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Abstract In thisworkwe consider the closest vector problem (CVP)—aproblem also known
as maximum-likelihood decoding—in the tensor of two root lattices of type A (Am ⊗ An),
as well as in their duals (A∗

m ⊗ A∗
n). This problem is mainly motivated by lattice based

cryptography, where the cyclotomic rings Z[ζc] (resp. its co-different Z[ζc]∨) play a central
role, and turn out to be isomorphic as lattices to tensors of A∗ lattices (resp. A root lattices).
In particular, our results lead to solving CVP in Z[ζc] and in Z[ζc]∨ for conductors of
the form c = 2α pβqγ for any two odd primes p, q . For the primal case Am ⊗ An , we
provide a full characterization of the Voronoi region in terms of simple cycles in the complete
directed bipartite graph Km+1,n+1. This leads—relying on the Bellman-Ford algorithm for
negative cycle detection—to a CVP algorithm running in polynomial time. Precisely, our
algorithm performs O(l m2n2 min{m, n}) operations on reals, where l is the number of bits
per coordinate of the input target. For the dual case, we use a gluing-construction to solve
CVP in sub-exponential time O(nmn+1).
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1 Introduction

The root lattices and their duals are well known distinguished lattices, and their application
as lattice-codes and as quantizers are well understood [4,5]. In particular, quasi-linear time
algorithms [3,9] are known for the root lattice An and its dual A∗

n (see Definition 7), or even
linear time ones [10].

In this work, we are interested in generalizing those results to tensors of such lattices.
A motivation could be to use root lattices as building blocks for larger lattice-codes and
quantizers. But more naturally, those tensors appear when considering cyclotomic rings
Z[ζc] as lattices1 via the Minkowski embedding [8,12]. The structure of Z[ζc] as a lattice
may be deduced inductively from the following lattice isomorphisms2

Z[ζ2k ] � Z
2k−1

,

Z[ζp] � A∗
p−1, p an odd prime,

Z[ζpk ] �
pk−1⊕

i=1

Z[ζp], p a prime,

Z[ζmn] � Z[ζm] ⊗ Z[ζn] m, n coprime.

We note that the direct sum ⊕ of lattices is very easy to handle (see Lemma 4), and so are
tensors with Z� thanks to the identity Z� ⊗Λ � ⊕�

i=1 Λ. Therefore treating CVP in lattices
A∗
m ⊗ A∗

n suffices to solve CVP inZ[ζc] for any c = 2α pβqγ , where p, q are any odd primes.
In a dual fashion, solving CVP in Am ⊗ An leads to a solution for CVP in the co-different
ideal Z[ζc]∨ of the ring Z[ζc].
Cryptographic motivations Our motivation to solve CVP in Z[ζc] and Z[ζc]∨ comes from
ideal-lattice based cryptography. The worst-case to average-case reduction of Lyubashevsky
et al. [7] has given a central role to cyclotomic rings in this field of research. One key step in
such cryptosystems is to decode in the lattice Z[ζc]∨, and—unless c is a power of 2—then
only approximated CVP algorithms were considered, relying on special decoding bases [8].

Improving this step using an exact CVP algorithmwould lead to improve those cryptosys-
tems (better error tolerance, and therefore smaller parameters). Theoretically, it would also
bring the satisfaction that the decoding algorithm respect the symmetry of the lattice. Note
that our remark that Z[ζp]∨ � Ap−1 already trivializes this question for c a prime or even
when c = 2α pβ .

Contributions Our main contribution is a polynomial-time algorithm to solve CVP in the
lattice Am ⊗ An , more precisely an algorithm performing O(ln2m2min{m, n}) operations on
reals, where l is the number of bits per coordinate of the input target. This gives a satisfactory
solution to our cryptographic application for any c = 2α pβqγ .

This algorithm is derived from a very explicit characterization of the Voronoi region of the
lattice Am ⊗ An , which is expressed—perhaps surprisingly—as a one-to-one map between
the Voronoi-relevant vectors and the simple cycles in the complete bipartite directed graph
Km+1,n+1.

As a secondary contribution, we also study the dual case A∗
m ⊗ A∗

n , for which we obtain
only a weaker result: an algorithm in time O(nmn+1), which is at worse sub-exponential

1 We remind that this lattice has dimension ϕ(c), the Euler totient of c.
2 Such details are out of the scope of this paper, but are described in the B.S. Thesis of the second author,
available online https://www.math.leidenuniv.nl/scripties/BachVanWoerden.pdf.
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2Õ(
√
mn) in the dimension mn—assuming without loss of generality that n ≤ m. This result

is obtained by classical gluing theory, with a small completion trick.

Open problem The most natural open problem is to improve the result for the dual case,
ideally to a polynomial runtime algorithm. It would be even nicer if it would come with a
characterization of its Voronoi cell, and if it’d respect the symmetry between m and n, as in
the primal case.

