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Abstract
In quantum circuit design, the question arises how to distribute qubits, used in algo-
rithms, over the various quantum computers, and how to order them within a quantum
computer. In order to evaluate these problems,we define the global and local reordering
problems for distributed quantum computing. We formalise the mathematical prob-
lems andmodel them as integer linear programming problems, tominimise the number
of SWAP gates or the number of interactions between different quantum computers.
For global reordering, we analyse the problem for various geometries of networks:
completely connected networks, general networks, linear arrays and grid-structured
networks. For local reordering, in networks of quantum computers, we also define the
mathematical optimisation problem.

Keywords Nearest neighbour compliant · Quantum computation architectures and
implementations · Distributed quantum computing

1 Introduction

The early quantum computers have a (very) limited number of qubits [32]. This is
the result of the conditions that are required to store quantum information, and means
required to manipulate the information. It is possible to connect multiple quantum
computers to form a network and do computations together. This is, analogously to
current methods in ICT, called distributed quantum computing [4,7]. In such a system,
we require the network to be able to share both classical and quantum information. If
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the network is set up correctly, the collection of quantum computers will behave as one
big computer [37], and thus greatly increase the possibilities and practical instances
that it can be used for.
To act as one big quantum computer, two quantum computers are connected by an
entangled pair of qubits. Depending on the topology of the network, we may have
a situation where two computers are not connected directly, but indirectly, via other
computers in the network. We can apply a method called entanglement swapping
[14] to create an entangled pair of qubits between these computers. This procedure
requires all consecutive computers along the path to have the shared entangled state
1√
2
(|00〉+|11〉). Consider the computers that are not at the endpoints of the path.Were

those computers tomeasure in the Bell basis and then communicate their outcome (this
requires two bits of information) to their neighbours along the path, they can perform
Pauli gates on their qubits to create a shared entangled pair. This pair would again be in
the state 1√

2
(|00〉 + |11〉). By repeating this process for all computers along the path,

we end up with a shared entangled state between two computers at the endpoints.
This procedure indicates that it is preferable to use the shortest path in a network.
Computers that perform entanglement swapping will need two extra qubits to store
and measure information.
Next, if we want to perform a calculation on a distributed quantum computer, we have
to partition the calculations into parts and assign those parts to the individual quantum
computers, in such a way that communication between parts of the calculation is
possible and can be done efficiently. This means that we have to design a quantum
circuit for the total network of quantum computers. Already on a single quantum
computer quantum circuit design is not trivial. There are a couple of considerations
on how to compile a circuit. The nearest neighbour constraint is one of them. This
constraint imposes a restriction on quantum gates, such that gates can only act on
two adjacent qubits. Given the locations on which the qubits are present, one might
need to change the locations of the qubits before a gate can be applied. Changes to
the locations of qubits can be made using so-called SWAP gates [24]. SWAP gates
interchange the position of two qubits, but since they are also quantum gates, they can
only act on two adjacent qubits. The SWAP gates are considered overhead because
they do not directly contribute to the calculation that is being performed. SWAP gates
do not only require resources, but also increase the running time significantly. Since
coherence times are currently very low, information on qubits can only be held stable
for a short amount of time, after which the information is lost due to interaction with
the environment [9]. It is therefore important to minimise the running time of the
circuit and hence the size of the overhead. In quantum algorithm design, minimising
the number of required SWAP gates in order for a circuit to comply with the nearest
neighbour constraints has become a research topic of its own. So far though, the focus
has been on architectures that involve only a single quantum computer.
There are two main strategies of coping with the minimisation of the number of
SWAP gates: global reordering and local reordering [36]. In global reordering, one
is only concerned with finding an optimal initial qubit placement without focusing
on the micromanagement of swapping the qubits into the right positions after every
gate, which is what local reordering entails. Both strategies can be done on a single
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Table 1 Four areas of research
minimising calculation overhead

Global Local

Single I II

Distributed III IV

quantum computer or on a network of quantum computers, leading to four areas of
research and applications as indicated in Table 1.
For the single quantum computer (Areas I and II), a variety of research is available.
Area I was studied, mostly because of its relative simplicity, in [16,17,28,29,36].
All kinds of qubit architectures have been considered in the more popular Area II:
Qubits are placed on a linear array in [3,5,13,15,18,20,25,27,31,35,36], on a 2D grid
in [1,2,6,8,12,19,26,30], on a 3D grid in [11], or, more recently, on the IBM QX
architectures in [10,33,38,39].

Areas III and IV have (as far as the authors are aware of) not been studied before.
The contribution of this paper lies in the definition of this research area and the first
mathematical formulation of the problems of minimising the number of SWAP gates
in the distributed computing areas III and IV.

Area III can be viewed in two ways. If we are interested in the order of all qubits
on all quantum computers, we have Complete distributed global reordering. This can
be seen as global single reordering with two different cost values for the SWAP gates
between qubits on different computers and SWAP gates between qubits on the same
computer. Next we have, as we will call it, Celestial Reordering. Here, one allocates
qubits to quantum computers while trying to minimise the number of interactions
between computers. This addressed because of the high costs that come with setting
up the required entanglement between the computers. The order of the qubits within
the computers is not considered. The problem is related to the well known graph
partitioning problem as will be shown in Sect. 2.

