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Abstract
Network epidemics is a ubiquitous model that can represent different phenomena and finds
applications in various domains. Among its various characteristics, a fundamental question
concerns the time when an epidemic stops propagating. We investigate this characteristic
on a SIS epidemic induced by agents that move according to independent continuous time
random walks on a finite graph: agents can either be infected (I) or susceptible (S), and
infection occurs when two agents with different epidemic states meet in a node. After a
random recovery time, an infected agent returns to state S and can be infected again. The end
of epidemic (EoE) denotes the first timewhere all agents are in state S, since after thismoment
no further infections can occur and the epidemic stops. For the case of two agents on edge-
transitive graphs, we characterize EoE as a function of the network structure by relating the
Laplace transform of EoE to the Laplace transform of the meeting time of two randomwalks.
Interestingly, this analysis shows a separation between the effect of network structure and
epidemic dynamics.We then study the asymptotic behavior of EoE (asymptotically in the size
of the graph) under different parameter scalings, identifying regimes where EoE converges in
distribution to a proper randomvariable or to infinity.We also highlight the impact of different
graph structures on EoE, characterizing it under complete graphs, complete bipartite graphs,
and rings.
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1 Introduction

Network epidemic models are an ubiquitous and powerful abstraction that can represent
different phenomena in various domains, such as physics, biology, and social sciences. The
classic model assumes network nodes correspond to individuals and edges indicate the pos-
sibility of direct influence. In this model, nodes have an epidemic state that changes over
time according to some function of the epidemic state of their respective neighbors. The
most elementary epidemic state is represented by a single binary digit, and thus, every node
is found in one of two possible states, frequently denoted by susceptible (S) and infected (I)
[1–3].

A fundamental problem concerning network epidemics is understanding the final (or time
average) epidemic state of the nodes as time unfolds. Intuitively, the network structure plays a
key role, as illustrated by the celebratedwork of Pastor-Satorras andVespignani, showing that
the epidemic threshold vanishes on networks where the degree distribution is heavy enough
[4]. Indeed, the role of network structure on specific epidemic models has been broadly
investigated and different dichotomies have been identified (e.g., very long versus very short
epidemic duration) [1,2,5–7]. Moreover, recent efforts have focused on understanding the
impact of dynamic network structure (i.e., edge set changes over time) [8–10].

Another class of network epidemic models consider agents that move on the network. In
this model, network nodes represent locations where agents can reside and edges indicate
the possibility of direct movement between locations. In addition, the epidemic state is
now associated with the agents (and not nodes) and changes over time when agents with
different states meet in a node. Note that this model embodies two different dynamics,
namely agent mobility and epidemic diffusion. While epidemic diffusion clearly depends
on agent mobility, agent mobility may be independent of epidemic diffusion. Nevertheless,
this coupled dynamics adds significant complexity, making a rigorous theoretical analysis
much more challenging. Indeed, most theoretical results on this model are fairly recent when
compared to the classic network epidemic model [11–17]. However, this model has been
considered and analyzed through numerical simulations for at least 45 years [18], since it
also finds applications in various domains.

Arguably the simplest agent mobility model are random walks, where agents choose
neighbors uniformly at random and independently from one another. Indeed, this is the
preferred choice in theoretical works that tackle this model. Moreover, the simplest kind
of epidemic is the SI model, where every agent has a binary state (S or I) and can only
transition from state S to I. For example, Draief and Ganesh [13] consider an SI epidemic
with two random walks and characterize the infection probability over time as a function of
the network, illustrating again the importance of the network structure on the epidemic. In a
more recent work, Nagatani et al. analyze the SIS model (where agents alternate between S
and I states) with many independent walkers (metapopulation model) on different networks
to show that infection risk and epidemic threshold are a function of the network structure
[17].

In the SIS epidemic, an agent in state I (infected) returns to state S (susceptible) after some
time, known as recovery time, and can become infected again. However, the epidemic stops
when all agents are found in state S, as no agent can further become infected. Let the end of
the epidemic (EoE) denote the first time instant where all agents are found in state S. Under
mild conditions (finite graph, finite number of walkers, recovery time with finite moments),
EoE is finite almost surely. However, its value strongly depends on model parameters and
network structure. Thus, EoE is a crucial quantity of SIS dynamics as it reveals a fundamental
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property of the epidemic, namely, when it ends. Thismetrics has been investigated in different
models, as discussed in Sect. 2.

The main contribution of this work is a characterization of EoE as a function of the
network structure. We consider edge-transitive graphs and two independent random walks
with exponentially distributed step time and recovery time.Under this assumption,we provide
the exact Laplace transform for EoE as a function of the Laplace transform for meeting times
(Theorem 1). Interestingly, the graph structure only influences the latter which does not
depend on the epidemic dynamics. On an intuitive level, our main result separates the effect
of the network structure from the epidemic dynamics.

Our second contribution is the characterization of EoE on graph sequences of increasing
size. In particular, we identify scaling regimes for which EoE converges to a distribution
(with finite moments) or diverges to infinity (Theorems 2 and 3). Interestingly, while on fixed
graphs EoE is finite, graph sequences with a proper scaling allow the EoE to grow with the
graph size. Moreover, the scaling regimes necessary for EoE to diverge strongly depend on
the graph, again illustrating the importance of network structure. We illustrate this behavior
by considering complete graphs, complete bipartite graphs, and rings.

The remainder of this paper is organized as follows. A summary of relatedwork and results
is presented in Sect. 2. Section 3 presents the notation and some preliminary definitions. The
main result is given in Sect. 4 providing the Laplace transform for the EoE for any edge-
transitive graph. The main result is later applied in Sect. 5 to derive limit results and scaling
regimes for different graphs, along with auxiliary theorems to characterize their behavior.
Last, a brief discussion and outlook concerning this problem is presented in Sect. 6.

2 RelatedWork

In what follows the two different network epidemic models are presented more formally
along with some of important results on the characterization of the epidemic.

2.1 Epidemics on Nodes

In this class of network epidemics nodes correspond to individuals in a given population
and edges encode the possible interactions among the population. The various epidemic
states such as S (susceptible), I (infected), and R (recovered), are associated with the nodes,
and change over time according to the epidemic state of neighboring nodes. In such mod-
els, epidemic dynamics is strongly driven by network structure with node degree playing a
fundamental role.

