
Unified Management of Multi-Model Data?

(Vision Paper)

Irena Holubová1[0000−0003−2113−1539], Martin Svoboda1[0000−0003−4694−6806],
and Jiaheng Lu2[0000−0003−2067−454X]

1 Charles University, Faculty of Mathematics and Physics,
Prague, Czech Republic

{holubova,svoboda}@ksi.mff.cuni.cz
2 University of Helsinki,

Helsinki, Finland,
jiaheng.lu@helsinki.fi

Abstract. The variety of data is one of the most challenging issues for
research and practice in data management. The so-called multi-model
data are naturally organized in different and mutually interlinked data
formats and logical models, including structured, semi-structured, and
unstructured. In this vision paper, we discuss the so far neglected, but for
correct and efficient management of multi-model data critical issues and
challenges: conceptual modeling of multi-model data, inference of multi-
model schemas, unified and conceptual querying, evolution management,
and, last but not least, autonomous multi-model data management.

Keywords: multi-model databases · conceptual modeling · schema in-
ference · query languages · evolution management · autonomous systems

1 Introduction and Motivation

In recent years, the Big Data movement has broken down borders of many tech-
nologies and approaches that have so far been widely acknowledged as mature
and robust. One of the most challenging issues is the variety of data. It means
that data may be present in multiple types and formats – structured, semi-
structured, and unstructured – and independently produced by different sources
as well as natively conform to various models, schemas or ontologies.

Although traditional relational databases have been the systems of the first
choice for decades, with the arrival of Big Data, their capabilities have become
insufficient in many aspects, and so new types of systems, such as NoSQL or
NewSQL, have appeared. The variety of multi-model data itself brings another
dimension of complexity since multiple distinct models must be efficiently sup-
ported at a time. Currently, there exist more than 20 representatives of so-called

? This work was partially supported by the Charles University project PROGRES Q48
and the Academy of Finland project number 310321

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/301582162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 I. Holubová et al.

multi-model databases [15], involving well-known tools, both traditional rela-
tional and novel NoSQL (such as Oracle DB, Cassandra, or MongoDB).

The main open problems of these systems are: (1) The level of support for
multi-model data varies greatly, with different extent of ability to query across
different models, index internal structures or optimize query evaluation plans.
(2) Since these systems originate mainly in the IT industry, the existing solutions
are determined and significantly limited by the specifics of the original underlying
single-model systems. (3) For the same reason, there is a lack of necessary formal
background, unified approaches, and generally applicable methods allowing to
work with multi-model data in full possible extent.

In this vision paper, we discuss these critical open problems and envision the
core research areas closely related to the conceptual modeling and data manage-
ment that need to be appropriately targeted. Namely, we describe, justify, as well
as outline possible solutions for the following five key challenges: (1) proposal of
a formal background for conceptual modeling of multi-model data and mapping
and transformation of such data into individual models, (2) algorithms for in-
ference of multi-model schemas, (3) unified and conceptual querying over multi-
model data, (4) correct propagation of changes to data, schemas, and queries
induced by the evolution management, and, finally, (5) autonomous multi-model
data management in general.

The rest of the paper is structured as follows: In Section 2, we provide a brief
overview of the existing mainly single-model approaches to data management. In
Section 3, we discuss the open problems and challenges of multi-model databases,
while we conclude in Section 4.

2 Related Work

There are basically two existing general approaches to manipulate and query
multi-model data: (1) polyglot persistence, and (2) multi-model databases [17].

The main strategy of the first kind of systems is to leverage different databases
to store different models of data and then develop a mediator to integrate them
together. While this idea can be traced back to not only federated databases
studied during the 1980s, recently, several research prototypes developed on the
polyglot persistence paradigm were also introduced. For example, DBMS+ [12]
targets at embracing several database platforms with unified declarative pro-
cessing, while BigDAWG [9] provides an architecture supporting location trans-
parency and a middleware providing a uniform multi-island query interface.

