
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Numerical Continuation of Equilibria of Physiologically Structured 
Population Models. I. Theory

M.A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, A.M. de Roos, 
B.P. Sommeijer

Modelling, Analysis and Simulation (MAS)

MAS-R9714 May 31, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301629878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Report MAS-R9714
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Numerical Continuation of Equilibria
of Physiologically Structured Population Models. I. Theory

Markus Kirkilionis�y, Odo Diekmanny,

Bert Lisser�, Margreet Nool�,

Andr�e M. de Roosz, Ben Sommeijer�

� CWI,

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
y RUU (University of Utrecht),

Faculty of Mathematics, P.O Box 80010, 3508 TA Utrecht, The Netherlands
z UvA (University of Amsterdam),

Faculty of Biology, Kruislaan 320, 1098 SM Amsterdam, The Netherlands

ABSTRACT

The paper introduces a new numerical method for continuation of equilibria of models describing physiologically

structured populations. To describe such populations, we use integral equations coupled with each other via

interaction (or feedback) variables. Additionally we allow interaction with unstructured populations, described

by ordinary di�erential equations. The interaction variables are chosen such that if they are given functions of

time, each of the resulting decoupled equations becomes linear. Our numerical procedure to approximate an

equilibrium will use heavily this special form of the underlying equations. We also establish a method for local

stability analysis of equilibria in dependence on parameters.
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1. Introduction.

Numerical methods for continuation and bifurcation analysis of maps and ODEs gave a number of new

insights in the qualitative behaviour of these classes of dynamical systems. Moreover, they enabled the

detailed analysis of concrete cases arising in applications (see for example Kuznetsov [11] for a general

introduction to �nite-dimensional bifurcation analysis and a number of numerical examples. Especially

section 10.8 gives an overview to the relevant literature and available software). The underlying aim

of this paper is to obtain similar methods for a special class of deterministic in�nite dimensional

dynamical systems describing physiologically structured populations (which in the following will be

refered to as PSPMs). Relevant introductions to this type of equations can be found in Metz &

Diekmann[13] (general PSPMs) and Webb[18] (age-structured PSPMs). However, our approach will

not be based on partial di�erential equations, together with integral boundary conditions (as being

used in the above cited references), but uses a related integral equation formulation (see Diekmann et

al. [2], and also the discussion).

Naturally, the study of equilibria (and their stability) of PSPMs is the �rst thing to try. We will

describe a quite natural method to calculate a �nite dimensional approximation of the equilibrium

equation for �xed parameter values. Standard methods can then be used for numerical continuation

of an isolated equilibrium with respect to one free parameter. Using a (formal) linearization at the

equilibrium, we are able to calculate stability boundaries in the plane spanned by two free parameters.
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Fig. 1. Characteristic (solid line) in the i-state space 
. Each individual
has the same state-at-birth x0. The dotted line separates 
 in subregions
for which we will assume that all quantities describing individual behaviour,
like growth etc., are continuous. A regular grid discretizing 
 can be seen in
the background. It is used for comparison of our method with a �xed-grid
discretization. Arrows indicate the direction in which an individual is moving
in the i-state space 
 while getting older.

An important restriction we will make is that only one state-at-birth for newborns is possible, a

well-known situation from the theory of age-structured populations where every newborn necessarily

has exactly age zero. Examples of such models and their detailed numerical analysis will be given

in a second paper ([8]), together with a description of implementational aspects of the numerical

algorithms. The extension to models with a continuum of possible states-at-birth is postponed to

later work. (This will involve approximation by �nitely many states-at-birth.)

To illustrate how our numerical method will work, it is interesting to compare it with already

existing methods for time-integration of equations describing a PSPM (see Goudriaan [4], Ito et al.

[6], Kappel & Zhang [7], Kostova [10], Milner & Rabbiolo [12], de Roos [14] and [15], Sulsky [16]

and [17]). All these methods deal with a di�erential formulation which approximates the shifts of

the population density. The most straightforward method can be applied if individuals are classi�ed

by age. In this case the individual state space 
, the space of all possible states of an individual,

equals the positive half-line of real numbers. An Eulerian method with a �xed, a-priori given grid

(i.e. the grid is constructed without using partial knowledge of the solution) can be used, see for

example Sulsky [16]. There are essentially two problems with this approach that arise if one looks at

generalizations: If the individual state space remains one-dimensional, but the variable x structuring

the individuals (here always called the i-state) is an entity like size, mass etc, one has to de�ne a

'growth'-rate describing the speed with which the i-states change. In general, the growth-rate will be

a nonlinear function. If the i-state becomes multidimensional (say of dimension s � 1) and there is

just one �xed state-at-birth x0, each individual still follows a curve during its lifetime, given by

dx

da
= g(t+ a; a; x) with age a 2 IR+; x 2 IRs

x(t; 0) = x0;
(1.1)

where t is the time of birth of the individual and g the "growth" rate. This equation will be

non-autonomous, because growth is depending on environmental conditions as well. Any �xed grid
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discretizing 
 will not be appropriate, because x(t; a) is not known a-priori. Moreover it is very costly

from a numerical point of view to have discretization points all over 
, see Fig.1. A better solution

can be a moving grid method. But even then discretization points outside the current characteristic

(i.e. the curve a 7! x(t � a; a) with x the solution of Eq. (1.1)) are not needed. We therefore will

introduce a method which will only discretize the characteristic itself, thus avoiding a discretization

of the whole i-state space 
. Such an approach was followed by de Roos [14]. Similar schemes using

integration along characteristics have been published in Ito et al. [6] and Sulsky [17], both for less

general classes of equations, but with 'full' discretization, i.e. also the time is discretized, whereas in

[14] the PSPM is approximated by sets of ODEs. We will employ a similar approximation by ODEs

in the context of numerical continuation.

For continuation, we have to constructively de�ne a �nite-dimensional map G : IRn ! IRn, where

an equilibrium is characterized by y� 2 IRn satisfying G(y�) = 0. This condition will comprise the

requirement that at equilibrium each individual exactly replaces itself and, in addition, that input from

the environment must equal output to the environment. The nonlinear mapping G itself is assembled

by quantities obtained from integrating Eq. (1.1) along with equations describing cumulative birth

and output to the environment. This provides an e�cient approximation of the state space 
 where

no discretization outside a characteristics are needed.

