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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by aberrations
in the genome. While several disease-causing variants have been identified, a major part of
heritability remains unexplained. ALS is believed to have a complex genetic basis where non-
additive combinations of variants constitute disease, which cannot be picked up using the
linear models employed in classical genotype-phenotype association studies. Deep learning
on the other hand is highly promising for identifying such complex relations. We therefore
developed a deep-learning based approach for the classification of ALS patients versus healthy
individuals from the Dutch cohort of the ProjectMinE dataset. Based on recent insight that
regulatory regions on the genome play a major role in ALS, we employ a two-step approach:
first promoter regions that are likely associated to ALS are identified, and second individuals
are classified based on their genotype in the selected genomic regions. Both steps employ a
deep convolutional neural network. The network architecture accounts for the structure of
genome data by applying convolution only to parts of the data where this makes sense from a
genomics perspective.

Our approach identifies potential ALS-associated genetic variants, and generally outper-
forms other classification methods. Test results support the hypothesis that ALS is caused
by non-additive combinations of variants. Our method can be applied to large-scale whole
genome data. We consider this a first step towards genotype-phenotype association with deep
learning that is tailored to genomics and can deal with genome-sized data.

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the upper and lower
motor neurons, resulting in a progressive loss of muscle strength leading to paralysis and eventually
death (Goldstein and Abrahams, 2013; Phukan et al., 2007). For many patients ALS is likely
caused by genetic aberrations. While a handful of major genetic risk factors have been identified,
no more than 15% of the heritability has been explained so far (Van Rheenen et al., 2016). This
is because the genetic architecture of ALS has been found to be rather involved: ALS seems to be
evoked through not necessarily additive combinations of genetic aberrations that individually only
have a small effect and can thus not be detected using the currently available genotype-phenotype
association approaches (Van Rheenen et al., 2016).

Motivated by these findings, the application of prediction and/or association schemes that can
capture non-additive effects is very promising. More than that, the evaluation of more complex
schemes might even be an urgent necessity if one aims at further progress in predicting ALS,
associate it with genetic causes, and, eventually, also treat it successfully.

In the last ten years, the identification of genotype-disease relations has been considerably
enhanced by the use of large-scale genome data. Project MinE is an international initiative to
collect genome data of tens of thousands of ALS patients and healthy control individuals. Many
individuals have been sequenced at considerable depth of genome coverage (Project MinE ALS
Sequencing Consortium and others, 2018). The corresponding wealth of data is still awaiting its
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full exploration. Clearly, it carries the potential for pointing out ALS risk fators, guiding further
research and drug development.

Genome-wide association studies (GWAS) are the current state-of-the-art in analyzing genotype-
phenotype data. Statistical tests are used to determine the level of association between a single
genetic variant and phenotype, and are therefore suitable for uncovering genotype-phenotype asso-
ciations that involve single variants or variants interacting with others in additive schemes. GWAS
have successfully identified disease-associated variants over a wide range of disorders (Visscher
et al., 2017) including ALS (van Es et al., 2009; Nicolas et al., 2018). However, the approach has
been found to be unable to find the non-additive combinations that are associated with pheno-
types (Wray et al., 2013), which limits its power as genetic variants often constitute phenotype
in non-additive combinations. This could for example be caused by epistasis, where the effect of
one variant on phenotype is dependent on the presence or absence of others (Frankel and Schork,
1996; Moore, 2003). As above-mentioned, the genetics underlying ALS have been found to be
more involved and are therefore unlikely to be fully unravelled using basic association schemes
(Van Rheenen et al., 2016). The application of novel data analysis approaches that account for
complex interactions between genotype input variables and ALS are thus very promising.

Thanks to advances in the recent past, deep neural networks (DNNs) have turned into powerful
classifiers in several application areas including bioinformatics (Angermueller et al., 2016). They
have been proven to map arbitrarily complex relationships between multiple input features (in our
case genetic variants) and output labels (here for example binary-valued labels ‘ALS’ or ‘no ALS’).
In addition, DNNs have been pointed out to be particularly big data compatible (Schmidhuber,
2015). That is, they can handle a considerably larger number of input variables than most other
machine learning methods, a prerequisite for the analysis of genome data. DNNs therefore hold
the clear promise to successfully map complex genotype-phenotype associations.

DNNs cannot, however, be applied off-the-shelf when mapping genetic variants to disease (ALS)
status; several hurdles need to be overcome. The first is the size of genome data: the sheer number
of input variables (genetic variants, which amount to usually millions) exceeds the number that
these models can deal with easily (a few hundred of thousands). Second, while DNNs can achieve
great classification accuracy, interpretability is insufficient: it is difficult to determine why a DNN
classified a sample as a case or a control. This is a major drawback for genotype-phenotype
association studies, as the main goal is to identify (combinations of) variants that associate with
disease rather than obtaining a high classification accuracy. Third, DNNs have delivered their
most striking successes when applied in image classification tasks. High classification accuracies
were obtained with networks of great depth, employing the hierarchical nature of these images
(pixels together form lines, which together form basic shapes, etcetera). Thereby, the employment
of convolutional filters/layers have been crucial in delivering the breakthroughs. Such filters make
use of the position invariance of local structures in images, a property that does not hold for
genome data.