One could also be curious about the case of tensors of three root lattices A� ⊗ Am ⊗ An or
more. But it would of course also be interesting to improve further the polynomial running-
time for CVP in Am ⊗ An .

Plan In the preliminaries (Sect. 2), we review the definitions of lattices, Voronoi region, direct
sums and tensor products of lattices, as well as the definitions and basic properties of the root
lattices An and their duals A∗

n . In Sect. 3, we describe our sub-exponential time algorithm
for CVP in A∗

m ⊗ A∗
n . The last section (Sect. 4) presents our main result, the polynomial time

algorithm for CVP in Am ⊗ An .

2 Preliminaries

For the rest of the paper, we fix two integers m, n ≥ 1 and let m′ = m + 1 and n′ = n + 1.

2.1 Lattices, and the closest vector problem

Definition 1 (Lattice) A lattice Λ with R-linearly independent (lattice) basis vectors
b1, . . . , br ∈ R

d is the discrete additive subgroup

Λ :=
{

r∑

i=1

zi bi : zi ∈ Z

}

of Rd . Let B ∈ R
r×d be the matrix with rows b1, . . . , br . We say that Λ has rank r and

generator matrix B. Let span(Λ) be the linear subspace of Rd spanned by the elements of
Λ over R.

The shortest vectors of Λ are the nonzero points of Λ with minimal norm. If v ∈ Λ is a
shortest vector then ρ = ‖v‖

2 is the packing radius ofΛ. The covering radius R is theminimal
distance such that any point in span(Λ) is at distance at most R to a lattice point. Another
lattice Λ′ ⊂ R

d of the same rank r such that Λ′ ⊂ Λ is called a full rank sublattice of Λ.

Definition 2 (Closest vector problem) Let Λ ⊂ R
d be a lattice. Given an arbitrary point

t ∈ span(Λ), the goal is to find a closest lattice point of Λ to t , i.e., an x ∈ Λ that minimizes
the distance ‖t − x‖ := √〈t − x, t − x〉. Such an x is also called a closest vector to t .

A natural geometric body associated with the closest vector problem is the Voronoi region,
defined below.

Definition 3 (Voronoi region and relevant vectors) Let Hv = {x ∈ span(Λ) : ‖x‖ ≤
‖x − v‖} for v ∈ Λ be the half space consisting of points at least as close to 0 as to v. The
Voronoi region (around 0) of a lattice Λ is defined by

V (Λ) :=
⋂

v∈Λ

Hv,
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consisting of all points in span(Λ) that have 0 as a closest vector. It is easy to confirm that
the Voronoi region is a convex polytope which is symmetric by reflection in 0 [5].

The Voronoi relevant vectors are the vectors forming the minimal set RV (Λ) ⊂ Λ of
vectors such that

V (Λ) =
⋂

v∈RV (Λ)

Hv .

Voronoi showed in [13] that for v ∈ Λ\{0} we have that v is a Voronoi relevant vector iff
0 and v are the only closest vectors to 1

2v in Λ, i.e. iff 〈v, x〉 < 〈x, x〉 for all x ∈ Λ\{0, v}.
Interestingly, Voronoi relevant vectors suffice to decide if a lattice vector is a closest vector
to a given target, and if not, to find a closer one. This gave rise to generic CVP algorithms,
running in exponential time [2,11].

Lemma 1 Let t ∈ span(Λ) and x ∈ Λ. There exists a vector y ∈ Λ such that
‖(x + y) − t‖ < ‖x − t‖ iff there exists a Voronoi relevant vector v ∈ RV (Λ) such that
‖(x + v) − t‖ < ‖x − t‖.
Proof The implication from right to left is trivial by taking y = v. Now suppose there exists
a vector y ∈ Λ such that ‖(x + y) − t‖ < ‖x − t‖. Then by definition t − x /∈ V (Λ). So
there exists a v ∈ RV (Λ) such that ‖t − x‖ > ‖(t − x) − v‖. ��
2.2 Combining lattices: sums, tensors and duals

Definition 4 (Direct sum and orthogonal sum) Let Λ1 ⊂ R
d1 and Λ2 ⊂ R

d2 be lattices of
rank r1 and r2 respectively. Then the direct sum Λ1 ⊕ Λ2 ⊂ R

d1+d2 between Λ1 and Λ2 is
defined as

Λ1 ⊕ Λ2 = {x1 ⊕ x2 ∈ R
d1+d2 : x1 ∈ Λ1, x2 ∈ Λ2}

where x1⊕x2 is just the concatenation of the two vectors. Note that the inner product between
elements in Λ1 or Λ2 (embedded as x1 �→ x1 ⊕ 0 and x2 �→ 0 ⊕ x2) stays the same and
that each two elements x1 ∈ Λ1 and x2 ∈ Λ2 are orthogonal in Λ1 ⊕ Λ2.

