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resumo 
 

 

Cidades modernas têm redes de distribuição de água que de forma 
confiável satisfazem as necessidades de água de todos os 
domicílios. Estas redes dependem de bombas para mover a água 
de fontes distantes ao consumidor. Se gerido de forma ineficiente, 
este processo consumidor de energia pode tornar-se muito 
dispendioso. Através de poder computacional emergente, 
tecnologias de simulação e sensores, muitas técnicas foram 
desenvolvidas para produzir as melhores estratégias de operação. 
Estas metodologias dependem de previsões do consumo de água 
para criar estratégias de bombeamento óptimas. Porém, estas 
previsões contêm sempre erros, que podem criar problemas de 
controlo. Muitos esforços foram feitos para desenvolver melhores 
previsões, algumas das quais podem mudar os seus parâmetros 
em tempo real. De qualquer forma, estas soluções ainda contem 
erros e não conseguem adaptar a mudanças drásticas de 
consumo. Para resolver este problema é proposto um controlo 
adaptativo capaz de eficientemente actualizar em tempo real a 
estratégia de bombeamento com base nos desvios monitorizados 
relativamente à previsão. Esta metodologia toma em consideração 
uma referência optimizada para continuamente fazer as 
actualizações mais eficientes à estratégia de bombeamento. Para 
validar o controlo adaptativo, dois casos de estudo foram 
explorados: (i) uma rede simples composta de uma bomba e um 
tanque, (ii) e a de rede de referência de Richmond. Ambas as 
avaliações entregaram resultados positivos melhorando a 
eficiência a nível de custo. A combinação de previsões de 
consumo de água com metodologias de controlo adaptativo 
providencia uma solução confiável e eficiente para controlo 
automático de redes de distribuição de água. Este modelo de 
controlo pode se tornar uma característica essencial na tecnologia 
emergente “water grids” fechando o ciclo de controlo no sistema. 
. 
 

 
 
  



 
 

  



 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 

 
Adaptive Algorithm, Pumping Strategy, Cost-Efficiency, Water 
Distribution Network, Control Model, Adaptive Controller. 
 

abstract 

 
Modern cities have water distribution networks (WDN) that reliably 
meet the water demand of every individual household. These 
networks rely on pumps to move water from distant sources to the 
consumer. If inefficiently managed, this energy consuming process 
can become very costly. Using emerging computer power, 
simulation technologies and sensing devices, many techniques 
were developed that produce the most cost-efficient operational 
strategies. These methodologies rely on water consumption 
predictions to provide optimal pumping strategies. However, these 
predictions always contain errors, which may create control 
problems. Many efforts were made to develop progressively better 
predictions, some of which can change its parameters in real time. 
Nevertheless, these solutions still contain errors and cannot adapt 
appropriately to sudden changes in demand. To solve this problem, 
an adaptive controller that can efficiently update the pumping 
strategy based on monitored deviations of the predicted 
consumption is proposed. This methodology takes into account the 
tariffs of electricity over time and an optimal reference to 
continuously make the most cost-efficient updates in the pumping 
strategy. To validate the adaptive controller, two case studies were 
used: (i) a simple pump-reservoir network and (ii) the Richmond 
benchmark network. Both evaluations delivered positive results 
achieving the desired reliability while improving cost efficiency. The 
combination water consumption predictions and adaptive control 
methodologies provide a reliable and cost-efficient solution to 
operate a WDN automatically. This control model may become an 
essential feature in emerging water grids technology  by closing the 
loop in the control system. 
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Nomenclature 

Symbol  Description Unit 

 

𝑑 Disturbance. [m] 

𝑘 Control increment. [-] 

𝑦opt
𝑘  Forecasted water level of 

the tank at control 

increment 𝑘. 

[m] 

𝑦𝑘 Measured water level of 

the tank at control 

increment 𝑘. 

[m] 

xopt
𝑘,…,𝑛𝐼𝑛𝑐 = [𝑥opt

0 , … , 𝑥opt
𝑘 , … , 𝑥opt

𝑛𝐼𝑛𝑐] Initial optimal pumping 

strategy. 

[min] or 

[%] 

yopt
𝑘,…,𝑛𝐼𝑛𝑐  = [𝑦opt

0 , … , 𝑦opt
𝑘 , … , 𝑦opt

𝑛𝐼𝑛𝑐] Initial forecast of the water 

level of the tank over the 

whole control period. 

[m] 

𝑥𝑘 Pumping time at control 

increment 𝑘. 

[min] or 

[%] 

𝑛𝐼𝑛𝑐 Number of control 

increments in a 24 h 

control period. 

[-] 

x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 = [
𝑥0;0        𝑥𝑘;0        𝑥𝑛𝐼𝑛𝑐;0

−− −   𝑥𝑘;𝑘       𝑥𝑛𝐼𝑛𝑐;𝑘 
    − − − − − −     𝑥𝑛𝐼𝑛𝑐;𝑛𝐼𝑛𝑐

] 
Pumping strategy at 𝑘. 

 

[min] or 

[%] 

x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 New pumping strategy at 

𝑘 + 1. 

[min] or 

[%] 

yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐 = [

𝑦0;0        𝑦𝑘;0        𝑦𝑛𝐼𝑛𝑐;0

−− −   𝑦𝑘;𝑘       𝑦𝑛𝐼𝑛𝑐;𝑘 

    − − − − − −     𝑦𝑛𝐼𝑛𝑐;𝑛𝐼𝑛𝑐
] 

Estimation of the water 

level of the tank for the 

whole control period at 𝑘. 

[m] 

yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐

 Estimation of the water 

level of the tank for the 

whole control period at 𝑘. 

[m] 

𝑖 Adaptation option. [-] 

𝑙 Number of adaptation 

options. 

[-] 



x 
 

tp Array with the price levels 

of each control increment 

𝑘. 

[-] 

ph
𝑘;𝑖,…,𝑙

 Hierarchy control update 

vector at control increment 

𝑘. 

[-] 

∆𝑦 Variation of water level of 

the tank. 

[m] 

∆𝑥 Amount of pumping time 

that increases or 

decreases the water level 

by ∆𝑦 . 

[min] or 

[%] 

𝑚 Constant relating the 

amount of pumping time 

with the amount of water 

level in the tank. 

[m/min] 

hmin Minimum water level of the 

tank. 

[m] 

hmax Maximum water level of the 

tank. 

[m] 

𝐤𝑣
𝑘 Control increment 𝑘 at 

which the constraints are 

violated. 

[-] 

phv
𝑘;𝑖,…,𝑙

 Hierarchy control update 

that validates the 

constraints. 

[-] 

∆𝑥correct Amount of pumping time 

necessary to correct the 

disturbance. 

[-] 

𝑏𝑘 Buffer amount at control 

increment 𝑘. 

[-] 

𝑏0 Initial buffer parameter. [-] 

𝐱adp
𝑖  Amount of time to adapt at 

adaptation option 𝑖. 

[min] or 

[%] 

   

 

 

  



1 
 

1 Introduction 

“The cornerstone of any healthy civilization is access to safe drinking water.” (Larry W. 

Mays) 

“One of the most vital services to industrial growth is an adequate water supply system” 

(Larry W. Mays) 

“Water not only feeds bodies, but it also feeds countries.” (SENSUS, 2012) 

1.1 Motivation 

 

Water is undeniably one of the most essential elements of life. Historically, 

civilizations would sprout in the vicinities of vast water reservoirs, such as 

Mesopotamia. Besides that, ready access to safe drinking is one of the best 

predictors of life quality and progress [1].  

 

The creation of water distribution networks facilitated the access to places 

where before it was impossible. This allowed civilization to spread to other areas 

of the globe [1] and have access to additional resources.  

 

Nowadays, the dependency on water has grown to industrial levels and 

it’s fundamental for the economy, having influence in every single sector. This is 

another indication that as society evolves, so does the dependency on water. 

With the increase in water demand, it also increases the energy demand to 

operate a WDN. Therefore, it’s paramount to build ever more productive, reliable, 

and optimal WDN to support civilization constant growth. 

 

“If we dare to dream of a future utopia, we must first work towards a utopic 

water distribution system” (Marcelo Manteigas 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

1.2 Framework 

 

A water distribution network (WDN) is an infrastructure with the primary purpose 

of moving water from distance sources to the individual consumer in the required 

quantity and at sufficient pressure [1].  

 

Without a WDN, it’s extremely difficult to populate the most remote areas 

of the world. It allows cities to spread away from water sources, making it possible 

to explore other resources. This shows the relevance of the impact a WDN has 

on modern society. Most modern cities already have robust and reliable 

infrastructures of WDN. Such infrastructures are composed of several sections, 

with different purposes. 

 

Figure 1, illustrates the mains sectors of the course of water from its source 

until the final consumer. Although most of the process is done harnessing the 

power of gravity, it still is necessary to resort to pumping stations to move the 

water at adequate pressure, from its abstraction until its destination. Therefore, 

to effectively operate a WDN, the crucial decision that must be made is which 

pumps should be operated at any given time, as Walski pointed out [2]. This 

decision faces 3 very important competing goals: (i) maximize reliability, 

customers must always have access to water; (ii) minimize energy cost, the 

supply systems have to meet the demand while efficiently operating the network; 

(iii) Meet water-quality standards, which involves reducing the time water stays in 

storage tanks. 

 

 

 

Fig.1 – Main sectors of a water supply system from the source to the end user [9]. 

 

To operate the pumping stations it is required electrical energy, which 

means that managing a WDN involves both the responsibility of reliably moving 

water and managing energy consumption. In fact, the global water supply 

represents a significant portion of global energy consumption, which equates to 

about 7% of all energy consumed [3]. Thus, the water sector has increased 

responsibility for the sustainable use of this planet resources since it handles two 

of the most important: water and energy.  