A few studies have considered using deep learning for genotype-phenotype association studies.
Most approaches first reduced the number of variants included in the model either by selecting
variants that were known to be associated with disease (Uppu and Krishna, 2017; Hess et al., 2017),
or by preselecting those variants that showed a sufficiently strong correlation with phenotype in a
regular GWAS (Montafiez et al., 2018b; Bellot et al., 2018). Two studies combine the latter strategy
with the use of autoencoders for further dimensionality reduction (Montafiez et al., 2018a; Fergus
et al., 2018). These approaches have the same drawback as a classical GWAS: already in the

Promoter region p;  — |Promoter-CNNf —» CV acc py
Promoter region po — |Promoter-CNNf —» CV acc py

Select top eight
promoter regions —» |ALS-Net| —® Classification

. from each chromosome

Promoter region p,_; — [Promoter-CNN| —» CV acc p,_1
Promoter region p, — [Promoter-CNN| —» CV acc p,,

Figure 1: An overview of the workflow. CV = cross validation, acc = accuracy.




preselection step epistasis is overlooked, and variants that have a small effect on their own will not
be included in further analysis. An alternative approach is proposed by Romero et al. (2016). The
authors limit the computational burden by considering the transpose of the data matrix, which is
similar to considering features as samples and vice versa, to learn the model parameters. As the
number of genetic features is much larger than the number of samples in a genotype-phenotype
association study, this leads to a major reduction in the number of trainable parameters and hence
strongly reduces the time required for training. Tran and Blei (2017) define an implicit causal
model that aims to identify relations between variants, and deals with the data dimensionality by
updating the model one variant at the time. In summary, while a couple of earlier studies have
used deep learning to predict phenotype from genotype, only two were able to deal with several
hundreds of thousands of genetic variants. None have employed the structure inherent to genome
data, and interpretation of the results has not been addressed in these studies.

This paper presents novel deep neural network architectures and a protocol by which to predict
the occurrence of ALS from individual genotype data. In summary, we developed a deep learning-
based method that (1) can handle genome-sized data by pre-selecting parts of the genome that
are most relevant for classification, (2) provides insight in which genomic regions are relevant to
classification, and (3) is capable of classifying ALS patients versus healthy control individuals from
genome data. The design of our approach in general and our network architecture in particular is
driven by the structure of genome data.

We demonstrate in our experiments that by means of our new architectures, we achieve more
than 75% accuracy in predicting ALS from genotype data when considering chromosomes 7, 9, 17
and 22. Our results demonstrate that our ALS-Net clearly outperforms other machine learning
tools and protocols we have been experimenting with, and drastically outperform state-of-the-
art GWAS style prediction technology that is based on logistic regression. Our results therefore
demonstrate that prior knowledge on the structure of genome data can aid in the design of a deep
learning-based approach and the neural network architectures to yield improved accuracy rates
in classifying genotypes with respect to occurrence of ALS. At the same time, we are aware that
here we have only made the first steps towards routine application of deep neural networks in
classifying genetically involved diseases from individual genomic profiles. We will point out where
further improvements are conceivable along the way in the following, convinced that we are, at
the very least, providing a very promising template for further explorations along this avenue of
research.

2 Approach

We propose to make use of prior knowledge to tackle the dimensionality issue inherent to working
with genome-sized data. The majority of the millions of variants in genome data are irrelevant,
as these are not involved in disease. It has been found in general that most variants that relate
to disease phenotypes reside in the DNAse hypersensitive sites (Maurano et al., 2012), that is, in
the majority of cases they occupy the promoter regions preceding genes, where transcription is
initiated. We therefore focus on the promoter regions.

An interpretable model is able to indicate which genomic regions were relevant to classification.
We therefore developed a two-step approach to employ neural network architectures for mapping
associations between genotypes and the occurrence of ALS. The first step consists of individual
classifiers for each promoter region, i.e., individuals are classified based on their genomic informa-
tion from a single promoter region only. The classification accuracy obtained with an individual
promoter region is an indication for the region’s predictive power, and only the eight best perform-
ing promoter regions are considered for further analysis. In the second step the genome information
of the selected promoter regions is combined and an overall classifier is trained for final classifica-
tion. This is illustrated in Figure 1, where we denote the promoter region-specific neural network
by Promoter-CNN (CNN for convolution neural net) and the network that classifies samples based
on a combination of promoter regions by ALS-Net. We develop and validate our approach using
GWAS data from the Dutch cohort of ProjectMinE, which contains 4,511 cases and 7,397 controls.

