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2 ABBREVIATIONS 

ACI  Absolute post-transfusion count increment 

aGvHD Acute graft versus host disease 

ALL Acute lymphoblastic leukemia  

AML Acute myeloid leukemia 

APC Antigen presenting cell 

BMDW Bone Marrow Donors Worldwide 

CML Chronic myelogenous leukemia 

CMV Cytomegalovirus 

CN-LOH Copy number neutral loss of heterozygosity 

DIC Disseminated intravascular coagulopathy 

DSA Donor specific antibody 

EBMT European Society for Blood and Marrow Transplantation 

EM Estimation-maximization 

FER Finnish enriched rare 

FRCBS Finnish Red Cross Blood Service 

FSCR Finnish Stem Cell Registry 

GvHD Graft versus host disease 

HLA Human leukocyte antigen 

HSCT Hematopoietic stem cell transplantation 

LD Linkage disequilibrium 

LOH Loss of heterozygosity 

Mb Megabase 

MDS Myelodysplastic syndrome 

MFI Mean fluorescence intensity 



 

10 
 

NGS Next generation sequencing 

NMDP National Marrow Donor Program 

PCR Polymerase chain reaction 

PRA Panel reactive antibody 

RIC Reduced intensity conditioning 

ROC Receiver operating characteristic  

SSOP Sequence specific oligonucleotide probe 

SSP Sequence specific primer 

TC Transplant center 

URD Unrelated donor 

WMDA World Marrow Donors Association 

ZKRD Zentrale Knochenmarkspender-Register, the German National 

 Bone Marrow Donor Registry
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3 ABSTRACT 

Hematological stem cell transplantation (HSCT) is a widely used treatment for 

several life-threatening diseases, such as hematologic malignancies, 

hemoglobinopathies and severe immunodeficiencies. HSCT can be either autologous 

(the patient’s own hematological stem cells are collected and later returned) or 

allogeneic (transplanted stem cells are collected from another individual). Since the 

description of the Human Leukocyte Antigen (HLA) system in the late 1950’s, it has 

become evident that for a successful allogeneic HSCT, a sufficient level of HLA 

matching between the patient and the stem cell donor must exist.  

A HSCT for an individual patient includes numerous steps, and HLA laboratories as

well as stem cell donor registries play an important role in many of these. For a 

successful allogeneic HSCT donor search, the first prerequisite is an accurate HLA 

typing of the patient and the potential allogeneic donors; for the patients with no HLA 

identical siblings, an adequate number of unrelated registry donors is beneficial; even 

post-transplant an HLA laboratory is sometimes needed, as all HSCT patients require 

blood product support and this concerns also patients who are sufficiently HLA 

alloimmunised to be refractory for standard platelet products. This thesis aims to 

answer HLA related questions that have arisen from the everyday work of an HLA 

laboratory and stem cell registry.  

HLA typing by the current DNA based methodologies in an accredited experienced 

HLA laboratory is usually a straightforward process. However, as acute leukemias are 

a frequent indication for HSCT, HLA typing is often performed from samples 

containing a large proportion of leukemic cells, which are sometimes known to carry 

loss of heterozygosity (LOH) of the HLA complex. LOH may cause a falsely 

homozygous typing result for one or several of the HLA genes in the same haplotype.  

We described the HLA typing history of five patients with LOH, and compared 

different HLA typing methods to assess their abilities to detect both HLA haplotypes
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of LOH patients. We further performed a retrospective typing of an independent study 

set of hematologic patients with at least two adjacent homozygous HLA loci, but no 

erroneously reported homozygous results were detected. 

To assess the utility of maintaining a Finnish unrelated donor stem cell registry, and 

to facilitate the predictability of Finnish low resolution typed registry donors’ 

matching grade for individual patients, we calculated the Finnish low and high 

resolution HLA haplotype frequencies. This was performed by using the HLA typing 

results or Finnish Stem Cell Registry (FSCR) members. The acquired frequencies 

were compared to the similarly calculated frequencies of Germans, Swedes and 

Russians. The results show that 25 % of Finns carry HLA haplotypes that are heavily 

enriched in the Finnish population and rare among other Europeans. Finnish patients 

carrying these haplotypes are more likely to receive domestic or mismatched stem 

cell transplants. The results indicate that there is a special value in maintaining a 

Finnish Stem Cell Registry, regardless the high numbers of members in the much 

larger European registries. 

HLA-DPB1 genes were long considered unimportant in the allogeneic HSCT context, 

but it was since shown that there are several instances where either DPB1 matching or 

at least avoidance of certain mismatches is beneficial. Finnish extended 6 locus HLA 

haplotypes were calculated using the DPB1 typed FSCR donors as the study 

population. The DPB1 associations of different 5-locus HLA haplotypes were widely 

divergent. The associations seem to be at least partly specific for Finland, as the 

retrospectively studied transplant pairs were significantly more often DPB1 matched 

if the donor had been domestic. International donor searches for Finnish patients, 

carrying different combinations of 5-locus HLA-haplotypes, resulted in diverse 

proportions of DPB1 matched donors, showing that non-random DPB1 associations 

are likely to exist in other populations as well. The results indicate that population 

specific extended HLA haplotypes can be assessed and might be used in predicting 

the probability of undesirable DPB1 mismatches in registry donor searches.  
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In the first weeks post-HSCT all patients, even those with optimally matched 

transplants, undergo a period of severe cytopenias, and require platelet transfusion 

support. Patients with pre-formed HLA-antibodies are often refractory to standard 

platelet products, and need platelets that are collected from specifically HLA selected 

blood donors. There are however several different selection methods, and no 

consensus as to which of the methods is best as to the platelet increments, let alone 

the clinical efficacy on bleeding and mortality. The impact of different levels of 

platelet donor specific HLA antibodies of the patient on the platelet transfusion 

increments was analyzed in a Finnish sample of HLA immunized platelet transfusion 

refractory patients. Donor specific antibody levels higher than 1000 MFI (Mean 

fluorescence intensity) were shown to be an independent risk factor for inferior 

transfusion responses, whereas a limited number of structural differences (depicted by 

the number of eplet mismatches by the Matchmaker algorithm) between the patient’s 

and donor’s HLA antigens was not a sufficient predictor of HLA antibody levels in 

our group of highly alloimmunised patients.  
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4 INTRODUCTION 

Hematological stem cell transplantation is an established treatment for several life-

threatening diseases, and more than 18 000 allogeneic transplants were performed in 

2017 in Europe alone ((Passweg et al., 2019).  The first successful HSCTs were

performed from the patients’ HLA identical siblings. However, since 1980’s,

availability of unrelated donors (URD) has vastly increased and the treatment 

modalities improved so that today, the outcomes of optimally HLA matched unrelated 

donor HSCTs are often considered comparable to transplants from HLA identical 

siblings. In Europe in 2017, 32 % of allogeneic transplants were performed from the 

patient’s HLA identical sibling, 16 % from an HLA mismatched related donor and 50 

% from an unrelated donor, provided by the worldwide network of unrelated donor 

registries; 2 % of transplants were supplied by cord blood banks (Passweg et al.,

2019). In Finland in 2018 131 allogeneic HSCTs were performed. 85 (65 %) of them 

were with an unrelated donor, 22 (17 %) with an HLA identical sibling, 22 (17 %) 

with an HLA mismatched family donor and two (1.5 %) with a cord blood unit. 

Although the Human Leukocyte Antigen (HLA) –system was first discovered 60 

years ago and has since been actively studied, new un-answered questions arise yet 

today, due to the system’s immense variability and its central role in both adaptive 

immunity and transplantation immunology. The gradual development of 

histocompatibility testing was a necessary prerequisite for successful allogeneic 

transplantation, and it has vastly improved in accuracy, affordability and work flow 

since it was first developed in the late 1950’s. For several decades the bulk of 

histocompatibility testing was performed by serological methods, which were 

accurate enough for establishing HLA identity between siblings in a family. However, 

the widespread use of DNA based methods around the turn of the millennium was 

required before transplantation outcomes with unrelated donors became comparable 
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with sibling transplants. The DNA based methods, specifically sequence based typing 

(SBT) methods, allow accurate donor and patient HLA matching at the level of single 

nucleotide polymorphisms of classical HLA molecules. Subsequently, the criteria for 

“optimal” HLA matching between the patient and the donor have become more 

stringent, requiring much larger numbers of volunteer unrelated donors in the 

worldwide registries than was originally thought necessary. 

