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A B S T R A C T

Incomplete observation of hourly air-pollutants concentration data is a common issue existing in urban air
quality monitoring networks. This research proposes a spatial interpolation method to impute missing values
presented in air pollutants data sets based on low rank matrix completion (LRMC). It considers air pollutants
data of high correlation and consistency in its spatial distribution. We evaluate the performance of the proposed
method when imputing various air pollutants concentration time series (NO , O , SO , PM , PMx 3 2 2.5 10) in terms of
root mean square error (RMSE), index of agreement (D2), and goodness of fit (R2). It systematically compared
with existing established imputation techniques, including nearest neighboring, mean substitution, regression-
based method, spline interpolation, spectral method, and regularized expectation maximization algorithm (EM).
As a spatial imputation method, LRMC outperforms these methods used in this research under the condition of
larger missing ratio (such as 30% removal) on the central air pollutants monitoring station. For all monitoring
stations, comprehensive experimental results show that LRMC always generates robust results to replace missing
data with reasonable substitutions, and it is not sensitive to the length of missing gaps. The promising imputation
performance in terms of the indicator R2 obtained by the proposed LRMC demonstrates that it can effectively
impute missing values of air pollutants time series based on their inherent patterns.

1. Introduction

Air pollution poses potential risks to human health (Listed, 2014).
Air pollutants such as airborne particulate matter and ozone have been
associated with increases in mortality and hospital admissions due to
their correlations with respiratory and cardiovascular diseases
(Brunekreef and Holgate, 2002). Air quality monitoring (AQM) network
is a major facility for assessing outdoor air pollution conditions and
developing air pollution control plans (Baldauf et al., 2001). Despite the
quality assurance and quality control procedures (von Lehmden et al.,
1979; H and Beebe, 1985), hourly air pollutants concentration data
received from AQM stations are often presented with some missing
values, which brings great impediment to data-enabled applications
such as online air quality publishing, ensemble forecasting and epide-
miological studies (Wang et al., 2014; Chandrappa and Kulshrestha,
2016; Pope, 2000). Failing to acquire continuous data can be caused by
machine errors, regular maintenance, or power cuts. Imputation for air

pollutants time series is an essential task, especially when the missing
ratio is beyond limit of tolerance (Mansour et al., 2014).

Techniques available for imputing missing data can be divided into
two main categories: single imputation and multiple imputation. Single
imputation methods replace each missing value with a precise value.
The complete data then can be directly applied to interpret results in
related research fields. Multiple imputation methods generate multiple
simulated values for each missing one, in order to reflect the un-
certainty attached to the missing data (Shafer, 1997). Generally a
multiple imputation method requires a full assumption of the dis-
tributional form of variable in order to derive the conditional dis-
tribution of the missing data given the observed data. Air pollutants
data sets are always in the form of matrix, where each column (vari-
able) can be time series of various air pollutants (NO , O , PM , SOx 3 2.5 2

etc.), meteorological factors (wind speed, temperature, humidity and
pressure), or data from other monitoring stations. Imputation of missing
air pollutants data is a challenging task because the creation and
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Fig. 1. Spatial distribution of air quality monitoring stations in Changzhou, China. The map scale is 2 km/cm. Multiple stations can provide high spatial resolution of
air pollution. (A: Central, B: ZhouLou, C: XinBei, D: WuJin, E: AnJia, F: JinKai).

Table 1
Detailed information of air-pollutants experimental dataset with missing data.

Station O3 SO2 PM10 PM2.5 NOx

number-of-gaps (max-gap)

Central(A) 31(16) 27(5) 47(10) 16(15) 28(7)
ZhongLou(B) 28(20) 21(18) 14(18) 10(18) 13(8)
XinBei(C) 16(6) 23(6) 12(9) 3(6) 21(8)
WuJin(D) 30(5) 15(2) 11(2) 11(13) 15(8)
AnJia(E) 27(11) 15(4) 23(10) 12(31) 12(5)
JinKai(F) 29(34) 30(8) 18(10) 11(8) 41(26)

Station univariate statistical mean(mg/m3)

Central(A) 0.062 0.019 0.100 0.060 0.040
ZhongLou(B) 0.078 0.011 0.101 0.051 0.052
XinBei(C) 0.096 0.017 0.073 0.082 0.044
WuJin(D) 0.070 0.025 0.126 0.072 0.046
AnJia(E) 0.084 0.010 0.184 0.054 0.036
JinKai(F) 0.066 0.013 0.164 0.077 0.053

missing-ratio 1.13% 0.85% 0.92% 0.06% 0.22%

Table 2
Spatial correlation analysis of air pollutants data from multiple monitoring
stations.

S-S(d/km) global correlation coefficient(ρ)

