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ABSTRACT  25 

Genetic studies on core versus peripheral populations have yielded many patterns. This diversity 26 

in genetic patterns may reflect diversity in the meaning of “peripheral populations” as defined by 27 

geography, gene flow patterns, historical effects, and ecological conditions. Populations at the 28 

lower latitude periphery of a species’ range are of particular concern because they may be at 29 

increased risk for extinction due to global climate change. In this work we aim to understand the 30 

impact of landscape and ecological factors on different geographical types of peripheral 31 

populations with respect to levels of genetic diversity and patterns of local population 32 

differentiation. We examined three geographical types of peripheral populations of the 33 

endangered salamander, Salamandra infraimmaculata, in Northern Israel, in the southernmost 34 

periphery of the genus Salamandra, by analyzing the variability in 15 microsatellite loci from 32 35 

sites. Our results showed that: 1) genetic diversity decreases towards the geographical periphery 36 

of the species’ range; 2) genetic diversity in geographically disjunct peripheral areas is low 37 

compared to the core or peripheral populations that are contiguous to the core and most likely 38 

affected by a founder effect; 3) ecologically marginal conditions enhance population subdivision.  39 

The patterns we found lead to the conclusion that genetic diversity is influenced by a 40 

combination of geographical, historical, and ecological factors. These complex patterns should 41 

be addressed when prioritizing areas for conservation. 42 

 43 

Keywords: endangered salamander, genetic diversity, gene flow, ecology, peripheral populations, 44 

conservation 45 

  46 
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INTRODUCTION 47 

  The contrast between core (central) populations of a species versus peripheral 48 

(marginal) populations has attracted the attention of evolutionary biologists ever since Darwin, 49 

but particularly since the 1950’s (Pironon et al. 2017).  The most straightforward manner of 50 

classifying core and peripheral populations is geographically.  In the classification given in 51 

Gaston (2003), following Gorodkov (1986)(Gorodkov 1986a, b), the geography of permanent 52 

populations of a species fall into four categories:  1) a zone of continuous distribution, but with 53 

the possibility of lacuna (areas where the species is absent but surrounded by an otherwise 54 

continuous distribution), 2) the limit of the zone of continuous distribution (an edge or 55 

periphery), 3) a zone of disjunct distribution in which populations can be found that are 56 

geographically separated from each other and from the continuous distribution area, and 4) the 57 

limit of the zone of disjunct distribution.  Not all species display all four types of these 58 

geographical range features, but one that does is the fire salamander, Salamandra 59 

infraimmaculata (Figure 1).  The zone of continuous distribution is found in the higher 60 

elevations along the eastern Mediterranean region (Figure 1a), with the southern part of the 61 

continuous distribution extending into the Galilee region of Northern Israel (Figure 1b) (Bogaerts 62 

et al. 2013; Steinfartz et al. 2000).  The Galilee is subdivided geologically into the Lower and 63 

Upper Galilee. The Upper Galilee is located at a higher elevation than the Lower Galilee and has 64 

a more mesic and cooler climate – and thereby also denser vegetation cover - than the Lower 65 

Galilee. The limit of continuous distribution is the edge of the lower Galilee (Figure 1b).  There 66 

is then a zone of disjunct distribution, with many populations found on Mount Carmel that is 67 

geographically separated from the Galilee by a low-elevation valley (Figure 1b).  The Mount 68 
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Carmel populations represent the southernmost limit for this species, and indeed the entire genus 69 

Salamandra, so Mount Carmel also represents the limit of disjunct distribution (Blank et al. 70 

2013). 71 

 A geographical classification of a species’ range is of heuristic value, but it is more 72 

useful, particularly for conservation planning of endangered species such as S. infraimmaculata, 73 

to determine what limits the geographic range and positions of the borders (Gaston 2003).  First, 74 

there could be abiotic and/or biotic factors that prevent further spread, such as physical barriers 75 

(e.g., seas, rivers, mountains, and valleys), climatic factors, absence of essential resources, and 76 

the impact of other species.  Another complication that has become increasingly important in this 77 

era of climate change is the low-latitude edges of a species range that may becoming less 78 

optimal. Hampe and Petit (2005) reviewed studies from the fossil record, phylogeography and 79 

ecology, and concluded that these low-latitude peripheral populations are disproportionately 80 

important for the survival and evolution of biota, yet these are the very populations that remain 81 

understudied despite having the highest chances for local extinction under climate change (Cahill 82 

et al. 2013; Chen et al. 2011).  Second, there can be historical factors (Duncan et al. 2015).  For 83 

example, suppose past climatic conditions changed, resulting in a contraction of the species 84 

range but leaving isolated populations in favorable habitat islands in the previous range to create 85 

a zone of disjunct distribution.  On the other hand, suppose a zone of disjunct distribution is 86 

created by past colonization events of habitat islands through founders derived from the zone of 87 

continuous distribution.  Many of these historical events leave genetic signatures such that 88 

inferences about the past can be made from current genetic surveys, as has been shown in other 89 

salamanders (Templeton et al. 1995).  Third, genetic mechanisms may be operating directly to 90 
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limit the range.  For example, suppose the populations at the border are small in variance 91 

effective size and have little to no genetic variation, thereby limiting the ability of these 92 

populations to adapt to local conditions (Carson 1955).  Alternatively, suppose there is much 93 

gene flow from the core to the periphery that can also impede local adaptation (Kawecki 2008).  94 

Hence, patterns of genetic variation and gene flow/population subdivision can play important 95 

roles in understanding the nature of the periphery of a species’ range (for reviews, see:  Brussard 96 

1984; Eckert et al. 2008; Hoffmann & Blows 1994; Kawecki 2008; Nevo 1998; Pironon et al. 97 

2017; Vucetich & Waite 2003).  These considerations indicate the need to take an 98 

interdisciplinary approach that integrates genetics, ecology, history, and geography to understand 99 

the multifaceted nature of species’ borders (Holt & Keitt 2005). 100 

The purpose of this paper is to perform such an integrative analysis on the southernmost 101 

part of the species’ range of the endangered salamander S. infraimmaculata.  A previous genetic 102 

survey revealed significant genetic differentiation between the Mount Carmel and the Lower 103 