The organization of the paper is as follows: We �rst present a general population model in several

steps (section 3). While looking at a single structured population, all building blocks for describing

an individual are listed. By book-keeping arguments we derive the integral equations describing

the system on the population level. As already mentioned, the lines along which we will formulate

the model are very close to the ones presented in Diekmann et al. [2]. The section on model

formulation ends with the construction of a general n-species model, where some of the populations

might be unstructured and can therefore be described by ODEs. Building the �nal food-web is

a matter of coupling one population building blocks via the interaction function relating input to

output variables. These concepts are introduced sections 2 and 3. The next step, in section 4, is to

formulate conditions any equilibrium of this general model has to satisfy. Important for our purposes

is an in�nite-dimensional representation which arises quite naturally after an easy reformulation of

the equilibrium conditions. The �nal �nite-dimensional approximation then uses this reformulation,

with the only di�erence that indivduals which have reached a certain maximal approximating age are

neglected. Section 5 introduces the characteristic equation derived from a formal linearization of the

equilibrium. Again we discuss brie
y a �nite-dimensional approximation for our numerical purposes.

The following section 6 introduces numerical continuation, where we use the approximations from

sections 4 and 5 to follow equilibria and stability boundaries as, respectively, one or two parameters

are varied. We give a discussion of possible extensions of the method in section 7.

2. The modelling of a food web with the help of interaction variables.

An important aspect of the modelling phase is the speci�cation of nonlinear feedback mechanisms in a

model of interacting species. Such feedbacks occur because all relevant model ingredients describing a

single individual, like death- and growth-rates etc., will in general depend on the abundance, behaviour

etc. of other individuals.

When modelling interactions, we follow a three-step procedure. First we introduce names for

variables like 'predation pressure' (i.e., probability per unit of time to fall victim to a predator),

'food availability' (amount of food available for an individual per unit area (or volume)). We do this

for all quantities that in
uence the life history of individuals. As a result, individuals are independent

of each other when these quantities are given functions of time. We will call such quantities input

variables and denote them by I = I(t). They describe the environment which each individual of each

population experiences in the model. In this paper we restrict our attention to the case in which

there are only �nitely many input variables and assume I(t) 2 IRk. This means especially that I

cannot depend explicitely on the i-state of individuals (it may depend on the i-states indirectly via

the integral contribution of all individuals of a population.)
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The second step consists of specifying the output variables. The individuals react to the input I .

By summing up all contributions from individuals the corresponding output O = O(t) 2 IRk will

be produced. For example, in the case of cannibalism, the predation pressure on small individuals

depends on the abundance of large individuals. While calculating the output contributions, we make

the following destinction: Populations are modelled as being either structured or unstructured. We

will give a more detailed discussion of how to construct a submodel for a physiologically structured

population in the next section. An unstructured population is simply one where all individuals are

identical, and in a deterministic time-continuous setting such a population is described by an ODE.

The state of a population at time t 2 IR+ will be denoted by m(t), where

m(t) 2

�
M+(
) : if the population is structured,

IR+ : if the population is unstructured.

Here 
 is the i-state space of the structured population (see next section) andM+(
) is the cone of

positive measures on 
. We can compute the number of individuals in the population at time t from

the state m: Either m(t) itself is giving this information directly (in the unstructured case) or the

number of individuals is equal to
R


m(t)(dx) (in the structured case). Let there be n populations with

statemj , 1 � j � n. We need to determine how each population contributes to each of the components

of O. Let �ij be the recipe to compute the contribution of population j to the i-th component of the

output variable O. We assume �ij are linear functionals mapping from the population state space

into IR, i.e.

�ij :M+(
j)! IR

In the case that 
j contains just a single point, which is the case for unstructured populations, we

use the convention that M+(
j) = IR+. (
j is now the i-state space of the population with index j).

These functionals are de�ned by

�ijmj =

( R

j


ij(x)mj(dx) : if the population is structured,


ijmj : if the population is unstructured.

The quantities 
ij are the individual output contributions. The output variable is now assembled

according to the rule

O = �m;

where � = (�ij) 1�i�k
1�j�n

is the matrix of population output contributions and m = (m1; : : : ;mn). In

other words, each component of O is obtained by summing up the contributions from all populations.

The �nal step 3 in our scheme is now relating output (of all populations) to input (to all populations).

Because the individual output contributions 
ij may themselves depend on I , i.e. 
ij = 
ij(I), this

leads to the consistency relation

I = O = �(I)m:

We will use this relationship later to formulate equilibrium conditions for solutions of our model.

We do not distinguish between the two symbols I and O in the following and use only the symbol

I when constructing the feedback relationships among and inside populations. The vector I is now

called the interaction variable.

3. A general n species population model.

Populations can or cannot show structure, in the sense that understanding their growth or decline

requires knowledge of individual di�erences. We like to include both possibilities. First a model for
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a single structured population is introduced. An unstructured population is thereafter treated as a

special case, by making the simplifying assumption that all individuals are identical.

There are a lot of di�erent mechanisms that can be included in a model of a physiologically struc-

tured population. Individual developpment (movement in 
) can be either stochastic or deterministic,

birth of individuals can be modelled as a discrete event or taking place continuously, newborns may

start with the same state at birth or there may be a distribution over the individual state space already

at birth, growth rates may change discontinuously when individuals reach a certain stage etc. The

setting we will introduce for each structured population in this paper can be seen as a straightforward

generalisation of the classical deterministic age-structured linear model (see Webb [18], section 1.2)

as given by an integral equation derived after integration along characteristics. Our generalisation

becomes nonlinear by introducing the interaction variable I , just in the same manner as the Gurtin-

MacCamy model (see Gurtin and MacCamy [3], also [18]) is nonlinear by letting all individual rates

depend on total population size. Additionally we extend the model such that individuals 'live' in a

general i-state space 
 of dimension s � 1. However, we keep the assumption that every newborn has

the same state-at-birth. As already mentioned, at the same time this formulation can be interpreted

as a special case of the linear PSPM formulated in Diekmann et al. [2], see the discussion at the end

of the paper.

3.1 A single structured population

The modelling of a single structured population, as presented here, requires �ve steps. We give �rst a

brief overview of the modelling procedure in its natural ordering and then go into detail. For simplicity

we will not give an index to the population under consideration as long as we consider one species

only. The �ve steps are the following:

Step 1: The choice of structuring variables. We denote the resulting vector by x and call it the

individual state or, shorter, the i-state (vector). After having made this choice, x0, the

state-at-birth has to be speci�ed. The space of possible i-states will be denoted by 
 � IRs,

s � 1. This set is also called the i-state-space.