In Finland, histocompatibility testing required in solid organ and hematological stem 

cell transplantations is exclusively performed by the Finnish Red Cross Blood Service 

(FRCBS) histocompatibility laboratory. Thus, it is relatively large in the European 

setting and usually able to introduce new analysis technologies without undue delay. 

The Finnish Stem Cell Registry also belongs to the FRCBS, enabling a very close 

collaboration between the laboratory and the stem cell registry. Since all HLA 

selected platelets in Finland are also supplied by the FRCBS, the same HLA 

specialists are able to engage with all the diverse aspects of histocompatibility 

encountered during the hematological transplant process.  Because of the size of the 

laboratory and the versatility of the HLA consultants’ tasks, also diverse questions 

concerning optimal practices arise during the daily work. Many of these have not yet 

been studied either because of relatively new laboratory methods or sometimes 

national idiosyncrasies. The studies making up this thesis have been done to answer 

such questions. They have thus the very pragmatic benefit of being readily 

translatable to the everyday practices of HLA consultants serving blood banks, HLA 

laboratories and stem cell registries.  
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5 REVIEW OF THE LITERATURE 

5.1 HLA 

5.1.1 Basics of HLA 

The Human Leukocyte Antigen –system is the human counterpart to the Major 

Histocompatibility Complex, a set of molecules expressed in all vertebrates. The 

protein products of these genes are expressed in hundreds of thousands of copies on 

all human cells with the exception of erythrocytes. They are essential for the normal 

function of T lymphocytes, as indicated by the recurrent severe infections seen in the 

rare individuals with a deficiency of either class I or class II HLA molecule 

expression (Hanna and Etzioni, 2014).  

In humans, the HLA gene complex is located in the short arm of chromosome 6 

(6p21.3). Significant linkage disequilibrium (LD; alleles at different loci in 

nonrandom association with each other (Slatkin, 2008)) is known to span this area. 

Hence, the HLA genes are usually inherited from the parent to the offspring as one 

block, called the haplotype; one HLA haplotype from each parent (Figure 1).  
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Figure 1. Each offspring inherits one HLA haplotype from each parent. For any two 

siblings, there is a 25 % probability of carrying the same two parental HLA 

haplotypes, a 50 % probability of sharing one haplotype in common, and a 25 % 

probability of sharing no HLA haplotypes. 

 

 

HLA genes are the most polymorphic ones in the human genome, with almost 24 000 

alleles and more than 15 000 proteins known today 

(https://wwwdev.ebi.ac.uk/ipd/imgt/hla/stats.html, 2019).  

HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1 and HLA-DPB1 are the classical 

HLA genes. Of these, the three first ones belong to HLA class I and share a similar 

structure at gene and molecular level. The rest of the genes belong to HLA class II, 

and their structure differs from that of Class I molecules. The structure of HLA 

molecules (both class I and class II) is depicted in Figure 2. Class I molecules are 

heterodimers consisting of a heavy chain (often called α chain), coded by the HLA-A, 
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-B, or -C gene, and a light chain, β₂ microglobulin, coded by B2M gene in 

chromosome 15 (P J Bjorkman et al., 1987; Klein and Sato, 2000). The heavy chains 

have a specific structure in which different domains of the proteins are encoded by 

separate exons. A leader peptide is encoded by exon 1. Exons 2 and 3 encode two of 

the three cell surface domains, α₁ and α₂, which are the most variable parts of the 

molecule. Together α₁ and α₂ form the highly variable peptide binding groove of the 

molecule. Domain α₃ is less variable than α₁ and α₂ and is coded by exon 4 of the 

HLA Class I gene. The transmembrane part of the molecule is coded by exon 5, the 

cytoplasmic tail by exons 6 and 7, and the 3’ untranslated region (UTR) by exon 8

(Malissen, Malissen and Jordan, 1982).   The β2m chain has no transmembrane or 

cytoplasmic part and is non-covalently bound to α₃ domain of the heavy chain (P J 

Bjorkman et al., 1987).

The structure of class II molecules differs from class I molecules: they also consist of 

two chains, α and β, but these are both coded by HLA-D genes, (letters A and B in the 

name of the respective gene denoting whether the gene codes for the α or for the β 

chain), and both chains of the class II HLA molecules carry a peptide binding domain 

(α₁ and β₁, respectively), which together form the peptide binding groove (Brown et 

al., 1993; Klein and Sato, 2000). As in class I genes, exon 1 codes a leader peptide, 

while the peptide binding domains of class II molecules are coded by exon 2 of the 

respective HLA-D genes. The α₂ and β₂ domains are coded by exon 3, transmembrane

anchor and cytoplasmic tail by exons 4-5 and 3’UTR by exon 6.
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Figure 2. Structure of class I and class II HLA molecules. The most variable parts 

surround the peptide binding groove:  α₁ and α₂ domains of the class I molecule and 

the α₁ and β₁ domains of the class II molecule. 

 

 

The expression of HLA molecules is co-dominant, i.e. the HLA molecules encoded 

by the HLA alleles inherited from each parent are both expressed on the cell surface.  

HLA Class I molecules are expressed on all nucleated cells, but Class II molecules 

normally only on cells that are specialized in antigen presentation, such as B-

lymphocytes, dendritic cells and cells of the monocyte-macrophage-lineage. 

The function of the HLA molecules is to carry and present short peptides to T-

lymphocytes and thus continuously help them control the antigen content of the cells. 

The HLA- peptide complex also plays a central role in the development of 

immunological tolerance and the selection of T-cell receptor repertoire in the thymus 
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(Partanen, 2003). The inherited structure of the peptide binding groove determines the 

affinity, size and repertoire of the different peptides that are bound and presented by

different HLA molecules (P.J. Bjorkman et al., 1987).  Class I peptides present 

peptides that originate within the cell: cell’s own degraded proteins and proteins that 

are produced because of a viral infection, and the basic function of them can thus be 

described as targeting the cytotoxic immune activation against cells that synthesize 

foreign structures, as in connection with viral infection or cancer (Pettersson, 

Partanen and Vakkila, 2007). Class II HLA molecules present peptides that have been 

endocytosed from the outside of the cell, such as peptides originating from bacterial 

infections. The receptors of T helper cells (CD4-positive cells) recognize and are 

activated by class II HLA molecule-peptide complexes, and cytotoxic or killer T-cells 

(CD8 positive T-cells) by class I HLA molecule-peptide complexes. Interaction 

between the HLA molecule-peptide complexes and T-cells via T-cell receptors is 

necessary for the activation and normal function of T-lymphocytes. (Burmester and 

Pezzutto, 2003).

5.1.2 Population genetics of HLA 

The HLA complex is the most variable region of the human genome, and there is 

strong evidence that the diversity of HLA alleles is maintained by balancing selection, 

the kind of selection that results in increased genetic diversity (Brandt et al., 2018). 

The HLA allele distribution varies between different populations (Schipper et al.,

1997) although most of the variation is between individuals, and a lower proportion 

between populations and continents: for example, for the A locus the variance was 

reported to be 88.5 % between individuals, and 6.2 % and 5.3 % between populations 

and continents respectively (Sanchez-Mazas, 2007).  Worldwide, the diversity of 

HLA alleles is primarily correlated to the population’s distance from east Africa 

(Prugnolle et al., 2005), thus diminishing for example in Europe from southeast to 

northwest.  As the primary function of HLA alleles is to present pathogen derived 

peptides to the T lymphocytes, part of the diversity has also been speculated to result 

from pathogen derived selection, and it has been shown that after adjusting for the 
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effect of human migration history, HLA Class I allele diversity is larger in areas with 

the largest diversity of different pathogens, especially viruses (Prugnolle et al., 2005). 