O3 SO2 PM10 PM2.5 NOx

↔A C(4.6) 0.9564 0.7408 0.9261 0.9501 0.8555
↔A F(6.8) 0.9303 0.7323 0.9046 0.9257 0.7916
↔A B(7.4) 0.9485 0.8637 0.9460 0.9628 0.8887
↔B D(7.4) 0.9390 0.8019 0.9264 0.9401 0.7486
↔B C(7.9) 0.9562 0.7043 0.9466 0.9619 0.8576
↔A D(8.0) 0.9164 0.8258 0.9047 0.9342 0.7563
↔C F(8.8) 0.9390 0.6973 0.9202 0.9288 0.8039
↔D F(11.9) 0.8949 0.6994 0.8861 0.8969 0.7484
↔C D(12.9) 0.9180 0.6714 0.9176 0.9234 0.7167
↔C E(14.0) 0.9297 0.6588 0.9300 0.9359 0.7914
↔B E(14.4) 0.9127 0.7304 0.9155 0.9250 0.7717
↔B F(14.6) 0.9173 0.7296 0.9013 0.9121 0.8132
↔A E(17.4) 0.8991 0.7025 0.8959 0.9103 0.7683
↔E F(22.5) 0.9075 0.6729 0.8993 0.9066 0.7427
↔D E(24.3) 0.8695 0.6733 0.8882 0.8914 0.6253
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Fig. 2. Spatial imputation results of various air pollutants using LRMC algorithm in form of scatter plot of value pair between true values and corresponding imputed
values. In each figure, = × ×52704 24 366 6 points are involved in the experimental case of missing gap length =l 100. The red straight line is an angular bisectors
between x-axis and y-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Imputation performance under different missing mechanisms and missing ratios.

Indicators Pollutants NN Mean Regression Spine Spectral R-EM LRMC

RMSE
5% NOx 0.029 0.028 0.029 0.027 0.056 0.025 0.025

O3 0.018 0.014 0.018 0.016 0.049 0.009 0.011
SO2 0.012 0.006 0.007 0.006 0.013 0.005 0.005
PM10 0.022 0.018 0.021 0.022 0.058 0.016 0.017
PM2.5 0.012 0.010 0.014 0.012 0.038 0.009 0.011

10% NOx 0.038 0.035 0.028 0.027 0.059 0.026 0.025
O3 0.018 0.015 0.018 0.016 0.047 0.014 0.014
SO2 0.013 0.012 0.010 0.006 0.018 0.009 0.006
PM10 0.028 0.024 0.023 0.021 0.063 0.019 0.018
PM2.5 0.016 0.015 0.016 0.014 0.040 0.012 0.011

D2

5% NOx 0.910 0.910 0.913 0.933 0.505 0.944 0.931
O3 0.965 0.977 0.957 0.969 0.557 0.989 0.985
SO2 0.819 0.927 0.895 0.939 0.556 0.954 0.951
PM10 0.961 0.971 0.958 0.960 0.592 0.978 0.975
PM2.5 0.973 0.981 0.957 0.970 0.560 0.984 0.984

10% NOx 0.875 0.873 0.928 0.933 0.422 0.945 0.931
O3 0.961 0.970 0.952 0.969 0.480 0.963 0.973
SO2 0.803 0.826 0.903 0.939 0.411 0.926 0.935
PM10 0.942 0.956 0.958 0.960 0.463 0.964 0.959
PM2.5 0.957 0.961 0.949 0.970 0.456 0.964 0.972

R2

5% NOx 0.723 0.796 0.729 0.767 0.420 0.802 0.828
O3 0.908 0.922 0.876 0.891 0.402 0.960 0.955
SO2 0.535 0.755 0.677 0.785 0.311 0.833 0.850
PM10 0.855 0.897 0.858 0.852 0.326 0.917 0.925
PM2.5 0.900 0.932 0.856 0.889 0.381 0.941 0.949

10% NOx 0.603 0.711 0.766 0.767 0.344 0.802 0.809
O3 0.858 0.893 0.865 0.891 0.370 0.938 0.942
SO2 0.537 0.634 0.695 0.785 0.343 0.744 0.842
PM10 0.818 0.874 0.858 0.852 0.301 0.903 0.914
PM2.5 0.856 0.884 0.831 0.889 0.322 0.903 0.926
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Table 4
Imputation performance under different missing mechanisms and missing ratios for the central monitoring station A.

Indicators Pollutants NN Mean Regression Spine Spectral EM LRMC

RMSE O3 0.0195 0.0135 0.0291 0.0304 0.0463 0.0126 0.0105
5% SO2 0.0116 0.0075 0.0078 0.0079 0.0113 0.0064 0.0047

PM10 0.0297 0.0251 0.0284 0.0599 0.0760 0.0196 0.0186
PM2.5 0.0118 0.0093 0.0191 0.0214 0.0369 0.0092 0.0089
Nox 0.0223 0.0217 0.0240 0.0546 0.0488 0.0206 0.0211

10% O3 0.0206 0.0147 0.0275 0.0324 0.0492 0.0123 0.0118
SO2 0.0107 0.0068 0.0076 0.0091 0.0110 0.0057 0.0047
PM10 0.0249 0.0211 0.0261 0.0516 0.0647 0.0172 0.0169
PM2.5 0.0106 0.0086 0.0182 0.0201 0.0354 0.0084 0.0079
Nox 0.0235 0.0233 0.0258 0.0517 0.0506 0.0202 0.0211

20% O3 0.0203 0.0149 0.0284 0.0363 0.0496 0.0132 0.0119
SO2 0.0107 0.0068 0.0085 0.0112 0.0128 0.0059 0.0052
PM10 0.0236 0.0202 0.0262 0.0497 0.0651 0.0179 0.0176
PM2.5 0.0117 0.0096 0.0190 0.0237 0.0400 0.0094 0.0091
Nox 0.0255 0.0239 0.0289 0.0512 0.0554 0.0207 0.0217

25% O3 0.0198 0.0145 0.0298 0.0313 0.0478 0.0137 0.0120
SO2 0.0107 0.0067 0.0080 0.0125 0.0125 0.0055 0.0049
PM10 0.0240 0.0204 0.0246 0.0513 0.0631 0.0174 0.0179
PM2.5 0.0121 0.0098 0.0175 0.0244 0.0383 0.0095 0.0091
Nox 0.0269 0.0265 0.0272 0.0451 0.0551 0.0241 0.0228