Step 2: To characterize an individual further, four di�erent types of functions have to be provided by

the modeller: First the individual growth rate g(x; I), secondly the individual interaction

or feedback contributions 
i(x; I) to each component Ii of the interaction vector I , thirdly

the individual o�spring production rate �(x; I), and in the fourth place the individual

death rate �(x; I).

Step 3: After step 2 it will be possible to derive the following two quantities under the assumption

that the interaction vector I is given as a function of time: First we can compute x(t; a; I),

the i-state of an individual of age a, born at time t, given the course of I in the time interval

[t; t+a). Secondly we can compute the individual survival probability, denoted by F(t; a; I).

Step 4: All functions described in step 2 might be discontinuous. A typical example is that the

individual's life history contains di�erent life stages, where growth and birth rates etc. di�er

drastically. We have to know (for the biological interpretation, but also for numerical purposes)

at what age of an individual such discontinuities occur. To do so, we require that the modeller

is providing for each discontinuity a (discontinuity) detection functional dj(x; I), 1 � j � nd,

which exactly switches sign when the discontinuity occurs.

Step 5: This step leads us to the population level. By integrating over all contributions of the

living individuals we can derive the population birth rate b(t) and compute the population

feedback contributions �i(I), 1 � i � k.

By �(v) we will in the following always denote the index set of the components of a (column-)vector

v. The vector v will also be written in the form v = (vi)i2�(v).
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3.2 First step: The choice of structuring variables.

The choice of the structuring variables for the i-state x must be done in such a way that the distinction

between individuals suits the purpose of the model. It is also important to note that at the same time

these quantities should preferably be either directly or indirectly measurable in experiments. Most

commonly x has components which are identi�ed as age, size, weight, energy content etc., but possible

choices include also non-physiological quantities like a rank in a social hierachy.

Next the state-at-birth x0 has to be speci�ed. Because we assume a single identical state-at-birth

for all newborn individuals, we must exclude at the moment that newborns exhibit a high variation

in x. Sometimes the choice of x0 is easy after the choice of the structuring variables has been made:

For a purely age-structured model the state-at-birth will always be zero. For other situations the

identi�cation of x0 is less obvious.

We always assume that the i-state-space 
 � IRm. Note that at this stage we are not able to

compute what the possible i-states are. We must �rst give a recipe in the following steps how to

compute them.

3.3 Second step: The description of an individual's movement in 
.

The four functions listed below are assumed to determine completely the dynamical behaviour of

every individual of the population. The requirements on their smoothness will depend on the type

of numerical algorithm we apply, most dominantly on the nonlinear iteration scheme used to calcu-

late successive approximations of equilibria. We therefore do not determine their smoothness here

explicitly:

individual growth rate: We assume that the development of individuals is purely deterministic.

The function g(x; I), the individual growth rate, describes how an individual moves in the i-

state space 
, that is, we postulate that for an individual dx
dt

= g(x; I) holds. Thus 'growth' is

meant in a rather general sense. It can mean growth in length or size but also the production

or loss of energy reserves etc.

individual interaction or feedback contributions: Let the quantity 
i(x; I) be the per capita

contribution to a component Ii of the interaction variable I , 1 � i � k, given the individual has

state x and given the vector of interaction variables is I . The function 
i(x; I) will be called the

individual's i-th interaction contribution.

individual birth rate: The individual birth rate �(x; I) is the rate at which an individual with state

x produces o�spring with state-at-birth x0, given the vector of interaction variables is I .

individual death rate: The quantity �(x; I) is the individual death rate (i.e. the probability

per unit of time of dying), given the individual has state x and given the vector of interaction

variables is I .

Regularity and other assumptions on these functions are of two kinds: First, these assumptions have

to be made from a modelling point of view. Very often jump discontinuities are introduced to describe

(idealized) biological events. This is discussed in step 4 seperately, because the numerical treatment of

such discontinuities requires some extra e�ort. Other assumptions will ensure nonnegative numbers of

individuals at each time point, etc. Such a set of assumptions must be stated for each speci�c model,

but we at least assume � � 0 on 
 for any feasible given I(t). A similar positivity requirement for �

will be given in the next step after introducing the survival probability F .
On the other hand, the model should be mathematically tractable. We do not discuss the necessary

assumptions to have well-posedness in this context. A requirement needed for numerical reasons is

that each of the functions g, 
i, �, and � is twice piecewise continuously di�erentiable with respect to

its arguments.
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3.4 Third step: Computation of the individual state and of the survival probability.

This step consists of a recipe how to compute two important quantites related to the structure- (age-,

size-) distribution of the population from functions provided in step 2. Let x(t; a) denote the i-state

at age a of an individual which was born at time t with state-at-birth x0. Then

@

@a
x(t; a) = g(x(t; a); I(t + a));

x(t; 0) = x0;
(3.1)

describes the change of the i-state x when the individual gets older. Likewise the survival prob-

ability F(t; a) satis�es

@

@a
F(t; a) = ��(x(t; a); I(t+ a))F(t; a);

F(t; 0) = 1:
(3.2)

This quantity is by de�nition the probability that an individual which was born at time t with state-

at-birth x0 survives at least until time t+ a. For our numerical approximation of equilibria, it will be

essential that we require � � 0 on 
 for any feasible given I(t), such that lima!1F(t; a) = 0. This

can be achieved by di�erent assumptions; it su�ces for example that @
@a
F(t; a) < 0 for a > a� > 0,

i.e. the survival probability must only be strictly monotonically decreasing for old enough ages of the

individuals.

We can now give interpretations to the following two quantities: First


i(x(t � a; a); I(t))F(t� a; a)

is the expected contribution at time t to the interaction Ii, 1 � i � k, of an individual born at time

t� a. Such an individual contributes

�(x(t � a; a); I(t))F(t� a; a)

to the rate at which individuals are born at time t.

3.5 Fourth step: The individual's sudden changes in behaviour: Detection of discontinuities.

As outlined above, the functions g, 
i, � and � are in general only piecewise continuously di�erentiable.