Galilee populations and lower genetic diversity in Mount Carmel (Blank et al. 2013).  Blank et 104 

al. (2013) argued that this pattern indicates that the non-contiguous Mount Carmel populations 105 

represent an isolated peripheral region that had experienced bottleneck and/or founder effects in 106 

its recent demographic history. This earlier survey only included Mount Carmel, the Lower 107 

Galilee and the southern edge of the Upper Galilee region. To understand better the potential 108 

diversity of peripheral populations with respect to genetic diversity, gene flow patterns, and 109 

recent evolutionary history, a more complete genetic sampling across the entire core–periphery 110 

gradient would be needed, and this was a major goal of the current study.  A better understanding 111 

of the edge of the species’ range also requires an ecological assessment of the factors that explain 112 
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the species’ distribution in a geographic context, as well as how gene flow patterns relate to 113 

landscape and other environmental features. We therefore analyze how the genetic structure of S. 114 

infraimmaculata populations is influenced by geographical, ecological, and landscape factors at 115 

the southernmost edge of its global distribution. We then test the impact of landscape and 116 

ecological factors on different geographical types of peripheral populations with respect to levels 117 

of genetic diversity and patterns of local population differentiation.  Specifically, we test three 118 

hypotheses commonly made in the core-peripheral population literature by analyzing the 119 

variability in 15 microsatellite loci from 32 sites:  1) genetic diversity will decrease towards the 120 

geographical periphery of a species’ range; 2) genetic diversity in geographically disjunct 121 

peripheral areas will be low compared to the core or peripheral populations that are contiguous to 122 

the core; and 3) ecologically marginal conditions tend to enhance population subdivision. By 123 

addressing these hypotheses, we will be enable to elucidate the relative roles ecological, 124 

evolutionary and historical factors have in shaping genetic diversity within and among these 125 

populations.  126 

 127 

MATERIALS AND METHODS 128 

Sample collection and DNA extraction 129 

We sampled salamanders in three regions: the Upper Galilee, the Lower Galilee, and 130 

Mount Carmel (Fig. 1b). We collected genetic samples from 692 fire salamanders (mostly adults 131 

with some postmetamorphic juveniles) from 32 breeding sites (Table 1, Fig. 1b). Mount Carmel 132 

is a disjunct peripheral region, the Lower Galilee is largely a contiguous peripheral area, and the 133 
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Upper Galilee is continuous with the core area that extends through Lebanon, Syria and Turkey 134 

(Fig. 1a). 135 

Tissue samples for molecular analysis were collected by capturing adults (larvae in two 136 

cases; see Table 1) during rainy nights and cutting a small tip of the tail (2-3 mm) with a sterile 137 

scalpel, placing it in an eppendorf tube with 99% ethanol, and then storing at -20°C until further 138 

processing. Tail-tip tissue in salamander larvae was found to have only little effect on fitness 139 

(Segev et al. 2015; Blaustein et al. 2017). Other genetic samples were collected early in the 140 

morning from fresh road kills of salamander adults in 8 sites in the Upper Galilee. Our goal was 141 

to collect samples from at least 20 individuals per site, but lower numbers were obtained for 142 

many of the sites due to their small population sizes (Table 1).  143 

Each sampled adult individual was photographed in order to identify dorsal spot patterns 144 

to ensure that the same individuals were not sampled on different sampling nights (Blank et al. 145 

2013; Segev et al. 2010; Warburg 2011). Genomic DNA was  extracted using QIAamp DNA 146 

minikit (Qiagen) with the following modifications: protocol-devised RNA free option and 147 

incubation with proteinase K.  148 

 149 

Microsatellite genotyping  150 

Allelic variation in nuclear markers was assessed using 15 microsatellite loci using primers 151 

described earlier (Sal E2, Sal E5, Sal E6, Sal E7, Sal E8, Sal E11, Sal E12, Sal E14, Sal 3, Sal 152 

23, SST-A6-I, SST-A6-II, SSTC3, SST-E11 and SST-G6: (Hendrix et al. 2010; Steinfartz et al. 153 

2004). Each forward primer was labeled with a fluorescent dye (HEX ,FAM, or TET) for 154 

visualization of PCR products. PCRs were carried out using the Qiagen Multiplex PCR Kit 155 
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(Qiagen). The annealing temperatures for each primer pair were optimized using gradient PCR. 156 

PCR products were visualized with a MegaBACE 1000 automated sequencer (Amersham 157 

Biosciences) and the microsatellite allele sizes were determined with the ET-ROX 400 size 158 

standard (Amersham Biosciences). Alleles were scored using visual inspection and manual 159 

corrections of alleles with MICRO-CHECKER 2.2.3 software (Van Oosterhout et al. 2004). 160 

Microsatellite genotypes were checked for the presence of null alleles, stutter products, or allelic 161 

dropout using MICRO-CHECKER.  Linkage disequilibrium and deviations from Hardy-162 

Weinberg equilibrium were investigated using GENEPOP on the web (Rousset 2008).  163 

 164 

Data analyses 165 

Quantifying genetic diversity  166 

To interpret patterns in genetic diversity between regions, we calculated the average 167 

values of allelic richness, number of unique alleles, and observed and expected heterozygosity 168 

for each of the regions. We used a randomization test to evaluate the differences in observed and 169 

expected heterozygosity, inbreeding index within local populations (Fis), and a measure of 170 

between population differentiation (Fst) between each pair of regions (999 permutations, 171 

implemented in FSTAT).  172 

 173 

Analysis of population structure  174 

We used the program STRUCTURE to cluster the individuals into a finite number of 175 

populations based solely on genetic data.  STRUCTURE requires the number of populations to 176 

be specified a priori, and we used the delta K method of Evanno et al. (2005), a widely used 177 
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method for determining K, the number of populations. 178 