33% O3 0.0199 0.0152 0.0267 0.0337 0.0501 0.0119 0.0120
SO2 0.0129 0.0067 0.0083 0.0117 0.0128 0.0052 0.0051
PM10 0.0223 0.0179 0.0229 0.0485 0.0600 0.0156 0.0154
PM2.5 0.0116 0.0094 0.0179 0.0238 0.0388 0.0093 0.0090
Nox 0.0269 0.0261 0.0310 0.0492 0.0551 0.0272 0.0240

D2 O3 0.9557 0.9758 0.8639 0.8821 0.2060 0.9788 0.9853
5% SO2 0.7896 0.8838 0.8188 0.8823 0.2660 0.9125 0.9479

PM10 0.9647 0.9725 0.9567 0.8954 0.2102 0.9818 0.9828
PM2.5 0.9732 0.9825 0.9066 0.9263 0.2092 0.9828 0.9830
Nox 0.9199 0.9201 0.8940 0.6431 0.2877 0.9434 0.9219

10% O3 0.9579 0.9749 0.8953 0.8866 0.2059 0.9828 0.9834
SO2 0.7950 0.8938 0.8291 0.8204 0.2737 0.9225 0.9416
PM10 0.9630 0.9717 0.9474 0.8822 0.2193 0.9801 0.9801
PM2.5 0.9767 0.9839 0.9108 0.9234 0.2097 0.9850 0.9861
Nox 0.9130 0.9106 0.8919 0.7219 0.2787 0.9488 0.9282

20% O3 0.9604 0.9745 0.8856 0.8609 0.1693 0.9806 0.9835
SO2 0.8468 0.9235 0.8511 0.8179 0.1971 0.9425 0.9488
PM10 0.9652 0.9734 0.9466 0.8680 0.2320 0.9785 0.9779
PM2.5 0.9776 0.9844 0.9266 0.9116 0.1712 0.9850 0.9853
Nox 0.9229 0.9292 0.8949 0.7727 0.2555 0.9558 0.9420

25% O3 0.9586 0.9742 0.8613 0.8921 0.1685 0.9767 0.9820
SO2 0.8363 0.9185 0.8600 0.8061 0.1817 0.9467 0.9518
PM10 0.9603 0.9707 0.9502 0.8558 0.2499 0.9778 0.9753
PM2.5 0.9735 0.9820 0.9336 0.9050 0.1792 0.9833 0.9839
Nox 0.9096 0.9086 0.9064 0.8043 0.2647 0.9396 0.9351

33% O3 0.9622 0.9740 0.9010 0.8926 0.1693 0.9847 0.9835
SO2 0.8070 0.9274 0.8564 0.7991 0.1871 0.9549 0.9514
PM10 0.9623 0.9752 0.9538 0.8441 0.2494 0.9809 0.9803
PM2.5 0.9764 0.9841 0.9338 0.9061 0.1715 0.9847 0.9848
Nox 0.9154 0.9154 0.8788 0.7914 0.2468 0.9236 0.9302

R2 O3 0.8833 0.9178 0.6123 0.6154 0.0008 0.9292 0.9541
5% SO2 0.5051 0.6483 0.4936 0.6299 0.0016 0.7051 0.8212

PM10 0.8901 0.9013 0.8551 0.8009 0.0001 0.9300 0.9494
PM2.5 0.8981 0.9353 0.7357 0.7756 0.0001 0.9367 0.9541
Nox 0.7449 0.8113 0.7142 0.1987 0.0001 0.7988 0.8280

10% O3 0.8905 0.9135 0.6907 0.6284 0.0011 0.9373 0.9505
SO2 0.4721 0.6617 0.5043 0.4719 0.0013 0.7309 0.8065
PM10 0.8723 0.8962 0.8255 0.7267 0.0000 0.9237 0.9380
PM2.5 0.9110 0.9397 0.7298 0.7486 0.0002 0.9421 0.9561
Nox 0.7452 0.8150 0.6866 0.3134 0.0000 0.8143 0.8376

20% O3 0.8950 0.9130 0.6764 0.5594 0.0005 0.9307 0.9507
SO2 0.5722 0.7431 0.5558 0.4777 0.0010 0.7930 0.8441

(continued on next page)
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dispersion of air pollutants exhibit highly variation in spatial and
temporal patterns due to uncertain pollution sources and the com-
plexity of the physicochemical processes (Seinfeld and Pandis, 2006).

The univariate imputation methods for air pollutants data use the
temporal structure such as periodicity, trend and autocorrelation (Box,
2008). For instance, temporal substitution uses historical data of the
same periods to replace the missing or replaces the missing air pollu-
tants data with the mean of neighboring values (Noor, 2015; Plaia and
Bondı,̀ 2006). Temporal substitution is relatively simple but does not
consider any temporal variation of air pollutants data. It is generally
used in applications with low requirements for data quality (Junninen
et al., 2004). Temporal interpolation (e.g., linear or cubic interpolation)
uses a straight line or curve to fit the observed data, from which the
unobserved values can be estimated (Shukri et al., 2008). The filled
values obtained by interpolation methods can well simulate the tem-
poral trend of air pollutants data. However, the bias between imputed
values and the corresponding true values increases significantly when
data are missing in longer gaps since the data structure during an un-
observed period is unpredictable from an univariate view. Spectral
methods for univariate imputation consider that the observation se-
quence of air pollutant variables is band-limited. It can be implemented
via time–frequency transform techniques (e.g., discrete cosine trans-
form or discrete Fourier transform) in an iterative procedure by zeroing
high frequency coefficients (Moshenberg et al., 2015). The missing
values can be reconstructed with minimum error under the discrete
sampling theorem(Yaroslavsky et al., 2009). Spectral methods can well
recover values in the unobserved periods where the temporal variation
of air pollutant concentration is relatively slow. The drawback of
spectral method is obvious that they use global computation of the
complete data, which underestimates local changeability and non-sta-
tionarity of air pollutants time series.