Our contribution comprises of integer linear programming (ILP) models for the
proposed problems. The size of the models is reflected by the number of variables and
the number of constraints that they contain. In Table 2, an overview is provided. All
the models provide optimal solutions given that the circuit and the gate decomposition
are both optimal.

In this paper, we define the ‘Celestial Reordering’ problem (from research area
III) and present the mathematical problem formulation for minimising the number of
SWAP gates in specific topologies of quantum computer networks. We include ILP
models that are suited for exact solution methods. After that, in Sect. 3, the problem
of local reordering in the context of distributed quantum computing (Area IV) is
formulated and explored. Here, we minimise, using a weighted objective function, the
number of required SWAP gates within a computer and the number of required SWAP
gates between computers. An integer linear programmingmodel is also provided, such
that the problem can be solved with exact methods. We end in Sect. 4 with concluding
remarks and suggestions for future research.
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Table 2 The order O(·) of variables and constraints of each model is shown

ILP model sizes for different problems

Research area Network/qubit architecture Variables Constraints

Area I Linear array [29] n2 n2

Area II Linear array [22] n2m n2m

2D grid [21] n4m n4m

3D grid [21] n4m n4m

Area III Complete nM + n2 Mn2

General n2M2 n2M2

Linear array n2 n2 + M

2D grid nM + n2(m1 + m2) n2(m1 + m2)M

General grid nM + n2 pM(p−1)/p M + n2 pM(p−1)/p

Area IV Linear array n2m + nMm n2m + nMm

Here, n resembles the number of qubits,m is the number of quantum gates, and M is the number of quantum
computers. The grid dimensions, where applicable, are indicated by m1 and m2. The dimension of the grid
is denoted by p

2 Celestial reordering of qubits in a distributed quantum circuit

In this section, we will introduce the problem of Celestial reordering. In celestial
reordering, given a quantum circuit consisting of qubits, quantum gates acting on the
qubits and a number of quantum computers with given capacities, the task is to assign
the qubits to the computers in such a way that the number of gate operations on pairs
of qubits on different computers is minimised. We assume that the cost of setting up
entanglement between two computers is significantly more costly than applying gates
within a computer. Therefore, we neglect costs related to gates that are applied on
qubits that are located on the same computer.

It is of great importance how the quantum computers are connected in a network.
In this section, we consider the most straightforward geometries: the completely con-
nected network, the general network, the linear array, the two-dimensional grid and
the general grid. For each of the networks, we formalise and visualise the problem,
and model it as an integer linear program (also ILP).

First, we introduce some notation that we will use throughout the paper.

i. n denotes the total number of qubits in the quantumalgorithm. In diagrams, vertices
that represent qubits are denoted by circles.

ii. M denotes the number of quantum computers. In diagrams, quantum computers
are represented by rounded squares.

iii. K is used to denote the effective capacity of each quantum computer. That is,
the maximum number of qubits that an individual quantum computer can use and
store in working memory. This does not include the qubits that are necessary for
communication or entanglement swapping. This adds an extra number of qubits
per computer, depending on the network architecture.
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Suppose we have a quantum algorithm acting on n qubits that is represented by a
series of unitary gates. We allow for unitary operations on single qubits or controlled
gates on two qubits. The unitary operations on single qubits will be ignored. All other
operations are assumed to be decomposed into this set of gates [24]. One way to
ensure sufficient capacity is to take K ≥ �n/M� for every computer. If necessary, this
quantity may vary per computer as long as the total capacity exceeds n.

2.1 Completely connected network

We start out in the setting where we have all-to-all coupling between the different
quantum computers.
Consider the complete graph Kn , where the vertices are labelled [n] := {1, . . . , n}
and each vertex corresponds to a qubit in the algorithms. We can count the number of
controlled gates that are applied to each pair of qubits. Similar to the model of single
quantum computer global reordering [17], we create a cost function c : E(Kn) → Z≥0
by letting ci j = c({i, j}) be the number of controlled gates between qubits i and j .
This graph is called the interaction graph.
Our goal now is to find an assignment of qubits to computers f : {1, . . . , n} →
{1, . . . , M} such that the total number of controlled gates between all different pairs
of computers is minimal.
For a qubit i ∈ [n] and computer k ∈ [M] let

xik =
{
1 if qubit i is assigned to computer k

0 otherwise.
(2.1)

For each computer, we thus want to limit the total number of assigned qubits by the
computer’s total capacity K , so

n∑
i=1

xik ≤ K , ∀k ∈ [M]. (2.2)

Furthermore, every qubit can be assigned to only one computer, thus

M∑
k=1

xik = 1, ∀i ∈ [n]. (2.3)

