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Abstract
In a previous publication (Sorbie and Stamatiou in Transp Porous Media 123:271–287, 
2018), we presented a one-dimensional analytical solution for scale inhibitor transport and 
retention in a porous medium through a kinetic precipitation mechanism. In this process, 
a chemical complex of the scale inhibitor precipitates within the porous matrix and it then 
re-dissolves through a kinetic solubilisation process. Considering the re-dissolution of this 
precipitate in a one-dimensional linear system such as a reservoir layer or indeed in a labo-
ratory core/pack flood, the flowing aqueous phase gradually dissolves the precipitate which 
is then eluted from the system. The most novel aspect of this previous analytical solution 
arose from the fact that, at a certain point in time (or pore volume throughput), the pre-
cipitate in the system was locally fully re-dissolved, forming an internal moving boundary 
between where no precipitate remained (closer to the system inlet) and where a precipitate 
was present (further into the system up to the outlet). In the current paper, we extend this 
work by presenting analytical solutions for the case where precipitation/dissolution occurs 
simultaneously with an adsorption/desorption interaction between the scale inhibitor and 
the rock surface, described by the nonlinear Langmuir isotherm. When examining this 
more complex problem in the flow scenario where the local precipitate is completely dis-
solved, several interesting analytical solution structures are obtained as a result of the inter-
nal moving boundary. Which of these structures occurs is rigorously categorised accord-
ing to the solubility, the initial levels of precipitate and adsorbate, as well as the shape of 
the Langmuir isotherm. After the mathematical development of the analytical solutions, 
they are applied to some example problems which are compared with numerical solutions. 
Finally, a number of different generic features in the scale inhibitor effluent concentration 
profile are predicted and discussed with regard to practical field applications.
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1 Introduction

When water is produced from petroleum reservoirs, it may form certain mineral “scale” 
deposits, such as calcium carbonate and barium sulphate, because of the aqueous geo-
chemistry of the produced brine, or brine mixtures. In order to prevent the formation 
of this mineral scale, a production well may be treated with chemical scale inhibitors 
(SI) in a so-called squeeze treatment. To give a long “squeeze lifetime” in terms of the 
production of scale inhibitor in the produced brine, the chemical SIs must be retained 
in the reservoir formation. The main two mechanisms of SI retention within the porous 
medium are adsorption (denoted Γ ) and precipitation (denoted Π ) and, in many cases, 
this also occurs through a coupled adsorption/precipitation ( Γ∕Π ) mechanism.

A major problem for the petroleum industry is the formation and deposition of scale 
minerals on the downhole equipment and reservoir rock surfaces in contact with for-
mation brine. The most common scaling minerals are calcium carbonate (CaCO3 ) and 
barium sulphate (BaSO4 ). Precipitation of these salts occurs when their concentration 
exceeds their solubility in the formation brine (Stiff and Davis 1952; Miles 1970). These 
deposits form on the tubing and in the near-wellbore formation and thereby cause a 
significant reduction of volumetric flow rates, resulting in a decline of oil production 
(Meyers et al. 1985). One-off chemical treatments to clean the well can restore produc-
tivity, but often only for a short period of time. For a more permanent resolution of the 
problem, the well is treated with scale inhibitors. These chemicals prevent the formation 
of scale minerals at either the nucleation or crystal growth stages of their deposition 
(Amjad and Demadis 2015). Scale inhibitor concentrations as small as 5  ppm can be 
sufficient to accomplish this (King and Warden 1989). For the scale inhibitor (SI) to be 
effective in reducing scale problems, it must be present in the brine occupying the pore 
spaces of the rock formation surrounding a producing well. This is achieved in a so-
called squeeze treatment (Kerver and Heilhecker 1969; Vetter 1973), in which a volume 
of high concentration scale inhibitor is injected into the near-well reservoir formation. 
Production of the well is stopped, and a SI solution is injected. The well is then shut in 
for a period of time to allow the SI/rock interaction in the pore spaces to reach equi-
librium. The SI chemical is retained in the rock formation mainly through two mech-
anisms: adsorption (denoted Γ ; Trogus et  al. 1977; Ramirez et  al. 1980; Sorbie et  al. 
1991, 1992) and precipitation (denoted Π ; Kahrwad et  al. 2009; Sorbie 2010, 2012; 
Vazquez et  al. 2010; Zhang et  al. 2000). Once production is re-started following the 
shut-in, the SI chemical then desorbs or dissolves into the formation brine at a concen-
tration which is sufficient to prevent the formation of scale crystals. More recently, there 
has been some revival of interest in the kinetics of inhibitor adsorption (Khormalia and 
Moghaddam 2007) and on salt precipitation in porous media (Safari 2014), and this still 
remains a subject of active research.

The desorption/dissolution of SI into the flowing aqueous phase is a kinetic process, 
and the treatment could be designed (using modelling) in order to increase the lifetime 
of a squeeze treatment and hence minimise costs. Mathematical models are invaluable 
in designing efficient SI squeeze treatments. The rate laws describing the adsorption/
desorption and precipitation/dissolution processes must be embedded in a transport 
equation for flow in porous media. In the present work, we will consider (simplifica-
tions of) the following three-dimensional Darcy-scale transport model including kinetic 
adsorption ( Γ ) and precipitation ( Π):
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Here, � =
(
x1, x2, x3

)
∈ ℝ

3 is the Cartesian coordinate vector labelling a point in the 
porous material, �(�, t) denotes the (Darcy-scale) fluid velocity field, C(�, t) is the SI con-
centration in the mobile phase, Π(�, t) the level of SI precipitate in the pore spaces and 
Γ(�, t) the amount of SI adsorbed onto the solid surface. The quantities C, Π and Γ are per 
unit volume of porous material. The dispersion coefficient D and porosity � are assumed to 
be constants in this model. Precipitation/dissolution rates are given by Eq. (2). This formu-
lation involves a rate constant � , which can be related to the temperature via the Arrhenius 
equation (Yuan et al. 1993). The SI solubility Cs in general also depends on field conditions 
such as temperature and pH (Malandrino et al. 1995), but here we simply assume that there 
is a critical temperature Tcp such that Cs is infinite for T < Tcp and constant for T ≥ Tcp . 
Equation (2) further ensures that (1) precipitation can only take place if C > Cs and (2) no 
dissolution takes place if Π = 0.

Finally, the adsorption/desorption rate mechanism is described by Eq. (3). Next to a rate 
constant ra , it depends largely on a two-parameter Langmuir isotherm, given by

Both rate Eqs. (2) and (3) appear as source/sink terms in the advection–dispersion equation 
(2), describing the transport of SI chemical in the bulk fluid. Quite often, with regard to 
field applications, model equations are written in spherical or cylindrical polar coordinates, 
which are particularly suitable for describing a near-wellbore geometry (see, for instance, 
Akanji and Falade 2019). However, in this paper, we will simplify the three-dimensional 
Cartesian equations (2)–(3) into a one-dimensional form appropriate for the analysis of 
core-flood experiments (Sect.  2). The reduced set of equations leads to a free-boundary 
problem which is analytically soluble (Sects. 3–5). A variety of cases are identified. Essen-
tial mathematical concepts such as the method of characteristics, weak solutions and shock 
conditions are utilised, and the reader is referred to Alinhac (2009), Ockendon et al. (2003), 
Holden and Risebro (2002), Lax (1957) and Smoller (1994) for more details.

2  Mathematical Analysis of Core‑Flood Experiments

2.1  Simplified One‑Dimensional Model Equations

In a typical core-flood experiment, a homogeneous rock core of length L, cross-sectional 
area Acore and porosity � is saturated with a scale inhibitor (SI) solution of concentration 
C = Ci (stage 1 in Fig. 1). We will assume that the core is oriented in the x1-direction. 
Precipitation occurs when the temperature of the core is raised above Tcp and if Ci > Cs . 
At the same time, scale inhibitor adsorption/desorption takes place, and the interaction 

(1)
�C

�t
+ � ⋅ ∇C = D∇2C −

�Π

�t
−

1 − �

�

�Γ

�t

(2)
𝜕Π

𝜕t
=

{
−𝜅

(
Cs − C

)
, if 0 ≤ C < Cs, Π > 0 or if C > Cs

0 , otherwise

(3)
�Γ

�t
= ra

[
Γeq(C) − Γ

]

(4)Γeq(C) =
AC

1 + BC
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of these processes eventually leads to an equilibrium state with uniform levels C = Cs , 
Π = Π0 , Γ = Γ0 = Γeq(Cs) throughout the core. After a shut-in (no flow) period during 
which this equilibrium is reached (stage 2 in Fig. 1), SI-free water ( C = 0 ) is injected 
into the core at constant volumetric flow rate Q (stage 3 in Fig. 1). This translates into 
a constant linear fluid velocity v = Q∕(Acore ⋅ �) ( cm s−1 ) in the x1-direction, so that 
Eqs.  (2) and (3) become one-dimensional and we can write x1 ≡ x . Furthermore, we 
shall assume isothermal conditions, negligible dispersion ( D = 0 ) and equilibrium 
adsorption/desorption ( ra → ∞ ). This last condition implies that, for a given mobile 
phase concentration C(x,  t), the adsorption level instantaneously becomes Γeq(C(x, t)) . 
Then, by the chain rule, �Γ∕�t = Γ�

eq
(C)�C∕�t and Eqs. (2)–(3) reduce to

where the factor (1 − �)∕� has been accommodated in the Langmuir isotherm coefficient A. 
The rock core can be represented mathematically as Ω ∶=

{
(x, t) ∈ ℝ

2 ∶ 0 ≤ x ≤ L, t ≥ 0
}
 

with U-shaped boundary �Ω ∶= {t = 0} ∪ {x = 0} ∪ {x = L} . In order to solve Eqs. (5)–(6) 
on the domain Ω , we use the following initial/boundary conditions on �Ω:

(5)
[
1 +

dΓeq

dC

]
�C

�t
+ v

�C

�x
= −

�Π

�t

(6)
𝜕Π

𝜕t
=

{
−𝜅

(
Cs − C

)
, if 0 ≤ C < Cs, Π > 0 or if C > Cs

0 , otherwise

(7)C = Cs,Π = Π0,Γ = Γeq(Cs) on 0 ≤ x ≤ L at t = 0

(8)C = 0 at x = 0, for t > 0

Fig. 1  Illustration of the consecutive stages in a core-flood experiment
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The boundary condition reflects the physical assumption that the concentration at the 
inlet drops to zero at the start of stage 3 in Fig. 1 ( t = 0 ) and remains so for all time.