As noted before, the success of DNNs for image classification heavily relies on the local struc-
tures that are present in images. Genotype data do not convey neighborhood structures that are as
easy to grasp as in images and applying convolution is less straightforward. Still, genome data does
have a neighborhood structure which is due to two aspects. First, the genome consists of blocks
that together form functional units, such as genes and promoter regions. Second, genetic variants



are passed on from ancestor to offspring in terms of blocks rather than in isolation. Although in
many cases details have not been fully understood, usually combinations of neighboring variants
(haplotype blocks) are responsible for the establishment of phenotypes, rather than variants in
isolation. This justifies the application of DNNs that take neighborhood structures into account
(Bellot et al., 2018). Note that the above does not contradict that isolated variants can be indica-
tive of phenotypes: single variants usually are in linkage disequilibrium with other variants in their
block, which establishes that basic GWAS can nevertheless be successful.

3 Methods

3.1 ProjectMinE data

We use data collected by ProjectMinE, a worldwide effort to collect whole-genome data from both
ALS patients and unaffected individuals for the identification of ALS-causing variants (Project
MinE ALS Sequencing Consortium and others, 2018). The dataset we used contains solely the
Dutch cohort, consisting of 4,511 ALS patients and 7,397 healthy individuals. including 6,127
males and 5,781 females.

First SNPs were annotated according to dbSNP137 and mapped to the hgl9 reference genome.
Quality control (QC) was first performed per cohort to remove low quality SNPs and individuals
using PLINK 1.9 (Purcell and Chang, 2015; Chang et al., 2015) (--geno 0.1 and --mind 0.1).
HapMap3 (Consortium et al., 2010) projected PCs were calculated and extreme CEU population
outliers were removed (25 SD). Cohorts were merged into strata based on genotyping platform.
Subsequently, more stringent SNP QC was performed (--maf 0.01, --mind 0.02, --hwe le~® midp
include-nonctrl, --test-mishap excluded pjle—8) followed by more stringent individual QC (--geno
0.02, --het excluded ;0.2, and removed sexcheck failures and missing phenotypes). We then only
kept the autosomal regions. We filtered SNPs based on differential missingness (--test-missing
midp) and excluded those with a p-value below le—4. Finally, we removed duplicated individuals
(PI_HAT;0.8) and filtered more stringently on population outliers (hm3: 10SD, 1KG: 45D, Stratum
itself: 4SD). Strata were then imputed using the HRC reference panel (Das et al., 2016).

Motivated by the fact that chromosomes 7, 9 and 17 all have been found to carry elevated
amounts of missing heritability (Van Rheenen et al., 2016), we focus on those chromosomes. Ad-
ditionally, we included chromosome 22 that was reported to have a low level of heritability. The
genome data of the four chromosomes contains 823,504 positions of variation.

Note that all chromosomes occur in pairs: one maternal and one paternal copy. We convert the
data, which is in VCF format, to minor allele frequency data. Hence the data of each individual is
a list of values in {0, 1,2}, indicating the number of occurrences of the minor allele at each position
position on the genome. In some cases information for one of the chromosome copies is missing,
and we assume this to be the frequent allele.

We focus on the promoter regions. As the position of a promoter region on the genome is
generally not as well defined as the transcription start sites of a gene, and because a deep neural
network requires the data representation for each promoter region to be of the same size, we used
the following approach for determining the variants that are in the promoter regions. We used the
transcription start sites as reported in the RefSeq database (O’Leary et al., 2015). The 56 variant
positions upstream and the 8 variant positions downstream of the transcription start site were then
included in our representation of the promoter region. Hence, each promoter region is represented
by a list of 64 values from the set {0,1,2}. Note that a gene can have multiple transcription start
sites, and hence multiple promoter regions.

In summary, the input data to our model for one individual is a list of vectors in {0, 1,2}%4,
where each vector contains the minor allele frequencies of a promoter region.

3.2 Neural network architectures

Promoter-CNN uses two convolution layers followed by two dense layers. As such (unlike ALS-Net
in the following), Promoter-CNN is not deep, which is justified by the small input. Details of the
architecture of Promoter-CNN are presented in Table 1. Batch normalization is applied after each
layer, followed by the softplus activation function.

ALS-Net is a more involved neural network, where the design of the architecture is based on
intuition guided by the structure of genome data. This will be further explained below. The full



Table 1: Network architecture of the classifier with input data from a single promoter region. The
output shape is given as (width,channels). BN = batch normalization, Act = softplus activation.

Layer type Description Output shape
Input (64,1)
Convolution, BN and Act 1 x 1 filter, (64,4)

4 output channels
Convolution, BN and Act 4 x 4 filter, (61,32)

32 output channels
Reshape Flatten (1952, 1)
Dense, BN and Act (148,1)
Dense, BN and Act (16,1)
Output Softmax (2,1)

I I I I I I

l Convolution

/_

\ l Reshape

Figure 2: Change of tensor shape throughout Block 1 and Reshape.

network architecture is shown in Figure 3, with details of Blocks 1 up to 4 in Figures 4 up to 7.