 

This poses a massive opportunity for potential solutions since any small 

tool created to attenuate water waste products generates a significant positive 

impact on reducing the global expense of moving and managing water. It is also 

estimated that 30% of water is lost due to water leakages in the WDN, meaning 

a similar portion of the energy is also lost [4], furthermore, the inefficient operation 
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of pumps may represent an equal amount of waste. This opportunity is expected 

to be even higher in the future, as it’s predicted through the population growth 

trends and industry development. The forecast indicates that the water industry 

will reach the trillion-dollar mark by 2050 [4]. This is a clear indication of the 

potential technological advancements that have to be explored, both for 

economic benefits but also for the sustainability of the planet. 

 

The indicators of high energy consumption are immediate reflectors of 

energy costs concerning the operation of WDN. If this consumption is not well 

managed, this can generate dramatically high energy bills for any given 

institution. Managing energy might mean different things, depending on the 

industry. In the water industry, given the electricity price fluctuation over time, 

means that water should be pumped when possible at periods where the price is 

lowest. To address this opportunity, the field of automation, control, and 

optimization have been extensively developed in the academic community. Most 

of the work accomplished in recent years falls under the umbrella of reducing 

energy cost without compromising the network reliability and water quality. 

According to Feldman [5], the main improvements in energy efficiency can be 

obtained with; (1) pumping stations design improvement; (2) systems design 

improvement; (3) variable speed drives (VSD) installation; (4) efficient operation 

of pumps and; (5) leakages reduction through pressure modulation.  

 

Although the opportunity is clear and the technology is already here, the 

uptake of new procedures in practice has been somewhat disappointing with 

relatively few being applied to real WDN [6]. The resistance in adopting models 

mentioned before by the water industry is partly because they are generally 

complex, involving a considerable amount of mathematical sophistication and 

substantial computational power, that increases with the size of the network [6]. 

Besides that, the techniques are confined to minimizing energy cost and largely 

ignore the network performance.  

 

For the better acceptance of the methods by the industry, the solutions 

must be holistic, reliable, and simple to use. It is vital to develop robust software 

applying the similar methods  with; (a) intuitive and attractive graphics interfaces, 

(b) easy adaptation to new situations and, maybe the most critical issue, (c) 

paying specific attention to the network performance and the consumers supply 

requirements [6].  

 

To address this necessity, an IoT based technological solution named 

smart water grids has been developed. “A Smart Water Network is the collection 

of data-driven components helping to operate the data-less physical layer of 

pipes, pumps, reservoirs, and valves” [7]. Figure 2, shows the typical scheme of 

smart water grids technology. This technology makes it possible to leverage the 
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data collected about the network for an improved, streamlined, and efficient 

operation. 

 

 
 

Fig. 2 – Smart water grids technology scheme [8] 

 

 

A smart water network  is composed of five different layers as layout in 

figure 3; (1) Automation and control tools in the physical layer, for the automatic 

and remote execution of actions/tasks received by means of real-time 

communication channels.  (2) Measurement and sensing devices, to collect data 

from the networks (flow, pressure, water quality, etc.); (3) Real-time 

communication systems, to gather the collected data and/or to send execution 

actions (e.g., pumps or valves shut-off); (4) Data management software, to 

efficiently, handle the collected data by means of automatic processing; (5) Real-

time data analytics and modelling software, to obtain useful insights from the 

network data, monitor and evaluate the potential impact of possible changes in 

the network (e.g. patterns detection, predictive analysis of control scenarios, etc.) 

[9]. 
 

To sense and control is implemented a SCADA that manages the real-

time operations. This allows online operational adjustments to possible variations 

in the network, such as sudden fluctuations in demand, contributing to the 

efficiency improvements of the WDN. A SCADA system is composed of one or 

more field data interface devices such as reservoir level meters, water flow 

meters, valve position transmitters, power consumption meters, and pressure 
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meters. Thereby, the main functions of a SCADA system are; (1) data acquisition, 

(2) data communication; (3) data presentation and; (4) control [9]. Figure 4 

illustrates how it could be implemented a SCADA system for WDN simplistically, 

in a smart water grids context.  

 

 

 

Fig. 3 – Smart water network typical layout [7]. 

 

 

The fundamental goal of this emerging water grids tecnology is to 

introduce an automatic control in an “intelligent” way that surpasses that of a 

human operator. Having access to information the network, it’s possible to create 

hydraulic models that predict water consumptions. With this insight about the 

network, it’s possible to apply methodologies to calculate optimal operational 

strategies, like cost efficient pumping strategies. Through combining 

mathematical modeling with data sensing devices, this technology can highly 

improve the performance of the network. However, this is only possible when the 

hydraulic simulators are adequately calibrated and reflect the real operational 

characteristics of the network. 

 

The smart water grids technology relies on robust mathematical 

formulations that manage all the data received concerning the network. A lot of 

work has been developed to create features that improve its performance. As 

highlighted at the beginning of this section, any small improvement in the 

management of water has the potential to produce excellent results due to scale 

effects. Most improvements are based in refining the quality of water consumption 

predictions. Recently, solutions based on artificial neural networks have also 

been explored, having succeeded in surpassing the accuracy performance of 

hydraulic modeling at representing the network. Yet this is only possible when 

there is access to large amounts of data about the network, which is not the case 

for the vast majority of WDN [10]. 
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Fig. 4 – Scheme describing the optimal operation of WDN using a SCADA system [9].  

 

As the next section demonstrates, predictions are always accompanied by 

errors, and sometimes water consumption might unexpectedly deviate from what 

is expected. These situations can create control problems and reduce the 

performance of the network. Dealing with these problems is a central argument 

in developing automatic systems that can operate in closed loop control for WDN. 

Emerging reliable technology to run WDN’s is of great interest to institutions that 

provide this service. Thus this work fits in the framework of improving the usability 

and end result of these technologies by developing tools that address these 

problems. 
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1.3 State of the Art 

 

To effectively control a pumping stations, the decisions must be made having in 

mind that the customer must always have access to water. After assuring the 

demand is met, the next goal is to perform this task in the most cost-efficient way. 

Different strategies have been devised to meet this goal, and the most recent are 

based on water consumption forecasts. These advancements were made 

possible due to recent technological developments. In most modern water 

services institutions, some form of hydraulic modeling, followed by predictions of 

water consumption and optimal pumping strategies are used to assist the 

operator in making the best decisions [11]. 

 

 

 

Fig. 5 – Dynamic Real-time Adaptive Genetic Algorithm – Artificial Neural Network [6]. 

 

 

Although this control methodology is very effective at producing the most 

cost-efficient operational strategy, it requires additional control from an operator 

to account for unpredictable changes in demand or unexpected errors in the 

forecasting. In real time operations, the monitored water consumption is often 

different from the predictions. These types of controllers do not have the ability to 

adapt to changes and therefore are weak alternatives to implement in closed-

loop control systems [12]. 

 

Some systems that try to bypass this problem were designed, such as the 

DRAGA-ANN( Dynamic Real-time Adaptive Genetic Algorithm – Artificial Neural 
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Network) [6], a fully adaptive forecasting model proposed by Bakker [13] and the 

PAWN (Parallel Adaptive Weighting model) [14], that to some extent can adapt 

to changes in the environment by continuously adjusting their forecasts based on 

new readings of the network. Figure 5 demonstrates the algorithm used by the 

DRAGA-ANN system to achieve this purpose. These models can make reliable 

forecasts of the water consumption, which make possible the creation of 

optimized strategies to operate the pumping stations, however they are not robust 

to unexpected changes. They are suitable for real-time operations but  it’s 

necessary supervision from the operators. 

 

A solution to this reliability problem is the typical reactive controller. These 

controllers don’t use any sort of “intelligence” to control network and are often 

single objective. The simplest one’s work on the basis of keeping the water level 

within a certain level. This strategy might be very cost inefficient since it doesn’t 

leverage the knowledge about the network. Instead, it’s continuously reacting to 

the demand and adapting the state of the pumps accordingly. Although this 

methodology does not produce the most cost-efficient strategies, it can reliably 

assure a closed loop control. 

 

 A simple PI (proportional–integral) controller was created for the control of 

a pumping stations of a WDN but seemed to be unsuitable for solving the problem 

of effective water distribution control canals characterized by significant time-

varying dynamical parameters. The PI controller has the best performance only 

in nominal conditions, which is not the case of a WDN dynamic [15]. 

 

A more sophisticated reactive controller is the adaptive controller. Figure 6 

shows the scheme of an adaptive controller design proposed by  Elbelkacemi 

[16]. This architecture is composed of a controller that executes the actions, the 

plant (or the system to be controlled) that receives such instructions and outputs 

its response, and an adaptive scheme  that results from the combination of a 

parameter estimation and control design that continuously adapts the controller 

execution strategy. The use of this controller has benefits; it allows a high-

performance control of the system and provides fine tuning of the controller when 

the reaction of the plant is unknown or time-varying. It has the ability to solve 

through good approximation some nonlinear stochastic control problems, that 

can’t be simply solved through gain scheduling [17]. 
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Fig. 6 – Adaptive LQR control model for pumping stations [16]. 

 

 

There are many applications that rely on adaptive controllers to extract the 

best possible control results. In the water industry, this tool has been applied for 

water quality control, such as the one created and tested by Zhong [18] and KIOS 

research center [19]. Shengwei Wang also suggested the application of adaptive 

controllers to operate variable speed drives [20].  

 

An adaptive controller was built to automatically operate a decentralized 

water distribution network, with more than 20 pumps to provide water into an 

agriculture field. This controller main objective is to stabilize the water level of the 

tanks while reducing water waste products. Although it’s designed to reduce the 

cost of pumping, it didn’t consider the electricity tariff price in its operation. 

However, the complex mathematical formulation made it impractical to implement 

this model in larger systems. Besides that, the controller was single objective, 

only considering the water level of the tank [21]. A similar model for a simple 

network has also been implemented by Rivas Pérez [22]. 