Let Λ1,Λ2 ⊂ R
d be lattices. Suppose Λ1 has basis a1, . . . , ar1 and Λ2 has basis

b1, . . . , br2 . In the case that 〈ai , b j 〉 = 0 for all i = 1, . . . , r1 and j = 1, . . . , r2 we
call Λ1 and Λ2 orthogonal and the orthogonal sum Λ1 ⊥ Λ2 between Λ1 and Λ2 is defined
as the lattice with basis a1, . . . , ar1 , b1, . . . , br2 .

Definition 5 (Tensor product) Let Λ1 ⊂ R
d1 and Λ2 ⊂ R

d2 be lattices of respective ranks
r1 and r2 and let a1, . . . , ar1 ∈ R

d1 and b1, . . . , br2 ∈ R
d2 be respective bases. The tensor

product Λ1 ⊗ Λ2 ⊂ R
d1d2 is defined as the lattice with basis {ai ⊗ b j : i ∈ {1, . . . , r1}, j ∈

{1, . . . , r2}}. Here x ⊗ y = (x1, . . . , xd1) ⊗ (y1, . . . , yd1) with x ∈ R
d1 and y ∈ R

d2 is
defined as the natural embedding in R

d1d2 as follows:

x ⊗ y := (x1y1, x1y2, . . . , x1yd2 , x2y1, . . . , xd1 yd2) ∈ R
d1d2 .

Definition 6 (Dual lattice) For a lattice Λ ⊂ R
d its dual lattice Λ∗ ⊂ R

d is defined as

Λ∗ := { y ∈ span(Λ) : ∀x ∈ Λ, 〈x, y〉 ∈ Z}.
As expected we have the following identities:

(Λ∗)∗ = Λ

(Λ1 ⊕ Λ2)
∗ = Λ∗

1 ⊕ Λ∗
2

(Λ1 ⊗ Λ2)
∗ = Λ∗

1 ⊗ Λ∗
2.
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2.3 Root lattices of type A and their duals

Root lattices emerge from so called root systems of vectors. There are three families of root
lattices (A, D and E), and they have been the object of very detailed studies [3–5,9,10] to
cite a few. We recall the definition of the root lattice of type A below, characterize its dual
lattice, and provide bases for both.

Definition 7 (Root lattice Am [5]) Let m ≥ 1. The lattice Am ⊂ R
m+1 of rank m is defined

as

Am :=
{

(x1, . . . , xm+1) ∈ Z
m+1 :

m+1∑

i=1

xi = 0

}
,

i.e., all integer vectors of Zm+1 that sum up to zero.

Lemma 2 (Root lattice A∗
m [5]) The lattice A∗

m dual to Am is

A∗
m =

m⋃

i=0

([i] + Am),

where

[i] =
(

i

m′ , . . . ,
i

m′ ,
− j

m′ , . . . ,
− j

m′

)

has j components equal to i
m′ and i components equal to

j
m′ , where m′ = m + 1.

In Sects. 3 and 4 it will be usefull to know a basis for A∗
m and Am respectively.

Lemma 3 (Bases of Am and A∗
m [5]) The m × (m + 1)-matrix B given by

B = 1

m + 1

⎛

⎜⎜⎜⎝

m −1 . . . −1 −1
−1 m . . . −1 −1
...

. . .
...

...

−1 −1 . . . m −1

⎞

⎟⎟⎟⎠

with m
m+1 on the diagonal and

−1
m+1 everywhere else is a generator matrix of A

∗
m. Furthermore

the vectors b1, . . . , bm ∈ Am given by bii = 1, bii+1 = −1 and 0 otherwise form a basis of
Am.

3 Solving the closest vector problem in A∗
m ⊗ A∗

n

Overview In this section, we make use of gluing theory [5, Chap. 4, Sect. 3, p. 99] to derive
a sub-exponential time algorithm for CVP in A∗

m ⊗ A∗
n . The most direct approach would

consist of tensoring the glue constructions of A∗
m and A∗

n which would lead to an algorithm
running in time O((n′)m+2 · (m′)n+2). Yet, thanks to a completion trick, we can decrease
this complexity down to O(n · mn+1), which can be significantly better.
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Computationalmodel For this algorithm,we require only a very simple computationalmodel,
namely, circuits over real numbers with the arithmetic operations {+,−,×}, a “compare-
and-choose” gate operating on four inputs:

cac : (a, b, c, d) �→
{
c if a ≤ b,
d otherwise.

as well as a “round” gate: round : a �→ �a�. Any gate may use a fixed constant as some of
its input. The size of circuit is defined as the number of gates it requires.

Definition 8 For a lattice Λ ⊂ R
d , let C(Λ) be the size of the smallest circuit as above, that

given on input wires the coordinates t1, . . . , td of any vector t ∈ span(Λ) computes a closest
vector to t in Λ.