The objective is

min
∑

i, j∈[n]
i< j

ci j
∑
k∈[M]

|xik − x jk |
2

, (2.4)
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since for a given i, j ∈ [n], i �= j . The second summation in the objective is given by

∑
k∈[M]

|xik − x jk |
2

=
{
1 if qubit i and j are assigned to different computers

0 otherwise.
(2.5)

The 2 in the denominator is to compensate for counting twice that a qubit is on a
computer where the other qubit is not. This constant can be taken out of the sums.
We can remove the absolute value in the objective by introducing the variable Li jk and
add an extra pair of constraints −Li jk ≤ xik − x jk ≤ Li jk for every i, j ∈ [n], i < j
and k ∈ [M]. Since any optimal solution will have integer values for Li jk , this variable
does not necessarily have to be formulated as integer. This gives us an MILP (mixed
integer linear program) of the form

min
1

2

∑
i, j∈[n]
i< j

ci j
∑
k∈[M]

Li jk

s.t.
n∑

i=1

xik ≤ K , ∀k ∈ [M]

M∑
k=1

xik = 1, ∀i ∈ [n]

xik − x jk ≤ Li jk

xik − x jk ≥ −Li jk

}
, ∀i, j ∈ [n], i < j,∀k ∈ [M]

xik ∈ {0, 1}, ∀i ∈ [n], k ∈ [M]
Li jk ∈ R, ∀i, j ∈ [n], i < j,∀k ∈ [M].

(2.6)

The total number of integer variables is nM and the total number of continuous vari-
ables is

(n
2

)
m = n(n − 1)m/2. There are M + n + n(n − 1)M = O(Mn2) constraints

in this problem.
It is possible to extend the celestial reordering model by allowing different capacities
of computers. This can easily be done by replacing the capacity constraints by

n∑
i=1

xik ≤ Kk ∀k ∈ [M], (2.7)

where the capacity Kk is now computer specific.

2.2 General networks of quantum computers

Suppose the network of quantum computers is represented by a connected graph
G = (V , E), where quantum computers are represented by nodes. A pair of quantum
computers can communicate directly if and only if their corresponding nodes are con-
nected by an edge in the graph. If two quantum computers are not connected directly,
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Fig. 1 The conversion of a general graph to a complete graph with edge weights corresponding to the
distance of the shortest path between each pair of nodes. In this example, the shortest path between C3 and
C4 in the left graph is 3; therefore, the weight on the edge {C3,C4} in the right graph is equal to 3

we can indirectly connect them via intermediate connections with other computers.
We can do this by applying entanglement swapping. In this case, we search for the
shortest path between the pair of computers.
We let the vertex set V = [M] be labelled by the computers and define wk� as the
length (i.e. the number of edges) of the shortest path between vertices k and � in G.
We can therefore consider the problem on the complete graph KM with edge weights
wk� for all k, � ∈ [M], k �= �. In Fig. 1, an example is given for clarification.
Here, we see that for a network of four computers, we can construct a complete graph
where every computer is connected to every other computer. The weights on the edges
now indicate the length of the path from one computer to another. Pairs of qubits
which are placed on different computers contribute to the costs if they interact with
each other. The cost per interaction is equal to the distance between the computers
on which the interacting qubits are located, since that counts the number of times an
entangled pair of ancillary qubits is required (Fig. 2).

We consider the same decision variables xik, i ∈ [n], k ∈ [M] as in Sect. 2.1. Our
objective will be

min
∑

i, j∈[n]
i< j

ci j
∑

k,�∈[M]
k �=�

wk�xik · x j�, (2.8)

and since xik and x jl are both binary, their product is

xik · x j� =
{
1 if qubit i is on computer k and qubit j is on computer �

0 otherwise.
(2.9)

The contribution of an assigned pair of qubits depends on two factors: the path length
between the computers in the network and the number of interactions in-between the
qubits in the algorithms. The product of these quantities is the number of EPR pairs
that is required for this pair of computers.
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q1 q2

q3q4

q5 q6

q7q8

q13 q14

q15q16

q9 q10

q11q12

1

1

3

12
2

C1 C2

C3C4

Fig. 2 A complete graph on a network of four quantum computers, indicated by the C’s. The computers
each have a capacity of four qubits

The constraints are the same as in the original Program 2.6.We thus obtain a quadratic
binary optimisation program. This quadratic problem has nM variables and n + M
constraints.
To transform the quadratic program into an ILP, we introduce a variable zi jk� ∈ {0, 1}
for i, j ∈ [n], i < j and k, � ∈ [M], k �= �, that satisfies the inequality

zi jk� ≥ xik + x j� − 1, ∀i, j ∈ [n], i < j and k, � ∈ [M], k �= �. (2.10)

If xik , x j� or both are equal to 0, then zi jk� ≥ 0 and since we are minimising over an
increasing function this yields zi jk� = 0. Only if xik = x j� = 1, then zi jk� = 1 is
required. We are left with the equivalent program

min
∑

i, j∈[n]
i< j

ci j
∑

k,�∈[M]
k �=�

wk�zi jk�

s.t. zi jk� ≥ xik + x j� − 1, ∀i, j ∈ [n], i < j and k, � ∈ [M], k �= �∑
k∈[M]

xik = 1, ∀i ∈ [n]
∑
i∈[n]

xik ≤ K , ∀k ∈ [M]

xik ∈ {0, 1}, ∀i ∈ [n], k ∈ [M]
zi jk� ∈ {0, 1}, ∀i, j ∈ [n], i < j and k, � ∈ [M], k �= �.