If there is no precipitate present (i.e. Π0 = 0 ), then �Π∕�t = 0 and Eq. (5) can be writ-
ten as �C∕�t + VL(C)�C∕�x = 0 , where the term VL(C) defines the Langmuir speed (see 
Fig. 2) of a concentration value C and is given by

Since VL
�(C) > 0 , the PDE �C∕�t + VL(C)�C∕�x = 0 implies that the discontinuity 

in the data at x = 0 develops into a centred rarefaction wave, with each concentration value 
c ∈ [0,Cs] travelling at constant velocity VL(c) . This is illustrated in Fig. 3 and contrasted with 
the “pure dissolution” (i.e. Γ0 = 0 ) solution obtained in a previous paper (Sorbie and Stama-
tiou 2018). Equilibrium desorption causes a retardation of concentration values with respect 

(9)VL(C) ∶= v

(
1 +

dΓeq

dC

)−1

=
v (1 + BC)2

A + (1 + BC)2

Fig. 2  Construction of the Langmuir speed from the Langmuir isotherm

Fig. 3  Rarefaction wave for pure equilibrium desorption ( Π0 = 0 , black curve) compared with the pure dis-
solution case ( Γ0 = 0 , red curve)



596 A. Stamatiou, K. S. Sorbie 

1 3

to the “water front” moving through the system at velocity v. In the region VL

(
Cs

)
t ≤ x ≤ vt , 

a bank of C = Cs is sustained. At points behind this bank, the injected water has succeeded in 
bringing down the concentration level to some c < Cs , triggering instantaneous desorption to 
Γ = Γeq(c) , which in turn slows down the transport of the concentration in the x-direction. In 
contrast to adsorption/desorption, a precipitation/dissolution process aims to restore concen-
tration to full solubility level Cs . We saw that this leads to a discontinuity at the water front, 
followed by a steady-state region in which dissolution balances the horizontal transport of 
concentration (see Fig. 3). The question addressed in the current paper is how the two mecha-
nisms combine (i.e. Π0 ≠ 0 , Γ0 ≠ 0 ) and interact.

2.2  Solution Method

From Eqs. (5)–(8) we see that Π(0, t) = Π0 − �Cst and therefore the SI precipitate at the inlet 
is completely dissolved at time t∗ , given by

Construction of the analytical solution shows that Π(x, t) > 0 on [0, L] × [0, t∗]�{(0, t∗)} . 
For t > t∗ , there is a boundary curve, denoted as x = �Π(t) , which divides Ω into the sub-
domains Ω+ (where Π(x, t) > 0 ) and Ω0 (where Π(x, t) = 0 ). This curve will be shown to 
satisfy a differential equation of the form

Therefore, the boundary curve is entirely determined by the concentration level on it, 
which itself is “supplied” by the solution in Ω0 or Ω+ (see Fig.  4). We will see that if 
d𝛼Π∕dt > VL(0) at t = t∗ , there is a time 𝜏 > t∗ at which the boundary becomes a straight 

(10)t∗ =
Π0

�Cs

(11)
d�Π

dt
= F

[
C(�Π, t)

]

Fig. 4  Schematic of the solution procedure of Eqs. (5)–(8)
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line of slope VL

(
C(𝛼Π, 𝜏)

)
> VL(0) . This corresponds to a characteristic projection of 

Eq. (5) in the domain Ω0 . For t∗ ≤ t < 𝜏 , the concentration on the boundary curve is given 
by the solution in Ω+ , which in turn defines the solution in Ω0 . For t ≥ � , when the bound-
ary coincides with a characteristic in Ω0 , the concentration on it remains constant. This will 
lead to a travelling wave solution region in Ω+ . Solutions for the various time regions are 
discussed in turn below for t < t∗ , while Π > 0 at the inlet, and for t > t∗ , when the quantity 
of precipitate drops to Π = 0 at the inlet.

3  Solution for t < t∗

In this section, we first consider the initial period before the precipitate ( Π ) runs out at the inlet 
at time t∗.

3.1  Concentration Profile

Equations  (5)–(6) with Π > 0 reduce to a single PDE of the form a�u∕�x + b�u∕�t = c 
and can be solved analytically by the method of characteristics (see Alinhac 2009; Ock-
endon et al. 2003 for details). This method constructs the solution u from integral curves 
of the vector field (a, b, c) ∈ ℝ

3 defined by the coefficients of the PDE, which themselves 
may depend on u. In this context, it will be convenient to introduce so-called characteristic 
coordinates r = r(x, t), s = s(x, t) . These coordinates are chosen in such a manner that s is 
a parameter running along the integral curves of the vector field, while r is a parameter 
describing a space curve Σ0 which encodes the initial/boundary data accompanying the 
PDE. The collection of integral curves intersecting Σ0 then make up the solution surface 
u = Z(r, s).

For the specific problem of Eqs.  (5)–(8), let us imagine that the boundary condition 
given by Eq.  (8) is replaced with an initial condition prescribed on the negative x-axis 
(outside the domain Ω representing the rock core). We then consider the space curve 
Σ0 =

{
(r, 0, f (r)) ∈ ℝ

3
}
 , with the parameter r running along the x-axis and the function 

f(r) describing arbitrary initial conditions. We can now solve the problem on the entire 
upper half of the x, t-plane and subsequently choose f(r) to satisfy the initial/boundary con-
ditions in Eqs. (7) and (8).

The characteristic system of ordinary differential equations defining the integral curves 
corresponding to Eq. (5) with Π > 0 in terms of the parameter s is

From Eq. (12) and Σ0 , we obtain the general solution in characteristic coordinates:

(12)
dZ

ds
= �

(
Cs − Z

)

(13)
dx

ds
= v

(14)
dt

ds
= 1 + Γeq

�(Z) =
A + (1 + BZ)2

(1 + BZ)2

(15)Z(r, s) = Cs + f (r)e−�s
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Moreover, Eq.  (13) yields x(r, s) = vs + r . Introducing the notation Γ0 ∶= Γeq

(
Cs

)
 and 

Γ0
� ∶= Γeq

�
(
Cs

)
 , we substitute Eq. (15) into Eq. (14) and integrate to find

We now choose the arbitrary function g(r) such that t(r, 0) = 0 , so

From Eq. (14), we see that 𝜕t∕𝜕s > 0 and hence

We now express the initial/boundary conditions given by Eqs. (7) and (8) in the r,s-coordi-
nates in order to determine the function f (r) . Using Eq. (18), we find that the initial condi-
tion C(x, 0) = Cs , 0 ≤ x ≤ L is equivalent to Z(r, 0) = Cs + f (r) = Cs , 0 ≤ r ≤ L . Moreover, 
since x = 0 if and only if r = −vs , it follows that the boundary condition C(0, t) = 0 , t > 0 
is equivalent to Z(r,−r∕v) = Cs + f (r) exp (�r∕v) , r < 0 . Thus, the required function is

In order to single out a point on the discontinuity at r = 0 we introduce an auxiliary param-
eter � ∈ [0, 1] and let f (0) = (� − 1)Cs . This will allow us to distinguish between the char-
acteristic projections emanating from the origin.

At t = 0 , we have r = x and therefore Z(r, 0) = C(x, 0) = Cs + f (x) . This is shown in 
Fig.  5. The feed condition C(0, t) = 0, t > 0 is accommodated by an initial condition 
C(x, 0) = Cs − Cse

−�x∕v on −∞ < x < 0 . We will proceed to consider what is happening on 
the larger domain (−∞, L] × [0,∞) and subsequently restrict attention to Ω.