The input is formed by concatenating the vectors with genome information from the individual
selected promoter regions to obtain one vector of length 64 x 8 x ¢ = 512¢, where 64 is the number
of variants in a promoter region, 8 is the number of selected promoter regions per chromosome and
c is the number of chromosomes included in the analysis.

In the first block of layers each promoter region is considered separately, that is, the information
from different promoter regions is not yet combined. This allows the model to focus on obtaining
a good representation of the individual promoter regions before combining their information. The
first layer of Block 1 is a convolution layer with stride 64, which ensures that information from
separate promoter regions is not combined, and kernel size 64, which implies that the information
from each promoter region is processed as a whole (so no convolution within the promoter region).
The layer has 256 output channels, hence 256 functions of the input values of a single promoter
are trained and the information from a promoter region is now represented by 256 values (see
convolution step in Figure 2). The second layer is a convolution layer with kernel length 1, stride
1 and 256 output channels, as proposed by Howard et al. (2017). This layer takes a linear recom-
bination of the information from each single promoter region. It does so 256 times with different
weights and biases, once for each output channel. The first two convolution layers do not have an
activation function. The block is concluded with a batch normalization layer and a rectified linear
unit activation function.

Next, the tensor is reshaped into a 3 dimensional tensor, where the information of each promoter
region is reshaped from a vector of length 256 to a 16 by 16 matrix (see reshape step in Figure
2). This three dimensional tensor can be viewed as an image of 16 by 16 pixels with 8c channels,
where each channel corresponds to a promoter region.

In block 2 the promoter regions are combined. Since the underlying classification task requires
the model to identify complex patterns we employ parallel computation blocks as well as residual
connections to prevent the loss of information in future layers (Szegedy et al., 2015; He et al., 2016).



Furthermore, several max pooling layers were included to prevent the model from overfitting. The
model concludes with two dense layers. While dense layers are usually preceded by a flattening of
the output of the previous layer, we make use of a global average pooling layer instead to allow for
a strong dimensionality reduction.

3.3 Training and testing procedure

The dataset was split into a train-validate set (90% of samples) and a test set (10% of samples).
The train-validate set was used for model development and selection of the promoter regions, the
test dataset was used only for final testing. To test the model fairly, the ratio of cases and controls
is 1:1 in the test dataset.

A nine-fold cross validation on the train-validate data was used to train Promoter-CNN. For
each chromosome the eight promoter regions that achieved the best prediction accuracy averaged
over the nine folds were selected for further analysis. The small network is trained using stochastic
gradient descent on 50 epochs where the batch size is 64, and with a learning rate of 0.01.

The architecture and other hyperparameters for ALS-Net are optimized using a nine-fold cross-
validation of the train-validate data. The network architecture was optimized based on the learning
curve and performance measures such as accuracy, precision and recall. Network parameters are
optimized using the AdaGrad algorithm (Duchi et al., 2011) with an initial learning rate of 0.02
and a decay of 2¢™*. Optimization was performed over 300 epochs with a batch size of 32.

The model’s network architecture is optimized based on chromosome 7 only, and used for all
four chromosomes individually as well as for the combination of the four chromosomes. Parameters
are optimized separately for each chromosome as well as for the combined model.

The performance of our approach was tested by applying ALS-Net to the test data. Hence for
these samples we only use the selected promoter regions.

3.4 Comparison with other machine learning approaches

The performance of ALS-Net is assessed using the test data, and is compared with the performance
of logistic regression — this corresponds with the approach for calculating the polygenic risk score
(PRS) (Dudbridge, 2013) — , support vector machine (SVM, Vapnik (1998); Joachims (1998)),
random forest (Breiman, 2001) and AdaBoost (Friedman et al., 2000; Freund et al., 1999). For
each of these we used the same promoter regions as for the large neural network. Hyperparameters
were optimized using a cross validation approach, and performance on the test dataset is reported.

In logistic regression a linear function is used to estimate the disease risk score from geno-
type, followed by a classification where samples with a predicted risk score above a predetermined
threshold are considered as positives (in our case ‘ALS’) and the others as negatives (in our case
‘no ALS’). While GWAS uses a single genetic variant as explanatory variable, we base our pre-
diction of disease status on multiple variants, as is common for the calculation of the PRS. We
apply logistic regression to the full set of promoter regions as well as to the variants that reside in
the promoter regions selected by Promoter-CNN. Note that the choice of threshold determines the
balance between precision and recall. In order to allow for comparison with the other methods, we
chose the threshold such that accuracy on the training set is maximized.

SVM is a popular binary classification method designed to find a non-linear boundary (deter-
mined by the kernel function) to maximize the margin between two clusters. Here we used a radial
basis function SVM with kernel coefficient 0.001.

