stichting

mathematisch
centrum

AFDEL iNG ZUIVERE WISKUNDE
ZW 137/80
MAART
(DEPARTMENT OF PURE MATHEMATICS)
A.E. BROUWER

ON THE SIZE OF A MAXIMUM TRANSVERSAL IN A STEINER TRIPLE SYSTEM

Preprin†

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

On the size of a maximum transversal in a Steiner triple system *)
by

A.E. Brouwer

ABSTRACT

We show that a partial parallel class of maximum size in a Steiner triple system on v points leaves not more than $O\left(v^{2 / 3}\right)$ points uncovered.

KEY WORDS \& PHRASES: transversal, partial parallel class, Steiner triple system
*) This report will be submitted for publication elsewhere.

Let (X, B) be a Steiner triple system on $v=|X|$ points, and suppose that $F \subset B$ is a partial parallel class (transversal, clear set, set of pairwise disjoint blocks) of maximum size $t=|F|$. We want to derive a bound on $r=|x \backslash U F|=v-3 t$. (I conjecture that in fact r is bounded, e.g., $r \leq 4-$ 4 is attained for the Fano plane -, but all that has been proved so far (cf. LINDNER \& PHELPS [1], WANG [2]) are bounds r < C.v for some C. Here we shall prove $r<5 v^{2 / 3}$.)

Define a sequence of positive real numbers by $q_{0_{1}}=Q \cdot \frac{r^{2}}{v}, q_{1}=\frac{1}{2} q_{0}, \ldots$ $q_{i}=\frac{1}{2} q_{i-1}, \ldots, q_{\ell}$, where ℓ is determined by $q_{l} \geq 6, \frac{1}{2} q_{\ell}<6$, i.e., $\ell=$ $\left[\log \left(Q r^{2} / 6 \mathrm{v}\right) / \log 2\right]$. (The constant Q will be chosen later.) Define inductive$l y$ sets A_{i}, K_{i} and collections B_{i}, F_{i} as follows. Let

$$
A_{0}=x \backslash U F,
$$

and for $0 \leq i \leq \ell$, let

$$
\begin{aligned}
& B_{i}=\left\{T \in B| | T \cap A_{i} \mid \geq 2\right\}, \\
& K_{i}=\left\{x \in X \backslash A_{i} \mid \#\left\{T \in B_{i} \mid x \in T\right\} \geq q_{i}\right\}, \\
& F_{i}=\left\{T \in F| | T \cap K_{i} \mid \geq 1\right\}, \\
& A_{i+1}=A_{0} \cup \cup F_{i} \backslash K_{i} .
\end{aligned}
$$

One verifies immediately that each of these series is increasing: $A_{i} \subset A_{i+1}$, $K_{i} \subset K_{i+1}$ etc. Also that $A_{i} \cap K_{j}=\varnothing(\forall i, j)$. It is convenient to set $F_{-1}=\emptyset$. \{The numbers q_{i} are chosen in such a way that an exchange process works. If B is an arbitrary block and I want to add it to F, I must discard at most three members of F in order to maintain disjointness. But if the discarded triples are in F_{i} for some i then they are of the form $\{a, b, x\}$ with $x \in K_{i}$, and now that we no longer use x (supposing that $\mathrm{x} \notin \mathrm{B}$) we may add new triples $\{x, c, d\} \in B_{i}$ to F. In order to be able to add three pairwise disjoint triples $\left\{x_{j}, c_{j}, d_{j}\right\} \in B_{i}(j=1,2,3)$ we must be sure that each x_{j} is incident with sufficiently many blocks in B_{i}. (In fact it suffices if x_{1} is incident with 1 block, x_{2} with 3 blocks and x_{3} with 5 blocks.) If $i=0$ we are
finished and have increased the size of our transversal. If i >0 then we must continue, discard the at most six members of F_{i-1} containing the points c_{j}, d_{j} and add again members of B_{i-1} etc. $\}$

CLAIM.
(i) A_{i} does not contain a block $B \in B(0 \leq i \leq \ell+1)$.
(ii) No block $T \in F$ intersects K_{i} in more than one point ($0 \leq i \leq \ell$).