(2.11)
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q3

q2 q1

q6

q4 q5

q7

q10

q9

q8

Fig. 3 Here, we see an interaction graph that consists of two complete graphs that are connected to each
other by one edge. The graph contains ten qubits. Each edge represents a single interaction between a pair
of qubits for some quantum algorithm on ten qubits

This is an ILP with nM + (n
2

)
M(M − 1) = O(n2M2) variables and O(n2M2) con-

straints. Notice that the number of variables and constraints has increased by turning
the quadratic program into an ILP.

An interesting question is how much the objective can vary as the capacity K of
each computer changes. We can illustrate this with the example of the graphs K6 and
K4 that are connected by one edge, see Fig. 3.
If we have M = 2 computers, both with capacity K = 5, we are required to make a cut
of at least 5 edges. We partition the interaction graph into {1, . . . , 5} and {6, . . . , 10}
forming two computers.
However, if we were somehow able to increase the capacity of both computers to
K = 6 qubits, we can partition the graph into {1, . . . , 5} and {6, . . . , 10}. This requires
a cut of only one edge. This example and generalisations to more qubits show that the
capacity of the computers by a small amount can yield a big difference in the number
of EPR pairs required.

2.3 Example of a quantum network and distributed algorithm

We consider an example of a quantum network of four computers between four cities
in The Netherlands: Amsterdam (A), Delft (D), Leiden (L) and The Hague (G), as is
illustrated in Fig. 4.
The cities of Leiden,Delft andTheHague are allmutually connectedwhileAmsterdam
is only connected to Leiden. The shortest distance between every pair of cities is
represented in Table 3.

This circuit consists of fifteen CNOT gates and ten Toffoli gates. The Toffoli gate
acts on three qubits and can be decomposed in five controlled gates as shown in Fig. 6.
The V -gate is the square root of the Pauli X -gate:

V = √
X = 1

2

(
1 + i 1 − i
1 − i 1 + i

)
. (2.12)
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Fig. 4 A map of a potential
quantum computer network in
the Netherlands

Table 3 The shortest distances
between the cities of Amsterdam
(A), Delft (D), Leiden (L) and
The Hague (G)

w A D L G

A – 2 1 2

D 2 – 1 1

L 1 1 – 1

G 2 1 1 –

From the circuit, the cost ci j is obtained for every pair of qubits, by counting the
number of gates act on the qubit pair i, j (Fig. 7).
Each computer has an effective capacity of four qubits to execute the circuit. Each
computer also has one extra qubit that is used for communication. This qubit is not
assigned to qubits in the circuit and is not taken into account in the optimal assignment.
On this network of quantum computers, wewant to execute a quantum circuit on fifteen
qubits that counts the number of qubits in state |1〉. The circuit is shown in Fig. 5. It
is called the “rd84_143” circuit and was obtained from the reversible circuit library
RevLib [34].

The ILP was constructed and solved to optimality using the Python API of CPLEX.
The solver was run on a computer with 2 GB of RAM, and completed its Branch &
Bound search in 0.39 s. The optimal qubit assignment is shown in Fig. 8.

The costs of communication between every two computers are shown on the edges
in Fig. 8. The sum of these costs, which is the objective function of the optimisation
program, is 48. There was no communication between computers with a distance of
two between them.
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q1 • •
q2 • • •
q3 • • • •
q4 • • • • •
q5 • • • • • •
q6 • • • • • •
q7 • • • • • •
q8 • • •
q9 • • • • •

q10 • • • • •
q11 •
q12 •
q13 •
q14 •
q15

Fig. 5 The “rd84_143” circuit. The circuit consists of fifteen qubits. After the Toffoli and Peres gates are
decomposed, 98 two-qubit gates remain

• • • • • • • •
• = • • • = • •

V † V † V V † V † V

Fig. 6 On the left, the decomposition of the Peres gate. On the right, the Sleator–Weinfurter decomposition
of the Toffoli gate [23]

q1 q2 q3 q4 q5 q6 q7 q8

q9 q10 q11 q12 q13 q14 q15

Fig. 7 The interaction graph of counting circuit of Fig. 5 on fifteen qubits. An edge represents one or
more controlled gates between each pair of qubits. An optimal assignment of qubits to computers in not
immediately clear