Random forest is a widely used machine learning algorithm that creates multiple decision trees
and combines their individual classifications to abstract a final classification. Using a large number
of decision trees is required for higher accuracy, but also results in slow training. We implement
a random forest consisting of 100 trees with maximum depth 5, and at most 100 features will be
considered when looking for the best split.

The core idea of AdaBoost is to train several decision trees, assign weights to samples and
classifiers to force the algorithm to focus on hard-to-classify samples, and combine the weighted
classifications to form a stronger final classifier. While the model is powerful and yields explainable
results, it is sensitive to outliers. We used AdaBoost with 1000 decision trees of depth 3.
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Figure 3: Architecture of ALS-Net. The details of Block 1, Block 2, Block 3 and Block 4 are
provided in Figures 4, 5, 6 and 7, respectively.
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Figure 4: Network architecture of Block 1. ¢ is the number of chromosomes included in the model
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Figure 5: Network architecture of Block 2. Inputs are given by “Kernels”=(k1, k2, k3) and
“Channels”=(d1, d2, d3) in Figure 3, and the shape of the input tensor is (d0,H,W).
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Figure 6: Network architecture of Block 3. Inputs are given by “Channels”=(d1, d2,d3) in Figure

3. Sep.Conv. = separable convolution layer (Gao et al., 2018).
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Figure 7: Network architecture of Block 4. Inputs are given by “Channels”=(d1, d2,d3) in Figure

3, and the shape of the input tensor is (d0,H,W). Sep.Conv. = separable convolution layer (Gao
et al., 2018).
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Figure 8: Histograms of per-promoter region test accuracies for each chromosome.
4 Results

4.1 Single promoter classifiers select ALS-associated genes as well as
potential novel risk factors

Figure 8 shows histograms of the classification accuracy for the single promoter classifiers, organized
per chromosome. While most promoter regions lead to an accuracy around 0.5 - the same as random
- the distribution has a tail on the right with a few promoter regions achieving higher accuracy.
Hence only a few promoter regions have a potential relevance to ALS prevalence.

The genes that the selected promoter regions correspond to are listed in Table 2 together with
the accuracy, precision and recall obtained with Promoter-CNN. Some of these genes have been
associated with ALS or other neurological disorders before, while others can be viewed as potential
novel ALS-associated genes. The accuracies for these promoter regions obtained by running a
logistic regression are presented as well. The results show that using logistic regression would have
resulted in a partially different selection of promoter regions. Recall that multiple promoter regions
can correspond to a single gene, as a gene can have multiple transcription start sites.

Several genes that were associated with ALS by earlier studies are not among the top eight
performing promoter regions from Promoter-CNN. The classification accuracies from Promoter-
CNN for the ALS-associated genes reported by Abel et al. (2013) are listed in Table 3. The
ALS-associated genes from Abel et al. (2013) for chromosome 22 were not kept in our dataset after
QC, and hence no results are reported.



Table 2: Promoter regions selected by the deep neural network for individual promoters. Ac-

curacy (Acc), precision (Prec) and recall obtained with Promoter-CNN are reported.

Ad-

ditionally, the accuracy for this promoter region obtained with logistic regression is re-
ported (Acc Log Regr). 'Reported as ALS associated gene (http://alsod.iop.kcl.ac.uk/) (Abel

et al., 2013).

(https://www.wikigenes.org/e/gene/e/2186.html).

2Reported to be associated with ALS and other neurodegenerative disorders

Positions (range) Gene Acc Prec  Recall
72317552 - 72663411 TYW1B 0.566  0.672 0.259
76486174 - 76514143 DTX2 0.562  0.719 0.210
r~ 108000837 - 108023643 LAMB4 0.582  0.679 0.313
= 108001655 - 108023688 LAMB4 0.576  0.668 0.304
O 142254448 - 142274025 TRY2P 0.567  0.717 0.222
60061 - 93116 LOC105375113 0.579  0.728 0.252
68920 - 94119 LOC101929756 0.566 ~ 0.672 0.259
157112225 - 157119549 LOC105375607 0.576  0.745 0.230
134626387 - 134643306 COLb5A1 0.600  0.710 0.338
o 136324634 - 136347520 GPSM1 0.581 0.653 0.345
& 136334910 - 136355183 GPSM1 0.615 0.694 0.412
O 136336933 - 136357677 GPSM1 0.611  0.693 0.398
136361582 - 136378662 SNAPC4 0.609 0.635 0.514
136370707 - 136389390 SNAPC4 0.603  0.677 0.395
136382485 - 136403936 SDCCAG3 0.581 0.673 0.314
98535635 - 98557461 LOC105375972 0.595  0.753 0.282
L 138726 - 158754 DOC2B! 0.582  0.603 0.477
— 139747 - 159851 DOC2B! 0.579  0.593 0.506
5 139853 - 160092 DOC2B! 0.573  0.601 0.434
141150 - 160523 DOC2B! 0.577  0.599 0.464
15614822 - 15661462 TRIM16 0.591 0.793 0.250
55245746 - 55267188 HLF 0.577  0.747 0.234
55247456 - 55268383 HLF 0.577  0.745 0.230
67877749 - 67891928 BPTF? 0.592  0.793 0.250
o 17230116 - 17293295 CECR1 0.529  0.627 0.141
o 17541582 - 17566229 CECR2 0.515  0.725 0.049
6 17747340 - 17783351 BID 0.518  0.598 0.113
17760620 - 17788896 MIR3198-1 0.517  0.589 0.111
19149580 - 19162696 GSC2 0.517  0.647 0.074
19403582 - 19439165 HIRA 0.5750 0.694 0.267
19404552 - 19439540 HIRA 0.567  0.694 0.267
19685895 - 19718733 LINC00895 0.520  0.554 0.207