We start with a basic lemma on solving CVP on a lattice written as a direct or orthogonal
sum of smaller lattices. Amusingly, we mostly make use of the reciprocal property: solving
CVP in the full lattice also solves it in any of its orthogonal components. This idea will allow
us to perform the completion trick aforementioned.

Lemma 4 (Direct sumandorthogonal sum)LetΛ ⊂ R
d be a lattice and letΛ1, . . . , Λk ⊂ Λ

be orthogonal lattices of dimensions r1, . . . rk such that:

Λ = Λ1 ⊥ . . . ⊥ Λk .

Then:

1. C(Λ) ≤
k∑

i=1
C(Λi ) + pi + si ,

2. C(Λi ) ≤ C(Λ) for all i = 1, . . . , k,

Here, pi and si denote the size of the minimal circuit to compute the orthogonal projection
from span(Λ) to span(Λi ) and the addition of two vectors from span(Λi ) and span(Λ1 ⊥
. . . ⊥ Λi−1) respectively. It also holds that pi ≤ O(dri ) and si ≤ d.

If the sum is direct, i.e. if Λ and Λ1, . . . , Λk are lattices such that

Λ = Λ1 ⊕ . . . ⊕ Λk,

then we have the same inequalities with pi = si = 0 for all i = 1, . . . , k.

Proof We start with the case of the orthogonal sum. For (1), suppose that t ∈ span(Λ) is the
target and t1, . . . , tk are the projections onto span(Λ1), . . . , span(Λk) of t . For each t i we
can compute a closest vector xi ∈ Λi in C(Λi ) operations. Then x = x1 + . . . + xk ∈ Λ

is a closest vector to t by the orthogonality. The projection and last summation take pi + si
operations for each i = 1, . . . , k. Note that the projection onto span(Λi ) can be written as
x �→ xBi Bt

i for some matrix Bi ∈ R
d×ri , therefore pi ≤ O(ri d). The inequality si ≤ d is

straightforward.
For (2) suppose t i ∈ span(Λi ) ⊂ span(Λ) is our target. Suppose x ∈ Λ is a closest vector

to t i in Λ which can be obtained in C(Λ) operations. Then x ∈ Λi by the orthogonality
because t i ∈ span(Λi ) and thus x is a closest vector to t i in Λi .

For the direct sum the proof is identical by using the embeddingΛ′
i = 0⊕ . . .⊕Λi ⊕ . . .⊕

0 ⊂ Λ such that Λ = Λ′
1 ⊥ . . . ⊥ Λ′

k . In this case the projections are along the coordinates
and the summation is just concatenation and thus pi = si = 0 for all i = 1, . . . , k. ��
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Our second lemma allows to solve CVP in a lattice written as a union of cosets of a sparser
lattice, i.e. a glue-construction.

Lemma 5 (Gluing Lemma) LetΛ ⊂ R
d be a lattice and letΛ′ ⊂ Λ be a full rank sublattice.

Note that Λ consists of multiple translated copies of Λ′. To be more precise, we can see Λ′
as a subgroup of Λ, and then let G = Λ/Λ′ be the so called glue group consisting of cosets.
Let [Λ : Λ′] =: |G| denote the index of Λ′ in Λ and let G ⊂ Λ be a set consisting of a single
representative for each coset in G, so called glue vectors. Then

Λ =
⋃

g∈G

(
g + Λ′)

and we have that

C(Λ) ≤ |G|(O(d) + C(Λ′)).

Proof Wemake use of the fact that if x ∈ Λ is a closest vector to t ∈ span(Λ) then x ∈ g+Λ′
for some g ∈ G. This is equivalent to the fact that x − g is a closest vector to t − g in Λ′.
So for all g ∈ G we find the closest vector xg to t − g in Λ′ in C(Λ′) operations and we
keep the h = g for which which xg has the minimal distance to their respective t − g. Then
xh + h is a closest vector to t in Λ. Because we are calculating a distance and adding and
subtracting vectors of length d for each g ∈ G we get the extra O(d) operations on top of
C(Λ′). ��

The key idea now is that A∗
m completed with a certain orthogonal lattice can be obtained as

a glue-construction from Z
m′
, with a glue-group of size m′. Yet completing both A∗

m and A∗
n

and then tensoring two such glue constructions leads to a much larger glue group G⊗ of size
(m′)n′ · (n′)m′

. Instead, we only complete one of them, and the completed lattice A∗
m ⊗ A∗

n

forms a much smaller glue construction over Zm′ ⊗ A∗
n � ⊕m′

i=1 A
∗
n . This approach therefore

allows to exploit the existing algorithms for CVP in A∗
n .

Theorem 1 It holds that

C(A∗
m ⊗ A∗

n) ≤ O(nmn+1).

In other words, given t ∈ span(A∗
m ⊗ A∗

n) we can find a closest vector x ∈ A∗
m ⊗ A∗

n to t in
O(n · mn+1) arithmetic operations on real numbers.