The second kind of systems incorporates only one single database to manage
different data models, and provides a fully integrated backend to handle the
system demands for performance, scalability, and fault tolerance [18]. The idea
of an integrated system can be traced back to the concept of object-relational
databases, which borrow and adapt the object-oriented programming principles
into the world of relational databases.

With the dawn of Big Data, the challenge of handling variety has recently
inspired a new generation of dedicated multi-model databases, capable of stor-



Unified Management of Multi-Model Data 3

ing and processing structurally different data by supporting several data models
within just a single database. This way of solving the polyglot persistence prob-
lem offers advantages in data modeling, allowing to represent data in its most
native from. While this approach can be considered as opposite to the one size
does not fit all argument [26], it can also be understood as a way of re-architecting
traditional database models to address new requirements [13]. If nothing else, it
was (correctly) assumed that, by 2017, the majority of leading database systems
would offer multiple data models within just a single platform.

3 Research Challenges

While the existing multi-model databases pursue the bottom-up design princi-
ples, and so essentially represent kind of a trade-off solution, where a core model
is more-or-less painfully adapted to additional new models, a top-down approach
that would provide a systematically designed and robust conceptual multi-model
solution backed by a precise formalism is still missing. In particular, we see the
following main issues:

1. Formal background definition: There is a need for a complex formal appa-
ratus for multi-model data representation, storing and querying, including
proofs of its features and complexity of algorithms.

2. Data processing unification: Unified and generally applicable methods and
approaches for data processing tasks at the conceptual level (together with
necessary mappings and extensions to the logical level) need to be proposed.

3. Practical impact preservation: All the proposed languages, methods, and
algorithms must still preserve a tight relation to the existing systems so that
they can be exploited in real-world scenarios and implementations.

In this section, we discuss in detail five particular key areas we see as the
primary research targets for the conceptual modeling and database communities.

3.1 Conceptual Modeling of Multi-Model Data

When data across distinct models are to be processed together, their schemas
inferred, or query expressions evaluated, kind of a unified data abstraction has
to be established first. These models often mutually share a couple of the same
principles on the one hand, while can also have certain specifics on the other.

For this purpose, widely used modeling languages ER [6] and UML [22] could
be utilized and in a top-down way adjusted to the needs of individual logical
models. While the former language exists in several notations yet provides more
complex constructs better grasping the real-world relationships among entities,
the latter one is standardized but, unfortunately, only too data-oriented and
concealing important details (e.g., weak entity types). On the contrary, bottom-
up approaches could find an inspiration in NoSQL AbstractModel [5], a system-
independent model for so called aggregate-oriented databases.



4 I. Holubová et al.

Regardless of the adopted strategy, the theory of categories [14], associative
arrays [11], or description logics [1] could be utilized to internally model the data
in a formal, abstract, and rigorous way. Complex non-relational systems often
involve a variety of heterogeneous and interrelated models – models that are,
unfortunately, expressed using several modeling languages. Moreover, if there
are only a few solutions targeting at conceptual modeling of NoSQL databases
in general, modeling of graph databases is even more non-trivial [21].

The key aspect of multi-model data is mutual links between the distinct mod-
els. Their semantics and features can differ depending on the types of interlinked
models. Also, within the single-model systems, these links can have different rep-
resentations, involving, e.g., foreign keys in the relational model, pointers in the
object model, or embedding and references in document models.

To sum up, the first core issue of multi-model data management is to define
and formally describe a way how multi-model data can be modeled and further
processed at a conceptual level in a unified means abstracting specific features
and technical details of individual models. Next, mapping rules and transforma-
tion operations need to be defined so that the proposed conceptual constructs
can be mapped to data structures provided by individual logical models, as well
as data directly transformed from / to at least the widely used models.

3.2 Inference of Multi-Model Schemas

With multi-model data and databases, we may distinguish several levels of
schema support ranging from schema-full (where a schema description is pro-
vided explicitly and its requirements must be satisfied) to schema-less (where a
schema is neither provided nor required).