Using x = vs + r we can eliminate s from Eqs.  (15) and (16) by defining C̃(x, r) and 
t̃(x, r) as follows:

(16)t(r, s) =
Γ0

�

�
ln (1 + BZ(r, s)) −

Γ0

�Cs(1 + BZ(r, s))
+

v s

VL

(
Cs

) + g(r)

(17)g(r) = −
Γ0

�

�
ln (1 + BZ(r, 0)) +

Γ0

�Cs(1 + BZ(r, 0))

(18)t = 0 ⇔ s = 0 ⇔ x = r and t > 0 ⇔ s > 0 ⇔ x > r

(19)f (r) =

{
0, r ≥ 0

−Cse
−𝜅r∕v, r < 0

Fig. 5  Initial conditions for Eq.  (5) on −∞ ≤ x ≤ L are chosen to satisfy C(x, 0) = Cs on [0,  L] and 
C(0, t) = 0 for t > 0
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We note that t̃(x, r) ∈ [0,∞) if and only if x ≥ r > rmin , where

According to the different components of the piecewise function f (r) , we distinguish solu-
tions regions I, II and III (see Figs. 6, 7). The solutions in these regions will be denoted by 
C̃1, C̃2, C̃3 in the x, r coordinates and by  C1,C2,C3 in the x, t coordinates. 

(20)C̃(x, r) ∶= Z
(
r,
x − r

v

)
= Cs + f (r)e𝜅(r−x)∕v , t̃(x, r) ∶= t

(
r,
x − r

v

)

(21)rmin ∶= −
v

�
ln

(
1 + BCs

BCs

)

Fig. 6  Characteristic projections 
of Eq. (5) with initial conditions 
given by Eq. (19), which are 
shown in Fig. 5

Fig. 7  Solution surface consist-
ing of the characteristics of 
Eq. (5)
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Region I r > 0 and hence C̃1(x, r) = Cs . The characteristics t = t̃1(x, r) = (x − r)∕VL(Cs) 
are straight lines. We can invert to find r = x − VL

(
Cs

)
t and therefore the explicit solution 

C1(x, t) = Cs . There is a widening bank of constant concentration C = Cs behind the advanc-
ing water front. This is purely due to equilibrium desorption.

Region II: here, r = 0 and hence C̃2(x, 0) = Cs + f (0)e−𝜅x∕v . The auxiliary parameter 
� ∈ [0, 1] is now used to pick a value of f(0), and we may write the solution as

and

The characteristics are the curves t = t̃2(x, 𝜆) , with the curve �0 ∶=
{
t = t̃2(x, 0)

}
 and the 

line �1 ∶=
{
t = t̃2(x, 1)

}
 bounding region II. It will sometimes be convenient to write 

t̃2(x, 0, 𝜆) and C̃2(x, 0, 𝜆) to emphasise the correspondence with r = 0.
Given a point (X, T) in region II such as illustrated in Fig. 6, we can use Eq. (23) to find 

the unique value of � such that t̃2(X, 𝜆) = T . The concentration level C̃2(X, 𝜆) at (X, T) is then 
found using Eq. (22). This parametric description is the closest we can get to an explicit solu-
tion of Eq. (5) in region II. As stated in Fig. 6, dissolution and desorption occur simultane-
ously in this zone of mixed behaviour.

Region III: here, rmin < r < 0 , and hence C̃3(x, r) = Cs − Cse
−𝜅x∕v . Thus, for a fixed value 

of x, the concentration remains constant, while t̃(x, r) varies with r. In other words, the con-
centration in this region is independent of t and we can write

We recognise this as the steady-state solution of Eq.  (5). Since �C3∕�t = 0 , no (equilib-
rium) desorption occurs in this region. The characteristic projections are the curves

This establishes the analytical solution for the mobile phase chemical concentration, 
C(x, t), for t < t∗ , as comprised of three components.

3.2  Precipitate Profile

We now use the concentration profile, C(x, t), derived above to construct an expression for Π 
on Ω . If Π > 0 , Eq. (6) yields

(22)C̃2(x, 𝜆) = Cs + (𝜆 − 1)Cse
−𝜅x∕v

(23)

t̃2(x, 𝜆) =
x

VL

(
Cs

) +
Γ0

�

𝜅
ln

(
1 + BC̃2(x, 𝜆)

1 + 𝜆BCs

)

+
Γ0

𝜅Cs

[
1

1 + 𝜆BCs

−
1

1 + BC̃2(x, 𝜆)

]

(24)C3(x) = Cs − Cse
−�x∕v

(25)
t = t̃3(x, r) =

x

VL

(
Cs

) +
Γ0

�

𝜅
ln

(
1 + BC3(x)

1 + BC3(r)

)

+
Γ0

𝜅Cs

[
1

1 + BC3(r)
−

1

1 + BC3(x)

]

(26)Π(x, t) = � ∫
[
C(x, t) − Cs

]
dt
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This integral is straightforward to compute in regions I and III. With C1(x, t) = Cs it follows 
that Π1(x, t) = Π0 , since the initial condition Π(x, 0) = Π0, 0 ≤ x ≤ L must be satisfied. In 
region III, where the concentration is given by Eq. (24), we find

for some unknown function y(x) that will be determined using the expression for the pre-
cipitate in the adjoining region II. An explicit formula C2(x, t) is not available here, but we 
can make the substitution t = t̃2(x, 𝜆) in Eq. (26) and let C2

(
x, t̃2(x, 𝜆)

)
= C̃2(x, 𝜆) , given by 

Eq. (22). Denoting the precipitate in these coordinates by Π̃2(x, 𝜆) , it may be shown that

where the anti-derivative p(x, �) is

We now choose the arbitrary functions y(x) and q(x) in Eqs. (27) and (28) in such a way 
that the precipitate profile is always continuous. Thus, we need Π̃2(x, 1) = Π0 , which deter-
mines q(x) = Π0 − p(x, 1) and hence

Finally, by equating Π̃2(x, 𝜆) and Π3(x, t) on the curve �0 separating regions II and III (see 
Fig. 6) we find

Substituting this into Eq. (27) and cancelling terms then yields the following expression for 
the precipitate profile in region III:

Figure  8 visualises the surface described by Π0 , Π̃2(x, 𝜆) and Π3(x, t) on the domain 
{0 ≤ x ≤ L, t ≤ t∗} ⊆ Ω . It may be verified that Π̃2 > 0 and Π3 ≥ 0 here, with Π3(x, t) = 0 
if and only if x = 0 , t = t∗.

For a fixed value P, consider the level curve 
(
t, xP(t),P

)
 on the surface and its projection (

t, xP(t)
)
 onto the x, t-plane, as indicated in Fig. 8. In region III, xP satisfies Π3

(
xP, t

)
= P and, 

denoting the corresponding concentration value C3

(
xP
)
 by CP , the inverse function theorem 

can be used to show that

Equation (33) holds the key to the construction of the entire solution. It describes the veloc-
ity of a precipitate value P in terms of the corresponding concentration level CP . It can be 

(27)Π3(x, t) = y(x) − �Cs te
−�x∕v

(28)Π̃2(x, 𝜆) = 𝜅 ∫
[
C̃2(x, 𝜆) − Cs

] dt̃2
d𝜆

d𝜆 = p(x, 𝜆) + q(x)

(29)p(x, 𝜆) =
A

B

[
1

1 + BC̃2(x, 𝜆)
−

e−𝜅x∕v

1 + 𝜆BCs

]

(30)Π̃2(x, 𝜆) = Π0 +
A

B

[
1

1 + BC̃2(x, 𝜆)
−

1 + 𝜆BCs + BCs − BC̃2(x, 𝜆)(
1 + 𝜆BCs

)(
1 + BCs

)
]

(31)y(x) = Π̃2(x, 0) + t̃2(x, 0)𝜅Cse
−𝜅x∕v

(32)Π3(x, t) = Π0 + Cse
−�x∕v

[
� x

VL

(
Cs

) − � t + Γ0
� ln

(
1 + BCs − BCse

−�x∕v
)]

(33)
dxP

dt
=

v(Cs − CP)

Π0 − P +
Cs − CP

Cs

[
Cs +

Γ0

1 + BCP

]
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verified that this relationship also holds in region II, with CP = C2(xP, t) . A strictly math-
ematical proof of this fact is still at large, but it would probably involve the use of the chain 
rule in conjunction with the parametric solution components C̃2(x, 𝜆) , Π̃2(x, 𝜆) . Ideally, we 
would like to prove the stronger statement that Eq.  (33) must apply to any new solution 
region which emerges, as long as the precipitate profile is required to be continuous. In the 
absence of a rigorous proof of this statement, we will henceforth assume that Eq. (33) is 
invariant between solution regions that are joined by a continuous precipitate profile. 

4  Solution for t ≥ t∗ ; Case 1: 5
0
≥ BC

s
0
0

We now consider the time period after the precipitate “runs out” at the inlet; i.e. t > t∗ . 
For this discussion, we will employ the curve x = �Π(t) introduced in Sect.  2.2. With 
Π3(0, t

∗) = 0 , Eq.  (6) implies that �Π∕�t = 0 , which causes Eq.  (5) to change its form to 
�C∕�t + VL(C)�C∕�x = 0 . Analogous to the argument given in Sorbie and Stamatiou 
(2018), it will be convenient to introduce also the point �C = �C(t) such that C ≡ 0 for x ≤ �C 
and C > 0 for x > 𝛼C . Since C ≡ 0 is not a solution of Eq. (5) in Ω+ , we must always have 
�C ≤ �Π , which will effectively “slow down” the movement of �C.