Another technique for data imputation is multivariate imputation,
typical regression-based methods and expectation maximization (EM)
algorithm, which rely on correlations between different variables in
order to estimate values for the missing data (Shahbazi et al., 2018;
Junger and Leon, 2015). Regression-based methods predict the missing
values using other variables as predictors. The common limitation of
regression model is that the parameters in model are sensitive to sam-
pling and irregular values (outliers or anomalies presented in air pol-
lutants datasets) that are hard to be well-eliminated via the model itself.
EM algorithm is an iterative procedure that produces maximum like-
lihood estimate for missing data, which has two key steps: for the E-step
at one iteration, if the value is missing, the best substitution is calcu-
lated from a posterior expectation of missing values based on current
parameters (means, variances and covariances). In the M-step of the
same iteration, the parameters are re-estimated using the current fully
observed values based on maximum likelihood principle. EM algorithm
contains much computation of matrix inversion in the iterative steps.

The result can be incorrect when the covariance matrix is ill-condi-
tioned, which can be solved by regularization method (Schneider,
2001). More methods applied to air pollutants data imputation are
summarised and discussed in (Gómez-Carracedo et al., 2014).

Although the aforementioned methods often produce good esti-
mates for missing values, the inherent data structure such as correla-
tion, trends and seasonality are always underestimated or over-
estimated (Box, 2008). This research aims to provide an imputation
method that replace missing value with reasonable substitutions. A
spatial imputation scheme, comprehensive utilization of data from
multiple monitoring stations, is presented using low rank matrix com-
pletion algorithm. It is inspired by high correlation and consistency of
the spatial distribution of air pollutants data. Spatial correlation means
data from geographically adjacent sites have similar temporal trends.
Spatial consistency implies synchronous measurements (e.g.
PM , PM2.5 10) should not vary greatly although outliers sometimes occur
in air quality data sets (Guan, 2016). In the following section, we will
elaborate the procedure of LRMC-based spatial imputation and give
some discussions on the performance to address the missing air pollu-
tants data.

2. Methods

2.1. Spatial imputation based Low rank matrix completion algorithm

Low rank matrix completion algorithm (Shang et al., 2014; Candès
and Recht, 2009) reconstructs a matrix from the observed subset of its
entries based on the low rank property of the original matrix. It fills the
unobserved data that makes the matrix has lower rank with the ob-
served data unchanged. Given an incomplete spatial matrix of air pol-
lutants data D with some missing values, we define the missing in-
dicator matrix M (the same size of D), of which each element is 0 if the
corresponding position of D is missing and 1 if observed. The low-rank
matrix completion algorithm can be described by:

° = °
rank A

s t M A M D
min ( )
. . , (1)

where A is the recovered low-rank matrix. The symbol ° is the element-
wise product of two matrices. To address this minimum optimization
problem, the rank of matrix A is a non-derivable term and we always
use the nuclear norm as its convex approximation. Therefore, the pro-
blem is converted to minimize ∗A under the same constraint

° = °M A M D, which can be solved using Lagrange multiplier method. In
this research, we consider air pollutants data being presented by ad-
ditive sparse noise resulting from occasional errors of sensors and
outliers caused by extreme weather. Thus, matrix D is decomposed to
the sum of a low-rank matrix A and a sparse matrix E (Wright et al.,
2009). The low rank based imputation can be formulated as:

Table 4 (continued)

Indicators Pollutants NN Mean Regression Spine Spectral EM LRMC

PM10 0.8733 0.9024 0.8273 0.6201 0.0000 0.9183 0.9334
PM2.5 0.9148 0.9417 0.7711 0.6999 0.0002 0.9431 0.9551
Nox 0.7619 0.8517 0.6876 0.3920 0.0000 0.8395 0.8702

25% O3 0.8903 0.9120 0.6132 0.6415 0.0005 0.9203 0.9441
SO2 0.5444 0.7288 0.5790 0.4971 0.0004 0.8075 0.8527
PM10 0.8533 0.8913 0.8392 0.6005 0.0001 0.9175 0.9301
PM2.5 0.9012 0.9322 0.7904 0.6952 0.0000 0.9366 0.9535
Nox 0.7358 0.8072 0.7212 0.4355 0.0000 0.7853 0.8490

33% O3 0.8965 0.9116 0.7231 0.6483 0.0006 0.9445 0.9523
SO2 0.5292 0.7569 0.5728 0.4360 0.0003 0.8345 0.8473
PM10 0.8610 0.9098 0.8407 0.5564 0.0000 0.9266 0.9403
PM2.5 0.9102 0.9400 0.7820 0.6884 0.0001 0.9410 0.9527
Nox 0.7278 0.7831 0.6336 0.4355 0.0000 0.7349 0.8065
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Table 5
Mean and standard deviation values of imputation indicators of boundary station B~F.