HLA genes are located in an approximately 3,6 Mb (Megabase) segment (Trowsdale, 

Ragoussis and Campbell, 1991) in the p arm of chromosome 6, and this block, the 

HLA complex, is characterized by a strong linkage disequilibrium resulting in long-

range HLA haplotypes. In contrast with the balancing selection for individual HLA 

alleles, the HLA haplotypes seem to be affected by purifying selection (Alter et al.,

2017). As a result, the highly polymorphic HLA alleles are not inherited in random 

combinations, but usually en bloc from one generation to the next (Figure 1).  The 

HLA haplotype frequencies seem to be more population specific than individual 

alleles. Of the 64856 5-locus haplotypes reported by the US National Marrow Donor 

Program NMDP (Gragert et al., 2013), only 10 018 have a reported frequency among 

European Caucasians and 1350 among donors of Japanese ancestry, and there are 

actually only 188 haplotypes that have a frequency among both European and 

Japanese populations. Likewise, although Asian, Caucasian and African American 

populations individually are all reported to have approximately 10 000 haplotypes 

with known frequencies, of these, only 574 have a frequency in all three broad ethnic 

categories.  Even at the level of geographic parts of Germany, significant haplotype 

diversity differences have been found (Schmidt et al., 2010).  

The sparse population and relative isolation of Finns in the North-Eastern corner of 

Europe has led to a concept of “Finnish Disease Heritage”, meaning a group of 

mostly recessively inherited diseases that are strongly overrepresented in Finland 

(Norio, 2008). It is conceivable that the same background might lead to uniquely 

enriched HLA haplotypes as well. Accordingly, previous studies on Finnish HLA 

characteristics have consistently reported significant differences from other European 

born populations (Lokki and Julin, 1982; Sirén et al., 1996; Haimila et al., 2013), 

even though the typing resolution has been low in the first two studies and the number 

of HLA typed individuals relatively small in the last one. 
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The differences of HLA haplotypes and haplotype frequencies between different 

populations have a profound effect on unrelated donor procurement: as donors with 

European ancestry are over-represented in the worldwide stem cell donor registries, 

patients of other ethnicities have much lower probabilities of finding optimally HLA 

matched stem cell donors (Pidala et al., 2013; Gragert et al., 2014). 

5.2 HLA TYPING METHODS 

5.2.1 Serology 

The HLA system was first recognized in the 1950’s by using sera of multiparous 

women who had been alloimmunised by pregnancies. These sera agglutinated the 

white blood cells of their husbands, and varying proportions of other individuals 

(Jager, Brand and Claas, 2019). The most widely used serological typing method, 

complement mediated microcytotoxicity assay, was developed based on this finding, 

and even today serology is the only routine typing method that recognizes the actual 

antigens expressed on the cell surface.  

5.2.2 DNA based methods 

Serology remained the primary typing method until the 1990’s (Woszczek et al.,

1997), but the vast variability of the HLA system has only gradually been exposed by 

the development of DNA based methods. Although these were available already in 

the 1970’s after the advent of the recombinant DNA technology, they became more 

widely applicable only after the polymerase chain reaction (PCR) was introduced in 

1985 (Erlich, 2012).  

The three most widely used DNA based typing methods have been SSP-PCR 

(sequence specific primer-PCR), SSOP (sequence specific oligonucleotide probes) 

and DNA sequencing.  
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5.2.3 Sequence Specific Primers (SSP-PCR) 

In the SSP-PCR method, isolated genomic DNA is amplified with a set of 

oligonucleotide primers that are complementary to one to several specific HLA 

alleles. An amplification product is only produced if any single primer pair is 

complementary to the DNA that is being analyzed (Chandraker et al., 2012).  

SSP assay is limited by requiring an increasing number of separate PCR reactions to 

achieve high resolution, and by not being suited for high volume automation.   

5.2.4 Sequence specific oligonucleotide probes (SSOP) 

In the SSOP technique, the PCR product of a HLA gene is let to hybridize with 

probes that are designed based on sequences of different HLA alleles. Only probes 

complementary to the DNA under analysis hybridize with the PCR product. In 

different SSOP applications, the probes can be immobilized in different ways: early 

on, on nylon membranes (Erlich, 2012), and later, on variably colored microbeads as 

in the Luminex technology. In Luminex, the SSOP technique combines microbeads 

and flow cytometry with automated analysis, allowing more high-throughput typing 

compared to SSP and earlier SSOP techniques (Heinemann, 2009). A known 

weakness of SSOP assays is that they provide similar hybridization and detection 

conditions for all probes. This results in potentially sub-optimal conditions for some 

of the probes, thus occasionally leading to falsely positive or negative fluorescent 

signals (Eng and Leffell, 2011). 

5.2.5 Sanger sequencing 

To detect all novel mutations in the HLA genes and to discern between all different 

alleles, it is necessary to determine the exact nucleotide sequence of the gene. This 

was made possible by the sequencing techniques, of which Sanger sequencing was 

introduced in 1977 and has for decades been the golden standard of high resolution 
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typing methods. It is based on synthesis of a complimentary DNA template for the 

single stranded DNA that is being analyzed; the synthesis is initiated by annealing 

oligonucleotide primers to the single stranded DNA and the extension of the synthesis 

is terminated at variable lengths by adding 2′,3′-dideoxynucleotides (ddNTPs) by 

DNA polymerase instead of the natural 2′-deoxynucleotides (dNTPs) (Sanger, 

Nicklen and Coulson, 1977; Metzker, 2005). Even though Sanger sequence analysis 

became more automated by the development of fluorescent labels, capillary 

electrophoresis, laser techniques and software, it is still relatively slow and laborious 

and so not optimally suited for high throughput HLA typing. Also, with the constant 

increase in the number of known HLA alleles, the exclusion of HLA allele 

ambiguities with Sanger sequencing alone has become a moving target.

5.2.6 Next Generation sequencing (NGS) 

The first NGS platform was introduced in 2005 (Margulies et al., 2005), and these 

techniques are now replacing Sanger sequencing at least in high throughput HLA 

laboratories. The biggest difference to the Sanger methodology is that large numbers 

of clonal sequencing reactions can be performed in parallel, diminishing the required 

hands-on time and dropping the cost of sequencing. The variability of the HLA 

system has been a challenge even for the NGS platforms, and they require 

sophisticated bioinformatics tools (Gabriel et al., 2014). The clonality of the NGS 

sequencing products currently diminishes the number of high resolution level 

ambiguities close to zero, and NGS also makes it possible to sequence whole genes, 

thus including all exons and introns in the final typing result. Specifically, NGS has 

revolutionized the upfront HLA typing of new registry donors, enabling faster and 

more reliable donor selection for patients in need of an unrelated stem cell donor. 

However, even NGS shares a limitation common to all DNA based assays: 

dependency on the quality of primer design. In all assays where both alleles are 

amplified simultaneously, sub-optimal primers may lead to amplification imbalance 

(Juha Peräsaari, FRCBS histocompatibility laboratory, personal communication). 

Unspecific primers on the other hand may amplify background fragments not 
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belonging to the target locus (Mann et al., 2009). A critical check-up of primary 

analysis data is thus always necessary if the typing result is homozygous or contains 

rare or unexpected alleles. It is also important that the laboratory has access to more

than one typing assay to resolve problematic situations.  