In reality, however, even in schema-less databases, there typically exists an
implicit schema, i.e., kind of an agreed structure of the data expected by the
application. Hence, the idea of schemalessness is often rather characterized as
schema-on-demand. This observation motivates the necessity of research in the
area of multi-model schema inference.

In case of a single-model schema inference, there exists a number of tech-
niques. As a consequence of Gold’s theorem [10], e.g., XML schema languages
are not identifiable from positive examples only (i.e., sample data). Hence, either
an identifiable subclass of such a language has to be inferred, or heuristics must
be utilized. Naturally, a large set of inference approaches, both heuristic [20] and
grammar-inferring [3], can be found for XML data. With the dawn of NoSQL
databases, there appeared approaches inferring, e.g., (big) JSON data [2] or
general approaches for aggregate-oriented databases [24].

When dealing with multi-model schema inference, we can primarily focus on
heuristic approaches. Apart from multi-model extensions of the existing verified
single-model approaches, mutual links between records across the models can
bring another piece of important information. Inference approaches may thus
benefit from information extracted from related data in distinct models.

The second issue of multi-model data management can hence be summarized
as the need of a universal multi-model schema-inference method that would



Unified Management of Multi-Model Data 5

provide near real-world schemas and which would be able to infer a correct
schema at least for the majority of real-world use cases.

3.3 Multi-Model Data Querying

There already exist proposals of proprietary multi-model query languages [16].
For example, AQL provided by ArangoDB enables one to access both graph
and document data. However, these languages have numerous limitations, often
lack the desired level of documentation and formalism, and not only because of
that, it is still an open challenge to develop a full-fledged query language for
multi-model data.

In pursuit of such a language, it is only natural to take into account fea-
tures of the existing languages used both in multi-model as well as single-model
databases. Despite they assume different data models and thus have certain
specifics, some of their aspects are rather surprisingly shared by more of them.
For example, results of SPARQL and Neo4j Cypher query expressions are tables
analogous to the relational model, even though these languages are intended for
RDF triples and property graphs respectively. Expressions of the majority of
languages are often decomposed into clauses, yet their structure and order are
fixed in case of SQL, while in Cypher these clauses can almost arbitrarily be
chained together. If usage of sub-queries in SQL is straightforward, not all the
languages support such a concept. In XQuery for XML data, expressions of all
kinds act like functions, and so can be arbitrarily embedded into each other, on
the contrary. Even expressions at a higher level of abstraction based on lambda
functions are provided in case of XQuery.

It is apparent that in a long-range perspective, it is highly unlikely that such
a variety of models and query languages could reasonably be maintained and
harnessed. And while the integration at the level of data has already begun as
plenty of formerly single-model systems are being enriched with additional data
formats, proposal of robust, unified, and even conceptual query languages with
appropriate expressive power should obviously be considered as the next step,
while other challenges, such as, e.g., multi-model indexing techniques, efficient
query evaluation and optimization etc., will in turn follow.

Even though the idea of conceptual querying is not new [28, 4], contempo-
rary multi-model databases require a new point of view. Therefore, the third
challenging issue is to overcome the outlined obstacles and research on the pos-
sibilities of introducing such a unified, well-formalized, and still user-friendly
query language for the multi-model environment, so that the data could be pro-
cessed uniformly from a conceptual perspective concealing representation details
of individual logical models and their physical implementations.

3.4 Evolution Management in Multi-Model Environment

Efficient management of schema evolution and propagation of changes to relevant
parts of a database system, such as data instances, queries, indices, or even
storage strategies, is a difficult task in general. In smaller applications, a company



6 I. Holubová et al.

can rely on a skilled database administrator, but in most cases, it is still a
complicated and error-prone job.

Currently, there exists a number of approaches dealing with single-model sys-
tems or systems with closely related models, namely aggregate-oriented NoSQL
databases [23, 27]. There also exists a nontrivial set of approaches focusing pri-
marily on the evolution management of XML documents, as well as comprehen-
sive analyses of changes of real-world database schemas over time.