It is worth stressing, however, that such clustering method has to be used cautiously 179 

because it is based on various model assumptions (e.g. Hardy-Weinberg equilibrium) and it is 180 

sensitive to both sampling scheme and size. The objective of inferring the number of population 181 

clusters (K) is not based on a rigorous statistically method and thus may sometimes generate 182 

unrealistic results (Kalinowski 2011).  Moreover, as will be shown, our results indicate an 183 

isolation by distance pattern in one of our regions.  Perez et al. (2018) found that STRUCTURE 184 

outputs are extremely affected by isolation by distance, mostly through the detection of artificial 185 

and misleading genetic clusters.  Thus, in practice, it is strongly recommend using at least two 186 

independent clustering methods.  187 

We used principal component analysis (PCA) as a second population structure inference 188 

method (adegenet v2.1.1 R package (Jombart 2008)). This multivariate descriptive method is not 189 

dependent on any model assumption (e.g. Hardy-Weinberg equilibrium or linkage 190 

disequilibrium). 191 

And lastly, we used the program NetStruct (Greenbaum et al. 2016) to investigate 192 

population structure solely from genetic data and with no a priori number of clusters.  NetStruct 193 

is a network-based method for population structure inference, in which inter-individual genetic 194 

similarity networks are constructed, and dense subnetworks (also called “communities” in 195 

network theory) are searched for. The dense subnetworks represent groups of genetically similar 196 

individuals, and are interpreted as subpopulations. The genetic similarity networks can be pruned 197 

systematically to remove weak edges below an edge-pruning threshold, and to detect population 198 

structure at different hierarchical level. For each hierarchical level, the detected genetic signal 199 
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can be tested for significance using permutation tests. 200 

The significant clusters found by NetStruct reflect only genetic similarity among 201 

individuals and are not necessarily geographic regions, particularly when gene flow and 202 

admixture occur. Accordingly, more than one genetic cluster may be found at a single 203 

geographic site, and a single genetic cluster may be found at multiple geographic sites. When 204 

this occurs, we test the null hypothesis that the NetStruct clusters are homogeneously distributed 205 

geographically by constructing a G by C table, where G is the number of geographic sites, C is 206 

the number of genetic clusters, and the elements are the number of individuals at geographic site 207 

g that are also members of genetic cluster. We then test the null hypothesis of geographic 208 

homogeneity in this G by C table by an exact permutation test with 10,000 random permutations 209 

to determine the p-value under the null hypothesis as well as a 99% confidence interval for the p-210 

value with the program StatExact (Cytel Studio, Cambridge, MA, v 9.0). A rejection of the null 211 

hypothesis indicates that assignment of individuals to clusters in the region is biased, and gene 212 

flow within the region is not panmictic. 213 

Another indicator of population structure is isolation by distance. To test this possibility, 214 

we determined whether pairwise Fst/(1- Fst) (as calculated by Arlequin (Schneider et al. 2000)  215 

between subpopulations correlated with the Euclidian distance (calculated in ArcGIS (ESRI, 216 

Redlands, CA)) using Mantel’s test (999 permutations) implemented in PASSaGE (Rosenberg 217 

and Anderson 2011). 218 

 219 

Characterization of geographic and environmental variation  220 
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We quantified the altitude (obtained from Hall et al. (2013)), average precipitation, and 221 

average annual day and night temperatures (data obtained from the Israeli Meteorological 222 

Service) at each of the 32 sites. We also quantified the differences in these environmental factors 223 

between Mount Carmel, the Lower Galilee, and the Upper Galilee (Figure 1b). We used 224 

radiometric and geometric corrected LANDSAT8 satellite imagery data (Roy et al. 2014) for 225 

producing Normalized Difference Vegetation Index data (NDVI) (Levin et al. 2011; Tucker 226 

1979). NDVI was computed for two different seasons - winter (February 2014) and summer 227 

(July 2014) in order to differentiate between evergreen vegetation and annual vegetation. The 228 

continuous NDVI values from both seasons was classify into several discrete categories of 229 

Mediterranean flora. The output classes were adjusted to the accepted vegetation cover type 230 

names after field validations in four locations along the climatic gradient of the Mediterranean 231 

ecosystem. The names of the vegetation cover classes were given according to the Israeli guide 232 

for Mediterranean vegetation mapping (Leshner & Ramon 2013).  233 

 234 

Maximum entropy modeling 235 

We used data on 97 salamander breeding sites to examine the landscape and 236 

environmental characteristics that can explain the distribution of these salamanders in the three 237 

regions. We learned of these 97 potential breeding sites based on previous surveys done in the 238 

area (Blank & Blaustein 2012; Blank & Blaustein 2014, Sinai and Oron unpublished data) and 239 

interviews with Nature and Park Authority rangers. For these 97 sites, we employed maximum 240 

entropy distribution (Maxent) modeling to infer the suitable areas for S. infraimmaculata. 241 

Maxent, unlike other distributional modeling techniques, uses only presence and background 242 
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data instead of presence-absence data (Elith et al. 2011; Hernandez et al. 2008; Navarro-Cerrillo 243 

et al. 2011). Maxent predicts the probability distribution across all the cells in the study area. We 244 

implemented Maxent using version 3.3.3e of the software developed by Phillips et al. (2006). 245 

Recommended default values were used for the convergence threshold (105) and maximum 246 

number of iterations (500). Model performance was evaluated using ‘‘Area under the curve’’ 247 

(AUC with a range from 0.0 to 1.0; Swets 1988). 248 

 We considered 10 environmental variables as potential predictor variables of S. 249 

infraimmaculata distribution in the Maxent analysis: Elevation (meters asl), Northness (degrees), 250 

Eastness (degrees), Slope (degrees), Soil type (categorical), Land cover including vegetation type 251 

(categorical), Precipitation (mm), Distance to nearest road (meters), Distance to nearest built area 252 

(meters), and mean daily temperature in January (°C) (the mid-point of the active breeding 253 

season). Previous studies on salamander distributions have indicated the importance of elevation 254 

and slope (Blank & Blaustein 2012; Blank & Blaustein 2014; Blank et al. 2013; Bogaerts et al. 255 