Indicators Pollutants NN Mean Regression Spine EM LRMC

RMSE O3 0.0195±0.0017 0.0177±0.0038 0.0300±0.0028 0.0305±0.0057 0.0154±0.0023 0.0149±0.0021
5% SO2 0.0111±0.0049 0.0108±0.0037 0.0105±0.0044 0.0152±0.0064 0.0094±0.0047 0.0090±0.0048

PM10 0.0252±0.0052 0.0180±0.0026 0.0271±0.0034 0.0472±0.0063 0.0189±0.0040 0.0208±0.0019
PM2.5 0.0127±0.0009 0.0104±0.0021 0.0183±0.0009 0.0247±0.0053 0.0101±0.0027 0.0100±0.0020
Nox 0.0274±0.0036 0.0249±0.0063 0.0225±0.0056 0.0371±0.0096 0.0206±0.0065 0.0189±0.0059

10% O3 0.0198±0.0009 0.0176±0.0027 0.0288±0.0021 0.0314±0.0055 0.0152±0.0019 0.0153±0.0021
SO2 0.0101±0.0037 0.0097±0.0025 0.0097±0.0031 0.0138±0.0050 0.0084±0.0032 0.0080±0.0034

PM10 0.0232±0.0032 0.0176±0.0031 0.0254±0.0017 0.0451±0.0053 0.0181±0.0030 0.0193±0.0019
PM2.5 0.0123±0.0014 0.0106±0.0025 0.0180±0.0014 0.025±0.00650 0.0099±0.0025 0.0101±0.0024
Nox 0.0302±0.0038 0.0249±0.0065 0.0226±0.0050 0.0437±0.0166 0.0198±0.0051 0.0192±0.0053

20% O3 0.0190±0.0007 0.0165±0.0025 0.0284±0.0018 0.0312±0.0036 0.0145±0.0019 0.0142±0.0017
SO2 0.0106±0.0030 0.0100±0.0019 0.0097±0.0024 0.0145±0.0048 0.0083±0.0025 0.0080±0.0027

PM10 0.0238±0.0036 0.0190±0.0043 0.0252±0.0023 0.0437±0.0047 0.0184±0.0030 0.0193±0.0030
PM2.5 0.0132±0.0016 0.0116±0.0027 0.0186±0.0019 0.0242±0.0047 0.0108±0.0026 0.0107±0.0024
Nox 0.0293±0.0022 0.0264±0.0054 0.0236±0.0047 0.0447±0.0125 0.0203±0.0053 0.0205±0.0061

25% O3 0.0192±0.0003 0.0164±0.0022 0.0335±0.0023 0.0317±0.0035 0.0160±0.0024 0.0141±0.0018
SO2 0.0104±0.0026 0.0096±0.0018 0.0090±0.0020 0.0145±0.0038 0.0083±0.0026 0.0077±0.0026

PM10 0.0240±0.0029 0.0189±0.0035 0.0271±0.0019 0.0433±0.0036 0.0176±0.0031 0.0191±0.0031
PM2.5 0.0134±0.0017 0.0113±0.0024 0.0179±0.0018 0.0238±0.0028 0.0106±0.0026 0.0106±0.0025
Nox 0.0290±0.0036 0.0257±0.0047 0.0286±0.0055 0.043±0.0128 0.0219±0.0068 0.0206±0.0062

D2 O3 0.9487±0.0158 0.9545±0.0217 0.8402±0.0199 0.8732±0.0379 0.9647±0.0112 0.9663±0.0118
5% SO2 0.7806±0.1285 0.8079±0.0972 0.7966±0.1056 0.7561±0.1396 0.8584±0.1165 0.8522±0.1198

PM10 0.9730±0.0125 0.9865±0.0039 0.9646±0.0107 0.9338±0.0186 0.9840±0.0077 0.9803±0.0046
PM2.5 0.9666±0.0056 0.9762±0.0097 0.9082±0.0108 0.8957±0.0389 0.9762±0.0125 0.9768±0.0090
Nox 0.8397±0.0650 0.8698±0.0745 0.8818±0.0304 0.7787±0.0671 0.9135±0.0312 0.9193±0.0293

10% O3 0.9527±0.0086 0.9615±0.0127 0.8676±0.0185 0.8815±0.0283 0.9691±0.0103 0.9686±0.0104
SO2 0.7882±0.0934 0.8186±0.0613 0.8054±0.0515 0.7530±0.0892 0.8744±0.0632 0.8680±0.0722

PM10 0.9668±0.0100 0.9807±0.0066 0.9542±0.0083 0.9083±0.0200 0.9787±0.0085 0.9750±0.0060
PM2.5 0.9664±0.0067 0.9738±0.0115 0.9093±0.0079 0.8850±0.0401 0.9767±0.0111 0.9751±0.0107
Nox 0.7972±0.1068 0.8624±0.0880 0.8780±0.02890 0.7433±0.1013 0.9190±0.0279 0.9121±0.0287

20% O3 0.9577±0.0045 0.9665±0.0106 0.8676±0.0158 0.8868±0.0109 0.9724±0.0096 0.9728±0.0093
SO2 0.8195±0.0631 0.8503±0.0339 0.8366±0.0288 0.7863±0.0538 0.9013±0.0393 0.8970±0.0441