 

Another real-time optimal controller was designed and tested to work on a 

water supply system of river Basis [23]. The result is a single objective controller, 

that was tested using 2 different controller designs; (i) the LQR (linear quadratic 

regulator) and, (ii) MPC (model predictive controller). The controllers had two 

working frameworks, one dedicated to controlling the water tank level, and the 

other to control the constant water inflow. Although the results were reasonably 

good at having a prompt response to disturbance, the control models were not 

adaptive to the time-varying nonlinear dynamics of a WDN. The model was 

implemented and tested successfully but was limited to work in open loop. The 

LQR control algorithm, when combined with an adaptive scheme, has shown 

better results to control the flow of water, being successful at regularizing the 

pumping discharges to face the oscillation of demand. However, it doesn’t 

consider the pumping cost in its control objectives. A similar controller was 
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designed with a focus on energy efficiency but didn’t take into consideration the 

electricity price table [24]. 

 

There are many adaptive controllers being used to control pumping stations 

in water distribution networks, although they are successful at dealing with the 

nonlinear dynamics of WDN, most of them are single objective and 

mathematically complex, posing a limitation to their application in city-sized WDN, 

where the solutions must be holistic and straightforward to be implemented [22]. 

 

Essentially these are the two state-of-the control methodologies used in 

pumping stations; one is based on developing extensive insight about the 

networks that make possible the use of forecasts to leverage the decisions taken 

by operators. It can work automatically in real-time operations. However, it’s 

necessary to have some form of supervision from an operator by introducing 

machine interaction through visual interfaces and alarms to assure the reliability 

of the systems. The other solution for this concern can reliably control a WDN 

automatically in closed-loop, by operating on constant feedback with the real 

monitored readings of the network. The adaptive controllers are more successful 

with this task. However, the cost of the operation is often not taken into account 

since the strategies are single cycled, making it less attractive for institutions. 
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1.4 Objectives 

 

Having studied the literature concerning the control methodologies for the water 

distribution network, it is clear that the evolution of solutions has diverged into two 

different realms of thought. One is based on leveraging vast amounts of data to 

produce the best operational strategies. The other focuses on constant 

monitoring of the network to make online adjustments to the pumping stations. 

Although some solutions have tried to integrate both ideas, such as building 

evolving predictions by monitoring the networks, these are far from perfect and 

aren’t reliable enough to close the control loop. This means that these 

methodologies still need user input to run without compromising access to water 

to the final consumer. 

 

 If the objective is to create a functional software feature for the emerging 

water grids technology to deliver a fully automatic solution to water service 

providers, an adaptive control methodology might work well, however, due to the 

lack of consideration over the cost of operation, this solution is not liable to be 

accepted by the water industry. 

 

 There is a clear gap in the literature in experiments that try to develop 

methodologies that fully merge the advantages of both ideas. Create a controller 

that can adapt to the environment response, but that also considers the forecasts 

and knowledge about the network.  

 

 The hypothesis is that the solution is to develop a control algorithm that 

can adapt the previous optimally calculated parameters on the basis of the 

environment changes. Creating an adaptive controller, that doesn’t adjust to the 

real consumptions but rather that operates by nullifying the disturbances created 

by an operating strategy that follows a water consumption forecast. 

 

 Thus, the objective of this work is to develop a new methodology to 

operate the pumping stations that aims at surmounting the current automatic 

control strategies, and that might become a better fit solution for the emerging 

water grids technologies.  
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2 Methodology 

 
As suggested in the previous section, there is high potential to explore the 

merging of the two control strategies; (i) control based on forecasts and, (ii) 

control based on adaptation to continuous measurements of the network state. 

To accomplish that, the architecture of the controller is similar to the one 

proposed by  Elbelkacemi [16] in figure 6, with a different adaptive algorithm. The 

adaptive scheme in adaptive controllers uses the online readings of the network 

to calculate new parameters for the controller. For this project, the adaptive 

scheme is designed to use these same online readings to nullify the disturbance 

measured by comparing the real consumptions of the network with the calculated 

forecast. The disturbance 𝑑 is calculated as;  

 

𝑑 = 𝑦opt
𝑘 − 𝑦𝑘 ,                                                                                                                            (1)    

 

where 𝑦opt
𝑘  is the predicted water level of the tank at control increment 𝑘 based 

on the water consumption forecast and optimal pumping strategy xopt
𝑘,…,𝑛𝐼𝑛𝑐

, the  𝑦𝑘 

is the measured (or real) water level of the tank at the control increment 𝑘.  

 

The disturbance 𝑑 is calculated  at every control increment 𝑘 and the 

objective of the adaptive controller is to continuously nullify it in order to allow the 

cohesion of the initial pumping strategy over time. In a different way of thinking, 

the disturbance 𝑑 can be seen as an indicator of the accuracy of the forecast, 

and the purpose of the adaptive controller is to minimize this error in real time. To 

achieve this purpose, the initial pumping strategy xopt
𝑘,…,𝑛𝐼𝑛𝑐

 must be continuously 

updated.  

 

The adaptation to the measured disturbance 𝑑 is made by intelligently 

updating the initially introduced pumping strategy xopt
𝑘,…,𝑛𝐼𝑛𝑐

, considering the cost 

efficiency and the reliability of the process. The adaptive scheme seeks for the 

time periods where the price of electricity is lowest (or highest, depending on 

whether the disturbance is positive or negative) while respecting the safety 

constraints of the system. 

 

The final result is a pumping strategy that uses the water consumption 

forecast to produce an initial optimal reference, which is updated continuously by 

the adaptive scheme through monitoring the real water consumption of the 

network. The new pumping strategy x𝑘;𝑘,…,𝑛𝐼𝑛𝑐  established by the adaptive 

controller at control increment 𝑘 is an updated version of the initially introduce 

optimized pumping strategy, that better fits the actual demands of the WDN. 
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2.1 Controller Design 

 

The proposed control model follows a standard adaptive controller architecture, 

such as the one represented in figure 7. The controller is the combination of 3 

main modules: (i) the controller module, (ii) the network module, and (iii) the 

adaptive scheme module. These modules are in constant interaction with each 

other. This interaction is sequential, as it is represented in figure 8. The cycle is 

repeated at every control increment 𝑘, this is the chosen amount of time at which 

the adaptive controller monitors de network and performs adaptations.  

 

Typically, the amount of time used for the control increment 𝑘 ranges from 

15 minutes to 1 hour, corresponding to 𝑛𝐼𝑛𝑐 =  96 𝑜𝑟 24 control increments 𝑘, in 

a 24-hour day, respectively. 

 

 

 

Fig. 7 – Adaptive control architecture. 

 

 

At every control increment 𝑘, the controller module executes the pumping 

instructions x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 by sending information about the amount of time the pumps 

are  switched on 𝑥𝑘 to the network module. The network module receives and 

executes the instructions and sends the monitored water level of the tank 𝑦𝑘 to 

the adaptive scheme module. The adaptive scheme uses this information to 

produce a new pumping strategy x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐  that better adjusts to the demands. 

This new strategy is then sent to the controller module to execute in the next 

control increment 𝑘 + 1. 

 

 The network module is the water distribution network itself, which can be 

seen as a plant with unknown parameters inside. The plant responds to a specific 

input, the amount of pumping 𝑥𝑘, by delivering a measured output, the amount of 

water consumed by the network or the water level in the tanks 𝑦𝑘. 
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Fig. 8 – Flow sequence of the adaptive controller. 

 

The controller module receives the updates, and operates by executing one 

of the following four decisions: 

 

1- No adaptation – The controller doesn’t receive a new pumping strategy  

 x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐, therefore executes the instructions 𝑥𝑘of its current strategy  

x𝑘;𝑘,…,𝑛𝐼𝑛𝑐. This might happen in the case where there is missing information, 

and the adaptive scheme fails at creating a new pumping strategy to feed the 

controller; 

 

2- Adaptation – The controller receives a new pumping strategy  x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐and 

follows the instructions 𝑥𝑘 for that control increment 𝑘;    

 

3- Non-routine operation – the disturbance is substantially higher than expected 

and might signal future problems. The controller starts operating with a different 

strategy to assure reliability; 

 

4- Send alarm – The monitored water consumption is significantly higher than 

expected, send an alert for help. 

 

The adaptive controller continuously executes this set of actions in order to 

reliably and efficiently control the network by facing the changes in consumption 

when compared with the forecast. 
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2.2 Adaptive Scheme 

 

Given the nature of the problem, the methodology focusses on meta-heuristics 

that follow the principles of adaptive algorithms to achieve the desired result. The 

following sub-sections explain each of the ideas used to develop the algorithm in 

the adaptive scheme. 

 

2.2.1 Hierarchy Control Update 

 

To produce the most cost-efficient results in energy consuming processes, it’s 

necessary to take into consideration the tariffs of electricity over the day. 

Standard tariffs have periods of time where the price of electricity is highest and 

periods where the price is lowest. Table 1 suggests an example of a possible 

tariff. As it can be observed in table 1, for the same energy consumed, the cost 

can be up to 3 times higher. This observation can be extracted by comparing the 

cost of electricity between a very empty period and peak hours. Therefore, for the 

same process, the electricity bill differs depending on its timing. 

 

Table 1 – Price tariff over the day. 

 

 

 

 

 

 

 

 

 

This is the central concept used to calculate an optimized pumping 

strategy xopt
𝑘,…,𝑛𝐼𝑛𝑐

. The adaptive scheme should update the pumping strategy 

x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 by seeking the most cost-efficient options, this way assuring that the 

new pumping strategy x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 aims at being cost-efficient. Practically, this 

means that the pumping strategy x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 is updated according to the measured 

disturbance 𝑑 by adding or taking pumping time in the control increment 𝑘 where 

it is obtained the highest benefit.  

 

For example, if it is measured an excess in water consumption, the 

algorithm searches firstly for the possibility to increase the pumping time 𝑥 in 

control increments where electricity price is lowest and then to highest 

accordingly. Conversely, if it is measured a reduction of water consumption 

compared with the prediction, it takes firstly pumping time 𝑥 from control 

increments where electricity price is highest, followed by the lowest.  