We can solve Eq. (3.1) and Eq. (3.2) uniquely on subintervals of the age axis IR+. This is how we

will interpret the meaning of a solution of these ODEs in the following, without further mentioning

it: Solve the ODE until a discontinuity occurs, determine the values of the unknowns at the end of

that interval, and restart the integration process with the updated values of the right hand side and

with the updated values of the unknowns from the end of the previous age interval. In order to be

able to detect discontinuities, we make the following assumption: There are continuous functionals

dj : 
 � IRk ! IR, dj = dj(x; I), 1 � j � nd, such that for given I the (m� 1)-manifolds implicitly

de�ned by dj(x; I(t
�)) = 0 partition 
 at each instant of time t� in regions where the functions g, 
i,

� and � are smooth, see also Fig 1. Moreover, the separation of 
 is such that characteristics (i.e. the

solutions of Eq. (3.1), see below) cross the manifolds always transversally. More precisely we assume

that for an individual born at time t, and given I , there is locally in time at most one point in time,

say t+ a� such that

dj(x(t; a
� � �); I(t+ a� � �)) < 0;

dj(x(t; a
� + �); I(t+ a� + �)) > 0;

(3.3)

for all � > 0 whenever there is a discontinuity in g, 
i, � or �. This transversality condition will in

practise be checked numerically.
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The reason why we allow jumps in the di�erent rates �, g, � and 
i with respect to the state x is:

First, as already noted, they allow to model things like sudden stage changes with completely di�erent

growth-, reproduction-, etc. behaviour, occuring for example in insects or crustaceans. Secondly,

jumps are often used to simplify models by reducing the number of necessary model parameters.

3.6 Fifth step: The population level.

Now we have to integrate over all individual contributions to handle the population level. Given the

individual states, what becomes a state for the whole population? We already introduced in section

2 a measure m(t) 2M+(
) describing the distribution of individuals in 
 at time t. Additionally, to

monitore the population state, we have to sum individual contributions to calculate the population

feedback contributions to the ith component of I , 1 � i � k, which was denoted by �i(I(t))m(t).

Instead of taking m directly as a representation of population state, we rather will work with the

(population) birth rate

b(t) = rate of birth of individuals at time t.

This means we censor the population by keeping track of new individuals entering the population.

Because we can calculate the survival probability F(t; a) and the movement in state space x(t; a) for

each of these individuals from the time on when they were born, the information given by b(t), as

a function of time, enables us to compute m. To elaborate this point, we introduce a new measure

~m = ~m(t; a)(!) which we de�ne as the number per unit of time of individuals at time t with age a

having their state in ! � 
. Then

~m(t; a)(!) = X!(x(t� a; a))F(t� a; a)b(t� a): (3.4)

Here X! is the characteristic function:

X!(x) =

�
1 : x 2 !
0 : x 62 !:

In words Eq. (3.4) is telling us that at time t an individual of age a can only have a state x 2 ! if

it has been born at time t� a (with state x0) and survived a time units. From this we immediately

obtain an expression to reformulate m in terms of F and b:

m(t)(!) =

1Z
0

~m(t; a)(!) da =

1Z
0

X!(x(t� a; a))F(t� a; a)b(t� a) da:

Using this reformulation ofm, or, alternatively, directly using the new formulation, we can derive the

following expressions for b(t) and �i(I(t))m(t) (given in their translation invariant form, i.e. without

consideration of initial conditions):

b(t) =

1Z
0

�(x(t � a; a); I(t))F(t� a; a)b(t� a) da;

�i(I(t))m(t) =

1Z
0


i(x(t� a; a); I(t))F(t � a; a)b(t� a) da;

(3.5)

with 1 � i � k. We have suppressed in the notation of Eq.(3.5) the dependence on parameters,

which will only become important later when we consider continuation. All components of I are, so

far, assumed to be su�ciently smooth given functions of time.
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3.7 Simpli�cations in the case of an unstructured population.

Now we brie
y treat the case that a given species is unstructured. This can be interpreted as meaning

that the individual's state space consists of just one possible state, i.e 
 = fx�g, a space of dimension
zero. This implies that all individuals have the same state at every instant of time. With this

assumption, the equations describing the population dynamics can be considerably simpli�ed. We will

not give any derivation, but immediately formulate the result in the more common form of ordinary

di�erential equations. However, we keep the assumption that these equations become nonlinear only

by feedback via the interaction variables:

@

@t
m(t) = [�(I(t)) � �(I(t))]m(t);

Ii(t) = 
i(I(t))m(t)
(3.6)

Because we will only be interested in equilibria of Eq. (3.6), no initial conditions are provided.

3.8 The n-species model.

After the consideration of a single species, we now consider the interaction of n such species. In order

to do so, we label the ingredients describing a particular species with an index j, 1 � j � n. First

we label the individual state spaces. Assume 
j =
�
x�j
	
for j 2 �u. Here �u � f1; : : : ; ng is the

set of indices labeling the unstructured populations. Let �s
def
= f1; : : : ; ng n �u be the set of indices

labeling structured populations. We have 
j � IR�j , �j 2 IN, j 2 �s. After labelling likewise all

other population ingredients, the result is:

@

@t
mj(t) = [�j(I(t)) � �j(I(t))]mj(t) for j 2 �u;

bj(t) =

1Z
0

�j(xj(t� a; a); I(t))Fj(t� a; a)bj(t� a) da for j 2 �s;

Ii(t) =

nX
j=1

�ij(I(t))mj(t) for 1 � i � k:

(3.7)

The quantities �ij(I(t))mj(t) are de�ned by

�ij(I(t))mj(t) =

8<
:


ij(I(t))mj(t) : j 2 �u
1R
0


ij(xj(t� a; a); I(t))Fj(t� a; a)bj(t� a) da : j 2 �s:

Moreover, the quantities xj and Fj for j 2 �s have to be calculated according to Eq. (3.1) and Eq.

