large-scale meta-analyses.

A crucial distinctionwhen interpreting the results of a study is the difference between the

absence of an effect from the absence of evidence. This distinction is typically ignored

within frequentist statistics, where ‘non-significant’ p values (p > .05) are incorrectly

interpreted as an absence of an effect (Altman & Bland, 1995). For this reason alone,

Warmelink, Subramanian, Tkacheva, and McLatchie (2019) should be commended for

reporting Bayes factors, which can quantify the evidence for the alternative (presence of

an effect) over the null hypothesis (absence of an effect), and vice versa. For instance, a
Bayes factor BF10 = 8 implies that the observations are eight times more likely under the

hypothesis that the effect is present than under the hypothesis that the effect is absent.

Similarly, BF10 = 0.125 (equivalently, BF01 = 1/BF10 = 8) implies that the data are 8 times

more likely under the null compared to the alternative.

To aid interpretation, cut-offs (e.g., Jeffreys, 1961) for Bayes factors have been proposed.

These cut-offs suggest that Bayes factors between 1 and 3 (1/3 and 1) provide only weak

evidence for the alternative hypothesis relative to thenull hypothesis (or for thenull hypothesis

relative to thealternative; e.g., Jarosz&Wiley, 2014).Hence,whenconfrontedwithevidentially
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weak Bayes factors, the common conclusion is that there is an absence of evidence (e.g.,

Wagenmakers, Morey, & Lee, 2016), and the results are perceived as inconclusive.

The reporting of Bayes factors is still quite novel within deception research, though it

appears to be gaining popularity (e.g., Kleinberg, Warmelink, Arntz, & Verschuere, 2018;
Leal et al., 2019). We believe this is a good thing, but it does bring with it new challenges

for reviewers and editors. Using Warmelink, Subramanian, Tkacheva, and McLatchie

(2019) as a concrete example, we elaborate on the continuous nature of Bayes factors and

how to interpret them.Webegin bywarning against an over-reliance on cut-offs. Next, we

give some suggestions on how to make a Bayesian report more informative.1

Risk of cut-offs and reporting alternatives

As noted above, cut-offs have been suggested to aid the interpretation of Bayes factors.

These cut-offs, however, should be usedwith caution. Let us take the results ofWarmelink

et al. (2019) as a concrete example. In total, they report 22 Bayes factors. Nineteen of

these are between 1/3 and 3, and, therefore, evidentially weak according to the cut-offs

they themselves adopt. The remaining three analyses resulted in Bayes factors of

BF10 = 3.58, BF10 = 3.64, and in the opposite direction BF01 = 4.76, which were
interpreted to provide ‘moderate’ evidence. This interpretation highlights the main risk

of cut-offs: They encourage categorical rather than continuous thinking. Yes, a Bayes

factor of 3.58 provides more evidence than a Bayes factor of 2.8, but to say that one

provides moderate evidence, whereas the other provides weak or inconclusive evidence,

seems somewhat misguided (Wagenmakers et al., 2018).

The boundaries between the categories further fade away, when we convert a Bayes

factor into posterior model probabilities. A Bayes factor only measures the strength of the

relative evidence provided by the data, whereas the posterior model probabilities
quantify the nominal support for the hypotheses after data observation. To calculate the

posterior model probabilities, we combine the prior plausibility of the hypotheses with

the Bayes factor using the following formula

PðH1jdataÞ ¼ BF10 � PðH1Þ
BF10 � PðH1Þ þ PðH0Þ PðH0jdataÞ ¼ 1� PðH1jdataÞ ð1Þ

For instance, if the plausibility of the presence and the absence of an effect are equal

before data observation, then we set P(H1) = 0.5 and P(H0) = 0.5. Observations leading
to a Bayes factor of BF10 = 3.58 then yield a nominal support of 78%, P(H1|
data) = 3.58 9 0.5/(3.58 9 0.5 + 0.5), for the hypothesis that there is an effect, leaving

a posterior probability of 22%, P(H0|data) = 1 � 0.78, for the hypothesis that the effect is

absent.2 These probabilities can in turn be visualized using a simple pie chart known as a

pizza plot (Wagenmakers et al., 2018; see Figure 1).