2013; Kershenbaum et al. 2014), precipitation (Haan et al. 2007; Semlitsch & Anderson 2016), 256 

temperature (Goldberg et al. 2011; Peleg 2009), and land-cover (Hocking et al. 2013; Manenti et 257 

al. 2009; O'Donnell et al. 2014; Pisa et al. 2015; Sepulveda & Lowe 2009). Aspect (Northness 258 

and Eastness) is expected to affect the overall radiation reaching the ground. Solar radiation is a 259 

direct ecological factor affecting habitat conditions, such as water temperature and soil and 260 

hydroperiod of the ponds. Soil was previously found to be an important environmental variable 261 

explaining the distribution of S. infraimmaculata (Blank & Blaustein 2012). Quickly drained 262 

soils limit the time length that water is available for breeding (Hardy 1945). Roads could affect 263 

amphibians for three main reasons. First, roads pose mortality risk for individuals crossing the 264 
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roads (Fahrig & Rytwinski 2009; Garriga et al. 2012, T. Oron, personal communication), and 265 

indeed many of our samples came from road kills. Second, avoidance of roads restricts dispersal 266 

and migration (Ray et al. 2002). Third, pollution from road runoff was identified as a threat to 267 

aquatic habitats (Dorchin & Shanas 2010; Harless et al. 2011). Segev et al. (2010) found a 268 

positive correlation between built areas and S. infraimmaculata population size but suggested 269 

that this was because human settlements tended to be established close to springs. 270 

Given the Maxent model based on 97 sites that cover more uniformly the distribution of 271 

these salamanders within Israel (Fig. 7), we assigned Maxent scores (Dubey et al. 2013) to the 272 

32 salamander breeding sites surveyed genetically.  Such scores are a measure of local habitat 273 

suitability for the species.  274 

  275 

RESULTS 276 

MICRO-CHECKER analyses revealed no evidence of null alleles or scoring issues across loci. 277 

Only three of 105 pairwise loci Fisher exact probability tests of deviation from genotypic 278 

equilibrium were significant at P < 0.05. Significant linkage disequilibrium was found at only 279 

5.86% of loci combinations at the 32 sites. 280 

 281 

Genetic diversity and population structure 282 

There were 18 alleles unique to the Upper Galilee, only one to the Lower Galilee, and 283 

none unique to Mount Carmel. In the Upper and Lower Galilee, the average allelic richness and 284 

the observed and expected heterozygosity were significantly higher than Mount Carmel (Table 285 

2). Although the two Galilee regions were not statistically different from one another in genetic 286 
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diversity measures (Table 2), the Fst estimated among the Lower Galilee sites was greater than 287 

zero and exceeded that estimated for the Upper Galilee and the Mount Carmel regions, both of 288 

which had Fst estimates not significantly different from zero (Table 2). We observed moderate 289 

decreases in allelic richness and observed heterozygosity when moving from the Upper Galilee 290 

to the Lower Galilee, and sharp decreases in these parameters in the Mount Carmel region 291 

(Tables 1 & 2). Allelic richness and observed heterozygosity declined significantly with 292 

decreasing latitude when the regression included all three multi-site regions, but also when it was 293 

restricted just to the sites in the Galilee (Fig. 2).  294 

 STRUCTURE analyses revealed that the optimal K using the delta K criterion was two.  295 

Most individuals fell in one of the two clusters that corresponded geographically to the Mount 296 

Carmel region and the Galilee sites, with few admixed individuals between these two geographic 297 

clusters (Fig. 3). Like STRUCTURE, the first two PCA axes clearly divided the Galilee region 298 

from the Mount Carmel region (Fig. 4). 299 

 NetStruct provided further insight into population structure. At the lowest edge-pruning 300 

threshold (coarse-scale structure), two significant clusters emerged- the Mount Carmel 301 

populations and the Galilee populations (Fig. 5a).  Hence, this analysis captured the same 302 

subdivision as the STRUCTURE analysis, but now with added information that these two 303 

clusters are statistically significant.  Indeed, not a single random permutation out of 1,000 304 

equaled or exceeded the observed modularity for these two clusters, indicating a strong degree of 305 

genetic differentiation between these two geographic areas.  Because the allele frequencies were 306 

so different between these two clusters, we decided to separate them for the subsequent analyses 307 

because these large allele frequency differences would dominate the weights assigned to the 308 
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allele sharing similarity measures within each cluster. No additional significant clusters were 309 

found within Mount Carmel for any edge-pruning threshold (Fig. 5b and c), indicating a high 310 

degree of genetic homogeneity among individuals within this geographic region.  However, in 311 

the Galilee, at an edge-pruning threshold of 0.12, three significant genetic clusters emerged, as 312 

indicated by the three colors in Fig. 5b. All three genetic clusters were found both in the Upper 313 

and Lower Galilee, and Table 3 presents the results of testing the null hypothesis of geographic 314 

homogeneity in the distribution of these clusters. The null hypothesis of geographic homogeneity 315 

was strongly rejected for the Galilee as a whole, and equally strongly for just the Lower Galilee 316 

sites (Table 3).  However, note that in the Upper Galilee, the null hypothesis of geographic 317 

homogeneity is not rejected (Table 3).  Many individuals from the Lower Galilee site of Zalmon, 318 

clustered with individuals from the Upper Galilee sites near tributaries of an Upper Galilee 319 

stream that descends to the valley between the Upper and Lower Galilee close to Zalmon. Thus, 320 

we also tested the null hypothesis that Zalmon plus the Upper Galilee sites are homogeneous and 321 

found that the hypothesis of geographic homogeneity among these sites was not rejected (Table 322 

3). 323 

The next significant change in NetStruct clustering occurs at edge-pruning threshold of 324 

0.22, with the Galilee populations now consisting of five significant clusters (Fig. 5c). Table 3 325 

shows that the null hypothesis of geographic homogeneity is still strongly rejected both for the 326 