4.2 ALS-Net outperforms other classifiers in terms of accuracy and re-
call

The selected promoter regions were included in a final overall classifier. We compared the per-
formance of ALS-Net with logistic regression, SVM, random forest and AdaBoost (indicated by
Promoter-CNN + classifier, Table 4). Additionally, we compare the results of Promoter-CNN with
the five classifiers to logistic regression on all promoter regions, so without the help of Promoter-
CNN. This was only possible for the individual chromosomes, as a logistic regression on all promoter
regions from the four chromosomes combined required too much RAM. SVM, random forest and
AdaBoost could not deal with the full chromosome data of even a single chromosome. The meth-
ods are compared based on classification accuracy, precision, recall and the F1 statistic for each
chromosome separately as well as for their combination, and results are presented in Table 4.
First note that the classification accuracy of logistic regression is improved by Promoter-CNN.
Second, Promoter-CNN + ALS-Net outperforms all other methods in terms of accuracy, closely
followed by Promoter-CNN + logistic regression. Both methods largely outperform SVM, random
forest and AdaBoost. Third, Promoter-CNN + ALS-Net almost always yields the highest recall,
but is almost always outperformed by logistic regression, SVM and random forest in terms of
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Table 3: Accuracies for ALS-associated genes of chromosomes 7, 9, 17 and 22 as listed on
http://alsod.iop.kel.ac.uk/ (Abel et al., 2013).

Chr Gene Accuracy
GARS 0.5159
RAMP3 0.503
T gNFras 0524
DPP6 0.532
SUSD1 0.504
Chr9 ALAD 0.513
STEX 0.545
Chrl7 MAPT 0.514

SLC39A11 0.511

precision — i.e., ALS-Net is better at identifying ALS patients (lower number of false negatives)
but classifies healthy controls more often as patients than the other methods (higher number of
false positives). Thus, each of the methods provides a different trade-off of precision versus recall.
We therefore also consider the F1-statistic, a combined measure of precision and recall. Our deep
neural network outperforms the other methods in terms of the F1 statistic for three out of the four
individual chromosomes as well as the combination of chromosomes.

4.3 Including more genomic information improves classification

For most models the highest accuracy is obtained when the four chromosomes are combined rather
than considering each chromosome individually. This does not hold for Promoter-CNN + random
forest, which is likely due to the fact that a larger forest would be required to be able to deal with
the larger dataset that is obtained when combining the three chromosomes.

4.4 ALS-Net is less sensitive to batch induced confounding effects

Genome sequences were obtained in 4 batches (C1, C3, C5, C44). Disease status is highly con-
founded with the batch an individual belongs to: the number of cases / controls was 226 / 380 for
batch C1, 131 / 49 for batch C3, 0 / 5156 for batch C5 and 4154 / 1812 for batch C44. Together
C44 and C5, two highly unbalanced batches, cover approximately 93% of the individuals. A classi-
fier may thus achieve good accuracy on predicting disease status by picking up batch-related data
structures rather than disease-associated genetic characteristics. If a classifier picks up differences
between C5 and C44, instead of between case (ALS) and control (no ALS), the classifier will fail
to make reasonable predictions in C1 and C3, which still cover 786 individuals. Since both C1 and
C3 are fairly balanced in terms of case-control labels, batch labels cannot be confounded with true
case / control labels as easily as in C5 and C44. To check whether Promoter-CNN + ALS-Net
(our approach) and Promoter-CNN + logistic regression (as the second best classifier evaluated)
pick up on disease status rather than batch effects during training we evaluated the performance
of these two within the individual batches on the training data. As can be seen in Table 5 both
classifiers achieve good accuracy within batches C5 and C44, for which it remains unclear whether
the classifiers predict batch labels rather than true labels. On C1 and C3 Promoter-CNN + logistic
regression fails to bring up competitive performance rates (in particular: precision/recall logistic
regression: 0.48 / 0.37 on C1 and 0.77 / 0.31 on C3), while Promoter-CNN + ALS-Net keeps
significantly better performance rates (precision/recall: 0.51 / 0.79 on C1, 0.83 / 0.76 on C3), a
clear indication that the predictions of ALS-Net are due to picking up truly ALS related effects
to a substantial amount. For logistic regression however, it is likely that batch effects have been
picked up, which lead to random classification in batches C1 and C3.