Note that �Π(t∗) = �C(t
∗) = 0 and we consider the propagation speeds of the points �Π and 

�C to decide what is happening for t > t∗ . In the case of �C , we observe that Π
(
�C, t

)
= 0 

since �C ≤ �Π . The PDE �C∕�t + VL(C)�C∕�x = 0 then implies that

For the motion of �Π , we use the assumed invariance of Eq. (33) between solution regions. 
Thus, for t ≥ t∗ , we suppose that

(34)
d�C

dt
= VL(0) =

v

1 + A

Fig. 8  Continuous precipitate surface corresponding to Fig. 7
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In particular, C
(
�Π, t

∗
)
= C

(
�C, t

∗
)
= 0 and hence

Comparing Eqs. (34) and (36), we see that

Let us now suppose that Π0 ≥ BCsΓ0 (Case 1). Together with the constraint �C ≤ �Π , this 
implies the emergence of a joint root x0 = �Π = �C for all t ≥ t∗ moving at constant veloc-
ity U1 ∶= vCs

(
Π0 + Cs + Γ0

)−1 [let C
(
�Π, t

)
= 0 in Eq. (35)]. This suggests there is some 

new region in Ω , next to region III, in which the concentration and precipitate compo-
nents are given by travelling wave solutions. To specify these solutions, let z = x − U1t and 
C = c(z) in Eq. (5). This yields the ODE

Equation (38) may be solved to give z up to an arbitrary constant �1:

Putting back z = x − U1t and using the condition that c = 0 at x0 = U1(t − t∗) , we deter-
mine the constant

Then, the new solution component, C4 say, is implicitly defined as follows:

To determine region IV in which Eq.  (41) applies, we consider its intersection with 
Eq. (25). Substituting c = C3(x) into Eq. (41) and dividing by U1 , we obtain

We recognise Eq. (42) as the characteristic t = t̃3
(
x, rTW

)
 with parameter value rTW defined 

by the relation

(35)

d�Π

dt
=

vCs − vC
(
�Π, t

)

Π0 +
Cs − C

(
�Π, t

)
Cs

[
1 +

Γ0

1 + BC
(
�Π, t

)
] , t ≥ t∗

(36)
d�Π

dt

||||t=t∗ =
vCs

Π0 + Cs + Γ0

(37)
d�Π

dt

||||t=t∗ ≤
d�C

dt

||||t=t∗ ⇔ Π0 ≥ BCsΓ0

(38)
dc

dz
=

�
(
Cs − c

)

v − U1 − Γeq
�(c)

(39)z =
U1 − v

�
ln
(
Cs − c

)
+

U1Γ0

�Cs

1

1 + Bc
+

U1Γ0
�

�
ln

(
Cs − c

1 + Bc

)
+ �1

(40)�1 = −U1t
∗ −

U1 − v

�
ln
(
Cs

)
−

U1Γ0

�Cs

−
U1Γ0

�

�
ln
(
Cs

)

(41)

x +
v

�
ln

(
Cs − c

Cs

)
=U1(t − t∗) +

vU1

�VL

(
Cs

) ln

(
Cs − c

Cs

)

−
U1Γ0

�

�
ln (1 + Bc) +

U1Γ0

�Cs

[
1

1 + Bc
− 1

]

(42)t = t∗ +
x

VL

(
Cs

) +
Γ0

�

�
ln
(
1 + BC3(x)

)
+

Γ0

�Cs

[
1 −

1

1 + BC3(x)

]
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Figure  9 shows region IV bounded by the (blue) line x0 = U1(t − t∗) and the character-
istic projection t = t̃3

(
x, rTW

)
 emanating from t = t∗ . The characteristics in region IV are 

not shown, but it is possible to obtain them by using a different parameterisation of the 
Cauchy problem in which s = 0 on the curve x0 = U1(t − t∗) instead of at t = 0 . The con-
dition C

(
x0
)
= 0 then translates into an equivalent condition in terms of r, enabling us to 

determine the (new) function f (r).
Note that, for a fixed concentration value c, Eq. (41) describes its path in region IV. The 

initial position of c (in region III) is Xc ∶= −v�−1 ln
(
1 − c∕Cs

)
 and its velocity is U1 for 

t ≥ Tc ∶= t̃3
(
Xc, rTW

)
 . This observation can also be used to construct Π4 : the precipitate 

value corresponding to c is Pc ∶= Π3

(
Xc, Tc

)
 and the paths traced out by c and Pc in the 

x,t-plane coincide for t ≥ Tc.
In summary, if Π0 ≥ BCsΓ0 , the solution in Ω+ consists of four regions I, II, III and 

IV in which the concentration is given by the components Cs , C̃2 , C3 and C4 , respectively. 
Region I is due to adsorption and region III due to dissolution, whereas both mechanisms 
are active in regions II and IV. In Ω0 , Eq. (5) becomes �C∕�t + VL(C)�C∕�x = 0 , describ-
ing the case of pure adsorption/desorption. The characteristics here are straight lines of 
slope VL(0) > U1 , determined by the data C(0, t) = 0 , and they run into the moving bound-
ary x0 = U1(t − t∗).

Example 1 This Case 1 ( Π0 ≥ BCsΓ0 ) solution is illustrated by a numerical example. Let 
A = 1,B = 10,Cs = 0.1, v = 1, � = 1, L = 1 . We then calculate Γ0 = Γeq

(
Cs

)
= 0.05 and 

the Langmuir velocities VL(0) = 0.5 , VL

(
Cs

)
= 0.8 . Note that BCsΓ0 = 0.05 , so Case 1 

(just) occurs if we choose Π0 = 0.05 . Figure 10 shows the solution profiles consisting of 
C1, C̃2,C3 and Π1, Π̃2,Π3 at t = t∗ = 0.5 , with the adsorption curve plotted in red. Since 
Π0 = BCsΓ0 , we have ��

Π
(t∗) = VL(0) and the travelling wave solution component emerges 

with this speed (see Fig. 11). We observe that �C∕�x = ∞ at x = �Π = VL(0)t , which is a 

(43)

t∗ = t̃3
(
0, rTW

)
=

−rTW

VL

(
Cs

) −
Γ0

�

𝜅
ln
(
1 + BC3

(
rTW

))

+
Γ0

𝜅Cs

[
1

1 + BC3

(
rTW

) − 1

]

Fig. 9  Solution regions and char-
acteristic projections for Case 1 
( Π0 ≥ BCsΓ0)
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result of the tangency of the boundary curve and the characteristic t = t̃3
(
x, rTW

)
 at (0, t∗) . 

This blow-up is also visible in the effluent concentration plot in Fig. 12. Note that a larger 
value of Π0 would result in a lower travelling wave speed and a more horizontal solution 
component, the derivative remaining finite everywhere. On the other hand, a lower value of 
Π0 leads to qualitatively different solution (see Case 2 below).

Fig. 10  Solution profiles of Example 1 at t = t∗ = 0.5

Fig. 11  Solution profiles of Example 1 at t = 1 > t∗
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The effluent concentration flux can be used to prove explicitly that our constructed 
solution conserves the total amount of chemical present in the system. The profile can be 
divided into four parts from left to right, as shown in Fig. 12. Here, we have

And, defining the constant 𝜇 ∶= C̃2(L, 0) = Cs − Cse
−𝜅L∕v , we compute

Furthermore, denoting Eq. (41) as t = tTW (x, c) , observe that

The integral on the right hand side evaluates to

and, from Eq. (23),

(44)R1 = v Cs t̃2(L, 1) = CsL
(
1 + Γ0

�
)

(45)
R2 =

𝜆=0

∫
𝜆=1

v ⋅ C̃2(L, 𝜆) ⋅
d

d𝜆
t̃2(L, 𝜆) d𝜆

=
v

𝜅

[
Γ0B𝜇

2

Cs(1 + B𝜇)
+ CsΓ0

� ln (1 + B𝜇)

]

(46)R3 + R4 =

v𝜇

∫
0

tTW (L, c)dc − v𝜇 t̃2(L, 0)

(47)

v�

∫
0

tTW (L, c) dC =
v

�
Γ0

�
(
� − Cs

)
ln (1 + B�)

+ Γ0
�L
(
� − Cs

)
+ L

(
Π0 + � + Γ0

)

Fig. 12  Concentration flux at x = L for Example 1
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Finally, combining Eqs. (44)–(48), we find that

This is exactly the amount of scale inhibitor initially present in the system.