Galilee as a whole, as well as for the Lower Galilee.  However, the null hypothesis of geographic 327 

homogeneity is now strongly rejected for the Upper Galilee sites as well (Table 3).  As can be 328 

seen from Table 3, the null hypothesis of geographic homogeneity is accepted for Zalmon and 329 

these four Upper Galilee sites.  This pattern of geographic homogeneity indicates that this stream 330 
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from the Upper Galilee is likely a dispersal corridor that genetically connects the Lower Galilee 331 

to the Upper Galilee. 332 

 Because the results given above indicate restricted gene flow among the three geographic 333 

regions in our study, we tested for isolation by distance separately using Mantel test within each 334 

of these three regions. The pairwise standardized Fst among subpopulations correlated positively 335 

with Euclidian distance within the Lower Galilee (r = 0.42, p < 0.05) and Mt. Carmel regions (r 336 

= 0.43, p < 0.05), but there was no significant correlation in the Upper Galilee (r = 0.16, p = 337 

0.29), as shown in Figure 6 (see Appendix for full pairwise tables). The Mantel test for all the 338 

populations together resulted with significant correlation (r = 0.72, p < 0.05). 339 

 340 

Environmental variation  341 

We examined the differences in environmental variables between the three major regions. 342 

We found that the Lower Galilee had the lowest average elevations and annual precipitation, but 343 

the highest average temperatures (Fig. 7). All regions differed from each other in all three 344 

response variables (elevation, precipitation, and temperature). 345 

 Table 4 shows the differences in vegetation cover between the three regions.  All three 346 

regions had similar percentages of their area affected by human development.  The Lower 347 

Galilee had a greater proportion of forested areas than the other two regions, whereas the Upper 348 

Galilee had less medium-dense maquis, but much more dense maquis and woodland than the 349 

Carmel or Lower Galilee. 350 

 351 

Habitat suitability 352 



 17 

 The results of the Maxent modelling are shown in Figure 8.  The AUC for the replicate 353 

runs was 0.857, indicating a high level of accuracy for the Maxent predictions. Generally, most 354 

of the Lower Galilee is represented with low suitability values (<0.4), while the Upper Galilee 355 

and Mount Carmel regions were more suitable (Fig. 8). Four variables collectively contributed 356 

86% to this optimal Maxent model:  soil (36.1%), precipitation (24.1%), temperature (14.3%) 357 

and altitude (11.7%).  As can be seen from Figure 7, the last three of these variables differ 358 

considerably in the three geographic areas that are in our survey. 359 

 There was a significant linear increase of allelic richness with increasing Maxent 360 

suitability scores in the Upper Galilee, but not in Lower Galilee or Mount Carmel (Fig. 9). On 361 

Mount Carmel, the Maxent scores were generally higher than those in the Lower Galilee, but the 362 

allelic richness was consistently lower in Mount Carmel as compared to the Lower Galilee (Fig. 363 

9). 364 

 365 

DISCUSSION 366 

 We set out to test three hypotheses:  1) that genetic diversity will decrease towards the 367 

geographical periphery of a species’ range; 2) that genetic diversity in geographically disjunct 368 

peripheral areas (Mount Carmel) will be low compared to the core (Upper Galilee) or peripheral 369 

populations  that are contiguous to the core (Lower Galilee); and 3) that ecologically marginal 370 

conditions tend to enhance population subdivision. The results gave support for all these 371 

hypotheses.  372 

 373 

Genetic diversity will decrease towards the geographical periphery of a species’ range 374 
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Going from the Upper Galilee to the Lower Galilee defines an increasingly peripheral 375 

geographical gradient and a decreasing latitude gradient. Our results clearly show that this 376 

gradient is associated with declining genetic diversity as measured by allelic richness, observed 377 

and expected heterozygosity, and number of unique alleles (Table 2, Fig. 2). Allelic richness and 378 

the number of unique alleles are particularly sensitive indicators of how well the balance of gene 379 

flow versus local genetic drift can maintain genetic diversity in a species’ gene pool (Greenbaum 380 

et al. 2014).  Allelic richness showed a significant decline across this entire gradient and also 381 

across the latitudinal gradient confined just to the contiguous core-periphery in the Galilee (Fig. 382 

2). The number of unique alleles shows an even more dramatic pattern, with 18 alleles unique to 383 

the Upper Galilee, and only one in the Lower Galilee. The low frequency of unique alleles in the 384 

Lower Galilee population indicates a significant decrease in gene flow, an increase in local 385 

genetic drift in traversing this core-peripheral gradient, both the entire gradient and just the 386 

contiguous portion in the Galilee (Fig. 2), and/or historical founder or bottleneck effects during 387 

colonizations of peripheral areas. Overall, this pattern supports the hypothesis of decreased 388 

genetic diversity at the periphery.  389 

 390 

Genetic diversity in geographically disjunct peripheral areas will be low compared to the 391 

core or peripheral populations that are contiguous to the core 392 

 Figure 2 suggest that the low measures of genetic diversity found in Mount Carmel are 393 

not simply an extrapolation of the trends seen in the contiguous Galilee regions, but rather 394 

represent a more extreme drop in genetic diversity. The STRUCTURE, PCA and NetStruct 395 

analyses also indicated that the Mount Carmel populations are genetically homogeneous and 396 
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highly differentiated from the Galilean populations.  Allelic diversity was consistently lower in 397 

Mount Carmel than in the Galilee, and no unique alleles were found in Mount Carmel. All these 398 

patterns are consistent with a recent colonization event associated with a strong founder effect 399 

(Blank et al. 2013).  Another possibility is that the continuous range of the species has been 400 

regressing towards the north, stranding the Mt. Carmel populations on a habitat island.  401 

Stranding alone would not explain the extreme drop in genetic diversity observed in the Mt. 402 

Carmel populations unless coupled with extremely small population size that persisted for many 403 

generations on Mt. Carmel.  We do not have estimates for the total population size on Mt. 404 

Carmel, but it is possible to collect several hundreds of individuals in just a small portion of Mt. 405 

Carmel (Bar-David et al. 2007).  Moreover, our MaxEnt analysis indicates that Mt. Carmel 406 

represents an optimal habitat. These observations suggest that small population size for many 407 

generations on Mt. Carmel is unlikely. The MaxEnt analysis also demonstrates that this species 408 

only inhabits the higher elevation areas, which makes it unlikely that a continuous population 409 

ever existed between the Lower Galilee and Mt. Carmel that are separated by a low and wide 410 

valley.  An isolation by resistance analysis also indicated that low elevations represent a 411 

significant and strong dispersal barrier (Kershenbaum et al. 2014). These results and 412 

observations favor a colonization event of Mt. Carmel with few founders rather than Mt. Carmel 413 

being a stranded habitat island after regression of a continuously distributed population.     414 