One of the most famous models in this class is a SIS epidemic model normally refereed
to as contact process, defined as follows. Let G = (V , E) denote an undirected graph with
node and edge set V and E , respectively, λ and δ two parameters called the contagion rate
and recovery rate, respectively (usually δ = 1). In this model the state of a node i evolves as
follows:

ξi (t) = {0, 1}
susceptible/infected

{
ξi : 0 → 1 at rate λ

∑
( j,i)∈E ξ j

ξi : 1 → 0 at rate δ

The model was introduced on an infinite lattice by Harris [19] 45 years ago, and it has
been broadly explored. There are several surveys on this topic providing many details and
generalizations of this classic model [20,21]. Note that besides the network structure, λ plays
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a fundamental role. Intuitively, if λ is much larger than δ, infections occur much faster than
recovery and the epidemic may spread very quickly. Below we provide a few important
results concerning the survival of the epidemic in different scenarios.

On infinite latticesWhenG = Z
d , there exists an epidemic threshold λc := inf{λ : P(ξ(t) �=

0 ∀t > 0) > 0} such that
– λ < λc: epidemic dies out a.s., that is P(∃t0 : ξ(t) = 0 ∀t > t0) = 1, ∀ξ(0)
– λ > λc: epidemic survives with positive probability (at any node), that is

P(ξ(t) �= 0,∀t > 0) > 0 and ∀i P(∀T∃t > T : ξi (t) = 1) > 0 ,

for all initial conditions with infinitely many infected nodes.

Regular infinite trees In this case, two epidemic thresholds λ1 < λ2 have been identified. For
λ < λ1 and for λ > λ2 the behavior is identical to Zd . Moreover,

• λ ∈ (λ1, λ2): epidemic survives with positive probability, but every node recovers even-
tually a.s., that is

P(ξ(t) �= 0,∀t > 0) > 0 and ∀i P(∃T : ξi (t) = 0∀t > T ) = 1

where the initial condition is one node called the root infected [22].

On arbitrary finite graphs In this case it is known that the epidemic will eventually die out
with probability one, independently of the network structure and infection rate. However,
there is still a phase transition on the time that the epidemic ends, which can be either very
early or very late. LetG = ([n], E) be an undirected finite and connected graph on n vertices,
A its adjacency matrix, and ρ(A) its spectral radius. Let τ denote the time that the epidemic
ends, defined as follows:

τ = inf{t > 0 : ξi (t) = 0 ,∀i ∈ [n]}.
Then the following holds:

• λρ(A) < 1 �⇒ E(τ ) ≤ log n+1
1−λρ

, ∀ ξ(0),

• λη(G) > 1 �⇒ ∃C > 0 such that E(τ ) ≥ eCn , ∀ξ(0) �= 0, where η(G) =
inf S⊂[n]:|S|≤�n/2 E(S,Sc)

|S| is the isoperimetric constant and E(S, Sc) denotes the num-
ber of edges between S and Sc.

Thus, the expected time for the epidemic to end can be logarithmic or exponential in the size
of the network, depending on its structure and infection rate [5,6].

2.2 Epidemics on Agents

In this class of network epidemic models, nodes correspond to locations and the edges
encode the possibility of direct movement between locations. Different from the previous
model, network nodes have no epidemic state. In contrast, the epidemic state is associated
with agents that move around on the network. The epidemic state of agents can change when
agents with different states meet in a network node. Moreover, it is often assumed that agents
perform independent random walks in continuous time. Note that in this model network
structure influences agent mobility which in turn influences the epidemic dynamics, adding
an extra layer of complexity with respect to the previous model.

SI epidemic on finite graphs with two agents Consider two agents performing independent
randomwalks Xt , Yt , in continuous time according to rate transition matrix Q (assumed to be
reversible). Start with one agent infected and the other susceptible and no recovery. Assume
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the susceptible agent becomes infected as a function of the time it has spent together with
the infected agent, on any given node. Let I(t) be an indicator for the susceptible agent to be
infected by time t , and p(t) its expectation. Then

– E(τ (t)) = ∑
i∈V π2

i t

– p(t) ≤ 1 − e−βt
∑

i∈V π2
i

where τ(t) is the coincidence time up to time t (total time the two agents have spent together,
up to time t), and π is the invariant distribution for the random walk on G. Note that graphs
with different degree distribution (i.e., regular graph versus power law distribution) will have
very different scalings for this quantities [2].

SI epidemic on infinite lattices Let G = Z
d and consider two types of agents all performing

independent continuous time random walks: A-particles (susceptible) step with rate DA and
B-particles (infected) step with rate DB . Assume there is no recovery and infection occurs
immediately when an A-particle meets a B-particle in a node (the A-particle then becomes
a B-particle).

Let NA(x, 0−) ∼ Poi(λ) denote the number of A-particles at x ∈ Z
d at time 0−. More-

over, let NB denote a fixed number of B-particles placed in the lattice (not at random) at time
0. Define the two sets:

B(t) :=
{
x ∈ Z

d : a B − particle visits x during [0, t]
}

+
[
−1

2
,
1

2

]d
C(r) := [−r , r ]d

Then, for any DA, DB ≥ 0 there exists a constant C1 < ∞ (independent of NB and initial
positions of B-particles) such that for all sufficiently large t

E(number of B-particles outside C(C1t) at time t) ≤ 2NBe
−t

�⇒ B(t) ⊂ C(2C1t) eventually almost surely [16].
Moreover, if DA = DB then there exists a constant C2 > 0 such that for each constant

K > 0 and for sufficiently large t

P(C(C2t) �⊂ B(t)) ≤ 1

t K

�⇒ C(C2t) ⊂ B(t) eventually almost surely [16].
These two theorems suggests that a “shape theorem” may hold: t−1B(t) converges to a

non-random set B0 which implies that the growth rate of B(t) is linear in t . Note that when
DA = 0 which implies that susceptible particles do not move, the model degenerates to what
is known as the frog model [23]. In this case there exists a full shape theorem, as follows: ∃
a non random set B0 such that for all 0 < ε < 1

(1 − ε)B0 ⊂ B(t)

t
⊂ (1 + ε)B0 , for all t large enough a.s.

This means that P(∀ε∃t0(ε) : ∀t > t0 (1− ε)B0 ⊂ B(t)
t ⊂ (1+ ε)B0) = 1. A similar shape

theorem has been proved for a more general setting in [24].