2.4 Linear array

In this section, we consider a different network of quantum computers. In this network,
all computers are arranged on a line, and each one of them is connected to its one or
two neighbouring computers. This network is a special case of the general network
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q8 q14

q15∅ q5 q9

q10q11q9 q7

q12q13

q1 q2

q4q3

4

5

21

18

Delft

Leiden Amsterdam

The Hague

Fig. 8 The graph shows the optimal qubit configuration, where each qubit is assigned to a computer. The
capacity of the computers is not exceeded. The number of gates between every pair of computers is shown
on the edges between computers

q1 q2

q3q4

q5 q6

q7q8

q9 q10

q11q12

q13 q14

q15q16

1 1 1

C1 C2 C3 C4

Fig. 9 A line graph on a network of four quantum computers, indicated by the C’s. The computers each
have a capacity of four qubits, corresponding to the circular nodes

and leads to a reduction in the number of variables and constraints in the resulting
model because of the structure in the network.
If we associate the computers with the numbers {1, . . . , M}, then quantum computer
k can only communicate with computers k − 1 and k + 1, except at the boundaries.
An example of such a network is given in Fig. 9.

This means that if two qubits are located on computer k and �, then applying a two
qubit gate requires us to make |k − �| non-local interactions by using the computers
in-between. This changes the original objective in Eq. 2.4 to an objective that takes
the distance between computers into account. For a given pair of qubits (i, j) this is
given by equation
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∣∣∣∣∣∣
∑
k∈[M]

kxik −
∑
k∈[M]

kx jk

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
k∈[M]

k(xik − x jk)

∣∣∣∣∣∣ . (2.13)

Again, we introduce a new variable to encode the absolute value as a linear constraint,
analogous to the completely connected network of Sect. 2.1. The full mixed integer
linear program now reads

min
∑

i, j∈[n]
i< j

ci j Li j

s.t.
n∑

i=1

xik ≤ K , ∀k ∈ [M]

M∑
k=1

xik = 1, ∀i ∈ [n]
∑

k∈[M] k(xik − x jk) ≤ Li j∑
k∈[M] k(xik − x jk) ≥ −Li j

}
, ∀i, j ∈ [n], i < j

xik ∈ {0, 1} ∀i ∈ [n], k ∈ [M]
Li j ∈ R ∀i, j ∈ [n], i < j .

(2.14)

This MILP consists of nM integer variables and
(n
2

) = O(n2) continuous variables
and has n + M + 2

(n
2

) = O(n2 + M) constraints.

2.5 Two-dimensional grid

In this section, we consider a two-dimensional grid as network topology. Such a
network allows for more connections between computers and directly extends the
linear network of Sect. 2.4. Nevertheless, this network also leads to a reduction in the
complexity in the assignment of qubits to computers.
We first have to introduce some tools to describe this network. Consider the metric
based on the 1-norm1 defined by

d(x, y) = ‖x − y‖1 =
p∑

i=1

|xi − yi |, x, y ∈ Z
p. (2.15)

We first consider a (square) grid with side length m defined by G2 := [m1] × [m2] ⊆
Z
2. Thus, the number of quantum computers equals M = m1m2. We say that two

quantum computers are connected if and only if their distance in the graph is 1. A
distance of 2 means that communication has to go via one other quantum computer.
A small example of such a network is shown in Fig. 10.

1 This metric is also called the taxicab distance orManhattan distance for its similarity to travelling along
the shortest route between two points in the streets of Manhattan, New York.
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q1 q2

q3q4

q5 q6

q7q8

q13 q14

q15q16

q9 q10

q11q12

1

1

1

1

C1 C2

C3C4

Fig. 10 The graph of a two-dimensional grid on a network of four quantum computers, indicated by the
C’s. The computers each have a capacity of four qubits

For qubit i ∈ [n] and computer (u, v) ∈ G2, we let

xi,uv =
{
1 if qubit i is assigned to position (u, v)

0 otherwise.
(2.16)

Then, similar to the constraints in Eqs. (2.2) and (2.3), we have the following con-
straints:

n∑
i=1

xi,uv ≤ K , ∀(u, v) ∈ G2, (2.17)

and ∑
(u,v)∈G2

xi,uv = 1, ∀i ∈ [n]. (2.18)

Furthermore, the objective is now a weighted sum. The weights are determined by
the number of interactions between a pair of qubits. The weighted sum consists of
terms given by the distance between computers in the network to which the qubits are
assigned. The objective is
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∑
i, j∈[n]
i< j

ci j‖ f (i) − f ( j)‖1 =
∑

i, j∈[n]
i< j

ci j

⎛
⎝ ∑

u∈[m1]

∣∣∣∣∣∣
∑

v∈[m2]
vxi,uv −

∑
v∈[m2]

vx j,uv

∣∣∣∣∣∣

+
∑

v∈[m2]

∣∣∣∣∣∣
∑

u∈[m1]
uxi,uv −

∑
u∈[m1]

ux j,uv

∣∣∣∣∣∣
⎞
⎠ .