Interval [h] Period Cost [$/kWh] 

[0 , 2 [ Empty 0.0737 

[2 , 6 [ Very Empty 0.06618 

[6 , 7 [ Empty 0.0737 

[7 , 9 [ Full  0.10094 

[9 , 12 [ Peak 0.18581 

[12 , 24 ] Full 0.10095 
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The purpose of this idea is to search through the remaining control period 

of 24 hours the most cost-efficient way to update the pumping strategy x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 

based on the measured disturbance 𝑑 while assuring that the water level of the 

tank stays within the established safe limits. The adaptive scheme is proactively 

finding the best adaptation solution over the 24-hour control period (or any other 

considered control period), instead of reacting to the measured disturbance 𝑑 by 

adapting the strategy in the same control increment 𝑘. 

 

In the end, this means that the adaptation follows an hierarchy-based 

methodology that prioritizes the system reliability while optimizing for a cost 

efficient operation. This hierarchy control update  ph
𝑘;𝑖,…,𝑙

, is created at every 

control increment 𝑘, in order to continuously make the most optimal decisions 

based on the forward increments 𝑘,… , 𝑛𝐼𝑛𝑐. Mathematically, this process is 

described in the following equations.  

 

The first part is to establish the price hierarchy. To achieve this, a hierarchy 

function that attributes a level to the price of electricity for a given control 

increment 𝑘 is used . This level is an integer that ranges from 1,… , 𝑛  where 𝑛 is 

the number of different prices of a specific tariff. The scalar 1 indicates the lowest 

price level and 𝑛 the highest. Mathematically this is described by the following 

equation, 

 

𝐭p = hierarchy(𝑘,… , 𝑛𝐼𝑛𝑐),                                                                                                     (2) 

                                                                                             

where 𝐭p is the vector that holds the levels for all control increments 𝑘,… , 𝑛𝐼𝑛𝑐. 

Similarly, yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

 is the vector that contains the estimated water level of the 

tank for all control increments 𝑘,… , 𝑛𝐼𝑛𝑐 . With this information, it’s possible to 

compile the hierarchy control update  ph
𝑘;𝑖,…,𝑙

 using the  rankmax   and 

rankmin  functions. The rankmax  function sorts the input vector from the highest 

to the lowest value, and it’s used when the measured disturbance 𝑑 is negative. 

Conversely the rankmin  function sorts the input vector from the lowest to the 

highest value, and it’s used when the measured disturbance 𝑑 is positive. 

Mathematically this is described by the following equation; 

 

   ph
𝑘;𝑖,…,𝑙 = {

𝑟𝑎𝑛𝑘max ( 𝐭p × 𝑛𝐼𝑛𝑐 + yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐)   for  𝑑 < 0

𝑟𝑎𝑛𝑘min ( 𝐭p × 𝑛𝐼𝑛𝑐 + yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐 )   for  𝑑 > 0

},                                      (3)      

                                                         

where  ph
𝑘;𝑖,…,𝑙

 is the vector with that holds the adaptation options ranked from best 

to worst, 𝑖 is the adaptation option, and 𝑙 = 𝑛𝐼𝑛𝑐 − 𝑘  is the number of adaptation 

options.  

 



18 
 

The vector 𝐭p is multiplied by 𝑛𝐼𝑛𝑐 in order to give it priority over yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

. 

This means that the cost of electricity has higher weight in creating the hierarchy 

control update vector. It is defined the best adaptation the control increment 𝑘 

that has the lowest price and the lowest water level of the tank, in case of the 𝑑 >

0, and the control increment 𝑘 that has the highest price and the highest water 

level of the tank, in case of the 𝑑 < 0. 

 

Figures 9 and 10 illustrate the methodology of the hierarchy control 

update ph
𝑘;𝑖,…,𝑙

. Figure 9 shows the best pumping options found by measuring a 

negative disturbance 𝑑 in control increment 𝑘 = 0. Figure 10 shows the best 

pumping options found at measuring a positive disturbance 𝑑 control increment     

𝑘 = 0. This example uses 𝑛𝐼𝑛𝑐 = 24 in a 24-hour period. 

 

 

Fig. 9 – Best pumping options at the control increment 𝑘 = 0 for negative disturbance. 

 

 Through analyzing figure 9, it’s clear that the first best pumping options 

found by the algorithm, when the measured disturbance is negative, are both the 

ones that have the lowest price and lowest water tank level. Take for example 

the best adaptation option highlighted by the big yellow circle; a careful analysis 

shows that it corresponds to the control increment 𝑘 = 2, such that the cost of 

electricity corresponds to the level 1, and has the lowest water level of the tank 

among the other control increments belonging to that price level.  

 

In case that the measured disturbance is positive, then the best adaptation 

options take a different solution. From figure 10, it can be seen that the hierarchy 
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methodology finds the opposite answer since it’s more beneficial for the system 

to decrease pumping time when the electricity price and the water level are 

highest. Take for an example the best adaptation option highlighted by the big 

yellow circle; a careful analysis shows that it corresponds to the control increment 

𝑘 = 10, such that the cost of electricity corresponds to the level 4, and has the 

highest water level of the tank among the other control increments belonging to 

that price level.  

 

In conclusion, the hierarchy pumping idea aims at continuously creating a 

sorted vector of the best adaptation options that the controller can make to correct 

the disturbance. This vector can then be used to nullify the disturbance 𝑑, by 

adding or taking pumping time, starting from the best adaptation option until the 

worst. This obviously must take into consideration the previous pumping strategy 

x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 , in order to make valid adjustments to create the new pumping strategy  

x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐.  

 

 

Fig. 10 – Best pumping options at control increment 𝑘 = 0 for positive disturbance  

 

 

 

2.2.2 Sensitivity Analysis 

 

In every control algorithm, it’s necessary to derive a relationship between 

the control variable (or independent variable) and the observed variable (or 

dependent variable). In this specific control problem, the control variable is the 
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amount of time the pumps are switched on, and the observed variable is the water 

level of the tanks. 

Considering now the network as the system to be controlled, that receives 

the pumping time instructions and outputs the water level of the tank, it’s possible 

to extract a relation between these variables by testing the sensitivity of the 

system to the control variable. Mathematically, this is the same to determine the 

slope of the curve that relates both variables, such as, 

 

∆𝑦 = 𝑚 × ∆𝑥,                                                                                                                                (4) 

 

where 𝑚 defines the pumping time  ∆𝑥 for a certain amount of water in the tank 

∆𝑦. The most effective strategy to determine the constant 𝑚 is to simulate 

different pumping strategies in the network with increasing periods of time the 

pumps are switched on, and then observed the different responses of the system 

by measuring the water level of the tank. This data set can then be used to 

calculate a linear regression that describes the system. The following equation 

defines the process mathematically to determine the relation, 

 

𝑚 =
𝑁 × ∑(𝑥 × 𝑦) − (∑𝑥) × (∑𝑦) 

𝑁 × ∑(𝑥2) − (∑𝑥)2
,                                                                                    (5) 

 

where 𝑁 is the number of observations used. 

 

 For complex systems composed of more than one pumping and tank, this 

relationship becomes harder to deduct due to the dependencies between all the 

links and nodes composing the network. In this case the extraction of the tank 

and pumping relationship becomes more complicated, and it is necessary to recur 

to a simplification. The strategy focusses on simulating different cases for the 

states of the pumping in order to derive various points used to determine the 

constant by the same regression technique mentioned above. The result won’t 

be as exact; however, it provides a close enough relationship to implement the 

algorithm. This relation can then be used to transform the measured disturbance 

𝑑 in the additional quantity of pumping time ∆𝑥correct to correct it. The amount of 

pumping time  that is necessary to add or take in order to nullify the observed 

disturbance is given by, 

 

∆𝑥correct = 𝑑 ×𝑚.                                                                                                                       (6) 

 

A seemingly more straightforward approach is to use the pumping 

equations to determine this relationship. However, this approach is bounded to 

fail in most cases since it doesn’t take into consideration all the variables of the 

network that affect the amount of water that is observed in the tank. A 

straightforward example is the existence of consuming points between the pumps 

and the tanks that evidently affects how much water is found in the tank. Besides 
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that, the intrinsic characteristics of the network might also affect the amount of 

water that reaches the tank. For these reasons, an experimental approach is a 

better way to study this relationship. 

 

2.2.3 Constraint Validations 

 

The reliability of the operation is more critical than operating a water distribution 

system in the most cost-efficient way. The water demand of the costumers must 

always be met. Therefore, the adaptive controller proposed in this work must 

respect this condition, such that in any adaptation suggested by the adaptation 

scheme, the water level constraints must be satisfied. The water level safe limits 

are set accordingly to each specific tank. The limits bound the water level by a 

minimum and a maximum value, and the control strategy must always take into 

account these boundaries. This is described mathematically by the following 

equation, 

 

ℎmin ≤ yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐  ≤ ℎmax ,                                                                                                   (7) 

 

where ℎmin is the established lower bound of the water level, ℎmax is the 

established upper bound of the water level, and yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

  is the expected water 

level for the whole control period of the tank calculated at the control increment 

𝑘, which is calculated through, 

 

yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 = yest

𝑘;𝑘,…,𝑛𝐼𝑛𝑐 +   𝑑.                                                                                                (8) 

 

 This objective is partly accomplished with the hierarchy pumping idea 

since the adaptation in control increments where the water level of the tank is 

lower is prioritized. However, the cumulative effect of the applied or observed 

changes are reflected throughout the whole control period and the constraints 

can’t be validated only considering that idea. Increasing the pumping time 𝑥𝑘 in 

the control increment 𝑘 increases the estimated water level of the tank  yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

 

for the following increment 𝑘 + 1,… , 𝑛𝐼𝑛𝑐. The cumulative effect of this operation 

must be addressed by taking into consideration the whole strategy when 

validating the constraints, such as highlighted in the previous equation. To 

accomplished this, the following rules are introduced: 

 

1. Adapt before violating 

 

After calculating the expected water level of the tank knowing the impacted of the 

disturbance 𝑑 by calculating the expected water level of the tank yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

, it’s 

possible to determine if any constraint is violated and at which control increment 

𝑘. This control increment can be determined by the following equation. 
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𝐤𝑣
𝑘,…,𝑛𝐼𝑛𝑐 = {

0 for ℎmin ≤ yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 ≤ ℎmax  

𝑖 for ℎmin ≥ yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 ≥ ℎmax 

}  ,                                                          (9)        

                                                            

where 𝐤𝑣
𝑘,…,𝑛𝐼𝑛𝑐

 holds the control increments that record the violated constraints. 

