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*) On the size of a maximum transversal in a Steiner ·triple system 

by 

A.E. Brouwer 

ABSTRACT 

We show that a partial parallel class of maximum size in a Steiner 

triple system on v points leaves not more than O(v213 ) points uncovered. 
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Let (X,B) be a Steiner triple system on v = lxl points, and suppose 

that F c Bis a partial parallel class (transversal, clear set, set of pair­

wise disjoint blocks) of maximum size t = !Fl. We want to derive a bound on 

r = lx\UFI = v - 3t. (I conjecture that in fact r is bounded, e.g., r ~ 4 -

4 is attained for the Fano plane-, but all that has been proved so far (cf. 

LINDNER & PHELPS [1], WANG [2]) are bounds r < C.v for some C. Here we shall 
c:· 2/3 ) prove r < _,v . 

Define a sequence of 
1 

r 2 1 
positive real numbers by q 0 = Q.v, ql = 2 qo,··· 

l is determined by q,,e_ ~ 6, ½ q,,e_ < 6, i.e., l = 
constant Q will be chosen later.) Define inductive-

qi = 2 qi-l' •.. ,q,,e_, where 

[log(Qr2/6v)/log 2]. (The 

ly sets A., K. and collections B., F. as follows. 
l. l. l. l. 

AO = x\UF, 

and for 0 <' i ~ l, let 

B. = {T E B I IT n A. I ~ 2}, 
l. l. 

K. = {x E X\A. I #{T E B. IX ET} ~ qi}, 
l. l. l. 

F. = 
l. 

{T E FI IT n K. I 
l. 

= AO u UF. \K .. 
l. l. 

~ 1}, 

Let 

One verifies immediately that each of these series is increasing: A. c A. 1 , 
l. 1.+ 

Ki c Ki+l etc. Also that Ai n Kj = 0 (Vi,j). It is convenient to set F _1 = 0. 

{The numbers q. are chosen in such a way that an exchange process works. 
l. 

If Bis an arbitrary block and I want to add it to F, I must discard at most 

three members of Fin order to maintain disjointness. But if the discarded 

triples are in F. for some i then they are of the form {a,b,x} with x EK., 
l. l. 

and now that we no longer use x (supposing that xi B) we may add new triples 

{x,c,d} EB. to F. In order to be able to add three pairwise disjoint 
l. 

triples {x~j,cj,dj} E Bi (j = 1,2,3) we must be sure that each xj is incident 

with sufficiently many blocks in Bi. (In fact it suffices if x 1 is incident 

with 1 block, x 2 with 3 blocks and x 3 with 5 blocks.) If i = 0 we are 
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finished and have increased the size of our transversal. If i > 0 then we 

must continue, discard the at most six members of F. 1 containing the points 
1.-

cj, dj and add again members of Bi-l etc.} 

CLAIM. 

(i) A. does not contain a block BE B (0 ~ i ~ l+1). 1. 
(ii) No block TE F intersects K. in more than one point (0 ~ i ~ l). 1. 

PROOF. Ad (i): If B c AO for some block BE B then Fu {B} would be a larger 

partial parallel class, a contradiction. If B c Ai+l then we can enlarge F 

by an exchange process: 

Define N., R. by backward induction on j (i+1 ~ j ~ 0): 
J J 

N. 1 = {B}, 
1.+ 

Choose for N. some collection of IR. I blocks from B. such that each TE R. 
J J J J 

meets exactly one of them, and such that N. u N. 1 u ••• u N. 1 is a collection 
J J+ 1.+ 

of pairwise disjoint blocks. That the latter is possible follows from 

and 

i+1 i 
Now F• = (Fu .u0 N.)\.U0 R. is a layer partial parallel class, a contra­

]= J J= J 
diction. 

Ad (ii): This is proved using an almost identical argument. 0 

that 

(1) = 2k. + r. 1. 

= IK. I. By (ii) it follows 1. 



From (i) it follows that 

hence 

(2) 

(3) 

a. a. 
( 1.) < k • -2:. + ( k ) 2 - i 2 V - i - ai •'½. 1 

2q.v 
l. 

a. < k. + --
1. l. ai 

ai+l > 2ai + r(l-4Q). 

1 
-v> 
3 

= r + 3k l so that 

a,e. - 2Qr 

> 2a,e._1 + r(l-6Q) 

> 4a,e._2 + r(3-14Q) 

> 

,e. ,e. l.+2 
> 2 a 0 + r(2 -1-(2 -2)Q) 

l+l = r(2 -1) (1-2Q) 

Qr2 . 
> r( 6v - 1) (1-2Q). 

1 Take Q = 4. Then we have for larger: 

2 3 ( 16+e:)v > r 

and one verifies immediately that r ~ Sv213 leads to a contradiction for 

all r. In this proof we implicitly assumed that l ~ 0. But l < 0 means 

Qr2 < 6v so that again Q = ¼, r ~ sv213 leads to a contradiction. Thus we 

3 



proved: 

THEOREM. A maximum transversal of an STS(v) has size at least 

It is easy to improve the constant 5 (a minor change in this proof 

gives 3, and further improvement is possible). but I am presently unable 
2 

to improve on the exponent 3. 

Note. An almost identical proof works for Steiner quadruple systems, and 

again gives-r = O(v213 ). 
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