(2.19)

Again, we introduce new variables to encode the absolute values, this is done by
two families L(1)

i j,u and L(2)
i j,v . Analogous to the complete linear network described in

Sect. 2.4, these variables can be relaxed to real numbers. The mixed integer linear
program then reads

min
∑

i, j∈[n]
i< j

ci j

⎛
⎝ ∑

u∈[m1]
L(1)
i j,u +

∑
v∈[m2]

L(2)
i j,v

⎞
⎠

s.t.
n∑

i=1

xi,uv ≤ K , ∀u ∈ [m1], v ∈ [m2]
∑

u∈[m1]

∑
v∈[m2]

xi,uv = 1, ∀i ∈ [n]
∑

v∈[m2] v(xi,uv − x j,uv) ≤ L(1)
i j,u∑

v∈[m2] v(xi,uv − x j,uv) ≥ −L(1)
i j,u

}
∀u ∈ [m1]∑

u∈[m1] u(xi,uv − x j,uv) ≤ L(2)
i j,v∑

u∈[m1] u(xi,uv − x j,uv) ≥ −L(2)
i j,v

}
∀u ∈ [m1]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀i, j ∈ [n], i < j

xi,uv ∈ {0, 1}, ∀i ∈ [n], u ∈ [m1], v ∈ [m2]
L(1)
i j,u, L

(2)
i j,v ∈ R, ∀u ∈ [m1], v ∈ [m2],∀i, j ∈ [n], i < j .

(2.20)

ThisMILP has nm1m2 = nM integer variables and
(n
2

)
(m1+m2) = O(n2(m1+m2))

continuous variables. The program containsm1m2+n+2
(n
2

)
(m1+m2) = O(n2(m1+

m2) + M) constraints. For m1 = 1 or m2 = 1, this grid reduces to the linear grid
and the corresponding optimisation programs are equivalent. If the grid is square,
i.e. m1 = m2 = m, for some positive integer m, then the number of constraints is
O(nM

√
M). In this case, there is a difference in complexity depending on the sizes

of n and M .

2.6 General grid

The two-dimensional network of Sect. 2.5 was a generalisation of the linear network of
Sect. 2.4. Since the 1-norm allows for generalisation to any finite dimensional lattice,
this section describes the most general case for grids.
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We assume the dimensions of the p-dimensional grid are the same to provide a
clearer description. However, similar to the two-dimensional grid, it is possible
to use grids of different spatial proportions. Let Gp = [m] × · · · × [m]︸ ︷︷ ︸

p times

, and for

u = (u1, . . . , u p−1) ∈ Gp−1, r ∈ [d], v ∈ [m] define

u ⊕r v = (u1, . . . , ur−1, v, ur , . . . , u p−1) ∈ Gp, (2.21)

that is, in the integer string u we insert the number v at place r .
The general objective now becomes

∑
i, j∈[n]
i< j

ci j

⎛
⎝ ∑

r∈[p]

⎛
⎝ ∑

u∈Gp−1

∣∣∣∣∣∣
∑

v∈[m]
v(xi,u⊕r v − x j,u⊕r v)

∣∣∣∣∣∣
⎞
⎠

⎞
⎠ . (2.22)

Here, we can again introduce a family of variables L(r)
i j,u for all i, j ∈ [n], i < j ,

u ∈ Gd−1 and r ∈ [m] to linearise the absolute value. This gives us the MILP

min
∑

i, j∈[n]
i< j

ci j

⎛
⎝ ∑

r∈[p]

⎛
⎝ ∑

u∈Gp−1

L(r)
i j,u

⎞
⎠

⎞
⎠

s.t.
∑
i∈[n]

xi,ω ≤ K , ∀ω ∈ Gp

∑
ω∈Gp

xi,ω = 1, ∀i ∈ [n]
∑

v∈[m] u(xi,u⊕r v − x j,u⊕r v) ≤ L(r)
i j,u∑

v∈[m] u(xi,u⊕r v − x j,u⊕r v) ≥ −L(r)
i j,u

}
∀u ∈ Gp−1, r ∈ [p], i, j ∈ [n], i < j

xi,ω ∈ {0, 1}, ∀i ∈ [n], ω ∈ Gp

L(r)
i j,u ∈ R, ∀u ∈ Gp−1, r ∈ [p], i, j ∈ [n], i < j .

(2.23)

The number of quantum computers in this network is M = mp. This program con-
tains nM integer variables and

(n
2

)
pmp−1 = O(n2 pM (p−1)/p) continuous variables.

Furthermore, there are mp + n + 2
(n
2

)
pmp−1 = O(M + n2 pM (p−1)/p) constraints.

For p = 2 we indeed get the result of the previous section.