Proof Let Im′ be the lattice with basis 1
m′ 1 ∈ 1

m′ Zm′
. Note that A∗

m and Im′ are orthogonal
and let A∗

m := A∗
m ⊥ Im′ . By adding 1

m′ 1 to every row of the generator matrix of A∗
m given

in Lemma 3 it is clear that Zm′
is a full rank sublattice of A∗

m .
Now we consider the lattice A∗

m ⊗ A∗
n ⊃ A∗

m ⊗ A∗
n . We get that:

A∗
m ⊗ A∗

n = (A∗
m ⊗ A∗

n) ⊥ (Im′ ⊗ A∗
n)

so that C(A∗
m ⊗ A∗

n) ≤ C(A∗
m ⊗ A∗

n) by Lemma 4. Also note that Zm′ ⊗ A∗
n = ⊕m′

i=1 A
∗
n is

a full rank sublattice of A∗
m ⊗ A∗

n and furthermore C(Zm′ ⊗ A∗
n) = m′ ·C(A∗

n) ∈ O(mn) by
Lemma 4 and the linear time algorithm for A∗

n [10].
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The glue group G := (A∗
m ⊗ A∗

n)/(Z
m′ ⊗ A∗

n) consists of (m′)n cosets represented by
glue vectors

G =
{

n∑

i=1

(
bi ⊗ a j

m′ 1
)

: (a1, . . . , an) ∈ {0, . . . ,m}n
}

where the basis b1, . . . , bn is the basis corresponding to the generator matrix of A∗
n given in

Lemma 3. Summarizing we get a time complexity of

C(A∗
m ⊗ A∗

n) ≤ C
(
A∗
m ⊗ A∗

n

) = C

⎛

⎝
⋃

g∈G
g + (Zm′ ⊗ A∗

n)

⎞

⎠

≤ (m′)n · (O(m′n′) + C(Zm′ ⊗ A∗
n))

≤ O(m′n′(m′)n) = O(n(m′)n′
)

by using Lemmas 4 and 5. ��

4 Solving the closest vector problem in Am ⊗ An

Overview In this section, we first find a characterization of the Voronoi relevant vectors of
Am ⊗ An in terms of simple cycles in the complete directed bipartite graph Km′,n′ . Then,
we weight the edges of Km′,n′ depending on a given target t and current approximation x,
in such a way that a simple cycle has negative weight iff the corresponding relevant vector
improves the distance to t. Such negative cycles can be found efficiently via the Bellman-Ford
algorithm.

Such successive improvements do not directly lead to a polynomial-time algorithm: in
a general lattices, each such improvement may be minuscule. Yet, because our lattice is an
integer lattice, improvements are guaranteed to be not too small if the target itself is rational
with a small common divisor. We finally reach a polynomial time algorithm using successive
rational approximation.

4.1 Characterizing the Voronoi relevant vectors

Note that the lattice Am ⊗ An consists of all x = (x11, . . . , x1n′ , x21, . . . , xm′n′) ∈ Z
m′·n′

which satisfy the following conditions:

–
m′∑
i=1

xi j = 0 for all j = 1, . . . , n′

–
n′∑
j=1

xi j = 0 for all i = 1, . . . ,m′.

Note that those constraints are invariant by negation x �→ −x, and by permutations of the
coordinates of the form σ × τ : (i, j) �→ (σ (i), τ ( j)) where σ ∈ Sm′ and τ ∈ Sn′ . Our first
lemma allows us to limit our search space for the Voronoi relevant vectors of Am ⊗ An .

Lemma 6 For all Voronoi relevant vectors v ∈ RV (Am ⊗ An) we have that |vi j | < 2 for
all i = 1, . . . ,m′ and j = 1, . . . , n′.
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Proof Let v ∈ Am ⊗ An be a Voronoi relevant vector. Assume for contradiction that |vi j | ≥ 2
for some pair i, j . Because of symmetries we can assume without loss of generality that
v11 ≥ 2. Let xi j ∈ Am ⊗ An for all i = 2, . . . ,m′ and j = 2, . . . , n′ be given by x11 = 1,
xi1 = −1, x1 j = −1, xi j = 1 and 0 otherwise. Note that this is indeed a lattice point of
Am ⊗ An and that it is not the same as 0 or v. Also note that 〈xi j , xi j 〉 = 4 for all i, j . Then
by Definition 3 we get that

v11 − v1 j − vi1 + vi j = 〈v, xi j 〉 < 〈xi j , xi j 〉 = 4

for all i = 2, . . . ,m′ and j = 2, . . . , n′. Also note that because these are all integers we
even have that v11 − v1 j − vi1 + vi j ≤ 3. Summing multiple of these relations for a fixed
i = 2, . . . ,m′ gives

n · v11 − n · vi1 −
n′∑

j=2

v1 j +
n′∑

j=2

vi j =
n′∑

j=2

(
v11 − v1 j − vi1 + vi j

) ≤ 3(n′ − 1)

but we have that −
n′∑
j=2

v1 j = v11 and
n′∑
j=2

vi j = vi1 and thus this gives us

n′ · v11 − n′ · vi1 ≤ 3(n′ − 1).