Knowing the point at the which the limits are overpassed, it’s possible to prevent 

by forcing the adaptation to be done before that control increment 𝑘. Therefore, 

the valid calculated adaptations by the hierarchy control update ph
𝑘;𝑖,…,𝑙

 are the 

ones such the respective control increment is smaller than 𝑘 such that 𝑘𝑣
𝑘 ≠ 0, 

mathematically, 

 

phv
𝑘;𝑖,…,𝑣 = {  ph

𝑘;𝑖,…,𝑙   for    ph
𝑘;𝑖,…,𝑙 < 𝑘𝑣

𝑘} ,                                                                             (10)      

                                                                                 

where phv
𝑘;𝑖,…,𝑣

 is the valid hierarchy control update vector and holds the sorted 

control increments 𝑘, from best to worst adaptation, that validates the imposed 

constraints and 𝑣 is the number of valid adaptation options. 

 

2. React to prevent 

 

The water demand can fluctuate unexpectedly due to random events, such as a 

fire situation. In this case, the consumption of water might increase radically and, 

therefore, largely deviate from the forecast. To cope with that situation, the 

adaptive scheme has a mechanism to prevent the water demand is 

compromised. Basically, if the measured water consumption is consistently 

higher (or lower) than the calculated forecast, the adaptive scheme activates a 

reactive mechanism instead of the established proactive approach to deal with 

these occasions.  

 

Using this mechanism, the adaptive controller can firmly guarantee the 

reliability of the operation preventing possible violations of the constraints and 

reacting to unusual situations. 

 

This mechanism ignores the adaptive scheme actions and reacts by 

changing the pumping time in the current control increment. This is done using a 

buffer value that indicates the proximity of the water level to the established limits. 

This value, which is slightly lower (or higher) than the maximum (or minimum) 

level of the tank triggers this reactive mechanism. Therefore, the reactive 

mechanism is triggered if the condition described in the following equation is true; 

 

ℎmax − 𝑏
𝑘 ≤ yest

𝑘;𝑘+2 ≤ ℎmin + 𝑏
𝑘 ,                                                                                       (11) 
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where 𝑏k is the buffer value at control increment 𝑘.The magnitude of the buffer 𝑏k 

changes over time, and it’s directly proportional to the consistency of the 

anomaly, such as described in the following equations; 

 

𝑏𝑘 = 𝑗𝑘 × 𝑏0,                                                                                                                               (12) 

𝑗𝑘 = {
|𝑗𝑘−1 + 1|   𝑓𝑜𝑟  𝑑 > 0

|𝑗𝑘−1 − 1|    𝑓𝑜𝑟  𝑑 < 0
},                                                                                            (13) 

 

where 𝑗𝑘 is the constant that multiplies by the initially established buffer value 𝑏0  

at control increment 𝑘 and 𝑗𝑘−1  is the constant that multiplies by the initially 

established buffer 𝑏0  of the previous control increment 𝑘 − 1. This mechanism 

assures the algorithm holds memory of rapid changes in the magnitude of 

deviations. 

 

2.2.4 Decision-Making Algorithm 

 

The adaptive scheme must be incorporated with a mechanism that determines 

the best decisions to adapt to the measured disturbance. As highlighted by the 

previous sections, the decision-making process is bounded to a set of 

assumptions. To optimally perform this task, the decisions must be made 

sequentially and properly incorporate every stated principle. figure  11 presents 

a scheme of the methodology developed. The squared boxes in figure 11 hold 

the actions performed by the algorithm.  

 

The algorithm starts by calculating the disturbance 𝑑 using the real 

measure of the water level 𝑦𝑘 and the optimal water level for that control 

increment 𝑦opt
𝑘 . With that information, an initial estimation of the water level 

yest
𝑘;𝑘,…,𝑛𝐼𝑛𝑐

 for the whole control period is calculated. This information in 

combination with the previous pumping strategy x𝑘;𝑘,…,𝑛𝐼𝑛𝑐 is used to create the 

framework of valid pumping update control phv
𝑘;𝑖,…,𝑣

 that is used to make the 

decisions.  

 

After determining the adaptations that nullify the disturbance, while 

respecting all the stated assumptions, it’s produced a new pumping strategy 

x𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 and a new estimation of the water level yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐

 for the following 

control increment 𝑘. This is again used to validate the constraints in order to 

predict any future failure of the system as highlighted in the section 2.2.3. At the 

end of this process, a new pumping strategy for the controller is outputted. The 

latest estimation of the water level for the whole control period is used to keep 

track of the influences that the adaptations and disturbance have on the 

operational strategy. 
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Fig. 11 – Flow diagram of the decision-making algorithm.  

 

 An important note relative to the adaptations in the decision-making 

process is that the disturbance can be nullified through a set of increments. To 

accommodate cases where the current strategy doesn’t permit the change, such 

as in situations that  𝑥𝑘 + ∆𝑥correct > 1  ∪  𝑥
𝑘 − ∆𝑥correct < 0, which is impossible 

since the input-variable 𝑥𝑘 is in fact a fraction of time the pumps are on for each 

control increment and thus   𝑥𝑘 ∈ [0,1] . Also   yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 +

∆𝑥correct

𝑚
> ℎmax  ∪

 yest
𝑘+1;𝑘,…,𝑛𝐼𝑛𝑐 −

∆𝑥correct

𝑚
< ℎmin would violate the imposed constraints of the 

system, and therefore are not valid. For such cases, the adaptations can be 

distributed by various control increments such that validates the constraints of the 

system. In this case, it is necessary to calculate an additional variable that 

indicates the maximum possible change for a particular control increment 𝑘, as 

described by; 

 

𝐱adp =

{
 
 

 
  (1 − x𝑘;𝑖,…,𝑙)     for    𝑑 > 0    ∩     (yest

𝑘;𝑖,…,𝑙 +
(1 − x𝑘;𝑖,…,𝑙)

𝑚
) ≤ ℎmax

(x𝑘;𝑖,…,𝑙)      for    𝑑 < 0    ∩     (yest
𝑘;𝑖,…,𝑙 −

(x𝑘;𝑖,…,𝑙)

𝑚
) ≥ ℎmin

                0                                                               else                                     }
 
 

 
 

, (14) 

 

where 𝑥adp
𝑖  is the amount of pumping time that can be taken or added for that 

control increment, according to the measured disturbance 𝑑. This value is used 

to perform the adaptation for that control increment 𝑘 and update the ∆𝑥correct in 

the following way; 

 

∆𝑥correct = ∆𝑥correct − 𝑥adp,
𝑖                                                                                                   (15) 

 

where 𝑖 is the current iteration of the decision-making process and 𝑙 is the iteration 

number such that ∆𝑥correct = 0. 
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 This is translated into a sequence of adaptations starting by adapting as 

much as possible in the first adaptation option of the valid hierarchy update 

control vector phv
𝑘;𝑖,…,𝑣

 until finally, the disturbance is fully nullified. 
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3 Validation, Results, and Discussion 

 

The methodology designed in this work can assure a reliable and cost-efficient 

control of the operation. The tests are performed by simulating an environment 

that mimics the behavior of a real water distribution network through software 

modeling techniques. This enables the extraction of results that can be 

extrapolated to real WDN. The results are compared with other controllers to 

provide information about the performance of the adaptive controller across a set 

of relevant criteria.  

3.1 Implementation 

 

Two example networks are used to implement the controller and analyses its 

performance. The first case study applies the adaptive controller in an elementary 

network composed of a tank and pump. The second case study uses a simplified 

version of the benchmark Richmond network, which is composed of 7 pumps and 

6 tanks.  

 

3.1.1 Simulation Framework 

 

As explained in the methodology, the adaptive controller is composed of three 

modules. For simulation purposes, each module has to be modeled through 

software. The adaptive scheme module and the controller module are the 

algorithms developed in the methodology. The network module must be 

represented virtually by shaping the environment of a real network.  

 

The subsystem F is an excellent framework to test new ideas given its 

simplicity. The results for this case-study mainly help understand and validate the 

methodology, not necessary to extrapolate the methodology to real-world 

scenarios. The scheme of the first network is represented in figure 12 [26]. Since 

the system is relatively simple, the hydraulic model was implemented using 

Python. For simulation purposes, and since the adaptive scheme uses a 

prediction of the water consumption of the system, the modeling framework uses 

two hydraulic models, one to give the “real” readings at every control increment 

and another to extract a 24-hour prediction and optimal pumping schedule. 

 

The difference between these hydraulic models lies in the parameters of 

the consumption functions. The “real consumptions” of water have slight 

deviations according to the type of test performed. The prediction is always 

extracted from the same consumption curve. 
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For the second case study, the hydraulic model of the Richmond network 

was used with the Epanet simulator. The scheme of the system is represented in 

figure 13. The Richmond network is a very well-studied network in the academic 

arena, and a valuable benchmark to test new methodologies and ideas. Besides 

that, given its complexity and approximation to the real-world scenarios, the 

results are helpful to validate a new dimension of the adaptive controller 

developed for this work, scalability. In a single pump-tank simulation, the relation 

is very straightforward and easy to explore. In a complex network, the 

interdependence between the several nodes and links might become the 

bottlenecks of the operation and the reason for failure. Therefore, this case-study 

provides better conditions to validate the new methodology. 

 

 

Fig. 12 – Subsystem F network scheme [26]. 

 

 

The case study 2 uses the capabilities of the Epanet 2.0 software to 

simulate the environment of this network as virtual real network. The network 

module interacts with the adaptive controller designed in python through a 

specific API. Similarly, to the previous case study, the simulation uses the same 

hydraulic model to extract the forecasted consumption for the 24-hours, and the 

“real consumption” at every control increment. The water consumption forecast 

is always the same, and for this case study a fully optimized pumping schedule 

is not used, but rather a typical pumping strategy. The measured water 

consumption depends on the test performed. 
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Fig. 13 – Richmond network scheme [11]. 