5  Solution for t ≥ t∗ ; Case 2: 5
0
< BC

s
0
0

With Π0 < BCsΓ0 , we have 𝛼Π�(t∗) > VL(0) and, during some time interval after t∗ , the 
boundary curve x = �Π(t) (see Sect. 2.2) is defined by Π3

(
�Π, t

)
= 0 [Eq. (32)]. Its slope, 

VΠ = d�Π∕dt , is then given by Eq. (35) with C
(
�Π, t

)
= C3

(
�Π

)
 . For the purpose of the fol-

lowing discussion, we will let y = C3

(
�Π

)
 , so that

Note that, in terms of y, the equation Π3

(
�Π, t

)
= 0 can be re-written as t = tΠ3(y) , 

where the function tΠ3 ∶ ℝ → ℝ is

Furthermore, we define the function T3 ∶ ℝ → ℝ by evaluating t̃3(x, r = 0) (or, equiva-
lently, t̃2(x, 𝜆 = 0) ) at x = �Π = C3

−1(y) , so

Finally, we also consider VΠ = d�Π∕dt in terms of y:

This will describe d�Π∕dt until y is the minimum of the following two values: 

(a) �a ∈
[
0,Cs

]
 such that VΠ

(
�a
)
= VL

(
�a
)
 and VΠ(y) > VL(y) for all y ∈

[
0, �a

)
(b) �b ∈

[
0,Cs

]
 such that tΠ3

(
�b
)
= T3

(
�b
)
 and tΠ3(y) > T3(y) for all y ∈

[
0, �b

)

Note that VΠ(0) > VL(0) and tΠ3(0) = t∗ > 0 = T3(0) . We will now determine the values �a , 
�b and establish when �a ≤ �b and 𝜉a > 𝜉b . From Eqs. (9) and (53), it follows that

(48)−v𝜇 t̃2(L, 0) =
v

𝜅

[
Γ0𝜇

Cs(1 + B𝜇)
−

Γ0

Cs

𝜇 − Γ0
�𝜇 ln (1 + B𝜇)

]
− L

(
1 + Γ0

�
)
𝜇

(49)
4∑
i=1

Ri = L
(
Π0 + Cs + Γ0

)

(50)�Π = C3
−1(y) = −

v

�
ln

(
Cs − y

Cs

)

(51)tΠ3(y) ∶=
1

�

[
Π0

Cs − y
+ Γ0

� ln (1 + By) −
v

VL

(
Cs

) ln

(
Cs − y

Cs

)]

(52)

T3(y) ∶=t̃3
(
C3

−1(y), 0
)

=
1

𝜅

[
−

v

VL

(
Cs

) ln

(
Cs − y

Cs

)
+ Γ0

� ln (1 + By) +
Γ0

Cs

By

1 + By

]

(53)
VΠ(y) =

v
(
Cs − y

)

Π0 +
Cs − y

Cs

[
Cs +

Γ0

1 + By

]
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The quadratic on the right hand side has roots

Furthermore, it can be shown that

Since VΠ(0) > VL(0) , we have VΠ
�(0) > 0 . From Eq.  (53), we deduce that 

VΠ(0) > VΠ

(
Cs

)
= 0 and that VΠ is continuous on 

[
0,Cs

]
 . It then follows that VΠ has a max-

imum on 
[
0,Cs

]
 and, by Eq. (56), VL = VΠ here. In order to determine whether this point is 

ya
− or ya+ , we write Π0 = (1 + �)2B−1Cs

−1Γ0 for some � ∈ ℝ . If 𝜀 > 0 , the denominator in 
Eq. (55) is negative and ya + < 0 . The above argument now guarantees that ya − ∈

[
0,Cs

]
 . 

With 𝜀 < 0 , the denominator is positive and we need to examine whether ya − ≥ 0 or 
ya

− < 0 . Substituting for Π0 in the numerator, we find

By assumption of Case 2, we also have BCsΓ0 > Π0 = (1 + 𝜀)2B−1Cs
−1Γ0 . Hence, 

1 + 𝜀 < BCs and ya − > 0 . Moreover, since ya − < ya
+ , it must be that ya − ∈

[
0,Cs

]
 . 

Finally, if the denominator in Eq. (55) is zero (i.e. � = 0 ), we can take the limit � → 0 to 
find ya − = (BCs − 1)∕2B > 0 , while the other root ya + is undefined. Thus, for all param-
eter choices satisfying Π0 < BCsΓ0 , ya− is the lowest value such that VΠ = VL and we write 
�a = ya

− (see Fig. 13).
We need to compare �a = ya

− with the solutions of the equation tΠ3(y) = T3(y) . From 
Eqs. (51) and (52), it follows that

where equality/inequality occur simultaneously and

The discriminant is D = B2Cs
2
(
Γ0 − Π0

)2
− 4BCsΓ0Π0 , and we have

(54)VΠ(y) = VL(y) ⇔

(
Cs − y

1 + By

)2

=
Π0Cs

BΓ0

(55)ya
± =

Π0 + Γ0 ±
(
1 + BCs

)√Π0Γ0

BCs

Γ0

Cs

− BΠ0

(56)
dVΠ

dy
=

VΠ(y) − VL(y)

VL(y)

(57)
Γ0

[
(1 + �)2

BCs

+ 1 −
1 + BCs

BCs

(1 + �)

]
=

Γ0

BCs

[
(1 + �)2 + BCs −

(
1 + BCs

)
(1 + �)

]

=
Γ0

BCs

�
(
1 + � − BCs

)

(58)T3(y) ≤ tΠ3(y) ⇔

y
(
Cs − y

)
1 + By

≤ Π0Cs

BΓ0

⇔ y ≤ yb
− or y ≥ yb

+

(59)yb
± =

BCs

�
Γ0 − Π0

�
±
√
D

2BΓ0

(60)D = 0 ⇔ Π0 = �± = Γ0 +
2Γ0

BCs

�
1 ±

√
1 + BCs

�



609Analytical Solutions for a 1D Scale Inhibitor Transport Model…

1 3

Moreover, D > 0 if and only if Π0 < 𝛽− or Π0 > 𝛽+ . But, Π0 > 𝛽+ implies that Π0 > Γ0 
and hence yb− < yb

+ < 0 . In this case, it follows from Eq. (58) that tΠ3(y) > T3(y) for all 
y ∈

[
0,Cs

]
 . The same is true if D < 0 . Thus, for all parameter choices satisfying Π0 > 𝛽− , 

there is no �b such that tΠ3
(
�b
)
= T3

(
�b
)
.

Now suppose that Π0 ≤ �− . Then, Π0 < Γ0 and we have 0 < yb
− < yb

+ < Cs . It may be 
verified that

For this particular choice of parameters, VΠ = d�Π∕dt is equal to the Langmuir velocity of 
y = C3

(
�Π

)
 exactly at the time that solution region III disappears, i.e. when the boundary 

curve x = �Π(t) enters region II. Since D = 0 , the boundary curve is tangent to the charac-
teristic curve t = t̃3(x, 0) at the point xa = C3

−1
(
ya

−
)
, �a = tΠ3

(
ya

−
)
 (see Fig. 14).

If Π0 < 𝛽− we have

(61)Π0 = �− ⇒ ya
− = yb

− = F ∶=

√
1 + BCs − 1

B

Fig. 13  The curves VΠ and VL meet at y = �a = ya
− , given by Eq. (55)
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Since ya− satisfies Eq. (54), it must be that ya− > F , which is equivalent to

Finally, this and Eq. (58) imply that

Since tΠ3(0) > T3(0) and tΠ3, T3 are continuous on 
[
0,Cs

]
 , the curves t = tΠ3(y) and 

t = T3(y) intersect on 
(
0, ya

−
)
 and we must have 0 < yb

− < ya
− ≤ yb

+.
In summary, if Π0 > 𝛽− , then �b does not exist. Region III continues to exist for all time and 

we have �a = ya
− . Define �a ∶= tΠ3

(
�a
)
 and xa ∶= C3

−1
(
�a
)
 . The boundary curve x = �Π(t) 

(62)

Π0Cs

BΓ0

<

BCs + 2
�
1 −

√
1 + BCs

�

B2

=

�√
1 + BCs − 1

B

�2

=

�
1 + BCs −

√
1 + BCs

B
√
1 + BCs

�2

=

�
Cs − F

1 + BF

�2

(63)ya
− >

Cs − ya
−

1 + B ya
−

(64)ya
−

(
Cs − ya

−

1 + B ya
−

)
>

(
Cs − ya

−

1 + B ya
−

)2

=
Π0Cs

BΓ0

⇒ T3
(
ya

−
)
> tΠ3

(
ya

−
)

Fig. 14  When Π0 = �− [Eq. (60)], we have �a = �b
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now lies above the characteristic t = t̃3(x, 0) in the x, t-plane and VΠ = d�Π∕dt varies accord-
ing to Eq. (35) with y = C3(�Π, t) until t = �a . We will refer to this scenario as Case 2a. It is to 
be distinguished from Case 2b, which occurs if Π0 ≤ �− . The boundary curve then intersects 
with the characteristic at the point xb ∶= C3

−1
(
�b
)
 , �b ∶= tΠ3

(
�b
)
 , where 𝜉b = yb

− < 𝜉a . At 
time t = �b , solution region III disappears and for t ≥ �b , the motion of �Π is determined by 
the parametric solution in region II. By assumption of the invariance of Eq. (33), the velocity 
VΠ = d�Π∕dt is now given by Eq. (35) with y = C2(�Π(�), �) . We can therefore still expect to 
have VΠ = VL when y = �a = y−

a
 . This will be verified in terms of the auxiliary parameter � in 

Sect. 5.2.

5.1  Solution for Case 2a: 5
0
> ˇ

−

For t > 𝜏a , we have C(�Π, t) = �a , which is the concentration level “supplied” by the pure 
adsorption solution on 0 < x < 𝛼Π(t) . Using the invariance of Eq. (33), we consider the con-
stant velocity U2 ∶= VΠ

(
�a
)
= VL

(
�a
)
 and look for a travelling wave solution of Eq. (5) in 

Ω+ . Such a solution is of the form of Eq. (39) with U1, �1 replaced by U2, �2 . The constant of 
integration, �2 , is now determined by the condition that c = �a at x = �Π(t) = xa + U2

(
t − �a

)
 . 