1 For a comprehensive introduction to Bayesian statistics, seeWagenmakers et al. (2016), and for a primer on how to conducted
Bayesian analyses with the free software package JASP, see Wagenmakers et al. (2018).
2 Probability in this context refers to the plausibility of the hypotheses. For instance, P(H1) = 0.75 and P(H0) = 0.25 implies that
we believe that it is three (=0.75/0.25) times as plausible that there is an effect compared with no effect. Similarly, P(H1|
data) = 0.9 and P(H0|data) = 0.1 implies that we believe that it is nine times as plausible that there is an effect compared with
no effect after seeing the data. This can be contrasted with ‘chance’, which is a statement about the potential data. A popular
example of such a statement is a p-value. For instance, t = 1.9, p = .06 means that there is a 6% chance to see data that led to
the observed t = 1.9, and –more extreme, but not observed potential data – that led tomore extreme values of the test statistic,
that is t > 1.9, and when testing two-sided also t < �1.9. Typically, this strict distinction between probability and ‘chance’ is
ignored outside of philosophy, and the reader has to infer the meaning of ‘probability’ from the context.
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Now look at Figure 1. The dark portion of the pie chart corresponds to the 78% in

support ofH1. Imagine that this chartwas on the table in front of you. You close your eyes,

spin the chart, and at random place your finger down. Now open your eyes. How

surprised would you be to find your finger on the white portion of the pie chart? Your
degree of surprise is an intuitive measure of the strength of the nominal support for H1

(Wagenmakers et al., 2018). Our guess is youwould not be that surprised – therewas after

all a 22% probability of your finger landing on the white portion. Similar computations

show that the ‘evidentially weak’ Bayes factor of 2.8 would lead to a posterior probability

of 74% in support ofH1 and 26% forH0. In terms of nominal support for the hypothesis, the

distinction between ‘evidentially weak’ and ‘moderate’ Bayes factors in this example is

negligible. Hence, the categorizations are not that informative, andwe strongly encourage

researchers to discuss their results using the value of the Bayes factors or the posterior
probabilities for each hypothesis instead.

Again, we can use Warmelink et al. (2019) as a concrete example. In their discussion,

they conclude that Hypothesis 2 was partly supported and that Hypothesis 3 was not

supported.Weworry that such language exaggerates the strength of evidence of the data.

Ultimately, researchers should be fair to the uncertainty implied by the Bayes factors. This

uncertainty is lost when we focus on labels such as ‘weak’ and ‘moderate’, and when the

relative evidence is not converted to nominal support.

However, simply reporting that results are uncertain will likely leave many reviewers
and readers wanting. We see at least two options to help researchers provide more

informative Bayesian reports: first, by focusing on the posterior distribution of the effect

size and second, by relating Bayes factors to the broader research field by discussing prior

model probabilities. We will discuss each approach in turn.

Figure 1. Pizza plot, or proportion wheel, visualizing a Bayes factor of 3.2 as the proportion of a circle.

The dark portion provides the evidence in support of H1.
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Beyond Bayes factors: Examining the posterior distribution of the effect

sizes

A Bayesian report can be made more informative by studying the posterior distribution of

the effect size parameter.3 This can provide us with an estimate of the magnitude of the

effect, given that it exists, or provide us with information on how to design a follow-up

study. For instance, sayweconduct a large sampled between-group study (N = 1,000) and
find a standardized between-groups difference (Cohen’s d) = 0.1.With a default Bayesian

t-test, this would produce a Bayes factor around 1.5 in support of the null hypothesis, that

there is no difference between the two groups. Although this result helps little in

determining whether the null or alternative is true, by examining the posterior

distributionof theparameter, and the associated credible interval (theBayesian equivalent

to the frequentist confidence interval), one can still learn something from the data.

Specifically, that if there is an experimental effect, it is likely to be very small indeed (for a

pedagogical online tool to visual this point see https://rpsychologist.com/d3/bayes/).
Such a conclusion is considerably more valuable than what one can glean by solely

focusing on the Bayes factor. Furthermore, with the estimate of the effect in hand, one can

then efficiently plan follow-up studies.

The potential role of prior model probabilities

Another way to move beyond a simple reporting of Bayes factors is to use more informed

prior model probabilities when calculating the nominal support for hypotheses. In order

to calculate the nominal support for hypotheses, some form of prior model probabilities

must be specified.Above, for lack of better choice,wehad equal priormodel probabilities:

P(H0) = 0.5 and P(H1) = 0.5. That is, before looking at the data, H0 and H1 were seen as

equally likely. More informed prior model probabilities can be derived from large-scale

field-widemeta-analyses, or better still can be agreed upon by the research community. In

particular, if one has reason to be sceptical for the presence of an effect, the prior model
probabilities can be weighted in favour of H0, thereby correcting for false positives.4

In the context of deception detection, we have strong reason to be highly sceptical to

most cues to deceit. It seems that the research on deception cues, prior to 2003, is

compatible with a world in which there are no reliable cues to deceit at all (Luke, 2019).