(3.2), so by solving

@

@a
xj(t; a) = gj(xj(t; a); I(t+ a));

xj(t; 0) = xj;0;
(3.8)

and

@

@a
Fj(t; a) = ��j(xj(t; a); I(t+ a))Fj(t; a);

Fj(t; 0) = 1:
(3.9)

To avoid indices, we will use in the following a more compact notation for equations like (3.7),

(3.8) and (3.9). We use the following conventions: For two vectors v1 = (v11 ; : : : ; v
1
n1
)T and v2 =
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(v21 ; : : : ; v
2
n1)

T we set v1v2 = (v11v
2
1 ; : : : ; v

1
n1
v2n1)

T . In case M is a (n2 � n1)-matrix, Mv1 is the usual

matrix-vector product. First we rewrite Eq. (3.7) as

@

@t
mu(t) = [�u(I(t)) � �u(I(t))]mu(t);

b(t) =

1Z
0

�s(x(t� a; a); I(t))F(t� a; a)b(t� a) da;

I = �(I(t))m(t);

(3.10)

with

mu
def
= (mj)j2�u

;

�u(I(t))
def
= (�j(I(t)))j2�u

;

�u(I(t))
def
= (�j(I(t)))j2�u

;

b
def
= (bj)j2�s

;

�s(x(t� a; a); I(t))
def
= (�j(xj(t� a; a); I(t)))

j2�s

;

F
def
= (Fj)j2�s

:

(3.11)

We always assume that indices are sorted in such a way that we can write

�(I)m = 
u(I)mu + �s(I)ms: (3.12)

Again, Eq. (3.10) has to be supplemented by the analogues of Eqs. (3.8) and (3.9):

@

@a
x(t; a) = gs(x(t; a); I(t+ a));

x(t; 0) = x0;
(3.13)

and

@

@a
F(t; a) = ��s(x(t; a); I(t + a))F(t; a);

F(t; 0) = 1:
(3.14)

The di�erent vectors occuring in (3.13) and (3.14) are given by x = (xj)j2�s

, and 1 = (1; : : : ; 1)t

(the 1s are repeated dim(�s) times). Moreover, the above notation in (3.12), (3.13) and (3.14) for

the di�erent vector- respectively matrix-valued functions describing growth, feedback and death, uses

the following de�nitions:


s(x(t� a; a); I(t))
def
= (
ij(xj(t� a; a); I(t))) 1�i�k

j2�s

;


u(I(t))
def
= (
ij(I(t))) 1�i�k

j2�u

;

gs(x(t; a); I(t+ a))
def
= (gj(xj(t; a); I(t+ a)))

j2�s

;

�s(x(t; a); I(t + a))
def
= (�j(xj(t; a); I(t+ a)))

j2�s

:

(3.15)

We will use analogous de�nitions like (3.11) and (3.15) in the time-independent case without ex-
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plicitly stating them again.

4. Equilibria.

By an equilibrium of problem (3.10) we mean a vector y = (mu; b; I), where mu, b and I are time

independent and satisfy the system of equations

0 = �u(I)� �u(I);

b = b

1Z
0

�s(�x(a); I)F(a) da;

I = �(I) �m:

(4.1)

Again we can decompose the expression �(I)m and write �(I)m = �u(I)mu + �s(I) �ms, with

�ms =
�
b
R1
o
Fj(a) da

�
j2�s

. Because we have taken the population birth rates b as the states of

structured populations, we rewrite the action of the functional �s(I) on ms as a matrix product

�s(I)b, where �s(I) is de�ned as

�s(I) =

1Z
0


s(�x(a); I)F(a) da:

The vectors �x = (�xj)j2�s

and F =
�
Fj

�
j2�s

must satisfy the equations

@

@a
�x(a) = gs(�x(a); I);

�x(0) = x0;
(4.2)

and

@

@a
F(a) = ��s(�x(a); I)F(a);

F(0) = 1:
(4.3)

We now make a simple, but for our later numerical treatment, essential transformation of these

equations de�ning an equilibrium. By setting Rs
0(I)

def
=

1R
0

�s(�x(a); I)F(a)da and by letting Ru
0 =�

R0;j(I)
�
j2�u

, with R0;j(I)
def
=

�j(I)

�j(I)
, we can reformulate the problem as follows:

Ru
0 (I)� 1 = 0;

Rs
0(I)� 1 = 0;

I � 
u(I)mu ��s(I)b = 0;

(4.4)

where Rs
0(I)

def
= rs0(1) and �s(I)

def
= �s(1) are computed according to the scheme

@

@a
rs0(a) = �s(�x(a); I)F(a);

@

@a
�s(a) = 
s(�x(a); I)F(a);

(4.5)

with initial conditions
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rs0(0) = 0;

�s(0) = 0:
(4.6)

Clearly, system (4.5) has to be solved together with systems (4.2) and (4.3) in paralell. Note that

Eq. (4.4) is already of the form

G(y) = 0;

with the obvious speci�cations of the di�erent components of y and G. The dimension of both

y and G is n + k (where n is the number of species and k is the dimension of the (environmental)

interaction vector I), i.e. we have the same number of equations and unknowns. The quantities Ru
0

and Rs
0 are called the basic reproduction ratios in the population dynamics literature, see for example

Heesterbeek[5].

4.1 Numerical approximation of an equilibrium

How can we numerically (approximately) �nd an equilibrium, i.e. �nd mu; b and I such that they

satisfy Eq.(4.4)? First of all Eq.(4.5), together with (4.2) and (4.3) has to be solved for in�nite

ages of the individuals for each population j 2 �s, something which is not possible numerically. We

de�ne implicitly quantities aj;� by Fj(aj;�) = �. Such quantities exist for each � 2 (0; 1), because

Fj(a) 2 (0; 1] for a 2 IR+ and Fj(a) ! 0 monotonically as a ! 1. This holds because we

assumed all death rates are bounded away from zero for large ages. Clearly � is a quantity which

enters considerations of numerical accuracy, and the approximation should become better if � becomes

smaller. De�ne a�
def
= maxj2�s

aj;�. In our numerical approximation, we will replace Rs
0 and �s in

Eq. (4.4) by Rs;�
0 and �s;�, where Rs;�

0 = (r0;j(a�))j2�s

and �s;� = (�ij(a�)) 1�i�k
j2�s

. To express this

in the notation, we write G�(y) = 0 instead of G(y) = 0. Usually one solves a nonlinear equation,

like G�(y) = 0, numerically by an iteration method, for example and most prominently by Newton's

method. We will do the same, but we have to make additional computations whenever for a given

value y� the values of G�(y
�) are evaluated. The following algorithm and all forthcoming ones are

formulated in a pseudo-code format (adapted from Allgower and Georg[1]). In the algorithm below we

follow the strategy to �rst (explicitly or iteratively) compute the i-states where discontinuities occur.

This is done with the help of the discontinuity functionals dij , 1 � i � n and 1 � j � ndi (with ndi
being the number of discontinuity functionals needed to describe population i), and can be done if a

�xed value of I is given. Alternatively, in the case the knowledge of the ages at which a discontinuity

occurs is not needed as output, one can use a numerical method which allows to integrate over the

discontinuities. In any case, because the determination of these 'stop ages' requires computational

e�orts, one should use speci�c knowledge of the model under investigation to simplify the calculations.