SI epidemic on finite graphs The frog model has also been recently studied on finite graphs
[25]. Let G = (V , E), NA(x, 0−) ∼ Poi(λ), NB = 1 a single infected particle, placed in
a given node. In this model, A-particles do not move (frog model) and B-particles perform
independent discrete time randomwalks.However, B-particles have a lifetime τ (not random)
after which they are removed from the system. The process stops when there are no more B-
particles present. Let Rτ denote the set of nodes visited by B-particles (with lifetime τ ) before
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the process stops. Let S(G) = inf{t > 0 : Rt = V } denote the smallest lifetime required by
B-particles to visit every node ofG. A recent work has characterized the asymptotic behavior
of S(Td(n)) as a function of the walking rate, where Td(n) are regular trees with n nodes
[26].
SIS epidemic on finite graphs with two agents This is the scenario tackled in this paper,
focusing on edge-transitive graphs, that is described in the following sections. Note that this
is the first rigorous work on characterizing the end time of SIS epidemics on finite graphs
with mobile agents, to the best of our knowledge.

SIS epidemic on infinite lattices The SIS epidemic where agents are driven by the frog model
has also been investigated on infinite graphs. In thismodel, an A-particle becomes a B-particle
when a B-particle moves into its node (an S to I transition), while a B-particle becomes an
A-particle after an exponential amount of time, with rate λ. However, only B-particles move
according to independent randomwalks. The time at which the epidemic ends (i.e., all agents
are found in state S) has been characterized, showing a phase transition between very short
and very long [12,27]. In particular, a phase transition on the density of the agents has recently
been shown for infinite lattices of any dimension, Zd for fixed d > 0 [27]. A shape theorem
has been proved in [28].

3 Notation and Preliminaries

Let G = (V , E) be a undirected, finite, connected graph with |V | = n vertices, and let d(i)
denote the degree of vertex i ∈ V . Throughout the paper we assume thatG is edge-transitive,
i.e., given any two edges e1, e2 ∈ E , there exists an automorphism of G that maps e1 to e2.
Informally speaking, the edge transitivity assures that every edge “sees” the same graph
structure. Notable examples are: complete graph (Kn), complete bipartite graph (Kn1,n2 ),
cycle graph (Cn), star graph (Sn) and the hypercube (Qn) with d > 0 dimensions (where
n = 2d ).

Consider two agents moving on the graph G according to independent continuous
time random walks, denoted by {W1(t)}t≥0 and {W2(t)}t≥0, with Wk(t) ∈ V , k = 1, 2,
for any time t . For each walker, the holding time in every vertex is exponentially dis-
tributed with parameter λ (walking rate), independently from the other walker. Thus,
an agent in vertex i moves to vertex j with rate λ/d(i) if {i, j} ∈ E , and 0 other-
wise.

We assume agents are either susceptible (S) or infected (I), denoted by {Sk(t)}t≥0

with Sk(t) ∈ {S, I } for k = 1, 2. We consider a SIS epidemic. When an infected
agent meets the susceptible in a vertex, an infection immediately occurs. Note that this
event takes place when the S agent walks into the vertex where I resides, or when
the I agent walks into the vertex where S resides. Once infected, an agent recovers
by transitioning to the S state after some time. The recovery time is assumed to be
exponentially distributed with parameter γ (recovery rate), and is independent of other
events. Once in the S state, the agent becomes infected again when it meets the I
agent.

The systemdynamics can be fully described by the joint state of both agents, (Sk(t),Wk(t))
for k = 1, 2. We assume both agents are infected and located in the same vertex at
time zero, and thus S1(0) = S2(0) = I and W1(0) = W2(0) = i , for some i ∈
V .

The following are important quantities related to this model:
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– Meeting time of the two walkers. Let i, j ∈ V and define

Oi, j := inf{t ≥ 0 : W1(t) = W2(t) | W1(0) = i and W2(0) = j} . (1)

A worst case polynomial upper bound (in n) for the meeting of two walkers in any graph is
shown in [29]. An upper bound for the expected meeting time for a fixed G, given in terms of
the hitting time of a single walker, is also known [30]. The Laplace transform of this meeting
time has also been established in closed form for some specific graphs, including a scenario
with more than two walkers [31].

A notion related to the meting time above is the time for two walkers to meet when they
start at distance one from each other. This is a fundamental quantity for the analysis of our
model, as we soon discuss.

– Meeting time from distance one of the two walkers. In this case, we restrict i, j ∈ V such
that (i, j) ∈ E , and thus,

Mi, j := inf{t ≥ 0 : W1(t) = W2(t) | W1(0) = i and W2(0) = j and (i, j) ∈ E} . (2)

Note that since G is edge-transitive the distribution of Mi, j does not depend on the specific
edge (i, j) ∈ E , and all edges have the same distribution. Henceforth, we drop the indication
of the edge in the notation and denote by M the random variable with this distribution.

The previous quantities depend only on the graph structure and walking rate λ, but not on
the epidemic dynamics. In sharp contrast, the following quantity indicates the time that the
epidemic ends which occurs when both walkers become susceptible.

– End of epidemic time is defined as

T := inf{t ≥ 0 : S1(t) = S2(t) = S} , (3)

for a given initial condition Wk(0) = i and Sk(0) = I , for k = 1, 2 and i ∈ V .

Note that both agents will stay in the susceptible state ever after time T , moving on the graph
but never becoming infected again. Moreover, note that T depends on graph structure G, the
walking rate λ and the recovery rate γ , while M does not depend on the recovery rate γ . In
what follows we provide a characterization of T as a function of G, λ, and γ .

4 End of Epidemic Time

We now state our main theorem relating the End of Epidemic time T to the meeting time
from distance one M .

Theorem 1 LetLT (s) = E(e−sT ) denote the Laplace transform of T andLM (s) = E(e−sM )

denote the Laplace transform of M. Then, for any s > 0,

LT (s) =
2γ

(
1−LM (s+γ )

s+γ
− 1−LM (s+2γ )

s+2γ

)
2λ+s
2λ − 2LM (s + γ ) + LM (s + 2γ )

(4)

Proof of Theorem 1 Denote by Rk ∼ Exp(γ ) the time to recovery of individual k and define
R∗ � min(R1, R2) ∼ Exp(2γ ) the shortest time to recovery. Denote by Jk ∼ Exp(λ) the
time to the next jump of walker k and define J∗ � min(J1, J2) ∼ Exp(2λ) the shortest time
to the next jump. We can write
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T = (R∗ + T ′)I(R∗ < J∗) + (J∗ + T1)I(J∗ < R∗), (5)

where T ′ is a random variable with the same distribution as T and independent of R∗ and
J∗, whereas T1 is the end of epidemic time when the two walkers start at a distance one from
each other and are both in the infected state. Note that T1 is independent of R∗ and J∗. From
Equation (5), simple calculations imply that

LT (s) = LT1(s)
2λ

2λ + s
, (6)

where LT1(s) = E(e−sT1) is the Laplace transform of T1.
Similarly, if we define R∗ � max(R1, R2), we can express T1 as

T1 = (M + T ′′)I(M < R∗) + R∗I(R∗ < M), (7)

where T ′′ is a random variable with the same distribution as T and independent of R∗ and M .
Using the independence between the two walkers, the distribution of R∗ is simple to obtain
and, for every t ≥ 0, we have P(R∗ < t) = (1 − e−γ t )2, while the density is

fR∗(t) =
{
2γ e−γ t (1 − e−γ t ) , t ≥ 0 ,

0 , otherwise.
(8)

Using Eq. (7) in the Laplace transform of T1, together with the independence between T ′′
and M and R∗, we obtain

LT1(s) = E(e−s(M+T ′′); M < R∗) + E(e−sR∗ ; R∗ < M)

= LT (s)E(e−sM ; M < R∗) + E(e−sR∗ ; R∗ < M).