 

 

3.1.2 Evaluation Criteria 

 

To evaluate the model in an objective and standardized way, it’s necessary to 

define clear evaluation criteria. Since the main concerns in a WDN are related to 

reliability and cost, these are also the main concerns of evaluation, and the most 

critical metrics for forwarding analysis. The best result delivers the highest 

reliability at the lowest cost. It is defined success if the adaptive controller can 

perform better or equally well in these evaluation criteria than the standard 

controllers. 

 

The reliability is measured by the number of times the controller manages 

to control the water level of the tank throughout the whole day. This means, that 

the water level must stay within the established limits. In the case of the 

subsystem F, between 2 and 7 meters. For the Richmond network, the limits vary 

for each tank. Any small violation of these constraints is counted as an 

unsuccessful control. This is indicated by the following equation, 

 

𝐬𝐮𝐜𝐞𝐬𝐬𝐞𝐬𝑖,…,𝑁t = {
1 for ℎmim ≤ yest

𝑛𝐼𝑛𝑐;𝑘,…,𝑛𝐼𝑛𝑐 ≤ ℎmax

0 for ℎmim ≥ yest
𝑛𝐼𝑛𝑐;𝑘,…,𝑛𝐼𝑛𝑐 ≥ ℎmax

},                                              (16) 

 

where the vector 𝐬𝐮𝐜𝐞𝐬𝐬𝐞𝐬𝑖,…,𝑁t holds the success history of the simulations 

based on the test condition presented, 𝑖  is the the current test, and 𝑁t is the 

number of tests performed. With this information it’s possible to calculate the 

success rate 𝑆rate of each example as demonstrated by, 

 



30 
 

𝑆rate =
sum(𝐬𝐮𝐜𝐞𝐬𝐬𝐞𝐬)

𝑁t
× 100 (%).                                                                                    (17) 

 

For subsystem F, this evaluation is made for 𝑁t = 1000 simulations in each 

test, and the result comes over the form of a percentage that indicates the 

frequency of the successful controls. If the result is 𝑆rate = 100%, it means the 

controller managed to control the water level within the established limits in every 

simulation of a specific test. Conversely 𝑆rate = 0%, it means the controller failed 

at holding the water level within the safe limits. For the Richmond network, this 

criterion is weighted in the cost of the control since the software Epanet 2.0 as 

inbuilt systems that prevent the failure of the water level by automatically 

increasing the amount of pumping time.  

 

For subsystem F, the cost is measured by the average cost taken from all 

simulations, for each of the test condition. For the Richmond network, the cost is 

measured for each of the executed simulations. 

 

The tested controllers aim at replicating the typical methodologies used in 

order to establish faithful comparisons with the controller developed for this 

project. This way, it’s possible to understand the performance of the designed 

controllers when compared with the existing standard methodologies and make 

a standard analyzes on the results. The controllers are the following; 

 

1) Regular feedback controller – A control strategy focused on keeping the water 

level within a given level; 

2) Optimal strategy controller – A control strategy based on the prediction of 

water consumption; 

3) Adaptive controller – This is the controller designed for this project. 

 

The subsystem F uses all the controllers to compare results. The 

Richmond network, however, only uses the controller 2 and 3 due to limitations 

with the modeling techniques. While the controller 2 in the subsystem F case 

study doesn’t suffer any sort of adaptation by monitoring the real water 

consumption, the controller 2 in the Richmond network suffer automatic 

adjustments made by the software Epanet 2.0. 

 

3.1.3 Type of Tests 

 

Different tests are performed to study the adaptive controller response to 

various situations, are introduced by using different water consumptions of the 

“real network.” These water consumptions are created by adding different types 

of noise with a distinct bias to the initially forecasted water consumption. Note 

that each test, although it represents the same water consumption deviation 
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pattern, it practically shows different consumptions at every simulation. This 

procedure allows to extract robust conclusions from the results.   

 

The criteria to choose the tests resulted from informed discussions with 

experts in the water industry that highlighted their biggest concerns and which 

features add the most value concerning the practical day to day issues found in 

the operation of water distribution network. These tests were also extracted from 

compiling the typical concerns found in the literature, like how to deal with a fire 

situation [25]. 

 

Figures from 14 to 24 illustrates the consumptions patterns for each of the 

tests performed, and these are illustrated in table 3. The blue line in the water 

consumption graphs is the predicted consumption, and the black dots dictates 

the real consumption at each increment. 
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Table 2 – Type of test performed to evaluate the performance of the adaptive controller 

 

 

NUMBER TEST PURPOSE 

1 Average consumption bias This test allow to analyze the 

response of the controller under 

average noise conditions. The 

test is only performed for the 

subsystem F case study. 

2 Overconsumption bias In this test it’s analyzed if the 

controller can effectively deal 

with the constant increase in 

water demand 

3 Underconsumption bias This test allows to analyze if the 

controller can effectively deal 

with the constant decrease in 

water demand. 

4 Average consumption with noise 

bias 

This test allow to analyze if the 

controller can deal with the 

consumption curves that have a 

high degree of variability when 

compared with the prediction. 

5 Higher over consumption bias This test allows to evaluate the 

magnitude effect in the 

deviation and help understand 

how this magnitude impacts the 

controller response. 

6 Fire Situation This test allow to analyze the 

robustness  of the controller to 

unpredictable peaks in demand 

such as the ones observed in a 

fire situation. 

7 Missing data with average 

consumption bias 

This test allows to analyze the 

behavior of the controller in 

situations where the central 

server stops receiving data 

from the network. 
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Fig. 14 – Average water consumption bias for the subsystem F network, test 1. 

 

 
Fig.15 - Water consumption for over biased deviation in subsystem F, test2. 
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Fig. 16 - Water consumption for over biased deviation in Richmond network, test 2. 

 

 

Fig. 17 - Water consumption for lower biased deviation for the subsystem F, test 3.  
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Fig. 18 - Water consumption for lower biased deviation for the Richmond network, test 3.  

 

 

Fig. 19 - Water consumption for noisy averaged biased deviation for the subsystem F, test 4. 
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Fig. 20 - Water consumption for noisy averaged biased deviation for the Richmond network, test 4. 

 

 

Fig. 21 - Water consumption for higher over biased deviation in subsystem F, test 5. 
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Fig. 22 - Water consumption for fire situation with average biased deviation in subsystem F, test 6. 

 

 

Fig. 23 - Water consumption for fire situation with average biased deviation in Richmond network, test 6. 
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Fig. 24 - Water consumption for average biased deviation with missing data for the subsystem F, test 7. 

 

3.1.4 Requirements Process 

 

The constraints of the network are safety limits defined by the operational 

manager and depend on the characteristics of the WDN. For subsystem F, as 

mentioned, the constraint of the tank are 2 and 7 meters. For the Richmond 

network, the limits are described in table 4. 

 

Table 3 – Constraints for the tanks of the Richmond network. 

TANK X MIN  MAX 

A 0 3,37 

B 0 3,65 

C 0 2 

D 0 2,11 

D 0 2,69 

F 0 2,19 

 
 

For the implementation of the adaptive controller it’s necessary to perform 

a sensitivity analysis. As explained in subsection 2.2.2 this analysis is performed 

to determine the linear relationship between the increasing of pumping time and 



39 
 

the water level in the tank. Figure 25 shows the result of the linear regression 

performed, where the results gave 𝑚 = 1,27. Therefore, for an increase of 0.1 

hours of pumping time, it’s reflected 0.127 meters increase of water level in the 

tank. 

 

The same process is applied for each of the pumps and tanks relations for 

the Richmond network. It’s defined a tank and pumping relation when these 

elements are found in series in the network. Table 4 indicates all of these 

relations. As it can be noticed the relations are different across most of the 

network pumps and tanks.  

 

 

Fig. 25 – Linear relation between pumping time and water level of the tank for subsystem F 

 

This information establishes the connection between the variable of control 

and the response of the network. This is a necessary insight to determine the 

adaptations of the adaptive scheme module. The tariffs corresponding to each 

pumping depend on the location of the network. An example is demonstrated in 

table 1 of subsection 2.2.1.  

 

 The constraints, the pump-tank relationship, and the tariffs of electricity 

are dependent of the network. Therefore, these parameters must be studied and 

formalized before proceeding to the application of the adaptive controller. After 

determining them through the process described in the methodology, these must 

be built into the adaptive scheme. 
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Table 4 – Constant Pump-Tank relations for the Richmond network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PUMPING X TO TANK X PUMP-TANK CONSTANT RELATION 

(M/HOUR.PUMPING) 

A-A (3 SINCRONIZED) 0.3 

B-B 0.3 

C-C 0.12 

D-D 0.3 

D-E 0.25 

F-F 0.4 
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3.2 Results and Discussion 

 

3.2.1 Subsystem F 

 

The following points highlight the results for each of the tests. The bar charts 

show the compiled information of the 1000 simulations concerning the cost and 

reliability. The first bar is the result for the regular controller, the second bar is the 

optimal strategy controller, and the last bar is the designed controller for this 

project.  

 

Figures c represent 1 simulation of the performed 1000 and indicate the 

water level over the 24-hour period and figure d shows the fraction of pumping 

time over the 24-hour period. This helps understand the typical control pattern 

achieved for each one of the controllers. The blue line is referring to the behavior 

of the regular controller, the yellow line to the optimal strategy controller, and the 

green line to the adaptive controller. Note that for these simulations, it’s used 

𝑛𝐼𝑛𝑐 = 96 ,which means that a control cycle is performed every 15 minutes. 

 

From this point forward, the regular controller is addressed as control A, 

the initial optimal strategy control as control B, and the designed controller for this 

project as control C. 