PM10 0.9634±0.0099 0.9760±0.0100 0.9527±0.0080 0.9006±0.0190 0.9772±0.0079 0.9740±0.0076
PM2.5 0.9694±0.0061 0.9754±0.0104 0.9258±0.0094 0.9057±0.0270 0.9787±0.0087 0.9781±0.0087
Nox 0.8624±0.0525 0.8944±0.0408 0.9046±0.0085 0.7809±0.0528 0.9395±0.0162 0.9285±0.0226

25% O3 0.9537±0.0036 0.9647±0.0094 0.8338±0.0263 0.8794±0.0133 0.9631±0.0127 0.9718±0.009
SO2 0.8183±0.0512 0.8522±0.0313 0.8439±0.0230 0.7672±0.0290 0.8979±0.0319 0.8995±0.0376

PM10 0.9596±0.0082 0.9745±0.0087 0.9544±0.0086 0.8919±0.0095 0.9775±0.0077 0.9722±0.0079
PM2.5 0.9657±0.0077 0.9747±0.0101 0.9308±0.0126 0.9050±0.0168 0.9776±0.0097 0.9767±0.0098
Nox 0.8642±0.0275 0.8924±0.0370 0.8990±0.0192 0.7866±0.0512 0.925±0.0245 0.9217±0.0320

R2 O3 0.8411±0.0647 0.8627±0.0718 0.5557±0.0441 0.5956±0.1051 0.8778±0.0424 0.8991±0.0419
5% SO2 0.5244±0.1758 0.5827±0.1737 0.5131±0.1293 0.4548±0.2145 0.6383±0.1898 0.6615±0.1937

PM10 0.9067±0.0401 0.9524±0.0179 0.9036±0.0263 0.842±0.0496 0.9460±0.0260 0.9581±0.0136
PM2.5 0.8858±0.0176 0.9169±0.0352 0.7427±0.0439 0.7026±0.0909 0.9129±0.0455 0.9326±0.0341
Nox 0.5575±0.1438 0.6764±0.1462 0.6626±0.0793 0.4208±0.1368 0.7260±0.1004 0.8014±0.0507

10% O3 0.8563±0.0391 0.8872±0.0460 0.6256±0.0540 0.6153±0.0797 0.8911±0.0377 0.9087±0.0341
SO2 0.5141±0.1283 0.5885±0.1259 0.4763±0.0704 0.3919±0.1540 0.6336±0.1255 0.6637±0.1281

PM10 0.8836±0.0290 0.9317±0.0244 0.8631±0.0192 0.7487±0.0574 0.9242±0.0294 0.9388±0.0196
PM2.5 0.8841±0.0236 0.9099±0.0388 0.7327±0.0322 0.6611±0.0751 0.9143±0.0418 0.9275±0.0353
Nox 0.4963±0.1891 0.6616±0.1667 0.6564±0.0895 0.4012±0.1336 0.7461±0.0981 0.7773±0.0719

20% O3 0.8663±0.0278 0.8992±0.0413 0.6364±0.0452 0.6283±0.0315 0.9015±0.0358 0.9207±0.0302
SO2 0.5667±0.0869 0.6437±0.1044 0.5406±0.0569 0.4407±0.1045 0.6857±0.0907 0.7208±0.0986

PM10 0.8720±0.0229 0.9173±0.0305 0.8533±0.0248 0.6982±0.0496 0.9161±0.0291 0.9299±0.0237
PM2.5 0.8913±0.0199 0.9154±0.0325 0.7736±0.0341 0.6938±0.0668 0.9213±0.0346 0.9343±0.0281
Nox 0.5941±0.1351 0.7182±0.0973 0.7089±0.0355 0.4385±0.0832 0.7912±0.0554 0.8140±0.0482

25% O3 0.8509±0.0292 0.8891±0.0401 0.5570±0.0599 0.6106±0.0356 0.8754±0.0403 0.9178±0.0232
SO2 0.5574±0.0651 0.6368±0.0854 0.5416±0.0584 0.3994±0.0592 0.6690±0.0787 0.7244±0.0782

PM10 0.8574±0.0220 0.9109±0.0264 0.8555±0.0259 0.6665±0.0177 0.9167±0.0272 0.9227±0.0251
PM2.5 0.8770±0.0271 0.9121±0.0333 0.7802±0.0399 0.6917±0.0446 0.9166±0.0356 0.9301±0.0309
Nox 0.6001±0.0850 0.7070±0.0989 0.6867±0.0537 0.4494±0.0954 0.7456±0.0770 0.7958±0.0569
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Item E 1 is the l1 norm of matrix E and the parameter λ controls the
sparsity of noise matrix E. if E is set to the zero, it becomes to Problem
1. Alternating direction method of multipliers (ADMM) (Stephen Boyd
and Chu, 2011) is applied to solve Problem 2. The major steps of the
ADMM algorithm are summarized in Algorithm 1. The parameter λ
entails a fine-tune process to obtain optimal imputation performance.
An empirical selection is =λ m n1/ max( , ) , where m n, is dimensional
size of matrix D.