We now describe two algorithms: The �rst one describes the computation of the value of G� for

a given value of y 2 IRp, with p = n + k (and also given parameter values, which only becomes

important later). The second algorithm will describe how to approximate a solution of G�(y) = 0 by

Newtons-method.

Algorithm 1: (Computation of G�(y)) comment:

input

begin

a� > 0; age at which integration stops

� > 0; perturbation used for numerical di�erentiation

y = (mu; b; I); given value of y
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end;

compute (iteratively or explicitly) for each dij the i-states xij such that

dij(xij ; I) = 0 computation of i-states where discontinuities occur

a:=0; start age

repeat integration along characteristic

integrate system (4.2), (4.3), (4.5) in parallel from age a on;

system (4.2), (4.3), (4.5) becomes autonomous for a given value of I

stop integration at an age aij if �x(aij) = xij ;

store x(aij), F(aij), r
s
0(aij), �

s(aij) and aij ;

a := aij ;

until a = a�; �nal approximation age is reached

assemble G�(y);

G� is de�ned by replacing Rs
0 and �s in the left hand side of (4.4) by rs0(a�) and �

s(a�)

evaluate G�(y);

We can now use algorithm 1 to approximate a root of G, which we will denote by y�. By using

algorithm 1, we will at the same time iteratively approximate G by G�.

Algorithm 2: (Find y� approximately solving G(y) = 0) comment:

input

begin

a� > 0; age at which integration stops

� > 0; perturbation used for numerical di�erentiation

�G > 0; numerical accuracy constant

�y > 0; numerical accuracy constant

y(0) = (mu
(0); b

(0)
; I

(0)
); starting point, the initial guess

end;

k := 0; iteration index

repeat iteration loop

k := k + 1;

compute G
(k�1)
� := G�(mu

(k�1); b
(k�1)

; I
(k�1)

) by algorithm 1;

compute d
dy
G
(k�1)
� (y(k�1)); step involves numerical di�erentiation

integration along characteristic has to be repeated

with perturbed values mu
(k�1) + � etc.
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to compute di�erence quotients

solve d
dy
G
(k�1)
� (y(k�1))�(k�1) = �G

(k�1)
� (y(k�1));

y(k) := y(k�1) + �(k�1); new approximation to equilibrium

until 

�(k) � �(k�1)




1 +


�(k) � �(k�1)



 < �y and




G(k�1)
� (y(k))





1 +




G(k�1)
� (y(k))




 < �G;

G� := G
(k�1)
� and y� = y(k); new approximation accepted

5. Linearization at the equilibrium.

Now we like to determine numerically when there are solutions of Eq. (4.4) starting close to the equi-

librium y = (mu; b; I) which, to �rst approximation, neither grow away nor decline to the equilibrium,

i.e. we look at the critical case for linearized stability of this equilibrium. For this purpose we de-

note by Y(t) = (M(t);B(t); I(t)) the perturbations from the equilibrium y = (mu; b; I). Here we use

analogously to previous conventions the following vector notations: M = (Mj)j2�u

, B = (Bj)j2�s

,

I = (Ij)1�i�k. The (formal) linearization that determines Y(t) consists of the following set of equa-

tions (5.1) - (5.3):

@

@t
M(t) = [�u(I)� �u(I)]M(t) +

@

@I
[�u(I)mu � �u(I)mu]I(t) (5.1)

B(t) =

1Z
0

�
�s(�x(a); I)F(a)B(t� a) +

@

@x
�s(�x(a); I)�(t� a; a)F(a)b

+
@

@I
�s(x(a); I)I(t)F(a)b+ �s(x(a); I)f(t� a; a)b

�
da:

(5.2)

Here @
@x
�s(�x(a); I)

def
=
�

@
@xj

�j(xj(a); I)
�
j2�s

and @
@I
�s(x(a); I) is the matrix

�
@
@Ii
�j(xj(a); I)

�
1�i�k

j2�s

.

Other derivatives occuring in the following are de�ned analogously and we omit the componentwise

formulation.

Components of the vector functions � = (�j)j2�s

and f = (fj)j2�s

are computed from respectively

Eq. (5.4) and (5.5) below. Finally, the linearisation of the interaction variable I at the equilibrium y

is given by

I(t) = 
u(I)M(t) +
@

@I

u(I)muI(t)

+

1Z
0

�

s(�x(a); I)F(a)B(t� a) +

@

@x

s(x(a); I)�(t� a; a)F(a)b

+
@

@I

s(�x(a); I)I(t)F(a)b+ 
s(x(a); I)f(t� a; a)b

�
da:

(5.3)

The quantities �j and fj are calculated from the following equation
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@

@a
�(t; a) =

@

@x
gs(x(a); I)�(t; a) +

@

@I
gs(x(a); I)I(t + a);

�(t; 0) = 0;
(5.4)

and

@

@a
f(t; a) = ��s(x(a); I)f(t; a)�

@

@x
�s(x(a); I)�(t; a)F(a)

�
@

@I
�s(x(a); I)I(t + a)F(a);

f(t; 0) = 0:

(5.5)

5.1 Characteristic equation

We like to derive next, again formally, a characteristic equation determining by the position of its

roots relative to the imaginary axis the local asymptotic stability of an equilibrium. To do this, we

replace in Eqs. (5.1)-(5.5) M, B, I, � and f by the trial solutions

M(t) = e�tM

B(t+ a) = e�(t+a)B

I(t+ a) = e�(t+a)I

�(t; a) = e�t�(a;�)I

f(t; a) = e�tf(a;�)I ;

where � is a complex number. This leads to the following algebraic problem for Y = (M;B; I):

Y =M(�)Y :

The matrix M has the form

M(�) =

0
@ Mmu;mu

(�) 0 Mmu;I(�)

0 Mb;b(�) Mb;I(�)

MI;mu
(�) MI;b(�) MI;I(�)

1
A

The di�erent entries of M are given by

Mmu;mu
(�)

def
=

1

�
[�u(I)� �u(I)];

Mmu;I(�)
def
=

1

�

@

@I
[�u(I)mu � �u(I)mu];

Mb;b(�)
def
=

1Z
0

�s(�x(a); I)F(a)e
��a da
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Mb;I(�)
def
=