This genetic pattern of low diversity and great homogeneity over all of Mount Carmel 415 

cannot be explained by this disjunct population living in an ecologically marginal environment 416 

for the species. The environmental conditions on Mount Carmel are more similar to those in the 417 

Upper Galilee than the Lower Galilee is to the Upper Galilee.  Figure 8 reveals that the 418 



 20 

ecological suitability of Mount Carmel is high and similar to the Upper Galilee, whereas the 419 

Lower Galilee is the most ecologically peripheral area.  Despite the harsh ecological conditions 420 

in the Lower Galilee, the populations there have much higher genetic diversity than those on 421 

Mount Carmel (Table 2, Fig. 9).  Thus, Mount Carmel represents an optimal habitat island for 422 

these salamanders, and the depurate genetic diversity found on Mount Carmel cannot be 423 

explained by harsh ecological conditions.  Overall, the Mount Carmel populations indicate the 424 

importance of historical factors in geographically disjunct peripheral populations living in an 425 

optimal habitat island.  426 

 427 

Ecologically marginal conditions tend to enhance population subdivision 428 

The Maxent analysis indicates that the lower Galilee is the most ecologically peripheral 429 

area in our study and has the least suitable environment for these salamanders in Northern Israel. 430 

(Fig. 7).  The Fst index was higher in the Lower Galilee compared to the other areas (Table 2), 431 

thereby indicating greater population subdivision in the Lower Galilee compared to the Upper 432 

Galilee and Mount Carmel.  This inference is also supported by the NetStruct which indicate 433 

much more population subdivision in the Lower Galilee compared to the Upper Galilee and 434 

Mount Carmel regions.  435 

Ecologically marginal conditions could result in more population subdivision by creating 436 

local barriers to gene flow.  The Lower Galilee has less dense maquis and woodland (Table 4) 437 

and higher temperatures and less precipitation (Fig. 7) than the other regions. Shaded, vegetated 438 

areas that maintain moisture in the soil and air seem to have great importance for dispersal in 439 

terrestrial amphibians like salamanders (Hartel et al. 2008; Hocking et al. 2013; Manenti et al. 440 
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2009; O'Donnell et al. 2014). Thus, we expect that the fire salamanders can disperse more 441 

readily in the higher elevation areas that have lower temperatures, greater  precipitation and more 442 

vegetative coverage.  This interpretation is consistent with the isolation by distance results that 443 

indicate no significant isolation in the Upper Galilee even though it is the largest geographical 444 

area, whereas there is significant isolation by distance in the smaller Lower Galilee and Carmel 445 

areas (Fig. 6), both of which have less favorable ecological conditions compared to the Upper 446 

Galilee (Fig. 8). By all of these environmental criteria, the Lower Galilee (Figs 1 and 7; Table 4) 447 

would represent the environment least favorable for dispersal by a terrestrial amphibian.  448 

Additionally, there is a significant linear increase of allelic richness with increasing 449 

Maxent scores in the Upper Galilee (Fig. 8), indicating that decreasing temperature and 450 

increasing precipitation in a shaded environment may promote increased local dispersal and/or 451 

greater population densities even in the region closest to the core. The Lower Galilee has the 452 

lowest Maxent scores overall, indicating that the Lower Galilee is approaching an ecological 453 

edge for this species (Figs 7 and 8).  In the Lower Galilee, there is no relationship between allelic 454 

richness and Maxent score (Fig. 9) that may be explained by dispersal in this ecologically 455 

marginal environment being so low that extensive population fragmentation has occurred.  Such 456 

fragmentation can induce extreme local genetic drift that obscures any geographical or ecological 457 

signal, as has occurred in peripheral populations of the collared lizard (Crotophytus collaris) in a 458 

fragemented peripheral environment (Hutchison & Templeton 1999). The lack of a relationship 459 

between allelic richness and Maxent score on Mount Carmel (Fig. 9) is not surprising due to the 460 

extreme genetic homogeneity these populations display (Figs 3-5) and their overall low levels of 461 

allelic richness (Fig. 9), which makes it virtually impossible to have any significant correlation 462 
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using allelic richness as the response variable.  The genetic homogeneity among the Mount 463 

Carmel populations could arise from increased dispersal due to an overall more favorable 464 

environment (Figs 7 and 8) in an area much smaller than the Upper Galilee (Fig. 1b).  Support 465 

for this explanation stems from mark/recapture studies that document long-distance dispersal on 466 

Mount Carmel that indicate potential connectivity between breeding sites (Bar-David et al. 467 

2007).  However, the Carmel populations do display significant isolation by distance (Fig. 6) that 468 

indicates that dispersal may not be increased in this area that is intermediate environmentally and 469 

ecologically between the Upper and Lower Galilees (Figs 7 and 8).  An alternative explanation 470 

for the genetic homogeneity of the Carmel populations stems from the genetic evidence 471 

discussed above that indicates a recent founder event on Mount Carmel.  A recent founder event 472 

into a new geographical area followed by range expansion promotes genetic uniformity in that 473 

new area, as has occurred in other salamanders (Larson 1984; Larson et al. 1984).   474 

 The patterns discussed above lead to a general conclusion:  Genetic diversity is 475 

influenced by a combination of geographical, historical, and ecological factors.  The genetic 476 

and ecological data suggest that our study included different types of peripheral populations: a 477 

geographically disjunct peripheral isolate in an ecologically optimal habitat island (Mount 478 