We then obtain the solution

Substituting c = C3(x) and dividing by U2 , it may be verified that, for t > 𝜏a , the travel-
ling wave solution intersects with component C3 along the characteristic t = t̃3

(
x, rTW2

)
 , 

where the parameter value rTW2 is defined by 𝜏a = t̃3
(
xa, rTW2

)
 . This curve and the line 

x = xa + U2

(
t − �a

)
 enclose the new solution region IV, as shown in Fig.  15. The char-

acteristics in this region are not shown, but may be obtained as described for Case 1. The 
boundary curve x = �Π(t) is plotted in blue, and the characteristic t = t̃3

(
x, rTW2

)
 is tangent 

(65)
x =U2

(
t − �a

)
+

U2xa

VL

(
Cs

) +

(
U2

VL

(
Cs

) − 1

)
v

�
ln

(
Cs − c

Cs

)

−
U2Γ0

�

�
ln

(
1 + Bc

1 + B�a

)
+

U2Γ0

�Cs

[
1

1 + Bc
−

1

1 + B�a

]

Fig. 15  Solution regions in Case 
2a ( Π0 > 𝛽−)
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to this curve at 
(
xa, �a

)
 . As mentioned before, the motion of �Π for t∗ ≤ t ≤ �a also results in 

a pure adsorption/desorption solution in Ω0:

Equation (66) describes the path of a concentration value c ∈
[
0, �a

]
 . This lies at 

x = −v�−1 ln
(
1 − c∕Cs

)
 in region III until t = tΠ3(c) , when c = C3

(
�Π

)
 . For t ≥ tΠ3(c) , c 

moves at its own Langmuir velocity VL(c) . In Fig. 15, it is illustrated how a characteristic 
emanates from each point on the boundary curve between (0, t∗) and 

(
xa, �a

)
 . The effluent 

concentration flux for Case 2a consists of five regions (see Fig. 19 in Example 2) and can 
be used to prove that the solution satisfies mass balance, as was done for Case 1.

Example 2 Let Cs = 0.1, v = 1, � = 1, L = 1 as before and choose A = 10,B = 100 . 
We compute Γ0 = 0.0909 , BCsΓ0 = 0.909 and �− = 0.049 , so Case 2a occurs if we 
let Π0 = Cs = 0.1 . With VL(0) = 0.0909 and VL

(
Cs

)
= 0.9237 now, there is a much 

greater range of Langmuir velocity than in Example 1. This stretches the components 
C̃2 and Π̃2 , which can be seen in the plot at t = t∗ = 1 in Fig. 16 between x = 0.2535 and 
x = 0.9237 . Equation (55) yields �a = ya

− = 0.01548 and hence xa = C3
−1
(
�a
)
= 0.1682 , 

�a = tΠ3
(
�a
)
= 1.443 . Figures  17 and 18 show the solution profiles at t = �a and 

t = 2.5 > 𝜏a , respectively. The travelling wave solution component C4 emerges at t = �a 
and lies between x = 0.5845 and x = 0.8591 in Fig. 18. Its speed is U2 = VL

(
�a
)
= 0.3937 . 

Component C3 is always present, which is more apparent in the effluent concentration flux 
plotted in Fig. 19.

(66)x = −
v

�
ln

(
Cs − c

Cs

)
+ VL(c) ⋅

(
t − tΠ3(c)

)

Fig. 16  Solution profiles of Example 2 at t = t∗ = 1
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5.2  Solution for Case 2b: 5
0
≤ ˇ

−

The characteristic t = t̃3(x, 0) = t̃2(x, 0) now intersects the boundary curve x = �Π(t) 
at 

(
xb, �b

)
, and region III disappears (see Fig.  20). For t > 𝜏b , the boundary is deter-

mined by the solution in region II and can be found in terms of the auxiliary parameter 
� ∈ [0, 1] , using the equation Π̃2

(
𝛼Π, 𝜆

)
= 0.

Noticing that t = t̃2(x, 𝜆) and employing the chain rule, we can determine the velocity 
of �Π in terms of � as follows:

Fig. 17  Solution profiles of Example 2 at t = 𝜏a = 1.443 > t∗

Fig. 18  Solution profiles of Example 2 at t = 2.5 > 𝜏a
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The concentration value at x = �Π(�) is C̃2

(
𝛼Π(𝜆), 𝜆

)
 , and we want to find out when 

VΠ(𝜆) = VL

(
C̃2

(
𝛼Π, 𝜆

))
 . To simplify this analysis, we introduce

(67)VΠ(𝜆) =
d

dt
𝛼Π(𝜆) =

d𝜆

dt

d𝛼Π

d𝜆
=
(
d

d𝜆
t̃2
(
𝛼Π(𝜆), 𝜆

))−1 d𝛼Π

d𝜆

(68)F(�) ∶=
BCsΠ0

Γ0

(
1 + �BCs

)
− (1 + �)BCs

Fig. 19  Effluent concentration flux for Example 2

Fig. 20  If Π0 < 𝛽− , then 𝜉b < 𝜉a
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In terms of F and G, the solution �Π(�) of Π̃2

(
𝛼Π, 𝜆

)
= 0 satisfies

Clearly, we need to have 0 ≤ C̃2

(
𝛼Π(𝜆), 𝜆

) ≤ Cs for � ∈ [0, 1] . Observe that G(𝜆) > 0 , 
which implies that both roots are negative if F(𝜆) > 0 and the equation Π̃2

(
𝛼Π, 𝜆

)
= 0 has 

no meaningful solutions. On the other hand, if F(𝜆) < 0 , then both roots are positive and 
we can restrict attention to the smaller root (corresponding to the negative sign), because 
the solution components C̃2 and Π̃2 are both decreasing in the x-direction and the t-direc-
tion (see Figs. 7, 8). Using Eq. (22) for C̃2 , we then re-write Eq. (70) to obtain

The roots of the discriminant D = F(�)2 − G(�) are

Moreover, D > 0 if 𝜆 < 𝜆a
− or 𝜆 > 𝜆a

+ . Since Π0 < 𝛽− < Γ0 , we always have 𝜆a+ > 0 and 
it may be verified that 𝛼Π(𝜆) < 0 for all � ∈

[
�a

+, 1
]
 , so that we can limit our attention to 

�a
− . Using BCs + 2 − 2

√
1 + BCs =

�
1 −

√
1 + BCs

�2

 , we can show that �a− = 0 if 
Π0 = �− and 𝜆a− > 0 if Π0 < 𝛽− . Furthermore, it can be shown that �Π(0) = xb and 
𝛼Π(𝜆) > xb for 0 < 𝜆 ≤ 𝜆a

− . This makes perfect sense in terms of the solution in region II: 
at t = �b , the boundary curve hits the characteristic corresponding to � = 0 . The boundary 
curve then intersects with subsequent neighbouring characteristics until � = �a

− , after 
which �Π(�) stops being real-valued. Using Eqs. (67)–(72) (and after a lot of algebra), it 
can actually be proved that C̃2

(
𝛼Π

(
𝜆a

−
)
, 𝜆a

−
)
= 𝜉a = y−

a
 [from Eq.  (55)] and 

VΠ

(
�a

−
)
= VL

(
�a
)
 . This verifies the invariance of Eq. (33) between solution regions II and 

III. As before, we now define xa ∶= �Π
(
�a

−
)
 , 𝜏a ∶= t̃2

(
0, 𝜆a

−
)
 . The characteristic 

t = t̃2
(
x, 𝜆a

−
)
 is tangent to the boundary curve at 

(
xa, �a

)
 . As in Case 2a (Fig. 15), a new 

region IV will exist for t ≥ �a in which the solution is a travelling wave of velocity 
U3 ∶= VL

(
�a
)
= VΠ

(
�a

−
)
 . This region is enclosed by the curve t = t̃2

(
x, 𝜆a

−
)
 and the 

boundary x = �Π(t) = xa + U3

(
t − �a

)
.

During the time interval 
[
t∗, �a

]
 , the motion of �Π determines a nonzero solution in Ω0 . For 

t∗ ≤ t ≤ �b , this pure adsorption solution is given by Eq. (66). A similar relation applies for 
�b ≤ t ≤ �a : given an arbitrary concentration value c ∈

[
�b, �a

]
 , we solve c = C̃2

(
𝛼Π

(
𝜆c
)
, 𝜆c

)
 

for �c to obtain the time t̃2
(
𝛼Π

(
𝜆c
)
, 𝜆c

)
 . For t ≥ t̃2

(
𝛼Π

(
𝜆c
)
, 𝜆c

)
 , the velocity of c is VL(c) . This 

is expressed in the following relation:

(69)G(�) ∶=
4BCsΠ0

Γ0

(
1 + �BCs

)
+ 4�B2Cs

2

(70)C̃2

�
𝛼Π, 𝜆

�
=

−F(𝜆) ±
√
F(𝜆)2 − G(𝜆)

2B

(71)�Π(�) = −
v

�
ln

�
2BCs + F(�) +

√
F(�)2 − G(�)

2BCs(1 − �)

�

(72)�a
± =

BCsΠ0

(
Γ0 − Π0

)
+ 3Π0Γ0 + Γ0

2 ± 2Γ0

(
1 + BCs

)√Π0Γ0

BCs(
Γ0 − BCsΠ0

)2

(73)x = 𝛼Π
(
𝜆c
)
+ VL(c) ⋅

(
t − t̃2

(
𝛼Π

(
𝜆c
)
, 𝜆c

))
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The effluent concentration flux for this case again consists of five regions (see Fig.  23 
in Example 3) and can be used to prove that the solution satisfies the principle of mass 
conservation.