With the use of Eq. (6) to re-write LT1(s) on the LHS of the previous equation, we obtain

LT (s) = E(e−sR∗ ; R∗ < M)
2λ+s
2λ − E(e−sM ; M < R∗)

. (9)

Let us now deal with the two expectations in Eq. (9). First,

E(e−sM ; M < R∗) =
∫ ∞

0
e−sx

P(R∗ > x)dFM (x)

= 2
∫ ∞

0
e−sx e−γ xdFM (x) −

∫ ∞

0
e−sx e−2γ xdFM (x)

= 2LM (s + γ ) − LM (s + 2γ ),

where FM is the distribution function of M . Second,
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E(e−sR∗ ; R∗ < M) =
∫ ∞

0
e−sx

P(M > x)dFR∗(x) =
∫ ∞

0
e−sx

P(M > x) fR∗(x)dx

= 2γ

(∫ ∞

0
e−(s+γ )x

P(M > x)dx −
∫ ∞

0
e−(s+2γ )x

P(M > x)dx

)

= 2γ

(
−

∫ ∞

0
P(M > x)d

(
e−(s+γ )x

s + γ

)

+
∫ ∞

0
P(M > x)d

(
e−(s+2γ )x

s + 2γ

))

= 2γ

(
1

s + γ

([
−P(M > x)e−(s+γ )x

]∞
0

−
∫ ∞

0
e−(s+γ )xdFM (x)

)

− 1

s + 2γ

([
−P(M > x)e−(s+2γ )x

]∞
0

−
∫ ∞

0
e−(s+2γ )xdFM (x)

))

= 2γ

(
1 − LM (s + γ )

s + γ
− 1 − LM (s + 2γ )

s + 2γ

)

Combining everything into Eq. (9) we obtain the claim. ��
Theorem 1 provides an expression for the Laplace transform of the end of epidemic time

T that is a function of the Laplace transform of the meeting time from distance one LM (s),
the walking rate λ and the recovery rate γ . This expression determines how the underlying
graph structure (encoded in LM (s)) influences the distribution of T .

The randomvariableM is related to a discrete time randomvariable that counts the number
of jumps needed for two random walks to meet. More precisely, if N denotes the number of
jumps required for the two walkers to meet if they start at distance one, it holds that

M =
N∑

k=1

Ek,

where Ek are independent Exp(2λ) random variables. Note that N only depends on the
graph G and does not depend on λ nor γ . We can then express the Laplace transform of M
as

LM (s) =
∞∑
k=1

P(N = k)

(
2λ

2λ + s

)k

= LN

(
− log

(
2λ

2λ + s

))
= E

((
2λ

2λ + s

)N
)

.

(10)

Combining the above equation with Theorem 1, we obtain the following Corollary relating
the Laplace transform of T to the distribution of N .

Corollary 1 Let LT (s) = E(e−sT ) denote the Laplace transform of T and let N the number
steps before two random walks meet. Then

LT (s) = 2γ
1−E

((
2λ

2λ+s+γ

)N
)

s+γ
−

1−E

((
2λ

2λ+s+2γ

)N
)

s+2γ

2λ+s
2λ − 2E

((
2λ

2λ+s+γ

)N
)

+ E

((
2λ

2λ+s+2γ

)N
) (11)

Results of this chapter allow us to completely decouple the effects of the network structure
and random walks on it from the effects of the epidemic.
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5 General Limit Theorems

In this section we turn our attention towards understanding how EoE behaves when the size
of the underlying graph grows to infinity. To account for the investigation of this asymptotic
behavior, let us remark upon two aspects of our model on fixed finite graphs:

(i) The distribution of T may be difficult to explicitly compute;
(ii) The epidemics will eventually die, i.e., P(T < +∞) = 1 for every value of λ and γ .

On the contrary, asymptotically in the size of the graph, we show that there exist scaling
regimes for λ and γ in which the distribution of T can be explicitly computed. Moreover,
we also show the existence of regimes in which the epidemic times grow infinitely with the
size of the graph.

Recall that the random variables T , M and N depend on the underlying graph G and, in
particular, on its size. With a slight abuse of notation, henceforth we write Tn , Mn and Nn

to stress the dependence on the graph size n, for some fixed class of graphs (e.g., Kn , the
complete graph).

The main objective of this section is to study the limit behavior of Tn when n goes to
infinity and to investigate the role of the underlying graph structure. To this purpose we
consider walking rate (γn) and recovery rate (λn) which depend on n such that γn → +∞
and λn → +∞ as n grows.

This section is organized as follows. In Sect. 5.1 we consider the complete graph and, by
applying Theorem 1, we identify limiting behavior of the end of epidemic for all possible
scalings of the parameters. Even though Theorem 1 theoretically allows to deal with any
scaling regime and any graph, applying it directly in many cases turns out to be extremely
cumbersome. We therefore focus on scalings where the walking dynamics is much faster
that the recovery dynamics, so that it is possible that Tn → ∞. We prove two general
limit theorems that follow from Theorem 1 and present their corollaries for specific graphs.
Section 5.2 contains the first limit theorem followed by its application in Sect. 5.3 to complete
bipartite graphs of certain structures. In Sect. 5.3 we also identify other bipartite graphswhere
thefirst limit theorem is not applicable. In Sect. 5.4weprove another limit theoremanddiscuss
its corollaries for bipartite graphs. In Sect. 5.5 we consider the ring graph, demonstrate that
neither limit theoremmay be applied to it and study the end of epidemic time in some regimes
directly.