3 Local reordering of qubits in a distributed quantum circuit

Now we switch our focus to the problem of local reordering in the distributed case.
In local reordering, SWAP gates can be inserted before every quantum gate, such that
the quantum gate acts on adjacent qubits. The goal is to find the minimal number of
required SWAP gates. These SWAP gates, only inserted to meet the nearest neighbour
constraint, are considered overhead. They cost precious calculation time and resources.
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

C1 C2 C3cost:α cost:β

Fig. 11 A line graph on a network of three quantum computers, indicated by the C’s. The computers each
have a capacity of four qubits which are also connected

Suppose we have a quantum circuit, consisting of m unitary 2-qubit gates gil ∈ G,
acting on a total of n qubits {q1, . . . , qn} ≡ Q. The physical locations of the qubits
are distributed between N quantum computers in a linear fashion, i.e., locations L1 =
(1, . . . , k1) belong to computerC1 and locations L2 = (k1+2, . . . , k1+k2+1) belong
to computer C2, locations LN = (k1 + . . . + kN−1 + N , . . . , k1 + . . . + kN + N − 1)
to computer CN , where ki is the qubit capacity of computer Ci . Here, one qubit
location is skipped between every two consecutive computers, we will see this helps
with the modelling later on. Also suppose we have to comply with nearest neighbour
interaction constraints, where gates can only act on two qubits if the corresponding
qubits are physically adjacent, so their locations are li , li+1, respectively, for some i .
The local reordering problem concerns the micromanagement of the qubit location
at the gate level. Before each gate, the qubit order must be adjusted such that the
nearest neighbour constraints are satisfied. However, there are costs involved with the
reorganisation of the qubit order. SWAP gates are used to interchange the location of
two qubits, but they also have to comply with the nearest neighbour constraints and
can thus only interchange locations of two adjacent qubits.
Furthermore, interactions between computers are limited to the action of SWAP gates,
where two qubits are exchanged between two quantum computers. The SWAP gates
between computerswill likely bemore expensive than the oneswithin a computer since
entanglement between the computers in needed for this purpose, this assumption is
however not required for the model to provide valid results.
The goal consists of two parts:

1. Minimise the number of SWAPgates between different computers, associatedwith
a cost of α

2. Minimise the number of SWAP gates within each computer, associated with a cost
of β

An illustration is provided for clarification in Fig. 11.
In order to extend the ILP formulation of minimising the number of SWAP gates in the
case of one computer [22] such that it also encapsulates the distributed variant of the
local reordering problem, no big extension is required. The proposed mathematical
model is presented below.
Let us first introduce variables xti , indicating the location l ∈ ∪i∈[N ]Li of a qubit
qi just before gate gt is applied. Note that this also specifies the quantum computer
on which the qubit is located. To count the required number of SWAP gates when
changing the qubit order between gates, variables ytil are introduced which keep track
of the pairwise ordering of two qubits qi , ql before gate gt .
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ytil =
{
1 if xti > xtl
0 otherwise.

(3.1)

Changes in the y’s, when moving from one gate to the next, mean that two qubits have
changed pairwise order. These pairwise changes in order are also known as inversions.
Inversions exactly count the number of SWAP gates that are required to change one
qubit order to the next.2

The nearest neighbour constraints state that a gate can only act on two adjacent qubits,
|xti − xtl | ≤ 1. This constraint is linearised using the inequalities

xti − xtl ≤ 1 ∀gtil ∈ G, (3.2)

xti − xtl ≥ −1 ∀gtil ∈ G. (3.3)

To keep track of the qubit order and to make sure the distance between qubits is at
least 1, the following big-M type constraints are added.

xti − xtl ≤ Mytil − 1 ∀i, l ∈ Q, i < l, t ∈ [m], (3.4)

xtl − xti ≤ M(1 − ytil) − 1 ∀i, l ∈ Q, i < l, t ∈ [m], (3.5)

where the constant M is chosen to be large enough, in this case M = N + ∑
i ki will

suffice, to make one constraint trivially satisfied. The binary variable y determines for
which of the two constraints that holds.
Recall the auxiliary locations left between the quantum computers which were sup-
posed to help us. These borders b are locations indexed by the values

bs = s +
∑
j∈[s]

k j s ∈ [N − 1], (3.6)

where bs is the location of the border between quantum computers s and s + 1. Next,
to keep track of qubits changing computer, variables ytis are introduced.

ytis =
{
1 if xti > bs
0 otherwise.

(3.7)

They tell us on which side of the auxiliary location between two computers a qubit is
located before gate gt . If the qubit changes order with the auxiliary location, we can
add a cost to the objective later on. The yti are binary and constrained in the following
way:

xti − bs ≤ Mytis − 1 ∀i ∈ Q, i < l, t ∈ [m], s ∈ [N − 1], (3.8)

bs − xti ≤ M(1 − ytis) − 1 ∀i ∈ Q, i < l, t ∈ [m], s ∈ [N − 1]. (3.9)

2 The number of required SWAP gates to go from one qubit order to the next is actually a metric on the
corresponding elements of the symmetric group Sn , called the Kendall tau metric.
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Here, the variable yti is 0 if the location xti of qubit qi is smaller than the location of
the border between computers s and s + 1.
The absolute change (from gate to gate) in the y variables adds a cost to the objective
function. To linearise the absolute values, variables p and r are introduced. The p-
variables are used for SWAP gates within a computer:

ptil =
{
1 if the order of qubits i and l changed from gate gt to gt+1

0 otherwise.
(3.10)