5.3 LOSS OF HETEROZYGOSITY  

In human malignancies, loss of heterozygosity (LOH) is a common form of genetic 

abnormality (Zheng et al., 2005). It is known to favor the development of a malignant 

transformation by the loss of normally functioning tumor suppressor genes (Couto, 

2011; Ryland et al., 2015), or by duplicating the oncogenic mutations while losing the 

remaining normal allele (O’Keefe, McDevitt and Maciejewski, 2010). LOH may also 

assist the survival of malignant cells by downregulating HLA Class I expression, thus 

helping them escape T-cell immune surveillance (McEvoy, Morley and Firgaira, 

2003).  LOH can lead to a loss of an entire chromosome or chromosomal region copy 

number, or it can be copy number neutral (CN-LOH). In CN-LOH the remaining 

chromosome region, either maternal or paternal, is duplicated (uniparental disomy, 

UPD), making CN-LOH undetectable by conventional karyotype analysis  (O’Keefe, 

McDevitt and Maciejewski, 2010).  In myeloid malignancies, copy-neutral-LOH is 

known to exhibit a non-random distribution: the most frequently involved 

chromosomes are 4, 7, 13 , 11 and 17, but there are also regions like 5q and 20q that 

are almost never affected (Xu et al., 2018). Although the HLA region in chromosome 

6 is thus not the most frequent of the involved regions, several reports of LOH 

impacting the initial HLA genotyping of individual leukemia patients have been 

published (Park et al., 2011; Dubois et al., 2012; Lobashevsky et al., 2019). 
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5.4 HEMATOLOGICAL STEM CELL TRANSPLANTATION 

The idea of HSCT is to reconstitute the missing or deficient hematopoietic cell 

lineages with normal cells, which are capable of continuous self-renewal. In addition, 

the transplanted immune cells provide anti-tumor effect when the transplant is 

performed for a hematological malignancy.  

5.4.1 HSCT immunology 

The human immune system has two major arms: the innate and the adaptive. The 

determining characteristics of the adaptive immune system are the cells’ capability of 

specific recognition of a foreign antigen, clonal proliferation of the effector cells that 

encounter their specific antigen, and memory, which enhances the expansion of the 

effector cells when the antigen is met and recognized repeatedly (Petranyi, 2002). 

These properties are based on a system of highly variable receptors on the effector 

cells of the adaptive immune system, T and B lymphocytes (Burmester and Pezzutto, 

2003).  

Alloreactivity is based on the recognition of alloantigens (peptides derived from cells 

of a different individual of the same species) by T-cells. This can happen via three 

different pathways: direct, indirect or semi-direct (Marino, Paster and Benichou, 

2016). In the direct pathway, the effector T-cells recognize intact foreign HLA 

molecule-peptide-complexes on the allogeneic antigen presenting cells (APCs); in the 

indirect pathway, the effector cells recognize processed allogeneic HLA molecules on 

self-APCs (Game and Lechler, 2002). The term semi-direct pathway depicts 

situations in which HLA class I and class II molecules of the recipient and donor are 

expressed on each other’s dendritic cells as the result of transfer or “cross-dressing” 

(Marino, Paster and Benichou, 2016).  

As to alloreactivity, HSCT is a unique treatment modality: the immune systems of 

both the recipient and the donor are able to recognize the other as non-self, and 

initiate an attack on each other’s cells. The recipient’s immune system may prevent 

the engraftment of the donor’s transplanted cells (non-engraftment), or reject them 
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later, after initial engraftment. This is not a common problem in HLA identical sibling 

or matched URD transplants, but a well-recognized risk in HLA mismatched 

transplants. However, even in HLA compatible HSCT, a much more frequent 

complication is Graft versus Host Disease (GvHD), in which the donor’s T-cells 

attack the patient’s cells, causing damage in the target tissues (Welniak, Blazar and 

Murphy, 2007). As GvHD was apparent in 35 % of HLA identical sibling transplants 

and 41 % of HLA compatible URD transplants (Spierings et al., 2013), the attack is 

not dependent solely on HLA matching. In sibling transplants the risk increases with 

increased amount of mismatching in minor histocompatibility antigens (miHA), but in 

unrelated transplants much of the increase seems to be brought about by DPB1 

mismatches (Martin et al., 2017), as in unrelated transplants 10/10 matching is 

usually targeted, and internationally more than 80 % of 10/10 matched transplants are 

DPB1 mismatched (Lee et al., 2007; Shaw et al., 2007; Pidala et al., 2014).  

5.4.2 Development of HSCT 

Interest in the possibility of replacing an individual’s hematopoietic system by 

hematologic stem cell transplantation arose after the atomic bombings of World War 

II and the subsequent cold war, as it had become evident that the destruction of the 

victims’ hematopoietic system was the usual cause of death after fatal radiation injury 

(Okita, 1975). The first attempts at HSCT in the 1950’s and early 1960’s were not 

successful, and all patients died; the causes of death were usually either relapse of the 

primary disease or immunological reactions (Singh and Mcguirk, 2016).  

The first successful HSCTs were performed in the Netherlands and the USA in late 

1960’s. The donors were HLA identical siblings, and the transplants were performed 

in the pediatric setting, with the first transplant indication being severe combined 

immunodeficiency, SCID (Jager, Brand and Claas, 2019). In early 70’s, also patients 

with severe aplastic anemia (SAA) and leukemias were transplanted, while only HLA 

identical siblings were considered acceptable donors. The pioneer of allogeneic 
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HSCT was Nobel Laureate Professor E. Donnall Thomas, who reported a series of a 

hundred allogeneic transplantations in 1977 (Thomas et al., 1977). The first 

successful transplant from an unrelated donor was performed for leukemia in 1979 

(Jurick et al., 2016).

At first, stem cell transplants were only regarded as a replacement of the patient’s 

own bone marrow, which either did not function normally, as in immunodeficiencies 

and aplastic anemias, or was destroyed by radiation and chemotherapy, as in leukemia 

treatment. However, early on there were indications that the transplanted cells might 

also have an immunologic effect, recognizing and destroying the patient’s remaining 

malignant cells (Thomas et al., 1977; Weiden et al., 1979; Gale et al., 1994). This is 

thought to be especially important concerning the malignant stem cells that are not 

actively proliferating and are thus more resistant to chemotherapy than other leukemic 

cells (Copelan, 2006). 

5.4.3 Indications for allogeneic HSCT 

Although the earliest successful allogenic hematological stem cell transplantations 

were performed for pediatric patients with severe immunodeficiencies and aplastic 

anemias, leukemias soon became the most frequent indication (Thomas et al., 1977; 

Copelan, 2006). Early on, when the risk of transplant related mortality and graft 

rejection especially in unrelated donor transplants was significantly higher than today, 

chronic myelogenous leukemia (CML) was the most frequent malignant indication 

for HSCT, as no other effective treatment options for CML were available at the time. 

Acute leukemias were treated by HSCT in more advanced disease phases than today –

at relapse or in second remission (Gajewski, Cecka and Champlin, 1990). The only 

established indications for URD HSCT twenty years ago were chronic phase CML, 

Philadelphia positive acute lymphoblastic leukemia (ALL) in first remission and other 

ALLs in later remissions. In addition, there were two optional indications: poor 

prognosis acute myeloid leukemia (AML) in remission and myelodysplastic 

syndrome (MDS), as reported by Madrigal (Madrigal et al., 1997).   
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Approximately 70 % of patients (Thomas et al., 1977) had no HLA identical sibling 

donor available, which left a large number of patients with other HSCT indications 

outside of this treatment modality.  As the myeloablative conditioning that was 

required was toxic, only relatively young, otherwise healthy patients could be 

transplanted. Both these factors severely limited the use of HSCT. Consequently, the 

number of HSCTs in Europe in 1995 was 3804, 20 % of which were from an 

unrelated donor.  

However, at this time, the number of unrelated transplants was rapidly increasing, the 

rise being 100 % from 1994 to 1995 (Gratwohl, Hermans and Baldomero, 1997; 

Madrigal et al., 1997) and the number of both allogeneic transplants and the 

proportion of unrelated donors have subsequently both risen at a fast pace. In 2015, 

European Society for Blood and Marrow Transplantation (EBMT) reported 

more than 17 000 allogeneic transplants in Europe (48 countries) and 9 affiliated 

countries (all situated in Africa or the Middle East) alone. Of these, more than 50 % 

were from an unrelated donor (Passweg et al., 2017).   