PROOF. Ad (i): If $B \subset A_{0}$ for some block $B \in B$ then $F U\{B\}$ would be a larger partial parallel class, a contradiction. If $B \subset A_{i+1}$ then we can enlarge F by an exchange process:
Define N_{j}, R_{j} by backward induction on $j(i+1 \geq j \geq 0)$:

$$
\begin{aligned}
& R_{i+1}=\emptyset, \quad N_{i+1}=\{B\}, \\
& R_{j}=\left\{T \in F_{j} \backslash F_{j-1} \mid T \cap \underset{k=j+1}{\bigcup_{j}^{i+1}} U N_{k} \neq \emptyset\right\}
\end{aligned}
$$

Choose for N_{j} some collection of $\left|R_{j}\right|$ blocks from B_{j} such that each $T \in R_{j}$ meets exactly one of them, and such that $N_{j} \cup N_{j+1} \cup \ldots \cup N_{i+1}$ is a collection of pairwise disjoint blocks. That the latter is possible follows from

$$
\left|\left({\underset{k}{U}{ }_{j}^{\mathrm{U}+1}}_{\mathrm{U}}^{\mathrm{UN}} \mathrm{k}_{\mathrm{k}}\right) \cap A_{j}\right| \leq 3.2^{i-j}
$$

and

$$
q_{j} \geq 6.2^{i-j}-1
$$

Now $F^{\prime}=\left(F \cup \underset{j=0}{i+1} N_{j}\right) \backslash{ }_{j}{\underset{U}{U}}_{i}^{U} R_{j}$ is a layer partial parallel class, a contradiction.

Ad (ii) : This is proved using an almost identical argument.

Let $a_{i}=\left|A_{i}\right|$, so that $r=a_{0}$, and let $k_{i}=\left|k_{i}\right|$. By (ii) it follows that

$$
\begin{equation*}
a_{i+1}=2 k_{i}+r \tag{1}
\end{equation*}
$$

From (i) it follows that

$$
\left(\frac{a_{i}}{2}\right) \leq k_{i} \cdot \frac{a_{i}}{2}+\left(v-k_{i}-a_{i}\right) \cdot q_{i}
$$

hence
(2) $\quad a_{i}<k_{i}+\frac{2 q_{i} v}{a_{i}}$,
and, using (1) and $a_{j} \geq a_{0}, q_{j} \leq q_{0}$,

$$
\begin{equation*}
a_{i+1}>2 a_{i}+r(1-4 Q) \tag{3}
\end{equation*}
$$

Now $v \geq a_{\ell+1}+k_{\ell}=r+3 k_{\ell}$ so that

$$
\frac{1}{3} v>a_{\ell}-2 Q r
$$

$$
>2 a_{\ell-1}+r(1-6 Q)
$$

$$
>4 a_{\ell-2}+r(3-14 Q)
$$

$$
>\ldots
$$

$$
>2^{\ell} a_{0}+r\left(2^{\ell}-1-\left(2^{\ell+2}-2\right) Q\right)
$$

$$
=r\left(2^{\ell+1}-1\right)(1-2 Q)
$$

$$
>r\left(\frac{Q r^{2}}{6 v}-1\right)(1-2 Q)
$$

Take $Q=\frac{1}{4}$. Then we have for large r :

$$
(16+\varepsilon) v^{2}>r^{3}
$$

and one verifies immediately that $r \geq 5 v^{2 / 3}$ leads to a contradiction for all r. In this proof we implicitly assumed that $\ell \geq 0$. But $\ell<0$ means $Q r^{2}<6 v$ so that again $Q=\frac{1}{4}, r \geq 5 v^{2 / 3}$ leads to a contradiction. Thus we
proved:

THEOREM. A maximum transversal of an STS(v) has size at least

$$
\frac{1}{2} v-\frac{5}{3} v^{\frac{2}{3}}
$$

It is easy to improve the constant 5 (a minor change in this proof gives 3, and further improvement is possible) but I am presently unable to improve on the exponent $\frac{2}{3}$.

Note. An almost identical proof works for Steiner quadruple systems, and again gives $r=O\left(v^{2 / 3}\right)$.

REFERENCES
[1] C.C. LINDNER \& K.T. PHELPS, A note on partial parallel classes in Steiner systems, Discr. Math. 24 (1978) 109-112.
[2] S.P. WANG, On self orthogonal Latin squares and partial transversals of Latin squares, Ph.D. thesis, Ohio State University, Columbus, Ohio, 1978.