1Z
0

�
@

@x
�s(�x(a); I)�(a;�)e

��aF(a)b

+
@

@I
�s(�x(a); I)F(a)b+ �s(�x(a); I)e

��af(a;�)b

�
da:

MI;mu
(�)

def
= 
u(I)

MI;b(�)
def
=

1Z
0


s(x(a); I)F(a)e
��a da

MI;I(�)
def
=

@

@I

u(I)mu

+

1Z
0

�
@

@x

s(�x(a); I)�(a;�)e

��aF(a)b

+
@

@I

s(�x(a); I)F(a)b+ 
s(x(a); I)e

��af(a;�)b

�
da:

The matrices �(a;�) =
�
�ij(a;�)

�
1�i�k

j2�s

and f(a;�) =
�
f ij(a;�)

�
1�i�k

j2�s

have to be computed from

@

@a
�(a;�) =

@

@x
gs(x(a); I)�(a;�) +

@

@I
gs(x(a); I)e

�a

�(0;�) = 0;
(5.6)

and

@

@a
f(a;�) = ��s(x(a); I)f(a;�)�

@

@x
�s(x(a); I)�(a;�)F(a)

�
@

@I
�s(x(a); I)e

�aF(a);

f(0;�) = 0:

(5.7)

The characteristic equation F (y; �) is now de�ned by

F (y; �)
def
= 0;

where F (y; �)
def
= det(M(�) � Id):

5.2 Finite-dimensional approximation of the characteristic equation

Analogously to the approximation G� of G, we will de�ne an approximation F� of F in the following

way: Let M�(�)
def
= M(a�; y; �), with

M(a; y; �)
def
=

0
@ Mmu;mu

(I; �) 0 �1(I; �)mu

0 	1(a; I; �) 	2(a; I; �)b

MI;mu
(I; �) 	3(a; I; �) �2(I)mu +	4(a; I; �)b

1
A
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Here we singled out expressions which are only dependent on I , �, and eventually, on a. Also the

explicit dependence on I has been included in the notation of entries of M . The reason is that, like

the role of I played in algorithm 1, we will construct a system of ODE used to assemble F�, which

becomes autonomous if the pair (I; �) is known. The �'s are obviously de�ned by

�1(I; �)
def
=

1

�

@

@I
[�u(I)� �u(I)];

�2(I)
def
=

@

@I

u(I);

and, instead of using integral representations, we decide again to calculate the age-dependent sub-

matrices 	1, 	2, 	3, and 	4 by solving the following system of ODEs:

@

@a
 1(a; I; �) = �s(�x(a); I)F(a)e

��a;

@

@a
 2(a; I; �) =

@

@x
�s(�x(a); I)�(a;�)e

��aF(a)

+
@

@I
�s(�x(a); I)F(a) + �s(�x(a); I)e

��af(a;�);

@

@a
 3(a; I; �) = 
s(x(a); I)F(a)e

��a;

@

@a
 4(a; I; �) =

@

@x

s(�x(a); I)�(a;�)e

��aF(a)

+
@

@I

s(�x(a); I)F(a) + 
s(x(a); I)e

��af(a;�);

(5.8)

with initial conditions

 1(0) = 0;

 2(0) = 0;

 3(0) = 0;

 4(0) = 0:

(5.9)

The �nite dimensional approximation M� of M is obtained by �rst solving Eq. (5.8) only up to a

�nite time a�. Then the quantities 	i, in M must be replaced by  i(a�; I; �) , i = 1; 2; 3; 4.

6. Continuation of equilibria

We are now able to use the results we have established so far to describe continuation techniques

and the construction of bifurcation diagrams. Bifurcation diagrams show in general characteristic

properties of equilibria (and other invariant sets) of dynamical systems under parameter variation,

like their number, position and stability. We will describe how to compute such diagrams for the

general n-species model. To do so, the dependence of the model equation on parameters must be

introduced.

The red line this chapter follows is quite common in numerical continuation theory where an in�nite-

dimensional model is analysed: First a �nite-dimensional approximation of the mapping de�ning the

invariant set has to be found. This was the theme of the previous sections. The second step is

now discussed in this section: The resulting �nite-dimensional mappings can be analysed by �nite-

dimensional numerical continuation methods. Most frequently so-called predictor-corrector (PC-)

methods are used. Because they are quite standard (see Allgower and Georg[1]), we only give a brief

introduction to explain them in our context.
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6.1 One parameter continuation.

Let � 2 IR denote a parameter occuring in some or all functions constituting Eq. (3.10), for which

we like to study equilibrium behaviour under its variation. This means we �x all other parameters

occuring in Eq. (3.10), and thus make the parameter space of our problem one dimensional. The

parameter � is also called the free parameter. As ususal in the theory of continuation, we write Eq.

(4.4) in the form

G(y; �) = 0 ; G : IRp+1 ! IRp: (6.1)

Here p = n + k is the dimension of system (4.4). Eq. (6.1) generically implicitly de�nes a curve

y(s) (parametrized by s) in p + 1-dimensional space. We like to compute this curve and describe

brie
y the usual predictor-corrector method for following such curves numerically, together with some

remarks concerning our special situation. We will use the �nite dimensional approximation G� of G.

The following is a typical predictor-corrector method, adapted from Allgower and Georg[1] (page 48)

which uses a tangent prediction and a Newton-like corrector. Note that algorithm 1 is heavily used by

algorithm 3: Whenever, for a �xed value of (y; �), the value of G�(y; �) must be evaluated, algorithm

1 is used. The corrector part of algorithm 3 is a variant of algorithm 2, having a rede�ned Newton

step, accounting for the fact that the derivative G0(y; �) is a non-square matrix:

Algorithm 3: (Continuation of equilibria with one free parameter)

input

begin

u such that G�(u) = 0; start point on curve, with u
def
= (y; �)

h > 0; steplength with which curve is traversed

end;

repeat predictor loop

calculate G0�(u) numerically; G0� is the derivative of G�

at u, a p� (p+ 1)-matrix;

numerical di�erentiation involved, like in

the computation of d
dy
G�(y) in algorithm 2

compute tangent t(u);

set v = u+ t(u) � h; predictor step

repeat corrector loop

v := u�G0�(u)
+G�(u); Newton step

Moore-Penrose inverse used: A+ def
= A�(AA�)�1,

with A being a p� (p+ 1)-matrix

u := v;

measure quality of correction; like contraction rate, distance from curve etc.

until convergence or quality too bad;

check if step was accepted;

if step was not accepted, reduce stepsize h;

if step was accepted, u := v;

until traversing is stopped;
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6.2 Two parameter continuation.