Today, the most frequent indications for allogeneic transplantation are acute 

leukemias and myelodysplastic syndromes, together covering 67 % of indications in 

2015. Less frequent indications are multiple myeloma (7 %), chronic leukemias (4 

%), lymphomas (7 %), bone marrow failure (5 %), hemoglobinopathies (3 %) and 

different immune deficiencies (3 %) (Passweg et al., 2017). As to the indications, the 

biggest change between the 20th and the 21st centuries has been the dramatic reduction 

of chronic myelogenous leukemia (CML) as a transplant indication, due to the 

introduction of tyrosine kinase inhibitors in the 1990’s (Innes, Milojkovic and 

Apperley, 2016).  

5.4.4 Conditioning and immunosuppression 

Before the transplantation of stem cells from an allogeneic donor, the patient needs 

pre-transplant conditioning. There are several reasons for this: the allogeneic cells 
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must have sufficient space in the bone marrow to engraft; the patient’s own immune 

system must be sufficiently weakened not to reject the transplanted cells, and in 

treatment of malignant diseases, the leukemia cells must be eradicated as profoundly 

as possible (Jurick et al., 2016). Younger patients with no significant comorbidities 

can withstand myeloablative conditioning, which causes long-term three-lineage 

aplasia of the marrow and allows rapid engraftment of the transplanted cells. As 

leukemias are much more frequent in the elderly, also different reduced intensity 

conditioning (RIC) regimens have been developed to allow transplantation also for 

older age groups and patients with comorbidities. Compared to the myeloablative 

treatment, RIC-conditioning relies more heavily on the graft versus leukemia effect of 

the transplant (Joensuu et al., 2006). Post-transplant, different immunosuppressive 

treatments are used to prevent GvHD and graft rejection (Carreras et al., 2019). 

5.4.5 Complications 

The major clinical complications of HSCT are both acute and chronic graft versus 

host disease (GvHD), graft rejection and failure, treatment-related toxicity and 

various infections due to the ensuing prolonged immunodeficiency. For patients with 

a normal post-transplantation course, immunological function gradually normalizes, 

but until this happens, a heightened risk of different infectious complications prevails. 

(Carreras et al., 2019).

5.4.6 Development of histocompatibility assessment in HSCT 

The first, unsuccessful bone marrow transplants in the 1950’s, were collected from 

cadavers (Singh and Mcguirk, 2016). These transplantations were performed without 

any attempt to HLA matching, as  no HLA typing methods were yet in use (Jager, 

Brand and Claas, 2019). By the end of the 1960’s however, the HLA system was 

already well known, and the histocompatibility of HLA identical siblings could be 

assessed by family typing with serological methods. As only 25 % of siblings are 

HLA identical with each other, most patients do not have an HLA identical donor in 

their immediate family. This was a serious limitation for HSCTs through the 1970’s 
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and 1980’s even for patients with a European background, who today have a high 

probability (Gragert et al., 2014) of finding an optimally matched URD.  

The first successful unrelated donor hematological stem cell transplant for leukemia 

was performed for a patient who, according to the reported HLA typing result 

(Hansen et al., 1980) probably carried the two most frequent European HLA 

haplotypes. Because of this, an HLA-A, -B, -DRB1 matched donor was found from a 

very small number of HLA typed volunteers (Hansen et al., 1980). From today’s 

perspective, it is probable that the donor and the patient were actually fully matched 

for five classical HLA genes (www.Haplostats.org, 2019), due to the minimal allele 

variation in these conserved ancestral HLA haplotypes. Although the patient after two 

years died of leukemia relapse, this transplant with no signs of acute or chronic 

GvHD and rapid engraftment showed the feasibility of using well matched unrelated 

donors when no matched family donors were available. 

Many of the first volunteer unrelated donors were recruited from blood donors, who 

had previously been HLA-A and HLA-B typed for platelet donation purposes 

(Mccullough et al., 1986; Mcelligott, Menitove and Aster, 1986; www.ZKRD.de,

2019). Selective DRB1 typing could then be performed for donors who were 

putatively HLA-A and –B matched with the patient. Thus, in early 1990’s only 30 % 

of registry donors in the Bone Marrow Donors Worldwide (BMDW) database were 

HLA-DRB1 typed (Buskard and Stroncek, 1993). The rest of the HLA genes were at 

the time considered unimportant, and it was unclear whether even split level matching 

of HLA-A and -B antigens or extended DR-typing would be beneficial (Gajewski, 

Cecka and Champlin, 1990). In 1993, mismatches of HLA-A or HLA-B antigens 

were deemed as “minor” if the respective antigens were serologically cross-reactive 

(Beatty et al., 1993) 

As knowledge on transplant outcomes increased and typing methods improved, 

recommendations began to change. By the end of the 1990’s, the World Marrow 
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Donor Association (WMDA) recommended HLA-A and HLA-B typing at split 

antigen level and DRB1 typing both at the time of registry donor recruitment, and 

later at confirmatory typing of both patients and donors. DNA based typing methods 

had by then become more easily available, and allele level DRB1 typing was 

recommended (Hurley et al., 1999). By the beginning of 2000’s, the recommended 

typing resolution for identical sibling versus unrelated donor transplantations had 

become different: low resolution typing was considered sufficient in family 

transplants, but higher resolution typing was already recommended for URD 

transplants; HLA-C and HLA-DQB1 typing was considered useful for developing 

accurate search strategies (Hurley, Fernandez-Vina and Setterholm, 2003).   

The significance of high resolution level matching and HLA-C matching became 

evident gradually in the early 2000’s (Flomenberg et al., 2004; E. W. Petersdorf et 

al., 2007; Lee et al., 2007; Fürst et al., 2013). Today, the HLA match degrees that are 

most widely considered as optimal are an 8/8 or a 10/10 match. The former means 

that the patient and donor are matched at high resolution level for HLA-A, -B, -C and 

-DRB1 genes (high expression genes), and the latter requires a match also at HLA-

DQB1, which is a lower expression HLA gene together with HLA-DPB1 and HLA-

DRB3-5. Matching requirements for the low expression HLA genes is more 

controversial than of the high expression genes (Fernandez-Viña et al., 2013). 

5.4.7 Impact of HLA matching in allogeneic HSCT 

Knowledge of the required HLA matching degree for optimal transplant outcomes has 

gradually increased over decades. In 1990’s when the unrelated donors were only 

phenotypically HLA-A-B-DRB1 matched, registry donor transplants were associated 

with significantly higher morbidity and mortality rates, due mostly to aGvHD (acute 

graft versus host disease) but also because of  a higher risk of transplant rejection and 

susceptibility to infections (J. Madrigal et al., 1997). Today, HLA matching between 

the patient and the URD is considered as the one most important donor-related factor 
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predicting the outcome of the transplant, and transplant outcomes with matched 

unrelated donors have become comparable with sibling donors (Ho et al., 2011; 

Robin et al., 2013; Dufour et al., 2015). A single antigen or allele level HLA 

mismatch at the HLA-A, -B, -C or -DRB1 gene has repeatedly been shown to be 

associated with an approximately 8-10 % lower probability of overall survival, and 

also with a higher risk of both acute and chronic GvHD and transplant related 

mortality. For DQB1 mismatches, most of the same studies have not shown an impact 

on overall survival at all, if the donor is 8/8 matched with the patient (Flomenberg et 

al., 2004; Lee et al., 2007; Fernandez-Viña et al., 2013; Pidala et al., 2014), or the 

slightly higher mortality risk has been associated with antigen level mismatches only 

(Fürst et al., 2013). The notion of the importance of DQB1 matching may have risen 

in an era when high resolution typing of DRB1 was not yet universally in use. 

Considering the strong linkage disequilibrium between the two loci, DQB1 

mismatches may actually have been an indirect indication of an allele level DRB1 

mismatch. 

