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On the size of a maximum transversal in a Steiner triple system
by

A.E. Brouwer

ABSTRACT

We show that a partial parallel class of maximum size in a Steiner

2/

triple system on v points leaves not more than O(v 3) points uncovered.

KEY WORDS & PHRASES: tiansversal, partial parallel class, Steiner triple

system
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) This report will be submitted for publication elsewhere.



Let (X,B) be a Steiner triple system on v = |X| points, and suppose
that F ¢ B is a partial parallel class (transversal, clear set, set of pair-
wise disjoint blocks) of maximum size t = |F|. We want to derive a bound on
r = |X\UF| = v-3t. (I conjeéture that in fact r is bounded, e.g., r < 4 -

4 is attained for the Fano plane -, but all that has been proved so far (cf.

LINDNER & PHELPS [1], WANG [2]) are bounds r < C.v for some C. Here we shall
2/3 )

prove r < 5v 9
Define a sequence of positive real numbers by 9 = Q.:r L

1
= — . . > L . -
a; > Qg _qreerdpr where £ is determined by qp 2 6, 5 dp < 6, i.e., L
[log(Qr2/6v) /log 2]. (The constant Q will be chosen later.) Define inductive-

9y T390

ly sets A s K and collections Bi’ Fi as follows. Let

xX\UF,

i
Il

IA

and for 0 < i < £, let

B, = {T ¢ B| |Tna | >2},

~
Il

—_—
b

e x\a, |#{T e B, |xeT}2ql,
F,={re FllTnk | = 1},

Ay = AO U UFi\Ki.

One verifies immediately that each of these series is increasing: Ai c Ai+1’
Ki c Ki+1 etc. Also that Ai n Kj =@ (Vi,j). It is convenient to set F_1==ﬂ.
{The numbers q; are chosen in such a way that an exchange process works.

If B is an arbitrary block and I want to add it to F, I must discard at most
three members of F in order to maintain disjointness. But if the discarded
triples are in Fi for some i then they are of the form {a,b,x} with x € L
and now that we no longer use x (supposing that x ¢ B) we may add new triples
{x,c,d} € Bi to F. In order to be able to add three pairwise disjoint

triples {xj,cj,dj} € Bi (3 = 1,2,3) we must be sure that each xj is incident
- with sufficiently many blocks in Bi' (In fact it suffices if x, is incident

1

with 3 blocks and x. with 5 blocks.) If i = 0 we are

with 1 block, X, 3



finished and have increased the size of our transversal. If i > 0 then we

must continue, discard the .at most six members of Fi- containing the points

1

cyr dj and add again members of Bi— etc.}

1

CLAIM.
(i) .Ai does not contain a block B € B (0 < i < £+41).

(ii) No block T € F intersects Ki in more than one point (0 < i < £).

PROOF. Ad (i): If B ¢ A, for some block B € B then F u {B} would be a larger

0

partial parallel class, a contradiction. If B c Ai+ then we can enlarge F ’

1
by an exchange process:

Define Nj' Rﬁ by backward induction on j (i+l1 = j = 0):

= ¢I N+1 = {B}I

i+l i

i+1
R.={T e Fj\Fj— | T n k=g+1

5 UN, # 7},

1

Choose for Nj some collection of IRjI blocks from Bj such that each T € Rj

meets exactly one of them, and such that leJNj+ U...UNi+1 is a collection

1
of pairwise disjoint blocks. That the latter is possible follows from

i+1 i-j
| < 3.
l(kgj UNk) n Ajl 3.2

and
q. =2 6.2 -1
J
i+l i
Now F' = (F u ng Nj)\jg0 Rj is a layer partial parallel class, a contra-
diction.
Ad (ii): This is proved using an almost identical argument. O
Let a; = IAiI, so that r = ay and let ki = IKiI. By (ii) it follows
that

(1) a;,q = 2k, tr.



From (i) it follows that

ai ai
< o« — - - .
( 2) < ki >+ (v ki ai) q
hence
Zqiv
(2) ai < ki + a, ’

and, using (1) and aj 2 ao, q.

<
J"qol

+

(3) a, > 2ai r(1-49Q).

Now v = az+1 + kﬂ =r + 3k£ so that
v > ap - 20r
> 2a£_1 + r(1-69Q)

> 4a’(,’___2 + r(3-149)

> 2£a0 + r2t1-2%22)0)

- r ¥ (1-20)

or?
> r @ - 1) (1-20) .

Take Q = %u Then we have for large r:

(16+e)v2 > r3
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and one verifies immediately that r 2 5v leads to a contradiction for

all r. In this proof we implicitly assumed that £ > 0. But £ < O means

Qr2 < 6v so that again Q = %y r = 5v2/3 leads to a contradiction. Thus we



proved:

THEOREM. A maximum transversal of an STS(v) has size at least

2

1,.53
2 3 :
It is easy to improve the constant 5 (a minor change in this proof

gives 3, and further improvement is possible) but I am presently unable

to improve on the exponent 3

Note. An almost identical proof works for Steiner quadruple systems, and

2/3)

again gives .r = O(v
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