While ALS-Net comes with the clear promise to be (considerably) less prone to picking up
batch effects, we conclude to say that correcting for confounding effects for CNN based methods
still requires further research, which we consider most interesting future work.
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Table 4: Classification results obtained with four classification methods applied to chromosomes
7,9, 17 and 22 independently and combined. The result of best performing model for the given
(set of) chromosome(s) is denoted in italic, while the overall best score is indicated in bold. Chr
= chromosome.

Classifier Chr Accuracy Precision Recall F1-Score

7 0.625 0.642  0.566 0.602

Logistic 9 0.546 0.575  0.355 0.439
Regression 17 0.637 0.670  0.539 0.598
22 0.590 0.619  0.467 0.533

7 0.676 0.742  0.538 0.624

Promoter-CNN 9 0.697 0.698 0.696 0.697
+ ALS-Net 17 0.688 0.764  0.573 0.648
22 0.603 0.747  0.313 0.448

All 0.769 0.711 0.908 0.797

7 0.635 0.728  0.445 0.553

Promoter-CNN 9 0.683 0.743  0.560 0.685
+ Logistic 17 0.642 0.734  0.445 0.554
Regression 22 0.580 0.714  0.299 0.422
All 0.739 0.759  0.699 0.728

7 0.550 0.750  0.151 0.252

Promoter-CNN 9 0.598 0.790  0.266 0.397
+ SVM 17 0.577 0.788  0.212 0.334

22 0.521 0.743  0.267 0.393

All 0.725 0.783  0.624 0.694

7 0.562 0.776  0.175 0.285

Promoter-CNN 9 0.579 0.759  0.229 0.351
+ Random 17 0.645 0.762  0.420 0.542
Forest 22 0.587 0.745  0.265 0.391
All 0.596 0.813 0.249 0.381

7 0.604 0.642  0.467 0.541

Promoter-CNN 9 0.621 0.668  0.481 0.559
+ AdaBoost 17 0.599 0.633  0.472 0.401
22 0.561 0.591  0.398 0.475

Al 0.661 0.700  0.565 0.625
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Table 5: Training accuracy, precision and recall for each cohort, obtained with Promoter-CNN +
Logistic regression and Promoter-CNN + ALS-Net.

Classifier Batch  Accuracy Precision Recall
C1 0.648 0.510  0.793
Promoter-CNN + C3 0.711 0.829  0.757
ALS-Net C5 0.934 0.000  0.000
C44 0.760 0.753  0.967
C1 0.626 0.480  0.373
Promoter-CNN +  C3 0.434 0.766  0.313
Logistic Regression Cbh 0.990 0.000  0.000
C44 0.657 0.740  0.768

4.5 Validation by testing on other phenotypes

Although the network architecture was optimized for chromosome 7, no adjustments needed to
be made for the other three chromosomes and their combination. This suggests that our network
architecture generalizes well. We therefore wish to test whether the model is specific for ALS
classification, or also classifies well for other sample characteristics that are potentially confounded
with disease status. We do so by using the optimized model architecture and train it for the
prediction of gender. The model achieved a test accuracy of only 52.27%, hardly better than
random. This observation supports the hypothesis that our network architecture is specific to ALS
classification.

4.6 Runtimes of ALS-Net are acceptable

Promoter-CNN was run on a CPU cluster. The training process for a single promoter region takes
around 200s. Note that training of the promoter regions can be done in parallel on a multi-processor
system. ALS-Net was trained on a GPU (Nvidia TitanX). For the largest model, which classified
individuals based on information from the four chromosomes combined, the model needed 500s for
training.

5 Discussion

In this work we presented a novel deep learning-based approach for genotype-phenotype association
studies on genome-sized data that allows for the identification of phenotype-associated genes. We
used the earlier observed hypersensitivity of regulatory elements on the genome for developing a
two-step approach, and designed a neural network where we made use of the structure of genome
data by first considering each promoter region separately, and then combining their information in
later layers. The combination of Promoter-CNN with ALS-Net has several advantages: it (1) can
handle genome-sized data, (2) identifies regions of the genome that are relevant to classification of
ALS patients versus healthy controls, and (3) yields good classification results.

ALS-Net generally outperforms other methods in terms of classification accuracy, followed by
Promoter-CNN aided logistic regression. As for prior related work, note that Bellot et al. (2018)
observed small improvements of CNN based methods over logistic regression in several, but not
all cases. Here we observe some marked improvements of Promoter-CNN + ALS-Net over logistic
regression. An explanation might be that Bellot et al. (2018) use a (substantially) simpler (non-
deep) network architecture and make a pre-selection of genetic features based on linear models,
and hence overlook non-additive interactions already in the pre-selection step.