Carmel) that has a strong genetic signature of an historical founder event and extensive genetic 479 

homogeneity, an ecologically peripheral population on the edge of the species continuous range 480 

in the Lower Galilee displaying much local population subdivision, and a population continuous 481 

with the core in the Upper Galilee in an ecologically optimal habitat with no significant 482 

subdivision. All of these diverse types of peripheral populations are found close together in a 483 
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limited area in northern Israel, yet they display different patterns of genetic diversity and 484 

subdivision. 485 

The Lower Galilee populations of S. infraimmaculata are the ones most likely to be 486 

severely affected by the predicted changes in precipitation and temperature (Givati & Rosenfeld 487 

2013; Hartel et al. 2008).  The Lower Galilee currently represents an ecologically marginal 488 

environment that is also less optimal for dispersal. This combination increases local genetic drift 489 

and decrease gene flow, resulting in the observed pattern of increased population subdivision.  490 

Lower elevations in the Lower Galilee are the least optimal environments at present, and these 491 

lower elevations will likely become even worse for salamanders under climate change.  Hence, 492 

under climate change, there would be even less dispersal and the inability to reach more optimal 493 

environments.   However, species can adapt to changing conditions, and the reservoir of high 494 

genetic diversity preserved by population subdivision and allele sharing with the core may allow 495 

the Lower Galilee populations to successfully adapt to these changing conditions. Indeed, 496 

population subdivision increases the variance effective size of the total population and thereby 497 

promotes increased genetic diversity in the total population (Chesser et al. 1993; Chesser et al. 498 

1980; Wright 1943).  Hence, the evolutionary potential of this contiguous peripheral population 499 

is high, and this might ameliorate through local adaptation the chances of extinction due to 500 

climate change. 501 

In contrast, the Mount Carmel populations may be less affected by climate change, but 502 

would probably experience fewer suitable areas and more subdivision as precipitation declines. 503 

Given that the Mount Carmel populations seem to be isolated from the core and have a depurate 504 
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genetic reservoir, they may also be at great risk for extinction under climate change due to a lack 505 

of evolutionary flexibility and restricted habitable area.  506 

These diverse genetic, ecological, and historical factors not only highlight the diversity of 507 

types of peripheral populations, but they also indicate the complexity of conservation efforts 508 

directed at peripheral populations. Such conservation efforts are particularly important for 509 

amphibian species in danger of local extinction at their lower-latitude boundaries because of 510 

climate change (Givati & Rosenfeld 2013; Griffiths et al. 2010; Mac Nally et al. 2017). 511 

Populations on the lower latitude periphery of a species’ range often provide an important 512 

genetic reservoir for the species as whole, display unique adaptations, and have historically 513 

played a disproportionate role in the species’ survival and evolution (Hampe & Petit 2005) – a 514 

combination that makes such peripheral populations important in conservation planning. Adding 515 

to their importance in conservation is that these low-latitude peripheral populations are the ones 516 

most at risk for local extinction under climate change and yet remain understudied (Cahill et al. 517 

2013; Chen et al. 2011). Which ecological/evolutionary/historical forces will be more influential 518 

in the future in this complex metapopulation are difficult to predict (Duncan et al. 2015).  A more 519 

thorough investigations of the genetics, ecology, and history of these peripheral salamander 520 

populations in this interesting region is needed in order to make a better assessment of their 521 

conservation needs. 522 
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 700 

TABLES 701 

Table 1. The 32 study sites and basic information on the sample sizes (N) and genetic variability 702 

in 15 microsatellite loci at each site; A = allelic richness; HO = observed heterozygosity; HE = 703 

expected heterozygosity.  Samples were taken from adults only except for two sites noted below, 704 

●= road kills, ●●= Larvae only, ●●● = Larvae and adults. 705 

 706 



 30 

Region and Site Longitude Latitude N A H0 HE 

Upper Galilee (13 sites)       

Even Menachem 33.247°N 35.287°E 20● 3.46 0.63 0.64 

Shomera 33.077°N 35.278°E 6● 3.13 0.51 0.56 

Shrach 33.069°N 35.313°E 8● 3.07 0.6 0.6 

Dishon 33.055°N 35.447°E 32● 3.53 0.62 0.65 

Pasuta 33.046°N 35.298°E 16● 3.38 0.6 0.65 

Elkosh 33.043°N 35.34°E 18● 3.75 0.69 0.68 

Sasa 33.032°N 35.385°E 19● 3.54 0.63 0.65 

Ein Sala 32.96°N 35.354°E 15 3.09 0.59 0.58 

Kser 32.937°N 35.246°E 11●●● 2.86 0.47 0.52 

Halutz 32.953°N 35.312°E 23 3.39 0.61 0.62 

Harashim 32.956°N 35.332°E 26 3.51 0.59 0.64 

Harashim South 32.954°N 35.333°E 16 3.32 0.57 0.61 

Kshatot 

 

 

 

 

32.952°N 35.318°E 10 3.47 0.55 0.66 

 

 

 

Lower Galilee (10 sites)       

Zalmon 32.915°N 35.373°E 10●● 3.31 0.56 0.62 

Ein Camon 

 

 

 

32.91°N 35.349°E 35 3.01 0.51 0.6 

Michmanim 32.907°N 35.322°E 15 2.65 0.55 0.49 
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  708 

Yaad 32.881°N 35.246°E 21 3.55 0.63 0.64 

Eshhar 32.887°N 35.296°E 30 3.05 0.57 0.59 

Segev 32.869°N 35.229°E 12 3.33 0.6 0.62 

Atzmon 32.857°N 35.247°E 17 3.16 0.52 0.58 

Manof pool 32.849°N 35.232°E 30 3.17 0.59 0.59 

Manof   32.848°N 35.231°E 11 2.77 0.52 0.51 

Kaukab 32.823°N 35.255°E 31 2.85 0.52 0.53 

Mount Carmel (9 sites)       