 

1. Average consumption bias test 

 

As can be seen from figure 26 the reliability of the controller A is 100%, meaning 

that successfully controlled the water level in every simulation. The controller B 

is only successful at controlling the water level 8.7% of the times, although as it 

can be seen by the water level curve in figure 26, the constraints are violated only 

slightly. The controller C manages to control the water level of the tank in 92.6% 

of the simulations. The controller A far exceeds the cost of the other controllers, 

being the controller B the most optimal cost followed by the controller C. Note 

that the increase in cost for control C when compared with the control B results 

in a rise in the level of water at the end of the day. The same can be observed for 

control A even though the magnitude is entirely different. 

 

Note that the unreliability of control B is due to the fact that, in its 

simulation, there is no additional control besides the initial instructions. In reality, 

this would not happen since an operator would receive an alarm, and counter 

measures are taken to avoid that situation. Nevertheless, this is useful to 

understand that optimized instructions are not very successful at automatically 

and independently controlling the network.  
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2. Overconsumption bias test 

 

From figure 27, it can be observed that controller A and C both achieved 100% 

reliability, while controller B failed to control at every simulation. For the same 

reason stated previously, controller B can’t make the control simple by following 

the forecasted pumping instructions, especially in a situation where the real 

consumption is consistently higher. 

 

The cost of control is highest for controller A, followed by controller C and 

lowest for controller B. Again, note that this increase in cost is reflected by more 

water in the tank. Therefore, this marginal increase of cost for the controller C 

compared with controller B is not necessarily a sign of a more expensive control 

but rather the result of the necessaries adjustments to cope with an increase in 

consumption. A more faithful comparison can be made with controller A, where 

the cost is substantially higher at the same reliability success. 

 

The overall results of this test besides proving the ability of the adaptive 

controller to deal with overconsumption deviations, also prove its efficacy at 

keeping the cost down while performing adjustments to an increase in water 

demand.  

 

3. Underconsumption bias 

 

Like the previous test, from figure 28, it can be observed that controller A and C 

both achieved 100% reliability, while controller B failed to control at every 

simulation. For the same reason stated before controller B can’t make the control 

simple by following the forecasted pumping instructions, especially in a situation 

where the real consumption is consistently lower. 

 

Since the demand of water is consistently lower, it’s expected that the cost of 

operation also decreases, it’s possible to observe that from figure 28 by 

comparing the cost of control of controller A and C. Controller B didn’t improve its 

cost efficiency, since there is no adaptation to demand, the cost remains the 

same.  

 

4. Noisy average consumption bias 

 

The consumption bias for this test is similar to the first test, however, it’s 

introduced more noise. From figure 29 it can be seen that the reliability of the 

controller A is 100% and for controller C 91.6%, the controller B comes in last 

with the worst performance of 8.3% reliability. 
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 Figure 29 shows that the cost is highest for control A, then B and finally C. 

Note again that the increase in price is accompanied by more water in the tank. 

The results for this test are similar to the ones observed in test 1, indicating that 

the adaptive controller is robust to noisy deviations. 

 

5. Higher over consumption bias 

 

This test is similar to test 2 but at a different magnitude, the deviation is 

consistently higher than the forecast and at higher magnitude. The results are 

also relatively similar to test 2, differing only on the magnitude of the cost for 

control A and C as observed in figure 30. Figure 30 also shows that the controller 

A and C managed to reliably control the operation in every simulation. Figure 30 

shows an alarming situation for control B, revealing the possibility of not having 

water in the tank if the optimal strategy is followed diligently.  

 

6. Fire situation 
 

This test aimed at understanding if the constraints validation idea was capable to 

deal with unexpected increase in demand, such as a fire situation. Figure 31 

shows that controller A was 100% reliable at dealing with this situation, while 

controller C reached a reliability of 72%. As expected, controller B didn’t succeed 

in controlling the operation in any simulation. 

 

 Due to an abrupt increase in demand, the costs of operation increased for 

controller A and C, however the increase in cost for controller C was much lower 

than A when comparing with the test 1. This is an indication of the ability of the 

adaptive controller at finding the most cost-efficient adaptation to cope with 

deviations, even in such disrupting conditions. 

 

7. Average consumption with missing data 

 

To understand the ability of the controller to operate when it’s not receiving data 

from the network of test 1 is simulated using average consumption bias deviation 

with random periods of missing data. The methodology predicts that this is not 

problematic since the controller simply doesn’t adapt and operates following the 

most recent control model.  

 

Figure 32 shows that controller A and C obtained similar reliability results in 

comparison to test 1. The same can be observed in figure 32 relatively to the cost 

of operation. This is clear evidence that the adaptive controller is very robust at 

dealing with situations where it misses information for a period of time. 
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Fig. 26 – Results for average consumption bias test: (a) chart that represent the reliability success of each 
controller, (b) chart that represent the average cost for each control method, (c) Water level of the tank for 

each control method, (d) Pumping strategy for each control method. 

 
 

 
 

 

 
 

(c) 

(d) 
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Fig. 27 – Results for overconsumption bias test: (a) chart that represent the reliability success of each 
controller, (b) chart that represent the average cost for each control method, (c) Water level of the tank for 

each control method, (d) Pumping strategy for each control method. 

 

 

 
 

 
 

     

(c) 

(d) 
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Fig. 28 – Results for underconsumption bias test: (a) chart that represent the reliability success of each 
controller, (b) chart that represent the average cost for each control method, (c) Water level of the tank for 

each control method, (d) Pumping strategy for each control method. 

 
 

 
 

 

(c) 

(d) 
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Fig. 29 – Results for noisy average consumption bias test: (a) chart that represent the reliability success of 
each controller, (b) chart that represent the average cost for each control method, (c) Water level of the 

tank for each control method, (d) Pumping strategy for each control method. 

 

 
 

 
 

 
 

(c) 

(d) 
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Fig. 30 – Results for higher overconsumption bias test: (a) chart that represent the reliability success of 
each controller, (b) chart that represent the average cost for each control method, (c) Water level of the 

tank for each control method, (d) Pumping strategy for each control method. 

 
 

 
 

 
 

(c) 

(d) 
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Fig. 31 – Results for Fire situation with average consumption bias test: (a) chart that represent the 
reliability success of each controller, (b) chart that represent the average cost for each control method, (c) 

Water level of the tank for each control method, (d) Pumping strategy for each control method. 

 

 

       
 

       
 

(a) (b) 

(c) 

(d) 



51 
 

Fig. 32 – Results for missing data situation with average consumption bias test: (a) chart that represent the 
reliability success of each controller, (b) chart that represent the average cost for each control method, (c) 

Water level of the tank for each control method, (d) Pumping strategy for each control method. 

The adaptive controller has proved to deliver positive results in efficiently 

controlling the WDN, however, it’s necessary to fit these results into the 

simulation limitations and real-world implications to make a fair evaluation. 

 

 Across every test the adaptive controller has performed substantially 

better than the optimal controller in terms of reliability, but it’s not meaningful to 

say that this methodology is unreliable, for two simple reasons; (i) the simulation 

doesn’t consider the typical real-world scenario, where there is a combination of 

operators combined with data visualization to prevent these situations. (ii) this 

case study, in particular, is not the best example of an optimal strategy for a WDN 

since the optimization was too extensively explored to the point that facilitates the 

violation of constraints. Therefore, it’s not possible to make a direct comparison 

of reliability between the adaptive controller and the optimal controller. 

 

What this proves is that the adaptive controller can reliably deliver cost-

efficient results in a fully automatic operation without operator intervention. 

Across the different tests, the least reliable simulation is the one that aims at 

replicating a fire situation, which achieves a 72% success rate. This means that 

even in extreme circumstances, the adaptive controller manages to deliver cost-

efficient automatic results, without any sort of intervention.  

 

The cost comparison between the initially optimal and adaptive controllers 

can’t also be directly compared. In a real-world scenario, an operator receives 

alarms concerning the state of the network and manually effectuates adaptations. 

These adaptations introduced by the operator may be reflected in an increase in 

the cost of controlling the network. This would be the comparable cost for this 

type of controller and not the one displayed by the optimal pumping strategy. The 

assumptions predict that this manual adaptation might result in a higher cost of 

operation since it doesn’t extensively explore the fluctuations of the tariffs as the 

adaptive controller has the capacity to do. 

 

The reactive controller is introduced to compare the different automatic 

strategies. As it can be seen across the different test, the reactive controller 

flawlessly controls every situation. However, at a much higher cost than the 

adaptive controller. A good comparison can be made in test 5, where the reliability 

success rate is the same, for the adaptive controller and the reactive controller, 

but the latter performed the control at 31.6% higher cost of operation than the 

adaptive controller. Besides that, it’s important to note that a close observation of 

the failed controls in the adaptive controller shows that the vast majority of 

unsuccess at validating the constraints are only slight deviations of the limits that 

wouldn’t most likely compromise the network.   
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Although this case-study doesn’t provide enough evidence to firmly state 

that the adaptive controller is a better methodology to apply in the pumping 

stations of a WDN, it gives reasonable indications of the possibilities of the 

adaptive controller. The tests show that the adaptive controller might be a 

potential reliable automatic controller solution for a WDN that rival the cost 

efficiency of an optimized pumping strategy but without operator intervention. The 

cost-efficiency might not be a direct benefit of the implementation of this new 

methodology. However, it does provide an answer to one of the problems of the 

emerging water grids technology by delivering a cost-efficient automatic control 

to the network.  

 

3.2.2 Richmond Network  

 
Unlike the previous case study and as methodology predicts, the adaptive 

controller does not use a fully optimized reference. The initial pumping strategy 

introduced is not optimal. Nevertheless, this is an opportunity to find out the 

performance of the controller with a different initial condition. 

 

 The results for the Richmond network are especially valuable to 

understand the performance of the adaptive controller since it’s used a simulation 

that better closely simulates a real-world scenario. The only metric of evaluation 

is the cost. To start, it’s presented in figure 33 the reference used. This figure 

shows the water level of the tanks for the forecasted water consumption, along 

with the cost. This forecast is used as the reference for the adaptive controller 

and as comparison. The cost of this operation is 15296.4 $/day.  