ALS-Net outperforms all other methods in terms of recall, also called power. This indicates
that our approach might point out ways to overcome the (notoriously complained) lack of power
that arises from the use of linear models when associating genotypes with phenotypes that underlie
more involved genetic architectures. Additionally further examination of what caused the increase
in true case predictions might yield novel insight in the genomic mechanisms underlying ALS.
Overall, ALS-Net provides a better trade-off between precision and recall as measured by the F1
statistic, which finally documents its value as a predictor in general.

Note that all methods have been helped by our two-step approach: the classification perfor-
mance of logistic regression goes up when combined with Promoter-CNN, while none of the other
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methods evaluated were able to process chromosome-sized genotype data without pre-selecting
features.

Our results support the belief that ALS is caused by non-linear combinations of variants,
which was hypothesized before by Van Rheenen et al. (2016). Table 4 shows a low recall for
each of the individual promoter regions. Combining these into a single classifier improves recall
for PromoterCNN + ALS-Net, while this effect is much smaller for logistic regression as well
as PromoterCNN + logistic regression. This implies that the promoter regions on the different
chromosomes interact in a non-additive way.

Our analysis has identified several promoter regions that potentially contribute to ALS preva-
lence, some of which are known to be associated with ALS. On the other hand, several ALS-
associated genes (Abel et al., 2013) were not selected by Promoter-CNN. This does not necessarily
imply that Promoter-CNN gave low prediction accuracies for these promoter regions: they simply
were not among the eight most predictive promoter regions. Four out of the nine ALS-associated
promoter regions that were not selected by Promoter-CNN were among the 5% best performing
promoter regions (for these promoter regions, Promoter-CNN achieved an accuracy above 0.518,
0.513 and 0.520 for chromosomes 7, 9 and 17 respectively, see Figure 8). Despite missing some of
the known ALS-associated genes, our final classification, which did not use any information from
these genes, was able to classify at high accuracy. Further research is required to understand this.

The architecture of ALS-Net was optimized for chromosome 7. When applying this architecture
to classify samples from the test set based on genotype data from chromosomes 9, 17 and 22 as well
as their combination, the model performed very well and there was no need for further adjustment
of the network architecture. These results show that our network architecture generalizes well
to unseen data, even to data from a different chromosome or set of chromosomes. Since beyond
generally applicable genetics principles we have not made use of particular ALS related knowledge,
we believe that our architectures hold the potential to be applicable more universally. Further
such experiments, however, predominantly depend on the availability of cohorts of sizes equal to
the rather large cohorts we have been investigating here — which will be possible for ever more
diseases in the mid-term future.

A major issue for genotype-phenotype association studies has been the large number of input
variables, which causes issues for most machine learning approaches. To the best of our knowledge,
there has so far been no method that can deal with more than half a million of genetic variants other
than GWAS (where one tests for the association of a single variant with genotype) or approaches
where GWAS or prior knowledge was used for pre-selecting relevant variants. This makes our
approach the first that accounts for non-additive interactions between genomic features right from
the start.

We view our work as a first step towards biology-informed deep learning for association studies.
While our results are promising, several improvements can still be made. First, we chose to
select the top eight performing promoter regions. Including more promoter regions may improve
performance, but will also lead to an increase in computational burden. Also the number of included
promoter regions may be chosen to be dependent on the length or the expected contribution to
heritability of the chromosome under consideration. Additionally, an even deeper model may
improve performance as well. We plan to further develop these methods in the future.

While this work presents a methodology for the analysis of genotype-phenotype data, refine-
ments are required before practical implementation. For example, in our analysis we did not
account for population stratification. As we first focus on the development of the neural network-
based approach, we leave such improvements for future research.

Even though our analysis was limited to the genomic information of only four chromosomes,
we obtained a high level of classification accuracy. We plan to extend our work by including all
chromosomes, which we expect to result in a strong increase in recall and hence classification accu-
racy, as well as the identification of more potential ALS-associated promoter regions. Additionally,
ProjectMinE is a worldwide ongoing effort, and we plan to apply our methods to the full dataset
to strengthen our results once this data becomes available.

6 Conclusion
In this paper we presented ALS-Net, a convolutional neural network approach to predict ALS

prevalence from genotype data. In order to employ the strengths of convolution we have developed
a two-level approach where we focus on promoter regions, which are known sensitive sites for
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disease-causing variants. The architecture of the final classification network employs the strength
of convolution and the structure of genome data by applying convolution filters to individual
promoter regions. The results of our tests are promising, and are expected to generalize to genome
regions that were unexplored in this work. Additionally, this work shows that deep learning is a
highly promising approach for the identification of complex genotype-disease relations. We view
our approach as a first step towards deep learning for genotype-phenotype association analysis
guided by regulatory principles.
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