The r variables keep track of SWAP gates between different quantum computers:

r tis =
{
1 if qubit i crossed border bs between gates gt and gt+1

0 otherwise.
(3.11)

The p’s are constrained as

ytil − yt+1
il ≤ ptil ∀i, l ∈ Q, i < l, t ∈ [m − 1], (3.12)

ytil − yt+1
il ≥ −ptil ∀i, l ∈ Q, i < l, t ∈ [m − 1], (3.13)

and the r ’s are constrained as

ytis − yt+1
is ≤ r tis ∀i ∈ Q, t ∈ [m − 1], s ∈ [N − 1], (3.14)

ytis − yt+1
is ≥ −r tis ∀i ∈ Q, t ∈ [m − 1], s ∈ [N − 1]. (3.15)

Next, we formulate the objective function. The objective is of course to minimise the
variables p and r , as they count the changes in qubit order and the qubits swapping to
another computer, respectively. Note that every time two qubits on different computers
are swapped, both the corresponding r - and p-variables become 1. Swapping two
qubits on different quantum computers should only cost β and not α+β, the objective
function is therefore

min
∑

t∈[m−1]

⎛
⎜⎜⎝

⎛
⎜⎜⎝α − β

2

∑
i∈Q

s∈[N−1]

r tis

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝β

∑
i,l∈Q
i<l

ptil

⎞
⎟⎟⎠

⎞
⎟⎟⎠ , (3.16)

where the (α − β) term counteracts the extra counting of the SWAP gate with cost
α and the factor of one half prevents us from counting the SWAP over the border
between computers twice (once for both qubits).

The complete integer linear program then reads
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min
∑

t∈[m−1]

⎛
⎜⎜⎝

⎛
⎜⎜⎝α − β

2

∑
i∈Q

s∈[N−1]

r tis

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝β

∑
i,l∈Q
i<l

ptil

⎞
⎟⎟⎠

⎞
⎟⎟⎠

s.t. xti − xtl ≤ 1 ∀gtil ∈ G
xti − xtl ≥ −1 ∀gtil ∈ G.

xti − xtl ≤ Mytil − 1 ∀i, l ∈ Q, i < l, t ∈ [m]
xtl − xti ≤ M(1 − ytil) − 1 ∀i, l ∈ Q, i < l, t ∈ [m]
xti − bs ≤ Mytis − 1 ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
bs − xti ≤ M(1 − ytis) − 1 ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
ytil − yt+1

il ≤ ptil ∀i, l ∈ Q, i < l, t ∈ [m − 1]
ytil − yt+1

il ≥ −ptil ∀i, l ∈ Q, i < l, t ∈ [m − 1]
ytis − yt+1

is ≤ r tis ∀i ∈ Q, t ∈ [m − 1], s ∈ [N − 1]
ytis − yt+1

is ≥ −r tis ∀i ∈ Q, t ∈ [m − 1], s ∈ [N − 1]
xti ∈ ∪i∈[N ]Li ∀i ∈ Q, t ∈ [m]
ytil ∈ {0, 1} ∀i, l ∈ Q, i < l, t ∈ [m]
ytis ∈ {0, 1} ∀i ∈ Q, t ∈ [m], s ∈ [N − 1]
r tis ∈ {0, 1} ∀i ∈ Q, t ∈ [m − 1], s ∈ [N − 1]
ptil ∈ {0, 1} ∀i, l ∈ Q, i < l, t ∈ [m − 1].

(3.17)

The size of the ILP model scales as a polynomial in the number of qubits, quantum
gates and quantum computers in the instance. The number of variables and the number
of constraints are both of the order O(n2m + nMm) = O(n2m).

4 Concluding remarks and future research

In quantum circuit design, the step to distributed quantum networks gives rise to an
extended area of research. How to distribute qubits over the various quantum com-
puters, and how to order qubits within a quantum computer, are naturally arising
problems on the interface of distributed quantum computing and nearest neighbour
compliant quantum circuit design. These problems have not been discussed in the
literature before and are formally introduced in this paper. In order to evaluate these
problems, we define the global and local reordering problems for distributed quan-
tum computing. We formalise the mathematical problems and model them as integer
linear programming problems, to minimise the number of SWAP gates or the num-
ber of interactions between different quantum computers. For global reordering, the
problem we identify and analyse is called celestial reordering. In celestial reordering,
only the initial distribution of qubits between the quantum computers is optimised.
We analyse the problem for various geometries of networks: completely connected
networks, general networks, linear arrays and grid-structured networks. We provide
an ILP model for each geometry. For local reordering, in networks of quantum com-
puters, we also define the mathematical optimisation problem and we provide an ILP
model. However, as these are NP-hard problems, the size of the instances that can be
analysed, will be restricted by calculation times. Evaluation of existing or proposed
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quantum networks will lead to insights in capabilities of networks and algorithms. For
development of large scale networks, these optimisation methods will be essential for
efficient use. Further research on heuristic approaches for solving these integer linear
programs is recommended by the authors.
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