Although practices in matching for DPB1 vary in different transplant programs, 

several retrospective studies have shown that some DPB1 mismatches are well 

tolerated (permissive) while others are not (non-permissive) (Zino et al., 2004; 

Crocchiolo et al., 2009; Fleischhauer et al., 2012; Pidala et al., 2014; Petersdorf et al.,

2015). Also, actual DPB1 match (12/12) has been shown to be beneficial in 

transplants performed for early leukemia (Shaw et al., 2010), and it seems probable 

that also in transplants performed for non-malignant diseases, where graft versus 

leukemia effect is not required,12/12 match would be the optimal goal to keep the risk 

of GvHD as low as possible. The impact of non-permissive DPB1 mismatches has in 

most studies seemed somewhat smaller than mismatches in the A, B, C and DRB1 

genes (Zino et al., 2004; Fleischhauer et al., 2012; Pidala et al., 2014; Petersdorf et 

al., 2015) but nevertheless significant. One smaller study with a more stringent 

division of DPB1 alleles resulted in a stronger impact, comparative to the high 

expression mismatches (Crocchiolo et al., 2009).
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Some studies have shown that individual allele level mismatches may be either better 

or worse tolerated than others (Kawase et al., 2009; Fernandez-Viña et al., 2014; 

Morishima et al., 2016), but due to the HLA diversity, collecting data on individual 

mismatches is difficult and requires extremely large datasets. There have also been 

studies reporting that haplotype matching (E.W. Petersdorf et al., 2007), frequent 

haplotypes (Jöris et al., 2013) or ultra-high resolution matching between the patient 

and donor (Mayor et al., 2019) are beneficial, showing that even now, optimal donor 

selection according to HLA only is not a straightforward process, and the optimal 

criteria may differ for different patients.  

5.5 STEM CELL REGISTRIES 

5.5.1 History and Development 

The oldest of the present registries is Matchis in Holland, established in 1970 by the 

name Europdonor. In the beginning however, it provided unrelated bone marrow only 

occasionally, as its main function was to provide HLA matched platelets for HLA 

immunized patients (van Rood and Oudshoorn, 2008). The first registry that was 

established solely to provide unrelated hematological stem cells, Anthony Nolan, was 

founded in Great Britain in 1974 by Anthony Nolan’s mother, Shirley Nolan. By the 

first half of 1980’s 50 000 volunteers had been recruited and HLA typed by the 

Anthony Nolan registry (Blume, Forman and Appelbaum, 2004). Subsequently, 

France and the United States were among the next to start recruiting unrelated donors: 

France Greffe de Moelle Registry and the NMDP were both founded in 1986

(https://bethematch.org/about-us/our-story/, 2019; 

https://www.dondemoelleosseuse.fr/france-greffe-moelle-registry, 2019). Although 

the core of many registries early on were the previously HLA-A and -B typed blood 

donors, the families of patients who could not find a match among the existing donors 

were often active in recruiting new donors from their respective communities (Blume, 

Forman and Appelbaum, 2004; Margulies et al., 2005).
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As the outcomes of unrelated donor transplants were inferior to HLA identical sibling 

transplants, their number remained quite low in the beginning, as did the number of 

registered volunteer donors. In 1990, approximately 250 000 donors had been 

registered in the USA and Europe (Gajewski, Cecka and Champlin, 1990), and only 

200 URD transplants were reported to have taken place so far (Gluckman, 1990). In 

the 1980’s and early 1990’s unrelated donors who were serologically HLA matched 

for HLA-A, -B and -DRB1 were considered sufficiently matched, and the size of 

unrelated donor registries was estimated accordingly: for patients with common HLA 

types, registries with 500-1000 donors were thought to suffice, whereas for patients 

with extremely rare HLA phenotypes the required donor pool was estimated to 

exceed a million donors (Gajewski, Cecka and Champlin, 1990). 

The number of unrelated donor transplantations and registries increased rapidly 

during the 1990’s. Germany, which at the moment harbors the largest unrelated donor 

registry in Europe, began active recruiting relatively late, in the beginning of 1990’s 

(www.ZKRD.de, 2019); in Scandinavia, the Norwegian Bone Marrow Donor Registry 

was established in 1990 and both the Swedish Tobiasregistret and the Finnish Stem 

Cell Registry (former Finnish Bone Marrow Registry) in 1992. By the end of the 

1990’s, more than half a million new donors were recruited annually (Hurley et al.,

1999), so that in 2007 the number of donors worldwide exceeded 10 million, and in 

2017 30 million.  Also the use of unrelated donors has rapidly increased: in 2004, 

7266 unrelated donors donated stem cells, of which 35 % cross country borders 

(Hurley et al., 2007). Use of unrelated donors surpassed the use of sibling donors in 

2006, and in 2012 more than 10 000 unrelated donor transplants crossed country 

borders (Gratwohl et al., 2015).  
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5.5.2 Co-operation and International donor searches: BMDW and WMDA 

Co-operation between registries and countries is a prerequisite for the international 

utilization of stem cell grafts. The core organizations for promoting this have been the 

Bone Marrow Donors Worldwide (BMDW) and the World Marrow Donor 

Association (WMDA).  

BMDW was initiated by the Immunology Working Party of the EBMT in 1989, to 

collect the HLA phenotype data of the then existing unrelated donor registries. The 

initial four editions of the listings were distributed to registries on paper (Schipper et 

al., 1996). In early 1990’s, the database of worldwide registry donors and their HLA 

typing results was updated four times a year, and the data sent to the registries on 

either computer diskettes or on paper (Buskard and Stroncek, 1993). With the 

development of internet, the donor HLA data and searches were moved there with 

increasing data on donor characteristics like gender, age, cytomegalovirus (CMV) 

status and probability of HLA matching added over time (van Rood and Oudshoorn, 

2008). Today, both registry donor data upload and registry donor searches are web-

based.  

In addition to facilitating searches for phenotypically HLA matched stem cell donors 

for individual patients, the large numbers of individuals from different ethnic groups 

contained in the database has also enabled HLA antigen and phenotype frequency 

analyses between different populations (Schipper et al., 1996).  

The WMDA was established in 1994 at an initiative of John Goldman (Jager, Brand 

and Claas, 2019). The idea was to develop guidelines to facilitate safe international 

exchange of hematopoietic stem cells. This is performed by several working groups, 

which cover quality assurance of donor registries, medical issues, ethics, and 

information technology. In 2003, an accreditation program for donor registries was 

established. The aim is to ensure uniform standards for international stem cell 

exchange. 
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In 2017 WMDA took over the activities of BMDW, and the worldwide donor 

searches are now performed at https://search.wmda.info (https://search.wmda.info,

2019). The database includes more than 35 million volunteer donors and almost 

800 000 cord blood units, from 138 registries or cord blood banks from 53 different 

countries (https://statistics.wmda.info, 2019). 

5.6 PLATELET TRANSFUSION REFRACTORINESS 

5.6.1 Role of platelet transfusions in HSCT  

The myeloablative conditioning regimens that precede HSCT destroy the patient’s 

own bone marrow and therefore also intercept the production of megakaryocytes and 

platelets. Leukemia patients usually also undergo frequent cytopenias due to cytotoxic 

medications during their treatment before the stem cell transplant. After allogeneic 

stem cell transplant, the donor derived stem cells engraft and resume the production 

of blood cell lines. For platelets, the time of engraftment varies according to the graft 

source. The mean is 13 days for peripheral blood stem cells and 19 days for bone 

marrow (Holtick et al., 2014).There is also variation according to the graft cell 

counts, composition and HLA matching  (Delaney, Ratajczak and Laughlin, 2010; 

Patel et al., 2018; Rimando et al., 2018). Allogeneic HSCT patients are dependent on 

supportive care with allogeneic platelet transfusions until engraftment. Before platelet 

transfusions were implemented as standard care, a frequent complication of leukemia 

treatment and the single most common cause of mortality was hemorrhages 

(Freireich, 2000). 

5.6.2 Assessment of platelet transfusion refractoriness 

Today, repeated platelet transfusion support is a routine part of acute leukemia and 

post-HSCT treatment. However, up to 30 % of hematological patients are refractory 

to platelet transfusions (Hod and Schwartz, 2008), and these patients are in a 

significantly higher risk of serious bleeding events and death caused by bleeding 
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(Comont et al., 2017). There are several different ways to assess platelet 

refractoriness, but the 1-h corrected count increment (CCI) is considered as an 

objective way to measure it (Hod and Schwartz, 2008); in clinical practice the easiest 

and most widely used estimate however is the absolute post transfusion count

increment ACI, calculated simply as “Post-transfusion platelet count - Pre-transfusion 

platelet count”; this should normally be > 10 x 10⁹/l in 24 h (Stanworth et al., 2015).