In the case of 2 free parameters, our speci�c aim is to compute stability boundaries of equilibria,

projected in two-parameter space. De�ne w = (mu; b; I; i!; �
1; �2) and H = (G;F ), where �1 and �2

are now the two free parameters. We can abreviate the equation

G(y; �1; �2) = 0

F (y; i!; �1; �2) = 0

by simply writing H(w) = 0. The approximation of H by (G�; F�) is denoted by H�. It follows

that H� : IR
p+3 ! IRp+2. We can again use the continuation algorithm 2 to approximate the sta-

bility boundaries, de�ned by the condition H(w) = 0. But in this case we must replace algorithm

1 in algorithm 3 by an analogous algorithm dealing with the computation ofH�(w), with w being given.

Algorithm 4: (Computation of H�(w)) comment:

input

begin

a� > 0; approximating age

w(0) = (mu
(0); b

(0)
; I

(0)
; i!(0); �1(0); �2(0)); initial guess

end;

compute ages at which discontinuities occur see algorithm 1

a:=0; start age

repeat integration along characteristic

integrate system (4.2), (4.3), (4.5) with given I and in

parallel system (5.6), (5.7),(5.8) with given I and � from age a on

stop eventually at discontinuities; see algorithm 1

until a = a�;

de�ne Rs
0 = rs0(a�) and �s = �s(a�);

de�ne 	i =  (a�; I; i!), i = 1; 2; 3; 4;

assemble with these quantities H�(w);

evaluate H�(w);

Secondly, G� in algorithm 3 has obviously to be replaced by H� everywhere. The projections of the

stability boundaries into the (�1; �2)-plane divide generically the plane into subregions with parameter

constellations for which a given equilibrium is either locally asymptotically stable or unstable.

Remark: A problem of algorithms 2 and 3 is to �nd a �rst point on the respective curves. This

is discussed in Kirkilionis et al. [8] while considering some continuation strategies.

7. Discussion.

The aim of this paper is twofold. It contains a framework for formulating PSPMs and also establishes

a method how to investigate PSPMs by means of numerical continuation techniques. We discuss both

aspects in the following.
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7.1 Relation to other modeling approaches

The important step in the model formulation was the introduction of environmental interaction vari-

ables. These describe either internal feedback (like cannibalism) or external feedback (like a prey-

predator relationship). Their introduction allows a separation of two phases in modeling, �rst the

formulations of individual and population behaviour with given interaction variables (making the

models linear) and then combining the submodels via the interaction variables (which makes them

in general nonlinear). We think that in practice the formulation of feedback mechanisms and the

formulation of submodels cannot be really separated, but it may be an iterative, hopefully convergent

procedure.

What is the relationship with other formulations of PSPMs? As already noted in the begining of

section 3, our formulation can be interpreted as a generalisation of the age-structured model formulated

by Webb [18] in its integral form after integration along characteristics. In Diekmann et al.[2], a linear

model for a PSPM has been proposed, together with some analysis concerning the existence of solutions

and their stability under constant environmental conditions. It is also possible to transform our setting

into this framework, and we describe this transformation brie
y, and only on the individual level for

comparison. The approach in Diekmann et al.[2] uses two essential ingredients: First the reproduction

kernel � given by

�(t; y)(A) = the expected number of children, with relative birth

coordinates in A, of an individual which at time t has state y.

In the case A = [0; s) � !, with ! a measurable subset of the i-state space 
, �(t; y)(A) is the

expected number of o�springs produced in the time intervall [t; t + s) with state-at-birth in 
. The

word 'relative' means that time is measured from t on.

The second ingredient is the development and survival probability u given by

u(t; y; s)(!) = probability that an individual which has state y at time t

is alive s time units later and then has a state in !.

The relationships with our model based on the rates �, � and g are as follows. We again skip

species indices because we are looking at a single population and make the following assumptions and

de�nitions:

(a) The environmental interaction variable I in the linear autonomous case must be constant. We

denote by I this constant value.

(b) The model we considered in this paper deals with relative time, the time-at-birth from which on

each individual is traced. We now denote the time-at-birth by t0 instead of t. Let t � t0 such

that x(t0; t� t0) = y, where x(t0; a), a = t� t0 > 0, is computed from Eq. (3.1).

Then, for A = [0; s)� !,

�(t; y)(A)
def
= �x0

sZ
0

�(x(t0; (t+ �) � t0); I)F(t0; (t+ �) � t0) d�;

and

u(t; y; s)(!)
def
= �x(t0;(t+s)�t0)F(t

0; (t+ s)� t0):

The symbol �x denotes the Dirac measure at x 2 
.
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7.2 Numerical continuation

In this paper we presented a technique to follow equilibria of PSPMs while varying one (free) parameter

and also to compute their stability boundaries in two-parameter space (two free parameters). The

following questions naturally arise and must be answered in the future:

� How can we detect branching points, i.e. points where the parametrized curve we follow is

intersecting other branches? Can we compute branching points accurately, given the fact that G

is a �nite-dimensional approximation of an in�nite-dimensional problem? For practical purposes

we must also be able to switch branches at these points. This will be discussed in Kirkilionis et

al. [8].

� There are two generic codim 1 bifurcations, the fold- and the Hopf-bifurcation. Usually one traces

them along a curve of equilibria x(s) (s being the parametrization) satisfying G(x(s); �(s)) = 0

by looking at sign-switches of the functionals

	fold = det

�
@G(x; �)

@x

�

which detects fold-points, and

	Hopf = det

�
2
@G(x; �)

@x
� I

�
;

detecting Hopf-points, where '�' is the so-called 'bialternate' product, see Kuznetsov [11].

After detection, one has to check certain nondegeneracy conditions to be sure that a bifurcation

actually occurs. The question is now if a similar way of tracing bifurcation points is possible in

our context?

7.3 Final remarks

We have so far not provided a rigid convergence proof and error estimates. But in Kirkilionis et al.

[8] we will treat some examples and test the numerical stability of the algorithm we proposed. Also

some details of the numerical implementation are provided there, see also Kirkilionis [9]. Finally, we

express our hope that in the future numerical approaches, like the one presented here, will enhance

our understanding of phenomena resulting from individual di�erences in populations.

Acknowledgement: We like to thank Hans Metz, Mats Gyllenberg and Horst Thieme for inspi-

ration and advise.
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