Example 3 Let A = 10,B = 50,Cs = 0.1, v = 1, � = 1, L = 1 . Then Γ0 = 0.1667 , 
BCsΓ0 = 0.8335 and �− = 0.07 , so Case 2b occurs if we choose Π0 = 0.06 . Equation (59) 
gives �b = yb

− = 0.0145 and hence �b = tΠ3
(
�b
)
= 0.412 , the time at which the compo-

nent C3 disappears. From Eqs.  (71) and (72), we find �a− = 0.0188 , �Π
(
�a

−
)
= 0.356 . 

These can be used to determine 𝜉a = C̃2

(
𝛼Π

(
𝜆a

−
)
, 𝜆a

−
)
= 0.03124 and verify that this 

agrees with �a = y−
a
 . Then, we find 𝜏a = t̃2

(
𝛼Π

(
𝜆a

−
)
, 𝜆a

−
)
= 1.563 . Figure  21 shows 

the formation of the desorption tail in terms of characteristic projections. Figure 22 is a 
close-up of the solution profiles at t = 2 > 𝜏a . The travelling wave component has velocity 
U3 = VL

(
�a
)
= 0.397 and is between x = �Π = 0.5284 and x = 0.5511 on this plot.

6  Summary and Discussion

In this paper, we have derived analytical solutions for the scale inhibitor model with kinetic 
(non-equilibrium) precipitation and equilibrium adsorption described by Eqs. (5) and (6). 
We solved the Cauchy problem for this system with C(x, 0) = Cs , Π(x, 0) = Π0 , 0 ≤ x ≤ L 
and C(0, t) = 0 , t > 0 . If Π > 0 , Eq. (5) is a non-homogenous, quasilinear PDE that incor-
porates the effects of precipitate dissolution and equilibrium desorption into the mobile 
phase. We were able to solve this equation using the method of characteristics in combina-
tion with the introduction of an auxiliary parameter � , which enabled us to describe the 

Fig. 21  In Case 2b ( Π0 ≤ �− ), the boundary curve intersects region II and defines a solution in Ω0 consist-
ing of two components
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evolution of the discontinuity in the Cauchy data at x = 0 , t = 0 . This solution exhibits 
a mixture of the shock discontinuity found in the case of “pure precipitation” ( Γeq = 0 ) 
and the rarefaction wave solution for the case of “pure equilibrium adsorption” ( � = 0 ). 

Fig. 22  Close-up of solution profiles of Example 3 at t = 2 > 𝜏a

Fig. 23  Effluent concentration flux for Example 3
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The introduction of the parameter � also allowed for the construction of the precipitate 
profile, Π(x, t) , and we showed that Π > 0 on Ω for all t < t∗ = Π0∕𝜅Cs . An expression for 
the velocity of an arbitrary precipitate value P in terms of the corresponding concentra-
tion level CP was found [see Eq. (33)]. The assumption that this relationship is “invariant” 
between all solution regions leads to the equation of motion of the point �Π [Eq.  (35)]. 
If ��

Π
(t∗) ≤ VL(0) (“Case 1”), we saw that a travelling wave solution emerged immedi-

ately and the concentration and precipitate profiles behind it were identical zero. On the 
other hand, if 𝛼�

Π
(t∗) > VL(0) (“Case 2”), the solution was characterised by a nonzero pure 

adsorption tail in the region where the precipitate was used up. This tail continued to form 
until the velocity of �Π became equal to the Langmuir velocity of the concentration value 
at x = �Π . It was only at this stage that a travelling wave component began to emerge. The 
solutions thus constructed were tested for mass conservation by integration of the effluent 
concentration flux profile and further validated by comparison with numerical solutions in 
a few example cases.

6.1  Effluent Concentration Profiles

This work has primarily been concerned with the construction of the in  situ solution 
profiles, without paying special attention to the finite length L of the rock core. How-
ever, in a laboratory setting, the principal measurable quantity is the effluent concentra-
tion C(L, t). The variation of this level with time can tell us which regime (desorption or 
dissolution) is more prominent. It also determines the “lifetime” of a squeeze treatment, 
the amount of time that the effluent concentration is at least equal to a threshold level Ct 
below which scale inhibition becomes ineffective. In order to address these matters in 
terms of the various parameters, we briefly recall the three qualitatively different in  situ 
profiles found in Sects. 4 and 5. They can be distinguished purely in terms of the (uniform) 
initial levels of precipitation ( Π0 ) and adsorption ( Γ0 = Γeq

(
Cs

)
 ). To this end, we write 

Γeq(C) = BΓmaxC∕(1 + BC) and introduce the functions

Here, Γmax is the maximum amount of scale inhibitor that can be retained on the rock sur-
face through adsorption. If Π0 ≥ P1

(
Γ0

)
 , a travelling wave solution emerges at t = t∗ (Case 

1). On the other hand, if Π0 < P1

(
Γ0

)
 , then we have d𝛼Π∕dt > VL

(
C(𝛼Π, t)

)
 until t = �a 

such that C(�Π, �a) = �a , where

If P2

(
Γ0

)
< Π0 < P1

(
Γ0

)
 , then the point (�Π

(
�a
)
, �a) is in region III, so �a at that time lies 

on the steady-state component (Case 2a). Finally, if Π0 ≤ P2

(
Γ0

)
 , then (�Π

(
�a
)
, �a) is in 

region II (Case 2b). Prior to this, region III disappears at t = �b such that C(�Π, �b) = �b , 
where

(74)P1

(
Γ0

)
∶=

Γ2
0

Γmax − Γ0

(75)P2

(
Γ0

)
∶= Γ0 + 2(Γmax − Γ0) − 2

√
Γmax

(
Γmax − Γ0

)

(76)�a =
1

B

⎡⎢⎢⎢⎣

Π0 + Γ0 − Γmax

�
Π0

Γmax−Γ0

Γmax − Γ0 − Π0

⎤⎥⎥⎥⎦
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The possible effluent concentration profiles are summarised in Fig. 24. We note that all 
cases with initial precipitate level Π0 > P2

(
Γ0

)
 have a “plateau” of constant concentration 

Cs − Cse
−�L∕v as a result of the breakthrough of the steady-state component in the in situ 

profiles. For Π0 ≤ P2

(
Γ0

)
 , this only occurs if 𝛼Π(𝜏b) = v𝜅−1 ln

(
1 − 𝜉b∕Cs

)
> L . It should 

be emphasised that Π0 , Γ0 , Γmax determine which qualitative case (1, 2a, 2b) occurs. The 
values �a , �b only have an additional explicit dependence on B. Once these are fixed, vari-
ations in � , v and L cause the emergence and length of particular solution regions in the 
effluent profiles. In the next sections, we will identify situations in which a desired thresh-
old concentration Ct is to be maintained for as long as possible, taking into account practi-
cal constraints on the variables of the system.

6.2  Slow Versus Fast Dissolution

The rate equations in the full scale inhibitor deposition/retention model are governed by 
the adsorption/desorption rate parameter ra and the precipitation/dissolution rate parameter 
� . There are four limiting behaviours (see Fig.  25), ranging from the fully kinetic case, 
when both rate parameters are finite, to the full equilibrium case, when both rate parame-
ters are infinite. In practical applications, the rate parameters need to be considered in rela-
tion to the length of the system (reservoir or rock core) and the flow rate, which both deter-
mine the impact of the two mechanisms on the mobile phase concentration. For instance, 
in case of a core-flood experiment on rock core of length L, a low flow rate Q implies a 

(77)�b =
1

2B

�
Γ0 − Π0 −

√
(Γ0 − Π0)

2 − 4Π0(Γmax − Γ0)

Γmax − Γ0

�

Fig. 24  Possible effluent concentration profiles
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low fluid velocity v = Q∕A� ( A = cross-sectional area, � = porosity), which corresponds 
to a long fluid residence time L/v. A high but finite rate parameter can then lead to behav-
iour that is very similar to an equilibrium process. This is no longer the case if the flow 
rate is increased significantly. Thus, the rate parameters must be considered relative to the 
residence time of the fluid, and kinetic/equilibrium-type behaviour can always be achieved 
by increasing/decreasing v sufficiently. For fixed L/v, we say that a desorption/dissolution 
process is “fast” if it is very close to equilibrium behaviour (typically very high values of 
� , ra ). On the other hand, the process is called “slow” if it deviates noticeably from equilib-
rium (low or medium values of � , ra ). The analytical solutions found in this paper are for 
fast adsorption/desorption processes only (i.e. equilibrium adsorption), but capture both 
slow and fast precipitation/dissolution. Figure 26 illustrates slow versus equilibrium (fast) 
dissolution in Case 2a. Both in situ profiles are sketched at a time �a + Δt , when the travel-
ling wave component (IV) is present. Now, as � is increased, �a becomes closer to t∗ , which 
itself decreases due to faster dissolution of the precipitate. Regions II and III become nar-
rower, while IV widens. At the same time, the concentration in these regions gets closer to 
Cs . In the limit � → ∞ , we have �a = t∗ = 0 and regions II and III disappear completely. 
The characteristic separating regions III and IV (see Fig. 15) then collapse onto the char-
acteristic x = VL

(
Cs

)
t, and the travelling wave develops a discontinuity at x = VL

(
�a
)
t . 