Usually more than one inferior transfusion increments are required before the patient 

is deemed transfusion refractory.

5.6.3 Platelet refractoriness due to non-immune causes  

Febrile infections, bleeding, enlarged spleen, veno-occlusive disease, DIC 

(disseminated intravascular coagulopathy) and some medications cause excess 

platelet consumption, explaining most cases of clinical platelet refractoriness 

(Doughty et al., 1994). However, increased consumption is more strongly reflected in 

the 24-h platelet increment, and immunological reasons are usually evident more 

quickly, by the 1-h increment (Daly et al., 1980). 

5.6.4 Immunological platelet transfusion refractoriness 

Approximately 20 % of platelet refractoriness is caused mainly by immunological 

reasons (Doughty et al., 1994; Legler et al., 1997). The most common cause for these 

are pre-formed HLA antibodies, and a minority of patients also carry platelet specific 

(HPA) antibodies (Legler et al., 1997). Presently HLA alloantibodies are most often 

caused by pregnancies and are also frequent among solid organ transplant recipients. 

When leukodepletion was not yet a universally applied measure, blood transfusions 

were another common trigger for alloimmunization. Leukodepletion does not totally 

remove the risk, but lowers it  considerably (Slichter et al., 1997). All HLA 

antibodies do not manifest as platelet refractoriness: especially patients with lower 

levels of alloantibodies are reported not to develop a permanent clinical refractoriness

(Hogge et al., 1983). 
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5.6.5 Assessment of HLA antibody induced refractoriness  

HLA antibodies have for decades been known to be responsible for hyperacute 

rejections of transplanted solid organs and also less acute rejections (Terasaki, 

Kreisler and Mickey, 1971; Soulillou, Peyrat and Guenel, 1978). Because of their 

critical role in solid organ transplantation, different pre-transplant testing methods for 

these antibodies have been developed (Bray and Gebel, 2009). The same methods can 

be utilized for testing the HLA antibody status of platelet transfusion refractory 

patients as well (Peña and Saidman, 2015). Today, the most widely used method, 

Luminex, is based on a micro bead array. This method utilizes differently colored 

microbeads, which are covered with known HLA molecules. The pre-formed 

antibodies of the patient bind to their specific target molecules, leaving the rest of the 

beads intact. The binding of antibodies on the specific beads is then detected using 

secondary antibodies and fluorescence. The binding of the antibodies is semi-

quantitatively measured and given as mean fluorescence intensity (MFI) (Lachmann 

et al., 2013). Luminex method is both sensitive, more specific and less labor intensive 

than the earlier complement dependent cytotoxicity testing (CDC) methods 

(Wehmeier, Hönger and Schaub, 2019). When the antibody status of the patient has 

been analyzed, the estimated width of the patient’s immunization can be reported as

the percentage of panel reactive antibodies (PRA %). PRA % depicts the likelihood of 

any random donor carrying HLA antigen(s) against which the patient carries an HLA 

antibody. 

5.6.6 Management of immunological platelet transfusion refractoriness 

To overcome immune mediated refractoriness, platelet refractory patients are usually 

transfused with specifically selected platelets, and the selection is based on one of 

several published methods. It is still unclear which of the methods is superior, and 

many blood services use a combination of selection methods (Pavenski, Freedman 

and Semple, 2012). The most common methods are 1) cross-matching of platelets; 2)

using blood donors who carry HLA antigens that are identical with the patient’s HLA 
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antigens or resemble them as closely as possible; 3) avoidance of HLA antigens 

against which the patient carries HLA antibodies; 4) combination of the previous two 

methods. (Stanworth et al., 2015). The majority of blood services utilize the patient’s 

antibody profile (Jouni Lauronen, personal information), but the recommended MFI 

cut-off values for the patient’s HLA antibodies are not well established. The 

similarity between the donor’s and patient’s HLA antigens on the other hand can be 

assessed using either the older method of cross reactive groups of HLA antigens, or 

an excel-based algorithm, HLAMatchmaker program, (Duquesnoy, 2006, 2008), 

which measures the structural similarity between the patient’s and donor’s HLA 

antigens as a number of eplet mismatches. Eplets are described as patches of 

polymorphic residues, situated close to each other in the HLA molecule, and in 

antibody accessible positions. 
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6 AIMS OF THE STUDY 

The goal of this thesis was to optimize some very practical HLA typing and donor 

selection related aspects of the work at HLA laboratories and unrelated stem cell 

donor registries, so that they would be able to give better and more reliable service to 

the hematological transplant centers, and via them, the life-threateningly ill HSCT 

patients. 

The specific aims of the individual parts of the study were: 

1) To estimate and minimize the risk of erroneous HLA typing results for leukemia 

patients who are HLA typed while carrying a high leukemic burden, and whose 

malignant cells carry LOH of the HLA region. 

2) To describe the specific features of the Finnish HLA landscape and assess the 

utility of maintaining a Finnish stem cell registry, especially for Finnish 

hematological patients. 

3) To describe Finnish 6-locus HLA haplotypes and assess the feasibility of 

predicting DPB1 match or DPB1 mismatch permissiveness of registry donors for 

individual patients during registry donor search. 

4) To assess donor specific HLA antibody cut-off levels for safe and effective platelet 

transfusions of HLA alloimmunised hematological patients, a considerable proportion 

of whom are considered for HSCT and require repeated platelet transfusion support.
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7 MATERIALS AND METHODS 

7.1 STUDY SUBJECTS

I The discovery set consisted of five leukemia patients with an HLA allele loss of 

heterozygosity phenomenon which was identified during a routine HLA typing 

process. In addition, a retrospective HLA phenotype analysis was performed for 2893 

hematological patients and a control group of 2895 healthy siblings and solid organ 

transplant patients, to assess a potential difference between HLA homozygosity 

frequencies between the groups. 65 patients, previously genotyped as homozygous for 

at least two adjacent HLA loci and considered potentially suspect of undetected LOH, 

were chosen for HLA retyping by SSP, to confirm the initial typing result.  

II Finnish high resolution 5-locus HLA haplotype frequencies were assessed from the 

Finnish Stem Cell registry database, and 9774 registry members were included in the 

analysis. HLA haplotype frequencies for Sweden, Russia and Germany were 

estimated from the Tobias Registret, HPC Registry Russia Samara and ZKRD, 

including 21797, 7855 and 2989989 individuals, respectively. To assess the coverage 

of Finnish, Swedish and German registries for Finnish patients, virtual match 

predictions in each registry were performed, using HLA phenotypes of 1492 Finnish 

patients. For the actual HSCT donor search and matching analysis, 647 consecutive 

Finnish donor searches, ending up in 416 stem cell transplantations, were 

retrospectively analyzed.  

III Finnish high resolution 6-locus HLA haplotype frequencies were assessed from a 

group of 43 365 current or former members of the Finnish Stem Cell Registry;

registry members residing in Estonia were excluded. 15 288 of Finnish registry 

members had been typed for all six genes. The DPB1 matching data of unrelated 

donor transplants was assessed from 769 10/10 matched URD transplants that had 

been performed between 2003-2016, separately for patients who had received their

transplant from a domestic donor and those with a foreign donor. 
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IV The 270 platelet transfusion responses of 40 adult hematological patients, 

transfused with HLA selected platelets between 2008 and 2011, were included in the 

study. To be included, the patient had to be treated in one of the five Finnish 

university hospitals, and both the patients’ immunization status and transfusion 

responses had to be recorded. In addition to these 40 hematological patients, the 

frequency of HLA alloimmunization in a separate group of 108 consecutive platelet 

refractory patients was retrospectively assessed for the study. The HLA class I 

antibody status of these patients had been analyzed in the FRCBS HLA laboratory at 

a later period, between 2013 and 2016. 