As a result of v11 ≥ 2 we now get that n′ · vi1 ≥ −n′ + 3 and thus vi1 ≥ −1 + 3
n′ > −1,

which again means that vi1 ≥ 0 because it is an integer. So vi1 ≥ 0 for all i = 2, . . . ,m′ and
v11 ≥ 2. But in that case

0 =
m′∑

i=1

vi1 ≥ 2 + 0 + · · · + 0 = 2

which gives a contradiction. So |v11| < 2. ��

Now we have limited our search space for the Voronoi relevant vectors to X :=
{−1, 0, 1}m′·n′ ∩ Am ⊗ An we can define a subgraph of the complete directed bipartite graph
Km′,n′ for every such element in quite a natural way.

Definition 9 (Graph Gx) Let x ∈ {−1, 0, 1}m′·n′
be given. Let Km′,n′ be the complete

directed bipartite graph with m′ nodes v1, . . . , vm′ and n′ nodes w1, . . . , wn′ . We define the
subgraph Gx = (Vx, Ex) ⊂ Km′,n′ corresponding to x where Ex is defined as

Ex = {(vi , w j ) : xi j = −1} ∪ {(w j , vi ) : xi j = 1}
and Vx as all nodes with nonzero in- or outdegree.

Now note that for any x ∈ {−1, 0, 1}m′·n′
we have that x ∈ X iff every node of Gx has

its indegree equal to its outdegree. So for x ∈ X we have that Gx is a union of disconnected
cycles. The following lemma uses this fact to characterize the Voronoi relevant vectors of
Am ⊗ An .

Theorem 2 (Voronoi relevant vectors of Am ⊗ An )TheVoronoi relevant vectors of Am⊗An

are precisely all v ∈ X\{0} such that Gv consists of a single simple cycle.
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Proof Let v ∈ X\{0} be given. Note that we already have

〈v, x〉 ≤
∑

i, j

|xi j | ≤
∑

i, j

|xi j |2 = 〈x, x〉

for all x ∈ Am ⊗ An because v ∈ X ⊂ {−1, 0, 1}m′n′
. The second inequality can only be an

equality if also x ∈ X . The first inequality then becomes an equality iff vi j xi j = |xi j | for all
i = 1, . . . ,m′ and j = 1, . . . , n′. So xi j = 0 or xi j = vi j . This makes it clear that the only
candidates such that 〈v, x〉 = 〈x, x〉 are those x ∈ X such that Gx ⊂ Gv . By Definition 3
we then get that v ∈ RV (Am ⊗ An) iff G0 and Gv are the only subgraphs of that form of
Gv .

In fact note that each Gx with x ∈ X consists of a union of disconnected Eulerian graphs
and thus a union of disconnected cycles. Furthermore note that every cycle inGx corresponds
to a subgraph H ⊂ Gx for which there exists an x′ ∈ X such that H = Gx′ . So v is a Voronoi
relevant vector iff Gv contains only the trivial cycles G0 and Gv and no other cycles. But
this is the case iff Gv itself consists of a single simple cycle. ��
4.2 Finding a closer vector in Am ⊗ An

Now that we have characterized the Voronoi relevant vectors of Am ⊗ An we can consider,
given a lattice point and a target, the problem of finding an improving Voronoi relevant vector
(as in Lemma 1) if one exists. From Theorem 2 we can deduce that Am ⊗ An has

min{m′,n′}∑

i=2

(
m′

i

)(
n′

i

)
· i ! · (i − 1)!

many Voronoi relevant vectors and thus checking all of them would not be efficient. Instead,
we notice that appropriatelyweighting the edges of Km′,n′ allows to evaluate the inner product
of an RV vector with a given target, as the weight of the associated simple cycle. An RV
vector will be improving iff the weight of the associated cycle is negative.

Lemma 7 Let x ∈ Am ⊗ An and let t ∈ Span(Am ⊗ An) be our target. If there exists
a Voronoi relevant vector v ∈ RV (Am ⊗ An) such that ‖(x + v) − t‖ < ‖x − t‖ we can
find such a Voronoi relevant vector in O(min{m, n})mn) arithmetic operations on reals. If it
doesn’t exist this will also be detected by the algorithm.

Proof Let u := x − t be the difference vector of t and x. We construct the weighted
directed complete bipartite graph Km′,n′(u) with weight function W defined as follows for
i = 1, . . . ,m′ and j = 1, . . . , n′:

W (vi , w j ) = (ui j − 1)2 − u2i j = 1 − 2ui j

W (w j , vi ) = (ui j + 1)2 − u2i j = 1 + 2ui j .