5.1 Complete Graph

Let us consider the specific case of a complete graph on n vertices G = Kn . In this case, it is
not difficult to see that Nn ∼ Geom(n−1), Mn ∼ Exp( 2λn ) and therefore LMn (s) = 2λn

2λn+ns .
Using the latter in Theorem 1 we obtain that

LTn (s) =
2γn

(
1−LMn (s+γn)

s+γn
− 1−LMn (s+2γn)

s+2γn

)
2λn+s
2λn

− 2LMn (s + γn) + LMn (s + 2γn)

=
2γn2λn

(
n

2λn+n(s+γn)
− n

2λn+n(s+2γn)

)
2λn + s − 2 (2λn)2

2λn+n(s+γn)
+ (2λn)2

2λn+n(s+2γn)

123



The End Time of SIS Epidemics Driven by RandomWalks...

= 4γ 2
n λn

s
(
2λn
n + s + 2γn

) (
2λn
n + s + γn

)
+ (2λn)2 s

n + 2λn(s + 2γn)(s + γn)

=
(

λns

n2γ 2
n

+ s2

nγ 2
n

+ 3s

2nγn
+ s3

4λnγ 2
n

+ 3s2

4λnγn
+ s

2λn
+ sλn

nγ 2
n

+ 3s

2γn
+ s2

2γ 2
n

+1

)−1

Let us consider three different regimes:

(i) λn = ω(nγn) (i.e., λn
nγn

→ +∞)

(ii) λn = o(γn) (i.e., λn
γn

→ 0)

(iii) λn = o(nγn) and λn = ω(γn) (i.e., λn
γn

→ +∞ but λn
nγn

→ 0)

– As far as regime i) is concerned, let us denote by bn = nγ 2
n

λn
and compute LTn (bns).

LTn (bns) = 1

1 + s + o(1)
−→
n ↑ ∞

1

1 + s

Thus, we have that bnTn
D−→ Exp(1) as n goes to infinity.

Remark 1 Note that within regime i) two different subregimes are possibles:

(1) bn → +∞ which implies Tn → 0 in probability,
(2) bn → 0 which implies Tn → +∞ in probability.

The regime 2) is of particular interest as the epidemic time grows infinitely, despite being
finite for every n.

Note that bn → 0 implies that λn = ω(nγ 2
n ) and, thus the walkers are moving at a rate that

scales linearly with n and quadratically with the recovery rate. Interestingly, this rate is large
enough for the epidemic time to grow infinitely.

– As far as regime i i) is concerned, let us compute LTn (2λns).

LTn (2λns) = 1

1 + s + o(1)
−→
n ↑ ∞

1

1 + s

Thus, 2λnTn
D−→ Exp(1) as n goes to infinity.

– As far as regime (iii) is concerned, let us compute LTn (γns)

LTn (γns) = 1

(s + 1)(s/2 + 1) + o(1)
−→
n↑∞

2

(s + 1)(s + 2)
.

Thus, γnTn
D−→ X + Y as n goes to infinity, where X ∼ Exp(1) Y ∼ Exp(2) and X

and Y are independent.

Remark 2 In both regimes (ii) and (iii) we have that Tn → 0 in probability.

5.2 General Limit Theorem I

For a complete graph, we have shown howTheorem 1 can be applied to identify the behaviour
of Tn in different regimes. This same approach can be applied to other classes of graphs.
However, instead of carrying out a similar analysis for other graphs, we provide below (and
also in Sect. 5.4) auxiliary results which allow us to characterize the asymptotic behaviour
of Tn in terms of the asymptotic behaviour of Nn . These results can then be directly applied
to other classes of graphs.
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Theorem 2 Assume there exists a sequence {an}n∈N converging to zero such that anNn
D−→ X

as n tends to infinity, with X a random variable with the first two moments finite. Denote
c1 = E(X) and c2 = E(X2). Then, for γn = o(λnan)

c2
2c1

γ 2
n

λnan
Tn

D−→ Exp(1) .

The above theorem easily captures the regime (i) for the complete graph. Indeed, for the
complete graph, Nn ∼ Geom

( 1
n

)
and LNn (s) = e−s

n−(n−1)e−s . Thus,

LNn

(
n−1s

) = e− s
n

n − (n − 1)e− s
n

= 1 − s
n + o( 1n )

s + o(1) + 1 − s
n

−→
n↑∞= 1

1 + s
.

Therefore, n−1Nn
D−→ Exp(1) as n tends to infinity. In Theorem 2 this corresponds to

the situation where X ∼ Exp(1) and thus c1 = 1, c2 = 2, and an = n−1. In the regime
λn
nγn

→ +∞, the above theoremguarantees that nγ 2
n

λn
Tn

D−→ Exp(1) as n grows, as previously
shown through several calculations.

Remark 3 Let us give an intuitive explanation of why the regime γn = o(λnan) is interesting.

Due to the assumption anNn
D−→ X , it takes on average order 1/an steps for the two random

walks to meet as soon as they separate. Each step takes an average time of order 1/λn , so it
will take on average time of order 1/(λnan) for the two walkers to meet. On the other hand,
it will take an average time of order 1/γn for them both to recover. Therefore, assuming
γn = o(λnan), we make sure that the time for the two walkers to recover is much larger than
the time it takes them to meet again, thus giving the epidemic a chance to survive.

Proof of Theorem 2 To simplify the notation let us denote bn = c2γ 2
n

2c1λnan
. To prove the claim

it is enough to show that LTn (bns) −→
n↑∞

1
1+s , for every s > 0. The assumption anNn

D−→ X

assures that LNn (ans) −→
n↑∞ LX (s). From the latter we obtain a limit theorem for Mn , i.e.,

LMn (2λnans) = LNn

(
− log

(
1

1 + ans

))
= LNn (log (1 + ans))

= LNn

(
ans + o(ans)

) −→
n↑∞ LX (s) ,

where we used that an goes to zero and the continuity of LX .
For s sufficiently close to zero we can write LX (s) = 1 − c1s + c2

2 s
2 + o(s2). Thus, for

any sequence xn → 0 it holds that LX (xns) = 1 − c1xns + c2
2 (xns)2 + o((xns)2).

We use Corollary 1 to computeLTn (bns) fromLNn . We begin computingLMn (bns + γn).

LMn (bns + γn) = LMn

(
2λnan

bns + γn

2λnan

)
= LNn

(
− log

(
1

1 + an
bns+γn
2λnan

))

= LNn

(
an

bns + γn

2λnan
+ o

(
an

bns + γn

2λnan

))
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Using that 1
λnan

→ 0, we have that

LNn

(
an

bns + γn

2λnan
+ o

(
an

bns + γn

2λnan

))
= 1 − c1

(
bns + γn

2λnan

)

+ c2
2

(
bns + γn

2λnan

)2

+ o

((
γn

λnan

)2
)

.