 

Unlike the previous case study, it is only presented the results for two 

control methods: the optimal and the adaptive controls. The optimal control simply 

follows the forecasted instructions, but unlike the previous case study, in this 

simulation the system reacts in case the water level of any of the tanks violates 

the constraints, by switching on the pumps, thus potentially increasing the cost. 

 

For each test, it is presented the cost and the water level of the tanks for 

both control methods. The costs can be seen in Table 5, and the graphs for both 

control methods are presented in the figures 34 to 37.  

 

Noisy average consumption 

 

The average consumption with noise test provides a very realistic scene for a 

typical control day. From Table 5 it can be interpreted that the cost of operation 

for the adaptive controller is slightly lower than the reference controller, about 

2.5%. The adaptive controller managed to cope with the noisy consumption 
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pattern while achieving a lower cost of operation. Both controllers accomplished 

the control of the operation at a lower cost than the reference. From figure 35 it 

can be observed that both controllers achieved the same results with 

approximately the same water in the tank at the end of the day. 

 

Constant over consumption 

 

As anticipated, since the water consumption is constantly higher than the 

forecast, then the controller should in principle increase the cost of operation. 

That is verified in the adaptive controller that delivers an increase of 1% when 

compared with the reference as it can be interpreted from Table 5. Strangely the 

reference controller managed to decrease the cost of operation when compared 

with the forecast by 10%. A hypothesis is that since the forecast is not optimized 

the reference control managed to use the hydraulic benefits of higher demand to 

spend less energy. Figure 36 shows that both control methods finished with a 

similar amount of water in the tank at the end of the day. 

 

Constants under consumption 

 

For the same reason stated above, it’s anticipated that the cost of control is lower 

since the demand is constantly lower as well. Table 5 demonstrates the cost of 

operation for the reference controller is higher than the forecast and the adaptive 

controller is lower than the forecast. The adaptive controller outperformed the 

reference controller in this test by delivering the same control results, as it can be 

observed from the water level of the tanks in figure 36, but at an 8.5% reduction 

in the cost of the operation. 

 

Fire situation 

 

This test is the simulation of a fire situation. As it can be seen from figure 34 the 

reference controller didn’t manage well the rapid increase of the magnitude of the 

deviation, letting the water level of the tank drop to zero, which unavoidably forced 

the pumps to go up. This is particularly inconvenient since the pumps are turned 

on at the highest price period of the tariff. The adaptive controller, however, 

managed to keep the water level within constraints and achieved the same 

control results at a much lower cost. From Table 5 it can be seen that the cost of 

the reference control for this operation is 6 orders of magnitude higher than the 

adaptive controller. This is due to the fact that the price tariff is 6 times higher in 

the periods the optimal controller had to adapt. 
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Fig. 33 – Forecasted water level of the tanks for the Richmond network. 

 

 

 

 

 

 

 

 



55 
 

 

 
 

Fig. 34 – Results for fire situation test: (a) the water level of every tank of the Richmond network with the 
reference control strategy and, (b) with the adaptive control strategy. 

 

(a) 

(b) 

1 – Reference Control 

2 – Adaptive Control 
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Fig. 35 – Results for average consumption with noise test: (a) the water level of every tank of the 
Richmond network with the reference control strategy and, (b) with the adaptive control strategy. 

 

 

(a) 

(b) 

1 – Reference Control 

2 – Adaptive Control 
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Fig. 36 – Results for overconsumption test: (a) the water level of every tank of the Richmond network with 
the reference control strategy and, (b) with the adaptive control strategy. 

 

(a) 

(b) 

1 – Reference Control 

2 – Adaptive Control 
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Fig. 37 – Results for underconsumption test: (a) the water level of every tank of the Richmond network 
with the reference control strategy and, (b) with the adaptive control strategy. 

 

 

 

(a) 

(b) 

1 – Reference Control 

2 – Adaptive Control 
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Table 5 – Cost of operation for all tests performed for each control method 

 

 

The adaptive controller delivered good results in the Richmond network 

case study. It outperformed the reference controller in 3 out of the 4 tests. As it 

can be observed in test number 3, the adaptive controller didn’t obtain better 

results than the optimal strategy. This might be a result of lack of statistical 

significance. Perhaps a collection of many simulations that emulated specific 

established patterns, as presented in the previous case study, would give 

different results and certainly strengthen the conclusions. 

 

The fact that the initial reference isn’t optimal introduced some ambiguity 

in the comparison of results. The simulation might create accidental or 

meaningless improvements due to the fact that the strategy is not optimized, 

perhaps the case of test number 3. In terms of scalability, this case-study clearly 

shows the efficacy of the methodology when applied in complex networks, 

indicating that the complexity of the network is not a limitation.  

 

It’s necessary to mention that the results might be less attractive if it’s used 

a fully optimized initial pumping strategy as a reference, and this is perhaps the 

most significant limitation of this case study. Nevertheless, it showed the ability 

of the adaptive controller to search the most cost-efficient solutions by achieving 

lower costs in every situation when compared with the reference, to the exception 

of test number 3 which is equal. 

 

Overall the adaptive controller was successfully implemented in the 

Richmond network; however, didn’t deliver the results promised in the previous 

case-study. The simulation scenarios are very similar to the experienced in the 

real world, particularly the test number 2, which makes good evidence that the 

adaptive controller can be implemented in pumping stations and provide a cost-

efficient automatic solution. In fact, it might even improve the cost when 

compared with the established reference. 

 

 

 

TEST COST REFERENCE CONTROL($) COST ADAPTIVE CONTROL($) 

1 – FIRE SITUATION 2993088.37 526226.63 

2 – NOISE 14124.85 13779.36 

3 – OVERCONSUMPTION 14092.54 15580.57 

4- UNDERCONSUMPTIOM 15305.99 14115.01 

REFERENCE (FORECAST) 15296.4 
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4 Conclusion 

 

This work started by stating that the aim is to develop a control methodology that 

surmounts the existing ones and that hopefully might become a cornerstone for 

the emerging water grids technology.  

4.1 Final Remarks 

 

To address the accomplishment of the objective, it’s first necessary to clearly 

highlight the limitations and successes achieved during this project. After 

compiling the discussion for both case studies, it’s possible to firmly arrive at a 

conclusion, with the promise that, this is in fact just the beginning. The beginning 

of the exploration of new and better methodologies to control the pumping 

stations and that hopefully can improve as a result of the investigations made in 

this project. For that, it’s suggested some ideas for further exploration. 

 

4.1.1 Achievements 

 

The most important remark to make in this work is to determine whether the 

methodology developed actually represents an improvement compared to the 

state-of-the-art solutions for control methods. The adaptive controller can, in fact, 

do a proactive search for the most cost-efficient adaptations to nullify the 

observed disturbance. The efficacy of this point seemed to be limited by the 

necessity to validate the constraints of this search which is reflected mainly in the 

first case-study. Nevertheless, the controller successful delivered an automatic 

and cost-efficient control of the pumping stations.  

 

In both case studies, the adaptive controller reached similar cost-efficient 

results when compared with the optimal controller. Even if further investigations 

demonstrate that the cost-efficiency of the adaptive controller can’t rival the 

combination of an operator and an optimal strategy controller, the fact that 

achieves this process without intervention makes it a more promising solution for 

emerging technologies. 

 

If the controller is compared with the typical feedback controllers used in 

rudimental distribution systems, where the main purpose is to keep the water at 

a determined level, then the developed adaptive controller was extremely 

successful by delivering the same automatic results with a 2% to 40% lower cost 

of operation. Even when compared with the optimal controller the cost-efficient 

might be in fact improved since the simulations shown that the higher cost of the 

designed controller is accompanied by an increase in water in the tank. 
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4.1.2 Limitations 

 

The designed controller in this work successfully achieved the objectives 

proposed. However, there is some refinement to be done to clarify some doubts 

and deliver a more robust solution.  

 

There are some bottlenecks to be addressed in the simulations. For 

example, the first case study examined an ideal scenario, which is not often 

observed in real WDN. The second case study manages to replicate the 

conditions of a real-world WDN, but it’s not very extensively explored. For further 

investigations, simulations that replicate as exactly as possible the scenario of a 

real WDN, would be ideal to test the performance of a designed controller. 

Perhaps using real data from real WDN would be the best option. 

 

Besides that, the methodology can be further explored mathematically, 

and perhaps be combined with new and more robust ideas. For example, in the 

hierarchy idea the mathematical relations could be better developed to further 

express the idea. Also, it’s necessary to refine a method to deal with relationships 

and tanks in complex networks, since the one developed in this work, although 

it’s effective, it’s a simplification, and perhaps can be improved to deliver better 

results.  

 

4.1.3 Final Notes 

 

The adaptive controller showed promising results when compared with the 

state-of-the-art solutions for control methodologies. The conclusions drawn from 

the simulations support its performance. Therefore, there is a very high promise 

of successful integration in future technologies if further development is made to 

tackle the mentioned limitations. 

 

These pillars of innovation are in by itself a great success of this work. 

Although the objective achieved in this work are good, there is still margin for 

improvement. Hopefully, this work provokes food for thought for other 

researchers in the water industry that has the mathematical skill set and the drive 

to improve this work further and provide a reliable solution to market-technologies 

that aim at creating a “utopic water distribution system.” 
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4.2 Future Work 

 

"If I have seen further it is by standing on the shoulders of Giants”                       

(Isaac Newton, 1675) 

 

The main improvements to this work can be introduced by (i) improving the 

mathematical robustness of the methodology, (ii) create a better simulation 

framework, (iii) developed a more precise pumping tank relationship, perhaps by 

using finite elements method  and, (iv) explore a holistic solution that it’s not 

limited to cost-efficiency. Besides that, the application of the methodology in a 

real pumping control station with real data might be the best idea to prove the 

efficacy of the adaptive controller. 

 

 For further new investigations, it’s suggested to research the applicability 

of deep reinforcement learning techniques for automatic control of the pumping 

stations. 
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