Now consider some Gv ⊂ Km′,n′(u) with the same weights for an arbitrary v ∈ RV (Am ⊗
An). Then by construction

W (Gv) =
∑

i, j :vi j �=0

1 + 2vi j · ui j = 〈v, v〉 + 2〈v, u〉 = ‖u + v‖2 − ‖u‖2 .

So ‖(x + v) − t‖ < ‖x − t‖ for a v ∈ RV (Am ⊗ An) iff Gv ⊂ Km′,n′(u) has negative
weight.ByTheorem2every simple cycle of length at least 4 in Km′,n′ corresponds to aVoronoi
relevant vector. So the problem of finding a v ∈ RV (Am ⊗ An) such that ‖(x + v) − t‖ <
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‖x − t‖ is equivalent to finding a simple cycle of length at least 4 with negative weight
in Km′,n′ . Note that because W (vi , w j ) + W (w j , vi ) = 2 ≥ 0 for all i = 1, . . . ,m′ and
j = 1, . . . , n′ there exist no simple cycles of length 2. So we just need to find a simple
cycle of negative weight. This can be done by the Bellman-Ford algorithm in O(C · |E |) =
O(min{m′, n′}m′n′) = O(min{m, n}mn) operations, where C = 2min{m′, n′} bounds the
length of the cycles considered.3 The construction of the graph itself can easily be done in
O(m + n + mn) operations and thus adds nothing to the complexity. The Bellman–Ford
algorithm also detects if simple negative weight cycles exist or not [6]. ��
4.3 Finding a closest vector in Am ⊗ An

Before we can use Lemma 7 to create a polynomial iterative CVP algorithm for the lattice
Am ⊗ An we first need a reasonably close starting point and a polynomial bound on the
covering radius of Am ⊗ An . To accomplish this in the following lemma we will use Babai’s
rounding technique [1] on a sparse and reduced basis of Am ⊗ An .

Lemma 8 For any t ∈ span(Am ⊗ An) we can find an x ∈ Am ⊗ An such that ‖x − t‖ ≤
2
√
m′n′ in O(mn) arithmetic operations.

Proof Let x1, . . . , xm and y1, . . . , yn be the basis of Am and An respectively as given in
Lemma 3. Then {bi j := xi ⊗ y j : i = 1, . . . ,m and j = 1, . . . , n} is a basis of Am ⊗ An .

Suppose that t ′ := t = ∑
i, j ai j b

i j . Thenwe have that a11 = t ′11 as all other basis elements

have coefficient 0 there. Then let t ′ ← t ′ − a11 · b11 and consider a12. We again have that
a12 = t ′12 and after this we set t ′ ← t ′ − a12 · b12. This equality will be the case for all basis
elements if we continue b13, . . . , b1n, b2m, . . . , bmn . Note that computing t ′ ← t ′ − ai j bi j

can be done in a constant amount of operations as bi j always has only 4 nonzero coefficients.
In total calculating all ai j can thus be done in O(mn) operations. So we now have ai j ∈ R

such that t = ∑
i, j

ai j bi j .

Let x := ∑
i, j�ai j�bi j ∈ Am ⊗ An . Again it is clear that x can be calculated in O(mn)

operations as every bi j has only 4 nonzero coefficients. Now note that

‖x − t‖ =
∥∥∥∥∥∥

∑

i, j

(�ai j� − ai j
)
bi j

∥∥∥∥∥∥
≤

√

m′n′ ·
(
4 · 1

2

)2

= 2
√
m′n′

which is the case because the (kl)-th coefficient is nonzero in at most 4 basis vectors bi j and
combining this with the fact that |�ai j� − ai j | ≤ 1

2 gives us that the (kl)-th coefficient of
x − t is bounded in absolute value by 4 · 1

2 = 2 for all k = 1, . . . ,m′ and l = 1, . . . , n′. ��

We finally have all the ingredients to construct a polynomial iterative CVP algorithm for
the lattice Am ⊗ An . To achieve a bound on the number of iterations we will round our target
to a grid. In this way we can give a lower bound on the improvement in squared distance
made to our target in each iteration and thus bound the number of iteration from above. This
grid will successively be made finer until our target lies in it and a closest vector is found.

3 The algorithm is typically stated with C = |V |, the number of vertices.
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Algorithm 1 A polynomial CVP algorithm for the lattice Am ⊗ An .4

Input : m, n, l ≥ 1 and t = i,j aijb
ij ∈ span(Am ⊗ An) with aij ∈ 2−l

Z

Output: a closest vector to t in Am ⊗ An

1 Find (akl)k,l such that t = k,l aklb
kl ;

2 a = k,l akl bkl;
3 for i = 0, . . . , l do

// Outer loop

4 ti = k,l 2
−i 2i · akl bkl;

5 while Km ,n (a − ti) has a negative cycle1 Gv do
// Inner loop

6 a = a + v;
7 xi = a;
8 return xl;

Theorem 3 Given a target t = ∑
i, j ai j b

i j ∈ span (Am ⊗ An) with all ai j ∈ 2−l
Z and with

l ≥ 1 we can find a closest vector to t in Am ⊗ An in
O(l · (mn)2 min{m, n}) arithmetic operations with Algorithm 1.