In the case of multi-model databases, this task is even more subtle and dif-
ficult, not only because we need to distinguish between intra-model and inter-
model changes. In the former case, we can re-use the existing single-model ap-
proaches, while in the latter one, however, these cannot be straightforwardly
applied. In addition, the challenge of query rewriting [7, 19], i.e., propagation of
changes to queries, also becomes more complex in case of inter-model changes,
which then require changes in data access constructs.

The fourth issue, therefore, is a proposal of a solution dealing with multi-
model evolution management covering both intra-model and inter-model changes
and ensuring their correct and complete (at least) semi-automatic propagation
to all affected parts of the system. This requires a definition of a set of schema
modification operations, their precise semantics, as well as the corresponding
algorithms for their correct and efficient propagation to not only data instances.

3.5 Autonomous Multi-Model Data Management

Autonomous data management provides special features that enable databases to
self-tune and self-heal [8, 25]. This service relieves database administrators of the
remaining operational tasks (that include advanced tuning functions, database
security, and troubleshooting), and so they can focus more time on design and
development activities instead of administering the database installation and
configuration.

Considering the environment of multi-model data, one application can store
data in one data model, whereas later the same data can be queried by an-
other application using a different model via multi-model data views [14]. Hence,
multi-model data transformation can exploit the genuine value of multi-model
databases which enable applications requiring different data models to share the
same platform. Multi-model databases are supposed to transparently provide
different access interfaces (views) of the same data adaptive to each application
requirement. Autonomous multi-model databases can recommend suitable data
models as such, while at a more advanced level, they can also provide data model
virtualization via controlling of physical multi-model data materialization and
transformation adaptively.

To conclude, the fifth issue is a proposal of a solution building autonomous
multi-model databases to automatically handle the evolution of data models,
selecting the best models for physical storage of data, and performing automatic
transformations between the involved models. In general, it is the responsibility
of databases (not users) to find the best way to organize and store the data in
order to fulfill and optimize inter-data model queries and modification requests.



Unified Management of Multi-Model Data 7

4 Conclusion

As the current trends indicate, multi-model databases represent a dignified and
promising successor of the traditional approaches for the newly emerging and
challenging use cases. Yet they first need to gain solid foundations and reach the
same level of both applied and theoretical maturity in order to become a robust
alternative to the relational databases.

We hope to entice the database and conceptual modeling communities to
deal with the identified multi-model data management challenges related to the
conceptual view of this domain. In particular and as we hope we have shown and
argued in this paper, we believe especially the following areas are calling for at-
tention and should be appropriately tackled so that the envisioned functionality
of database systems could be pursuit:

– Conceptual modeling of multi-model data enabling their further unified pro-
cessing, while abstracting specific features of widely used logical models and
still preserving the practical usability.

– Universal multi-model schema inference methods that will be able to provide
near real-world schemas for at least the majority of real-world use cases and
widely used constructs.

– User-friendly, yet well-formalized query language allowing for the unified
processing of multi-model data at a conceptual layer concealing details of
individual logical models.

– Evolution management covering both intra-model and inter-model schema
changes and ensuring their correct and complete propagation to all the af-
fected parts of the multi-model system.

– Autonomous multi-model database management solution allowing to select
suitable logical models, handle the evolution of schemas, as well as transfor-
mation of both data and query expressions.

References

1. F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and D. Nardi. The
description logic handbook: Theory, implementation and applications. Cambridge
university press, 2003.

2. M.-A. Baazizi, D. Colazzo, G. Ghelli, and C. Sartiani. Parametric schema inference
for massive JSON datasets. The VLDB Journal, Jan. 2019.

3. G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of concise
regular expressions and DTDs. ACM Trans. Database Syst., 35(2):11:1–11:47, 2010.

4. A. C. Bloesch and T. A. Halpin. ConQuer: a conceptual query language. In ER
1996, pages 121–133. Springer, 1996.

5. F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone. Database design for NoSQL
systems. In Conceptual Modeling, pages 223–231, Cham, 2014. Springer.