So we obtain LMn (bns + γn) = 1 − c1
(
bns+γn
2λnan

)
+ c2

2

(
bns+γn
2λnan

)2 + o

((
γn

λnan

)2)
. Simi-

larly, LMn (bns + 2γn) = 1− c1
(
bns+2γn
2λnan

)
+ c2

2

(
bns+2γn
2λnan

)2 + o

((
γn

λnan

)2)
. Therefore, the

numerator in Eq. (4) can be written as

2γn

(
1 − LMn (bns + γn)

bns + γn
− 1 − LMn (bns + 2γn)

bns + 2γn

)

= 2γn
(bns + γn)

(
c1

(
bns + γn

2λnan

)
− c2

2

(
bns + γn

2λnan

)2

+ o

((
γn

λnan

)2
))

− 2γn
(bns + 2γn)

(
c1

(
bns + 2γn
2λnan

)
− c2

2

(
bns + 2γn
2λnan

)2

+ o

((
γn

λnan

)2
))

= c1

(
γn

λnan

)
− c2

(
γn

2λnan

)2

+ o

((
γn

λnan

)2
)

− c1

(
γn

λnan

)
+ 2c2

(
γn

2λnan

)2

+ o

((
γn

λnan

)2
)

= c2

(
γn

2λnan

)2

+ o

((
γn

λnan

)2
)

.

Let us now look at the denominator:

2λn + bns

2λn
− 2LM (bns + γn) + LM (bns + 2γn) =

= 1 + bns

2λn
− 2

(
1 − c1

(
bns + γn

2λnan

)
+ c2

2

(
bns + γn

2λnan

)2

+ o

((
γn

λnan

)2
))

+ 1 − c1

(
bns + 2γn
2λnan

)
+ c2

2

(
bns + 2γn
2λnan

)2

+ o

((
γn

λnan

)2
)

= bns

2λn
+ c1

(
bns

2λnan

)
+ c2

(
γn

2λnan

)2

+ o

((
γn

λnan

)2
)
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Overall, recalling that bn = c2γ 2
n

2c1λnan
, we have

LTn (bns) =
c2

(
γn

2λnan

)2 + o

((
γn

λnan

)2)
bns
2λn

+ c1
(

bns
2λnan

)
+ c2

(
γn

2λnan

)2 + o

((
γn

λnan

)2) = 1 + o(1)

s anc1 + s + 1 + o(1)

−→
n↑∞

1

1 + s

��
We have already seen how the above theorem can be applied to the complete graph in the

regime γn = o(λnn). Another example in which Theorem 2 can be applied is the complete
bipartite graph Km,n−m presented below.

5.3 Complete Bipartite Graph

For the complete bipartite graph G = Km,n−m on n vertices with one partition having m
elements and the other n − m elements, we shall consider several different scenarios: i)
m = αn, with α ∈ (0, 1), ii) m = nβ , with β ∈ (0, 1) and iii) m = log n. It is not difficult to
see that, in this case the random variable Nn satisfies

Nn
d=

⎧⎪⎨
⎪⎩
1, w.p. 1

2m ,

1, w.p. 1
2(n−m)

,

2 + Nn, w.p. 1 − 1
2m − 1

2(n−m)
.

Therefore the Laplace transform of Nn satisfies he following recursion

LNn (s) = 1

2

(
1

m
+ 1

n − m

)
e−s + 1

2

(
2 − 1

m
− 1

n − m

)
e−2sLNn (s) ,

and hence

LNn (s) =
1
2

(
1
m + 1

n−m

)
e−s

1 − 1
2

(
2 − 1

m − 1
n−m

)
e−2s

=
1
2

(
n

m(n−m)

)
e−s

1 − e−2s + 1
2

(
n

m(n−m)

)
e−2s

.

– If m = αn we have

LNn (s) =
1

2α(1−α)
e−s

n(1 − e−2s) + 1
2α(1−α)

e−s
,

and therefore,

LNn (n
−1s) =

1
2α(1−α)

e− s
n

n(1 − e− 2s
n ) + 1

2α(1−α)
e− s

n

=
1

2α(1−α)
(1 − s

n + o( 1n ))

n(1 − (1 − 2 s
n + o( 1n ))) + 1

2α(1−α)
(1 − s

n + o( 1n ))

=
1

2α(1−α)
(1 + o(1))

2s + 1
2α(1−α)

+ o(1)
−→
n↑∞

(4α(1 − α))−1

(4α(1 − α))−1 + s
,
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that isn−1Nn
D−→ Exp((4α(1−α))−1). Thus,Theorem2guarantees that c2

2c1
γ 2
n

λnan
Tn

D−→
Exp(1), with c1 = 4α(1 − α) and c2 = 32α2(1 − α)2.

– If m = m(n) ↑ +∞ and m = o(n)

LNn (s) =
1
2

(
n

m(n−m)

)
e−s

1 − e−2s + 1
2

(
n

m(n−m)

)
e−2s

=
(

1
1−o(1)

)
e−s

2m(1 − e−2s) +
(

1
1−o(1)

)
e−2s

and therefore,

LNn (m
−1s) =

(
1

1−o(1)

) (
1 − s

m + o( 1
m )

)
2m(2 s

m + o( 1
m ))) +

(
1

1−o(1)

) (
1 − s

m + o( 1
m )

) −→
n↑∞

4−1

4−1 + s

that is, m−1Nn
D−→ Exp(4−1) and Theorem 2 implies that c2

2c1
γ 2
n

λnm−1 Tn
D−→ Exp(1),

with c1 = 4 and c2 = 32.
Two notable examples of this scenarios are:

(i) power law growth: m(n) = nβ , with β ∈ (0, 1)
(ii) polylogarithmic growth: m(n) = logβ n, with β > 0

There are situations in which Theorem 2 cannot be applied. Specifically, it is not always
the case that, given an going to zero, anNn converges in distribution to a random variable.
Consider, for example, the complete bipartite graph Km,n−m with m constant. In this case,
the Laplace transform is given by

LNn (s) =
1
2

(
1
m + 1

n−m

)
e−s

1 − 1
2

(
2 − 1

m − 1
n−m

)
e−2s

=
1
2

(
n

m(n−m)

)
e−s

1 − e−2s + 1
2

(
n

m(n−m)

)
e−2s

.

and, as m is a constant, we have that LNn (s) −→
n↑∞

1
2m e−s

1− 1
2

(
2− 1

m

)
e−2s

. As it turns out, in this case

Nn converges in distribution to a random variable with first and second moments finite, but
anNn → 0 in probability for any sequence an → 0. In the next section we provide a general
result to characterize the limit behaviour of Tn in these type of situations.