Algorithm 1. procedures of air-quality data imputation using low-rank
matrix completion

Input: spatial matrix of air pollutant data ∈ ×D Rm n

set sparse weights λ, augmented lagrange coefficient ρ
initializing low-rank matrix A, missing indicator matrixM, sparse matrix E, multiplier

Y
let = = = ⇐ ∈ ×A E Y M 0 Rm n

let = ⇐M A( ~ 0) 1
while iteration not finished do
singular value decomposition ⇐ − −U S V SVD D E ρ Y[ , , ] [ (1/ )· ]
updating ⇐ ° −A U ρ·sgn[S] max[abs[S] 1/ , 0]·VT

updating ⇐ − − ° − − −E ρ ρ λ ρsgn[D A (1/ )·Y] max[abs(D A (1/ )·Y / ), 0]
updating ⇐ + ° − −Y Y ρ M D A E·( )

end while
Output: ° + − °M D M A(1 )

2.2. Evaluation

We use Pearson coefficient to measure the spatial correlation be-
tween different monitoring stations of various pollutants. It can be
calculated as follows:
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Variables x y, ∈ ×R1 n are the sampling instances of two time series. n is
the sampling length and x y, are the average values.

In order to evaluate the imputation performance and to achieve
comparable results, varieties of criteria were considered. Calculated
indices of the root mean square error (RMSE) as follows:

Fig. 3. D2 comparison of imputation performance of different methods (Nearest Neighboring, Mean Substitution, Regression-based Method, Spline Interpolation,
Spectral Method, Regularized EM, Proposed LRMC) under missing gaps range from 1 to 100 continuous hours.
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D2 is agreement index, obtained as follows:
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and goodness of fit (R2) is calculated as follows:

= ′R ρy y
2

,
2

(6)

In these equations, yi denotes the observed values, ′yi are the im-
puted values, and m is the number of missing values. RMSE quantita-
tively measures average deviation between imputed values and true
values which provides an evaluation from a view of single sampling
point. D2 is a standardized measure of the degree of imputation error
and varies between 0 and 1. R2 explains the similarity degree of data
pattern from a view of continuous sampling series.

3. Datesets

The experimental data are collected from the AQM stations of Chang
Zhou, China. They contain hourly concentration data of multiple air
pollutants (NO , O , SO , PM , PMx 3 2 10 2.5). These monitoring stations are
located in six different sites. Geospatial distribution of six monitoring
stations is shown in Fig. 1. The detailed information is showed in
Table 1. We count the univariate statistical information (mean, missing-
ratio, max-gap) for each air-pollutant in the year of 2016. The max
missing ratio reaches 1.13% for air-pollutant O3. The max missing gap is
34 continuous hours. The univariate statistical mean indicates that air
pollutants concentration data varies slightly among stations.

4. Experiments

4.1. Data simulation

In the field of missing data analysis, the missing mechanism in-
cluding missing at random (MAR), missing completely at random
(MCAR) and missing not at random (MNAR) are often discussed from
the aspect of statistical analysis (Little and Rubin, 2002). This research
considers the air pollutants data are omitted in a random style because

Fig. 4. R2 comparison of imputation performance of different methods (Nearest Neighboring, Mean Substitution, Regression-based Method, Spline Interpolation,
Spectral Method, Regularized EM, Proposed LRMC) under missing gaps range from 1 to 100 continuous hours.
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data may be missed due to many explainable circumstances. For ex-
ample, many air pollutants analyzers require one to two hours every
two weeks to verify and analyze the air input flow. In addition, un-
expected events that power supply failure, pump failure, electronic
processor failure occur randomly that result in missingness. To better
evaluate the imputation effectiveness for air pollutants dataset, the
adopted simulation strategy is: given a complete spatial matrix of air
pollutants data D, we remove a gap (g) of data from D obtaining D~g.
Then a random deletion is applied to D~g in order to assess how missing
ratio influence the imputation performance. The missing gap (g) as a
window slides through the whole spatial matrix, thus the simulation
results can be comprehensive and convincing.

4.2. Results and analysis

In order to analyze the overall spatial correlation of pollutant data,
one year length ( =n 8784) was selected and the significance level α to
compute ρ is set to 0.05. Table 2 shows the spatial correlation laws
between different monitoring stations of various pollutants. It shows
that the Pearson coefficients of air pollutants O3, particle pollutants
PM10 and PM2.5 are greater than 0.9. That indicates that these pollutants
have strong spatial correlation and are hardly affected by geographical
factors and social activities (urban traffic flow, industrial production).
Particle pollutants diffuse evenly in atmospheric space. Table 2 shows
that the spatial correlation of pollutants decreases with the increase of
the distance between monitor stations. There is not significant relation
between spatial correlation and geographical distance within a certain
range(⩽ km10 ).

Given a spatial matrix of hourly pollutant concentration
∈ ×D R8784 6, where = ×8784 366 24 is the number of sampling points

over the whole year and the number 6 denotes the number of mon-
itoring stations (sites A,B,C,D,E,F in Fig. 1), we obtain the estimated
matrix ′D under various simulated length of missing gaps, where each
value was generated using the introduced imputation Algorithm 1.
Therefore, an estimated matrix ′D is the result of = ×52704 8784 6 runs
of Algorithm 1 when the length of missing gaps is set to 1. All the si-
mulation results are the calculated from D and ′D using RMSE D, 2 or R2.
Fig. 2 shows the scatter plot of value pairs t i( , ), where t i, denote true
values and corresponding impute values under low rank matrix com-
pletion and other methods including nearest neighboring, mean sub-
stitution, regression-based method, spline interpolation, spectral
method and regularized EM for comparison under the missing gap of
100 continuous hours. The imputation on pollutants O , PM , PM3 10 2.5

gains better performance since scatters cluster along the read line on
which the imputed values equals to the true values. It is considerably
concerned with discrepancy of spatial correlation. The spatial Pearson
coefficients of pollutants SO2 and NOx is relatively low. We can also
draw from the results that if the concentration of pollutants become
higher, the scatters prone to diverge from the red line. The imputation
accuracy of Spectral is the worst. However, methods of LRMC, reg-
ularized EM and mean substitution generate relatively more accurate
values for the corresponding true values compared to other simulated
methods.