Hence, in the best case, Luke’s findings suggest that only a small fraction of deception

studies lead to the detection of an actual effect – a genuine cue to deception. For the sake
of argument, let us say that only 8% of the published articles report an actual deception

cue, leaving 92% of the published articles reporting a false-positive finding. Thus, P
(H1) = 0.08 and P(H0) = 0.92. This interpretation of Luke’s finding can now be used as a

context to evaluate themoderate BF10 = 3.58 as reported inWarmelink et al. (2019) using

the Equation (1). A direct calculation shows that the nominal support forH1 of 8% is then

increased to 24%, P(H1|data) = 3.58 9 0.08/(0.92 + 3.58 9 0.08), which leaves a

3Note that the posterior distribution on the effect size is a continuous object, whereas the posterior model probability is discrete,
since we only considered two modelsH0 andH1. The posterior model probabilities allow us to study whether the effect is present
or absent. In contrast, the posterior distribution for the effect size allows us to study the magnitude of the effect, under the
assumption that it exists.
4 The idea to change the threshold of preference for H1 over H0 is not new. A similar idea was used in genome-wide association
studies (e.g., Clarke et al., 2011), where corrections for multiple comparisons led to changing the p-value threshold from p < .05
to p < 5.8 9 10�8. For more details on the relationship between the threshold of preference and type I error control, see
Gr€unwald et al. (2019).
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posterior probability of 76% in support forH0.Hence, there is indeed relative evidence for

H1, because the Bayes factor is larger than 1, but based on the posterior model

probabilities we cannot conclude that there is more nominal support for H1 than H0. In

other words, the relative evidence of BF10 = 3.58 is not enough to overcome the initial
scepticism brought about by Luke’s findings.

By changing P(H0) = 0.5 and P(H1) = 0.5 to the more stringent P(H0) = 0.92 and P

(H1) = 0.08, we now require BF10 to be larger than 11.5 (=0.92/0.08) before the posterior
model probability forH1 exceeds that ofH0.

5 In otherwords, we changed the threshold of

preference – the strength of the evidence needs to be at least 11.5 before we begin to

consider a found deception cue feasible. Moreover, we now need a Bayes factor of 40.77,

which can be verified using Equation (1), before we get nominal support of P(H1|
data) = 0.78.

Our aim here was to demonstrate how prior model probabilities can let us draw

important conclusions about the hypotheses and thereby provide more informative

results than simply reporting Bayes factors.Wewish to stress however that our suggested

base rate of 8% for H1 is only meant for illustrative purposes. This matter should be

discussed at the level of the research community.

Concluding remarks
We provided some suggestions on how to make a Bayesian report more informative.

Firstly, wewarn against an over-reliance on the standard Bayes factor cut-offs. Instead, we

encourage researchers to report the value of the Bayes factors or convert it to the nominal

support for the hypotheses. Secondly, we encourage researchers to go beyond a simple

reporting of Bayes factors. This can be achieved, for example, by studying the posterior

distribution of the effect size or by evaluating Bayes factors in the context of a large-scale

meta-analysis using Equation (1).

Ultimately, however, there is noquick fix formaking studiesmore informative after the
fact. Greater care must be taken before data collection to increase the chances of

producing compelling results (for guidelines see Sch€onbrodt & Wagenmakers, 2018 and

see Ly et al., 2019, on how to quantify replicability). Luke (2019) brought the

consequences of ignoring this advice to light. It seems that the extant research on

deception cues, prior to 2003, is compatible with a world in which there are no reliable

cues to deceit at all. Individual small-sample studies, whose effects may well be nothing

more than sampling variation, were over-interpreted, published, and, in worst case

scenarios, used for policy recommendations. It took some 60 years for this issue to come
to light in DePaulo et al.’s (2003) meta-analysis. And almost another 20 for us to

understand the true consequences of this practice in Luke’s re-analysis of the data. One

can rightly wonder how much quicker we would have come to this conclusion if studies

from the outset had been designed to provide more informative and compelling results.

SinceDePaulo et al.’smeta-analysis, deception researchers’ focus on traditional cues to

deceit has waned. Instead, there is a new focus on interviewers actively eliciting cues to

deceit, (Vrij & Granhag, 2012), of which Warmelink et al. (2019) is one example. Rather

than passively observing truth tellers and liars, these methods consist of asking questions
in a strategic manner in order to increase differences in the statements or behaviours

5 A direct application of Equation (1) with P(H0) = 0.92 and P(H1) = 0.08 and BF10 = 11.5 shows that the nominal support
for H1 is then P(H1|data) = 0.5 and, thus, P(H0|data) = 0.5. Similarly, when BF10 > 11.5, we then have P(H1|data) larger
than P(H0|data).
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between these groups. This new approach may be a genuine path to a viable method of

deception detection, or it may be another dead end. If we do not start designing our

studies to producemore informative results, wemay need towait another 80 years to find

out.
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