Ein El Balad 32.719°N 35.07°E 33 1.95 0.33 0.3 

Ein Nesher 32.738°N 35.047°E 36 1.8 0.32 0.3 

Ein Chik 32.723°N 35.046°E 55 1.96 0.29 0.31 

Damun 32.734°N 35.033°E 19 1.99 0.33 0.34 

Secher 32.734°N 35.03°E 34 1.85 0.27 0.28 

Pine Club 32.738°N 35.02°E 18 1.79 0.24 0.28 

Ein Alon 32.726°N 35.022°E 27 1.97 0.29 0.32 

Bustan Stream 32.698°N 35.014°E 7 2.2 0.33 0.36 

Sumak 32.671°N 35.036°E 19 1.99 0.35 0.34 
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Table 2.  Summary of genetic diversity from the major sampling regions. Significance is based 709 

on permutation tests (999 permutations). Different superscripted letters signify statistically 710 

significant differences. 711 

 712 

 Region  Upper Galilee  Lower Galilee Mount Carmel 

Number of sites  13 10 9 

Number of Individuals  232 212 248 

Unique alleles  18 1 0 

Observed heterozygosity  0.597b 0.559b 0.302a 

Expected heterozygosity  0.621b 0.582b 0.309a 

Fis  0.040a 0.039a 0.022a 

Fst  0.073a 0.108a 0.064a 

a and b represent significant differences between regions; p value<0.05.  Areas sharing a 713 

superscript are not significantly different from each other. 714 

  715 
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Table 3.  Results of exact permutation tests of the null hypothesis of geographic homogeneity for 716 

several regions with respect to the geographic distribution of the genetic clusters found by 717 

NetStruct in the Galilee. 718 

 719 

Threshold Regions Exact p 99% confidence interval 

0.12 Galilee 0.0000 0.0000 – 0.0005 

0.12 Upper Galilee 0.1639 0.1544 – 0.1734 

0.12 Lower Galilee 0.0000 0.0000 – 0.0005 

0.12 Upper Galilee plus Zalmon 0.1547 0.1454 – 0.1640 

0.22 Galilee 0.0000 0.0000 – 0.0005 

0.22 Upper Galilee 0.0000 0.0000 – 0.0005 

0.22 Lower Galilee 0.0000 0.0000 – 0.0005 

0.22 Upper Galilee Sites Halutz, Harashim, 

Harashim South, and Kshaton, plus 

Zalmon 

0.1223 0.1139 – 0.1307 

  720 
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Table 4.   The percentages of the vegetation types found in the Upper Galilee, Mount Carmel, 721 

and Lower Galilee. Quantified from the vegetation cover map described in the Methods section. 722 

 723 

 Vegetation Type Upper Galilee Mount Carmel Lower Galilee 

Herbaceous areas 1.3 1.7 4.3 

Dwarf-shrub garrigue 0.2 0.2 0.4 

Dense and medium maquis 18.2 22.3 14.4 

Medium-dense maquis 9.5 19.8 18.4 

Dense maquis and woodland 25.9 8.1 3.7 

Forest 4.4 7.7 15.4 

Other (Agriculture, built, roads…) 40.5 40.2 43.4 

 724 

  725 
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FIGURES 726 

 727 

Figure 1. (a) Salamandra infraimmaculata distribution range according to the IUCN (IUCN 728 

2018). Black frame denotes the study area. (b) The three studied regions: Mount Carmel, the 729 

Lower Galilee, and the Upper Galilee Black points represent the 32 breeding sites that were 730 

sampled (see Table 1 for their names and coordinates). 731 
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 733 

Figure 2.  A regression analyses of Allelic richness and observed heterozygosity as a function of 734 

latitude (°N) in different sampling regions:  Mount Carmel sites (circles), Lower Galilee sites 735 

(triangles), Upper Galilee sites (squares). 736 
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 737 

Figure 3.  Genetic clustering in the study area obtained with STRUCTURE with K =2, the 738 

optimal K under the delta K method.  Identical colors identify populations with a homogeneous 739 

genetic composition, while different colors represent genetically differentiated populations.  The 740 

red color is associated with individuals sampled from the Galilee, and green from Mount Carmel.  741 
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 757 

Figure 4. Results of the PCA analysis. First and second axes are presented. The dots shows 758 

individual salamanders. Ovals represent 95% inertia ellipses.  Blue- Upper Galilee; Gray- Lower 759 

Galilee; Black- Mount Carmel  760 
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 762 

 763 

Figure 5.  Genetic clustering in the study at three hierarchical levels obtained with NetStruct. 764 

Different colors represent different genetic clusters. At each sampling site, the distribution of 765 

assignments of individuals to clusters is shown. (A) The highest hierarchical level, obtained by 766 

analyzing the network of all individuals without edge pruning. Two statistically significant 767 

(p<0.001) clusters were detected at this level. (B) The second hierarchical level, obtained by 768 

analyzing the network constructed only for individuals in the Galilee (both upper and lower), 769 

with edges representing genetic-similarity below 0.12 pruned. Three significant clusters 770 

(p<0.001) were detected at this level, and the Carmel was designated as an additional cluster 771 

since analysis of the Carmel network did not reveal any discernable sub-structuring. (C) The 772 

third hierarchical level, obtained by analyzing the Galilee network, with edge weights below 0.22 773 

pruned. Five significant clusters (p<0.001) were detected at this level, and Mount Carmel was 774 

assigned as an additional cluster. 775 
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 777 

 778 

Figure 6.  Isolation by distance within the three major geographic regions.  The Mantel test was 779 

not significant for the Upper Galilee (top panel), but was significant for the Lower Galilee 780 

(middle panel) and Carmel (lower panel). 781 
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 783 

 784 

Figure 7.  The distributions of (a) elevation, (b) annual average temperature and average annual 785 

precipitation (c) in the three regions.   The black lines indicate the distributions on Mount 786 

Carmel, the dashed lines the distributions in the Lower Galilee, and the gray lines in the Upper 787 

Galilee. 788 
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 790 

Figure 8.  Maxent habitat suitability scores over the three major regions sampled. Mount Carmel 791 

is shown in the lower left-hand corner, the Upper Galilee in the upper right-hand corner, and the 792 

Lower Galilee just south of the Upper Galilee. White circles mark the 97 water bodies known to 793 

serve for breeding. 794 
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 796 

Figure 9. Correlation of allelic richness against the Maxent model score.  The allelic richness was 797 

scored in the 32 salamander breeding sites, but correlations were performed separately for 798 

breeding sites in the Upper Galilee, the Lower Galilee, and Mount Carmel. 799 
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