5.4 General Limit Theorem II

We present a limit theorem in a different regime to that of Theorem 2. This will allow to
consider the bipartite graphs identified in the previous section for which Theorem 2 is not
applicable.

Theorem 3 Assume Nn
D−→ X as n tends to infinity, with X a random variable with the first

two moments finite. Denote c1 = E(X) and c2 = E(X2). Then, for γn = o(λn)

(c1 + c2)

2(1 + c1)

γ 2
n

λn
Tn

D−→ Exp(1) .

Note that, for the complete bipartite graph with a finite fixed m, we have that LNn (s)

converges to 1/(2m)e−s

1−1/2(2−1/m)e−2s . Thus, Nn converges in distribution to a random variable X

with c1 = E(X) = − d
dsLX (s)|s=0 = 4m − 1 and c2 = E(X2) = d2

ds2
LX (s)|s=0 =
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16m(2m − 1) + 1. Thus the above theorem guarantees that, in the regime γn = o(λn), the

random variable 8m−3
2

γ 2
n

λn
Tn converges in distribution to an exponential random variable. In

the particular case when m = 1, which corresponds to the star graph, we have that 5
2

γ 2
n

λn
Tn

converges in distribution to an exponential random variable.

Proof of Theorem 3 The proof follows the same approach as the proof of Theorem 2, and is

provided for completeness. To simplify the notation let us define bn = (c1+c2)
2(1+c1)

γ 2
n

λn
. To show

the claim it is enough to show that LTn (bns) −→
n↑∞

1
1+s , for every s > 0. The assumption

Nn
D−→ X assures that LNn (s) −→

n↑∞ LX (s), where LX (s) = 1 − c1s + c2
2 s

2 + o(s2). From

the latter, using Eq. (10), we obtain a limit theorem for Mn , i.e.,

LMn (2λns) = LNn

(
− log

(
1

1 + s

))
= LNn (log(1 + s)) −→

n↑∞ LX (log(1 + s)) .

Using the Taylor expansions for LX and for log, we can write

LX (log(1 + s)) = 1 − c1 log(1 + s) + c2
2

(log(1 + s))2 + o(s2)

= 1 − c1
(
s − s2/2 + o(s2)

) + c2
2

(
s − s2/2 + o(s2)

)2 + o(s2)

= 1 − c1s + c1 + c2
2

s2 + o(s2) .

Thus,

LMn (bns + γn) = LMn

(
2λn

bns + γn

2λn

)
= LNn

(
log

(
1 + bns + γn

2λn

))

= 1 − c1

(
bns + γn

2λn

)
+ c1 + c2

2

(
bns + γn

2λn

)2

+ o

((
γn

λn

)2
)

Similarly,LMn (bns + 2γn) = 1−c1
(
bns+2γn

2λn

)
+ c1+c2

2

(
bns+2γn

2λn

)2+o

((
γn
λn

)2)
. Therefore,

the numerator in Eq. (4) can be written as

2γn

(
1 − LMn (bns + γn)

bns + γn
− 1 − LMn (bns + 2γn)

bns + 2γn

)

= 2γn
(bns + γn)

(
c1

(
bns + γn

2λn

)
− c1 + c2

2

(
bns + γn

2λn

)2

+ o

((
γn

λn

)2
))

− 2γn
(bns + 2γn)

(
c1

(
bns + 2γn

2λn

)
− c1 + c2

2

(
bns + 2γn

2λn

)2

+ o

((
γn

λn

)2
))

= c1

(
γn

λn

)
− (c1 + c2)

(
γn

2λn

)2

+ o

((
γn

λn

)2
)

− c1

(
γn

λn

)
+ 2(c1 + c2)

(
γn

2λn

)2

+ o

((
γn

λn

)2
)

= (c1 + c2)

(
γn

2λn

)2

+ o

((
γn

λn

)2
)

.
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Let us now look at the denominator:

2λn + bns

2λn
− 2LM (bns + γn) + LM (bns + 2γn) =

= 1 + bns

2λn
− 2

(
1 − c1

(
bns + γn

2λn

)
+ c1 + c2

2

(
bns + γn

2λn

)2

+ o

((
γn

λn

)2
))

+ 1 − c1

(
bns + 2γn

2λn

)
+ c1 + c2

2

(
bns + 2γn

2λn

)2

+ o

((
γn

λn

)2
)

= bns

2λn
+ c1

(
bns

2λn

)
+ (c1 + c2)

(
γn

2λn

)2

+ o

((
γn

λn

)2
)

Overall, recalling that bn = (c1+c2)γ 2
n

2(1+c1)λn
, we have

LTn (bns) =
(c1 + c2)

(
γn
2λn

)2 + o

((
γn
λn

)2)
bns
2λn

(1 + c1) + (c1 + c2)
(

γn
2λn

)2 + o

((
γn
λn

)2) = 1 + o(1)

s + 1 + o(1)

−→
n↑∞

1

1 + s

��

5.5 Ring

In this section, we study the behaviour of Tn on the ring Cn on n vertices. In the sequel, we
shall assume that n is even; this is not crucial and the case n odd, albeit slightly different, can
be similarly handled.

Following the path already used in the previous sections, we need to first understand the
behaviour of the number of steps two walkers need to meet up starting at distance one. In
light of this, for i = 1, . . . , n

2 , let Nn,i be the number of steps two random walks need to
meet starting at distance i on the ring on n vertices; we set Nn,0 = 0. The following recursion
holds

Nn,i =
{
1 + Nn,i−1 w.p. 1

2

1 + Nn,i+1 w.p. 1
2

, for 1 ≤ i <
n

2
and Nn, n2

= 1 + Nn, n2 −1 w.p. 1

(12)

To simplify the notation let us set Li (s) = LNn,i (s) to denote the Laplace transform of Nn,i ,
with L0(s) = 1, and α = e−s/2. Using Eq. (12) we obtain the following recursion for Li

Li (s) = αLi−1(s) + αLi+1(s) for 1 ≤ i ≤ n

2
− 1

L n
2
(s) = 2αL n

2 −1(s)

Recall that we are interested in L1(s), i.e., the Laplace transform of the number of steps two
walkers need to meet starting at distance one. Solving the latter recursion (see Appendix for
details) we obtain
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L1(s) = α

x1

1 +
(
x2
x1

) n
2 −1

1 +
(
x2
x1

) n
2

, L1(s) −→
n↑∞

α

x1
= e−s

1 + √
1 − e−2s

(13)

where x1 = 1+√
1−4α2

2 and x2 = 1−√
1−4α2

2 .
From Eq. (13) two observations can be made:

– anNn,1
P−→ 0 for all an → 0 which implies that Theorem 2 cannot be applied

– Nn
D−→ X with E(X) = +∞ which implies that Theorem 3 cannot be applied

Remark 4 Note that the second observation makes sense as Nn,1 should converge to the time
for a simple symmetric random walk on integers to reach zero if it starts at 1, which is
well-known to have an infinite expectation.