In order to emphasise the importance of the time �a for the effectiveness of a squeeze 
treatment, we compare the effluent concentration profiles for “slow” versus “fast” disso-
lution. In the sketch in Fig. 27, it is assumed that the threshold concentration is Ct < 𝜉a 
and that 𝛼Π(𝜏a) = v𝜅−1 ln

(
1 − 𝜉a∕Cs

)
< L , so that the travelling wave can be seen in the 

effluent profile. We observe that fast (equilibrium) dissolution sustains the concentration 
level C = Cs before dropping off sharply to �a and decreasing further down to the threshold 
concentration. The lifetime of the squeeze treatment now depends solely on the Langmuir 
speed VL(Ct) , as indicated by the red dashed line. If scale inhibitor is just as effective at 
threshold concentration as it is for higher concentrations, then the fast dissolution process 

Fig. 25  “Phase diagram” illustrating the different combinations of the adsorption and precipitation mecha-
nisms
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Fig. 26  In situ profiles for 𝜅 < ∞ (top) and � → ∞ (bottom)

Fig. 27  Effluent profiles for 𝜅 < ∞ and � → ∞
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is not economic at all in this case, because a pure adsorption/desorption squeeze treatment 
would achieve exactly the same lifetime. The initial mobile phase concentration for such 
a treatment just needs to be equal to Ct , far below the solubility level Cs . This evidently 
requires much less scale inhibitor than the coupled process, in which the injected concen-
tration needs to be greater than Cs in order for the precipitate to form (virtually always the 
case in practice). All this extra scale inhibitor is “wasted” if it just results in a higher return 
curve rather than delaying the breakthrough time of Ct . The latter is achieved by the slow 
(kinetic) dissolution mechanism, mainly because of the resulting increase in t∗ . In order 
to optimise usage of the available precipitate, the plateau of concentration Cs − Cse

−�L∕v 
should be as close to the threshold level Ct as possible (just above, in fact). For a given rate 
parameter � , such a low return curve can be obtained by increasing the flow rate. In terms 
of produced pore volumes, this results in the same lifetime while ensuring optimal usage 
of the scale inhibitor in the system. Moreover, we should bear in mind that the model with 
constant fluid velocity only applies to core-flooding experiments. In case of a producing 
well in the field, the fluid velocity is inversely proportional to the radial distance from the 
well. In order to predict the return curves accurately, we would of course need to derive an 
analytical solution for this radial model. However, qualitative predictions can already be 
made using the solution of the present linear model. Broadly speaking, the same type of 
solution components will appear in the radial setting, but they will be stretched consider-
ably in the region close to the producing well, where the fluid velocity is very high. Also, if 
the same parameters are used as input for both models, the effect of dissolution in the radial 
case will be less than in the linear case, due to the shorter fluid residence time. In order 
to achieve similar concentration levels in both return curves, the flow rate in the radial 
case will then need to be lowered. This is even more true if precipitate is formed only at a 
certain distance from the producing, due to low temperatures in the near-well region and 
higher temperatures further into the reservoir.

6.3  Lifetime Increase Due to Precipitation

We noted above that if the steady-state component appears in the effluent profile, the avail-
able precipitate is used in the most efficient way when the flow rate is adjusted to make 
Cs − Cse

−�L∕v = Ct . If no adsorption were to occur, this yields a squeeze lifetime (in pore 
volumes) of exactly

This lifetime is increased if adsorption is then considered. For example, in Case 1 
( Π0 ≥ P1(Γ0) ), the lifetime of the adsorption/precipitation squeeze treatment is found by 
calculating when the characteristic separating the steady-state and travelling wave com-
ponents intersects with the line x = L . The characteristic is given by equation (42), from 
which it follows that

where Γ0 = Γeq(Cs) , Γ�
0
= Γ�

eq
(Cs) and Ct = Cs − Cse

−�L∕v . The last term shows the addi-
tion in lifetime due to adsorption. The percentage increase with respect to Tpptn is actually 
limited due to the inter-dependence of the parameters involved. For instance, an increase in 

(78)Tpptn =
v

L

(
1 +

Π0

�Cs

)

(79)Tads/pptn = Tpptn +
v

�L

[
�Γ�

0
+ Γ�

0
ln
(
1 + BCt

)
+

Γ0

Cs

BCt

1 + BCt

]
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the adsorption capacity Γmax will cause both Γ0 and Γ�
0
 to increase. However, for larger 

increases, we will have to increase Π0 accordingly in order to stay in Case 1. This evidently 
caps the proportional increase in lifetime, since it increases Tpptn . Similarly, changes in B or 
Cs might increase Γ0 , but simultaneously decrease Γ�

0
 . Although only a rigorous analysis 

will reveal what combinations of parameters maximise the “extra lifetime term” in 
Eq. (79), we can make some general observations regarding this issue. Notice that, on the 
one hand, the lifetime tends to v∕L

(
1 + Γ�

0

)
 pore volumes as � → ∞ ( Ct → Cs ), corre-

sponding to the retardation of the value Cs due to desorption. On the other hand, it can be 
shown that, as � → 0 , the last term in Eq. (79) becomes v∕Γ�

0
L + BCsΓ

�
0
+ BΓ0 . Thus, for 

small � , we have Tads/pptn ≈ Tpptn ≈ Π0∕�Cs . In order to appreciate the benefits of inducing 
precipitation, we have to compare Tads/pptn with Tads = v∕L

(
1 + Γ�

eq
(Ct)

)
 , the lifetime 

achieved by a pure adsorption treatment. Figure 28 illustrates the variation of the ratio of 
Tads/pptn and Tads with the threshold concentration Ct . Large increases in lifetime are 
observed particularly if the threshold concentration is much lower than the solubility. A 
similar benefit-analysis can be carried out in Cases 2a and 2b (also sketched in Fig. 28). 
Here, the advantage of inducing precipitation is less prominent for higher threshold values. 
This is already obvious from the effluent profiles in Fig. 24. In Case 2b for instance, the 
effects of desorption can outweigh dissolution so much that the steady-state component is 
never able to break through. This is because either the amount of precipitate is very low or 
the isotherm is initially very steep and then levels off, causing Γ0 to be close to Γmax . Com-
pared to pure adsorption, the squeeze lifetime is still improved, but less so than in Case 1 or 
2a. Eventually, when � is decreased or v is increased (and hence Ct lowered) to such an 
extent that 𝛼Π(𝜏b) < L , the steady-state will appear in the effluent profile, resulting in larger 
percentage improvements.

6.4  Lifetime Dependence on Desorption

In the previous sections, we considered how dissolution improves squeeze lifetime. 
In that discussion, it was assumed that the flow rate can always be adjusted to make 
Ct = Cs − Cse

−�L∕v , so that the lifetime is defined by the length of the steady-state plateau 

Fig. 28  Illustration of the 
beneficial effect of inducing 
precipitation
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in the effluent concentration profiles (except possibly in Case 2b). However, in practice, 
it might not be possible to increase the flow rate to this extent. We could have a situation 
in which, at the fastest possible flow rate, the effluent concentration level Cs − Cse

−�L∕v 
is still much higher than Ct (as was shown in Fig. 27). The lifetime then depends signifi-
cantly on the nature of the desorption mechanism, which is governed by the Langmuir iso-
therm. A steep rising isotherm with a high adsorption capacity Γmax will cause the lower 
concentration values in the pure desorption tail (present in Cases 2a and 2b) to propagate 
slowly. Dissolution improves this further, by delaying the advance of Ct . However, as we 
saw previously, for very steep isotherms, the improvement on the lifetime achieved by a 
pure adsorption treatment is limited. In such circumstances, inducing precipitation is only 
worthwhile if a lot of scale inhibitors can be injected. This will increase Π0 , making the 
improvement due to dissolution more significant. We then benefit from the “delay” caused 
by dissolution as well as the slow Langmuir velocity of Ct.

There is another aspect involved with flow rate changes. In the discussion, thus far the 
adsorption/desorption process was always fast (at equilibrium), whereas precipitation/dis-
solution could be fast or slow (kinetic). This applies if the desorption rate parameter ra is 
very high in relation to the fluid residence time L/v. Thus, large increases in the flow rate 
could lead to adsorption/desorption becoming kinetic too, so that the bottom left corner of 
the “phase diagram” in Fig. 25 applies. In this case, the system can only be solved numeri-
cally, which we have done but space considerations prevent the inclusion of these results 
here. However, our findings highlighted the importance of the ratio �∕ra . For instance, if 
precipitation is slow with � = 10 and adsorption is fast with ra = 100 , then making the 
flow rate ten times faster effectively decreases the rate parameters to � = 1 and ra = 10 . 
Both processes are now slow in the sense that the solution profiles clearly show some devi-
ation compared to the ra → ∞ case, and we found that the effect on squeeze lifetime will be 
rather limited. This may change for high values of �∕ra , when desorption is slow compared 
to dissolution. Then, if the threshold concentration is sufficiently low, the squeeze lifetime 
may be increased hugely due to very long pure adsorption tails.
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