6. P. Chen. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, Mar. 1976.

7. C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful database schema evolution:
The PRISM workbench. Proc. VLDB Endow., 1(1):761–772, Aug. 2008.



8 I. Holubová et al.

8. A. K. Elmagarmid, M. Rusinkiewicz, A. Sheth, and A. Sheth. Management of
heterogeneous and autonomous database systems. Morgan Kaufmann, 1999.

9. Elmore et al. A demonstration of the BigDAWG polystore system. PVLDB,
8(12):1908–1911, 2015.

10. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

11. J. Kepner, V. Gadepally, D. Hutchison, H. Jananthan, T. Mattson, S. Samsi, and
A. Reuther. Associative array model of SQL, NoSQL, and NewSQL databases. In
HPEC 2016, pages 1–9. IEEE, 2016.

12. H. Lim, Y. Han, and S. Babu. How to fit when no one size fits. In CIDR 2013.
www.cidrdb.org, 2013.

13. Z. H. Liu and D. Gawlick. Management of flexible schema data in RDBMSs -
opportunities and limitations for NoSQL. In CIDR 2015. www.cidrdb.org, 2015.

14. Z. H. Liu, J. Lu, D. Gawlick, H. Helskyaho, G. Pogossiants, and Z. Wu. Multi-
model database management systems - A look forward. In VLDB 2018 Workshops,
Poly and DMAH, pages 16–29, 2018.

15. J. Lu and I. Holubová. Multi-model data management: What’s new and what’s
next? In EDBT 2017, pages 602–605, 2017.

16. J. Lu and I. Holubová. Multi-model databases: A new journey to handle the variety
of data. ACM Comput. Surv. (accepted), 2019.

17. J. Lu, I. Holubová, and B. Cautis. Multi-model databases and tightly integrated
polystores: Current practices, comparisons, and open challenges. In CIKM 2018,
pages 2301–2302, 2018.

18. J. Lu, Z. H. Liu, P. Xu, and C. Zhang. UDBMS: Road to unification for multi-
model data management. CoRR, abs/1612.08050:285–294, 2016.

19. P. Manousis, P. Vassiliadis, and G. Papastefanatos. Automating the adaptation of
evolving data-intensive ecosystems. In ER 2013, pages 182–196, 2013.

20. I. Mlýnková and M. Nečaský. Heuristic methods for inference of XML schemas:
Lessons learned and open issues. Informatica, Lith. Acad. Sci., 24(4):577–602,
2013.

21. J. Pokorný. Conceptual and database modelling of graph databases. In IDEAS
2016, pages 370–377, New York, NY, USA, 2016. ACM.

22. J. Rumbaugh, I. Jacobson, and G. Booch. Unified modeling language reference
manual. Pearson Higher Education, 2004.

23. S. Scherzinger, T. Cerqueus, and E. C. de Almeida. Controvol: A framework for
controlled schema evolution in NoSQL application development. In ICDE 2015,
pages 1464–1467. IEEE Computer Society, 2015.

24. D. Sevilla Ruiz, S. F. Morales, and J. Garćıa Molina. Inferring versioned schemas
from NoSQL databases and its applications. In Conceptual Modeling, pages 467–
480, Cham, 2015. Springer.

25. A. P. Sheth and J. A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys
(CSUR), 22(3):183–236, 1990.

26. M. Stonebraker and U. Cetintemel. ”One size fits all”: An idea whose time has
come and gone. In ICDE 2005, pages 2–11, Washington, DC, USA, 2005. IEEE
Computer Society.

27. U. Störl, D. Müller, M. Klettke, and S. Scherzinger. Enabling efficient agile software
development of nosql-backed applications. In BTW 2017, pages 611–614, 2017.

28. A. H. ter Hofstede, H. A. Proper, and T. P. Van Der Weide. Formal definition of a
conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, 1993.