Proof First note that by Lemmas 1 and 7 it is clear that after each outer loop xi is a closest
vector to t i . Therefore we will focus on the complexity. First let akl ∈ 2−l

Z such that t =∑
k,l aklb

kl ∈ 2−l
Z
m′n′

. Recall that this can be done in time O(mn). Let t i := ∑
k,l 2

−i�2i ·
akl�bkl for i = 0, . . . , l, so tl = t . Recall that these can also be computed in time O(mn) each
as each bkl has only 4 nonzero coefficients. Let xi be the closest vector to t i as obtained by
the algorithm for i = 0, . . . , l. Let ei = ∑

k,l a
′
klb

kl := t i − t i−1 and note that ‖t i − t i−1‖ =
‖ei‖ ≤ 4 · 2−i

√
m′n′ as every |a′

kl | ≤ 2−i and for every coefficient there are at most 4 basis
elements that are nonzero there.

Note that if our current target is t i and our current best approximation is a ∈ Am ⊗ An we
will improve in every iteration with at least 2−i+1 between squared distances if we improve
at all as for a relevant vector v ∈ RV (Am ⊗ An) we have

‖a + v − t i‖2 − ‖a − t i‖2 = 2〈a − t i , v〉 + 〈v, v〉 ∈ 2−i+1
Z
m′n′

because a and v are integer vectors and t i ∈ 2−i
Z
m′n′

.
When searching a closest vector to t i we start with the approximation xi−1. To bound the

number of iterations of the inner loop to get to xi we need the following bound for i ≥ 1:

‖t i − xi−1‖2 − ‖t i − xi‖2
= (‖t i − xi−1‖ + ‖t i − xi‖)(‖t i − xi−1‖ − ‖t i − xi‖)
≤ (‖t i−1 − xi−1‖ + ‖ei‖ + ‖t i − xi‖) (‖t i−1 − xi−1‖ + ‖ei‖ − ‖t i − xi‖)

4 Where Km′,n′ (u) denotes the weigthed complete bipartite graph, as defined in the proof of Lemma 7.
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Note that by Lemma 8 be have that ‖t i − xi‖ ≤ 2
√
m′n′ for all i ≥ 0. Therefore:

≤
(
4 + 2−i+2

)√
m′n′

(
2−i+2

√
m′n′ + dist(t i−1, Am ⊗ An) − dist(t i , Am ⊗ An)

)

≤
(
4 + 2−i+2

)√
m′n′

(
2−i+2

√
m′n′ + ‖t i−1 − t i‖

)

≤
(
4 + 2−i+2

)√
m′n′

(
2−i+2

√
m′n′ + 2−i

√
m′n′

)
= 10 · 2−i+1

(
1 + 2−i

)
m′n′

So for fixed i the inner loop starts with a = xi−1 and improves this approximation until
‖t i − as‖ = ‖t i − xi‖. So we get the following

‖t i − xi−1‖2 = ‖t i − a‖2 < ‖t i − a1‖2 < · · · < ‖t i − as‖2 = ‖t i − xi‖2

and because ‖t i − xi−1‖2 − ‖t i − xi‖2 ≤ 10 · 2−i+1
(
1 + 2−i

)
m′n′ and in every iteration

this decreaseswith at least 2−i+1 there can be atmost 10·(1 + 2−i
)
m′n′+1 iterations (+1 for

the final check) for every i ≥ 1. So given a closest vector xi−1 to t i−1 we can find a closest
vector xi to t i in O(mn) iterations. By Lemma 7 each iteration takes O(mnmin{m, n})
operations. So in total we need O((mn)2 min{m, n}) operations to go from xi−1 to xi for
i ≥ 1. So given x0 we can find xl in O(l · (mn)2 min{m, n}) operations. By Lemma 8 we
can find an a ∈ Am ⊗ An such that ‖t0 − a‖2 ≤ 4m′n′ and thus

‖t0 − a‖2 − ‖t0 − x0‖2 ≤ 4m′n′

and as this difference decreases with at least 2−0+1 = 2 every iteration the number of
iterations to obtain x0 from the first approximation is also in O(mn) and thus the total
number of operations to find x0 is in O((mn)2 min{m, n}). This changes nothing to the total
complexity and thuswecanfind a closest vector to tl = t in Am⊗An inO(l·(mn)2 min{m, n})
operations. ��
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