Table 3 shows the imputation results of different methods under
different settings of indicators (RMSE, D2 and R2), missing ratios (5%
and 10%) and air pollutants (NO , O , PM , SOx 3 2.5 2). The length of
missing gaps is 10. The best imputation results for each incomplete air
pollutant data are bold. Spectral method creates the largest imputation
error compared to other methods. The proposed LRMC and regularized
EM algorithms are comparable and always obtain the best estimation of
the missing values with indicator D2 greater than 0.9 and R2 greater
than 0.8. Imputation results of air pollutants O , PM , PM3 10 2.5 outper-
forms SO2 and NOx under all simulated methods presented in this
paper. Air pollutants of SO2 and NOx exhibit stronger spatial variation
and are more difficult to be accurately predicted. When the missing
ratio rises from 5% to 10%, there is a obvious decrease in imputation

precision using nearest neighboring replacement, mean substitution,
regression-based method, spine interpolation and spectral method.
Regularized EM and presented LRMC show a slight decrease in all in-
dicators of RMSE, D2, and R2 if we delete more values from a given
incomplete matrix of D~g. Furthermore, LRMC obtains the state of the
art imputation performance under the case of 10% removal from matrix
of D~g.

In order to access the spatial effect on LRMC based spatial, we di-
vide the monitoring station into central station and peripheral station.
Fig. 1 indicates station A is the central station, and Table 2 shows air
pollutants sampled in station A have best spatial correlation than those
collected in other peripheral stations B~F. Table 4 presents a summary
of the imputation results of the air pollutants collected in center station
A. The length of missing gaps is 10. With the missing ratio ranging from
5% to 25%, LRMC based spatial has the best performance on the in-
dicators RMSE, D2 and R2 in most cases. The performance decrease with
the increase missing ratio, but even for a missing ratio of 33%, LRMC
performs comparable to regularized EM in term of indicators, RMSE and
D2. But in term of indicator R2, LRMC algorithm seems always to obtain
the leading imputation performance. The results of the peripheral sta-
tions shown in Table 5 indicate that the performance of LRMC in the
missing data imputation of the boundary monitoring stations is worse
than that of the central station. However, LRMC and EM are still the
best performing algorithms, and the R2 values of LRMC is still the
highest in any case.

Figs. 3 and 4 show the imputation results using the indices of D2 and
R2 (B) under different length of missing gaps (range from 1 to 100).
From the D2 results, temporal spline interpolation and spectral method
generate lower imputation error when the length of missing gaps is less
than 4. As we omit more continuous values, the D2 of temporal inter-
polation and spectral method decrease significantly because the tem-
poral structure of the air pollutant time series is unknown. Regression-
based method is better than spline interpolation and spectral method
but worse than other spatial imputation method including nearest
neighboring replacement, mean substitution, regularized EM and LRMC
which are not sensitive to the length of missing gaps. In most cases,
imputation using regularized EM works better for different air pollu-
tants compared to other methods. However, from the view of indicator
R2, LRMC algorithm seems always to obtain the leading imputation
performance. It reveals that LRMC is more capable to recover the in-
herent trend of air pollutants time series.

5. Discussion and conclusion

In this research, we introduce a spatial imputation method which
inputs the missing values using data from ambient stations accom-
plished by low rank matrix completion algorithm. Low rank matrix
completion takes the advantage of high spatial correlation and con-
sistency of air pollutants spatial matrix. It decomposes the spatial ma-
trix into a low rank matrix (representing the spatial correlation) and
sparse matrix (handles the probable outliers due to measurement er-
rors), which robustly fills the unobserved values in air pollutants data
sets. Thus, the pollutant space matrix have to be a low rank matrix.

Spectral method has the worst imputation performance on the air
pollutants data used in this research. The imputation performance of
NN, mean substitution, and regression-based method are similar for low
missing ratio(5%,10%). These methods is mainly related to length of
gaps and low missing ratio. The effect of these factors on imputation
performance of these methods has already been studied in literature
(Junninen et al., 2004; Moshenberg et al., 2015). However, LRMC
performs comparable to regularized EM in term of indicators, RMSE and
D2, the accuracy and agreement of those are very good. In term of in-
dicator R2, LRMC algorithm seems always to obtain the leading im-
putation performance. LRMC optimally recovers the inherent data
structure (trend) compared to other spatial imputation methods with
respect to goodness of fit (R2). LRMC can be a better choice to deal with
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long missing gaps with a certain ratio of missing values.
For air pollutants O , PM , PM3 10 2.5, spatial correlation of those is

stronger than air pollutants SO2 and NOx. Compared to O3, the chemical
lifetime of NO is shorter and relative spatial inhomogeneity(Shahbazi
et al., 2018). Furthermore, correlation is affected by spatial distance
(Tabel 2) of the monitoring stations. The imputation performance of
LRMC is affected by spatial correlation. For the stronger spatial corre-
lated air pollutant, the imputation performance is better. Thus, central
station has better performance than the boundary stations.

In our future work, we will investigate how we can further evaluate
the imputation performance with more advanced imputation evalua-
tion framework, for example, the work of (Chapman et al., 2018) pro-
posed a framework to evaluate imputation performance for every im-
putation method.
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