In order to study the asymptotic of Tn on the ring, we therefore resort to Theorem 1 and
obtain

LMn (s) = LNn,1

(
log

(
2λn

2λn + s

)−1
)

= 2λn
2λn + s + √

s(4λn + s)
+ o(1) .

Let us restrict to the regime γn = o(λn) and compute LTn (γns). First we observe that

1 − LMn (γn(1 + s)) =
√

γn(1 + s)√
λn

(1 + o(1))

1 − LMn (γn(2 + s)) =
√

γn(2 + s)√
λn

(1 + o(1))

Thus,

LTn (γns) =
2γn

(
1−LMn (γn(s+1))

γn(s+1) − 1−LMn ((s+2)γn)
(s+2)γn

)
1 + γns

2λn
− 2 + 2(1 − LMn (γns)) + 1 − (1 − LMn (γns))

=
2
√

γn(
√
2+s−√

1+s)√
λn

√
1+s

√
2+s

(1 + o(1))
√

γn(2
√
1+s−√

2+s)√
λn

(1 + o(1))
−→ 2(

√
2 + s − √

1 + s)√
1 + s

√
2 + s(2

√
1 + s − √

2 + s)
.

The latter tells us that γnTn
D−→ X where X is a random variables such that LX (s) =

2(
√
2+s−√

1+s)√
1+s

√
2+s(2

√
1+s−√

2+s)
.

6 Final Remarks

Epidemics on networks driven by mobile agents serve as a fundamental model for different
contagious processes, finding applications in various domains. In the SIS epidemic model
agents alternate between being susceptible and infected, becoming infected when meeting in
network nodes, and a fundamental statistic is the duration of the epidemic (since all agents
will eventually become susceptible). Thismodel is challenging to analyze due the dependence
between the epidemic process and agent mobility. When agent mobility is agnostic to the
epidemic process (e.g., agents perform independent random walks, the scenario tackled in
this work), theoretical analysis is more manageable.

123



The End Time of SIS Epidemics Driven by RandomWalks...

Indeed, by considering edge-transitive graphs and two agents, this work establishes a
strong result that separates the epidemic process from the meeting process. In particular,
Theorem 1 determines the Laplace transform of the epidemic end time (EoE) as a function of
the Laplace transform of the meeting times. Note that the latter depends only on the network
structure. The second contribution is the characterization of the EoE for graph sequences of
increasing size (Theorems 2 and 3). While for every finite graph, the EoE is finite, under a
proper scaling of the model parameters the EoE can be arbitrarily long (and even converge
to infinity, as the graph size grows). Interestingly, the proper scaling for such phenomenon
strongly depend on the graph structure. This finding highlights a possible phase transition
between very short and very long (expected) EoE, a phenomenon that has been rigorously
observed in a related model [12,27].

While this work focused on two agents, a natural next step is the characterization of
EoE as a function of the number of agents. Indeed, recent works on a related model have
shown that the density of the number of agents (in infinite lattices of fixed dimension),
plays a fundamental role on EoE [12,27]. While the approach taken in this work does not
trivially extend to three agents, a mean-field approach could be derived for finite graphs with
a sufficient number of agents. In fact, we conjecture that with a large enough number of
agents, the EOE will be similar to the EoE in the classic network epidemic model, where
network nodes have epidemic states. This result would establish an important relationship
between apparently different models, contributing further to our understanding of network
epidemics.
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Appendix

Hereby we solve the recursion

Li (s) = αLi−1(s) + αLi+1(s) for 1 ≤ i ≤ n

2
− 1

L n
2
(s) = 2αL n

2 −1(s)

Let latter expression can be rewritten in the following form

Li (s) = CiLi−1(s) , for 1 ≤ i ≤ n

2

where, for instance, C n
2

= 2α and C n
2 −1 = α

1−2α2 . Note that, given that L0(s) = 1, we have
L1(s) = C1. Thus, the problem of finding the Laplace transform of Nn,1 reduces to compute
C1. The coefficients Ci satisfy the following recursion

Ci = α

(1 − αCi+1)
, for 1 ≤ i ≤ n

2
− 1 (14)
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In order to simplify the analysis, for every j = 0, . . . n
2 − 1, we write

C n
2 − j = α

Pj (α)

Q j (α)

where Pj (α) and Q j (α) are polynomials in α. Using the fact that C n
2

= 2α, we find that
P0(α) = 2 and Q0(α) = 1, while using Eq. (14) we find that for every j = 1, . . . n

2 − 1

Pj (α) = Q j−1(α)

Q j (α) = Q j−1(α) − α2Pj−1(α)

which gives the following second order recurrence relation for Q j (α)

Q j (α) = Q j−1 − α2Q j−2 with Q0(α) = 1 and Q1(α) = 1 − 2α2

Consider the characteristic equation of the second order recurrence relation for Q j , i.e.,

x2 − x + α2 = 0

whose solutions are x1 = 1+√
1−4α2

2 and x2 = 1−√
1−4α2

2 . Then, we know that Q j (α) satisfies
the following equation

Q j (α) = Ax j
1 + Bx j

2

where A and B can be computed using the initial conditions Q0(α) = 1 and Q1(α) =
1 − 2α2. Specifically, we obtain that A = x1 and B = x2. Overall, we have that for every
j = 0, . . . n

2 − 1

Q j (α) = x j+1
1 + x j+1

2

and

C1 = C n
2 −( n

2 −1) = α
Pn

2 −1(α)

Q n
2 −1(α)

= α
Q n

2 −2(α)

Q n
2 −1(α)

= α
x

n
2 −1
1 + x

n
2 −1
2

x
n
2
1 + x

n
2
2

= α

x1

1 +
(
x2
x1

) n
2 −1

1 +
(
x2
x1

) n
2

.
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