7.2 HLA TYPING (I-IV)  

Most of blood donors (study IV) and approximately 40 % of registry donors in study 

II were low resolution typed by serological assays (Biotest Rockaway, NJ, USA).

The low resolution typing of most patients and some registry donors (studies I-IV) 

was performed by rSSO‐Luminex technology (Labtype, One Lambda inc. Canoga 

Park, CA). rSSO-Luminex technology was used also for some patient’s and registry 

donors’ high resolution HLA‐DQ and HLA‐DP‐typing. The Luminex results were 

analyzed with Fusion software (One Lambda, Inc. Canoga Park, CA).   

Most of the patients’ and HSCT donors’ high resolution typing (I-III) was performed 

with sequence‐based typing (Atria Genetics, Hayward, CA) using the ABI 3130xl 

genetic analyzer (Applied Biosystems, Thermo Fisher Scientific, MA) and analyzed 

with the Assign 3.5+ software (Conexio Genomics Pty Ltd, Fremantle, Australia) 

according to the providers instructions.  

For confirmatory HLA typing in suspected LOH cases (study I), the polymerase chain 

reaction (PCR) SSP method was used (Micro SSP™ Generic HLA Class I/II DNA 

Typing Trays, One Lambda Inc. Canoga Park, CA; Olerup SSP® genotyping, Olerup 

SSP AB, Stockholm, Sweden). The PCR‐SSP was run on 2.0% agarose gel and 

analyzed with the Fusion software.  
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The majority of DPB1 typed registry donors (study III) were typed by SBT using 

Sanger sequencing and next generation sequencing techniques by a commercial 

service provider (Histogenetics inc. 300 Executive Blvd, Ossining, NY 10562 USA).

7.3 HLA ANTIBODY TESTING (IV)  

HLA Luminex-based methods were used for HLA alloantibody detection (Luminex 

Corporation, USA). The serum samples of patients were first screened either by 

LABScreen Panel reactive antibody (PRA) assay or LabScreen Mixed screening 

assay (One Lambda). After positive screening for HLA class I, the antibody 

specificities were assessed by the LABScreen IgG single antigen assays 

(OneLambda) measured on a LABScan100 flow cytometer platform. The MFI values 

of individual antibodies were determined with HLA Fusion software according to the 

manufacturer’s default settings. PRA % was calculated from the single antigen 

antibody analysis, using a Finnish population specific panel. 

7.4 CLINICAL DATA (I, IV) 

I: The clinical background data of five LOH patients was individually provided by the 

treating physician of each patient. 

IV: Clinical data for the patients and transfusions were collected from the Finnish 

university hospitals retrospectively with a questionnaire. The pre- and post-

transfusion platelet counts and the respective levels of the patient’s platelet donor 

specific HLA antibody levels were individually assessed for altogether 270 HLA 

selected platelet transfusions of the 40 patients.  

7.5 DONOR SEARCH AND STEM CELL TRANSPLANTATION DATA (II, 

III)

In study II, 649 consecutive registry donor searches performed at a request of Finnish 

transplant centers during 2010 - 2014 were analyzed. During this period the searches 

were automatically saved at the Bone Marrow Donors Worldwide search database 

and could thus be retrospectively retrieved.  



 Materials and methods 
 

45 
 

Data on patient-donor pairs for all unrelated donor HSCTs facilitated by the Finnish 

Stem Cell Registry, and the HLA data of the patients and their respective donors and 

donor candidates are recorded in the Velho laboratory database of the 

histocompatibility laboratory of the Finnish Red Cross Blood Service, and were 

retrieved accordingly (studies II and III).   

The HLA haplotype combinations of all patients were assessed and an analysis made 

based on existing family HLA typing data (II and III) or, in the absence of HLA typed 

relatives, using estimated Finnish HLA haplotype frequencies (II). The patients were 

divided into two groups according to the result of the analysis: either likely or not 

likely to carry at least one HLA haplotype specifically enriched in the Finnish 

population, and rare elsewhere. For Finnish registry donors, a similar division was 

done, based solely on the estimated HLA haplotype frequencies (II). 

7.6 BIOINFORMATICS AND STATISTICAL ANALYSIS 

I-III 

Haplotype frequencies (HF) for 3-locus HLA-A, -B, -DR low (LR) and 5-locus HLA-

A, -B, -C, -DRB1, -DQB1 high resolution (HR) were estimated using ZKRD’s 

haplotype frequency estimation (HFE) algorithm (Eberhard et al., 2013), that is based 

on the Expectation-Maximization (EM) method.  

The genetic distance between two donor populations (DF) was assessed using 

Prevosti’s metric

and the homogeneity of the populations using the Simpson index ߣ = ∑ ௜݂ଶ ௜ .

Two-tailed Fisher’s exact test (https://www.graphpad.com/quickcalcs/catMenu/) was 

used in the statistical comparisons between the frequency of homozygosity between 

patients and controls in the LOH study, DPB1 allele matching of domestic versus 
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foreign donors in the extended haplotype study, FER (Finnish enriched rare) 

haplotype positive and negative patients, and FER positivity between exported stem 

cell transplants and HSCT patients in the HLA isolate study.  

Fisher’s exact test was also used for comparing the haplotype-specific DPB1 allele 

frequency to the frequency of the same allele in the study population (n=30576). The 

p-values were adjusted for the total number of conducted tests by the Bonferroni 

method. The data were analyzed and plotted using R v3.4.4(The R Core Team, 2018)

with libraries ggplot2 v3.1.0(Wickham, 2016), data.table v1.11.8(Dowle and 

Srinivasan, 2018), and gplots v3.0.1(Warnes et al., 2016). The haplotype-against-DP 

hierarchical clustering was generated using the heatmap.2 function with default 

settings.

IV

The Chi-Square test and Fisher’s exact two-tailed test were used for examining the 

relationship between two categorical variables. The absolute platelet count increment 

at 18-24 hours was modeled using a multivariable mixed effect model, where a 

patient was considered a random effect. The multivariable model was fitted in R 3.1.1 

(R Core Team, 2014) using the add-on package nlme (Pinheiro et al., 2014). In 

addition, the probability of a good absolute platelet count increment (ACI>15 at 18-

24 h post-transfusion) was modelled using a logistic regression using the R software. 

Receiver operating characteristic curve (ROC) was used for determining an optimal 

threshold for maximizing the accuracy of the prediction based on the predictions from 

the fitted logistic regression model. 

7.7 ETHICS 

The Coordinating Ethics Committee of the Helsinki and Uusimaa Hospital District 

approved the study protocol 42/13/03/00/11. The Medical Ethics Committee of the 

Helsinki and Uusimaa Hospital District approved the study protocol 

305/13/03/01/2011.
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8 RESULTS 

8.1. LOSS OF HETEROZYGOSITY OF THE HLA REGION (I) 

8.1.1 Differences between HLA typing methods in detecting LOH of the HLA 

complex

At the time of the study, we had encountered five patients with a loss of 

heterozygosity at HLA. All patients had been diagnosed with a hematological 

malignancy: three with AML, one with CLL and one with a lymphoma that had 

transformed into leukemia. The first identified case of LOH in our laboratory was 

observed in an AML patient whose confirmatory HLA typing sample was 

heterozygous for HLA-A and HLA-C locus, in contrast to homozygosity of all loci in 

the initial sample two months previously. As the heterozygous C locus was 

inconsistent with a homozygous B locus, a third sample was requested and drawn two 

weeks later, and only then was the B locus also shown to be heterozygous. At the 

time of the HLA typing of the four subsequent LOH patients, HLA LOH as a 

phenomenon was already better recognized and the assignment of the final 

heterozygous results less dramatic, but still far from straightforward. The proportion 

of leukemic cells in their peripheral blood at the time of HLA typing varied from 55 

% for the CLL patient to 93 % for one of the AML patients. None of the patients had 

carried chromosome 6 deletions detectable by routine karyotyping, suggesting copy 

neutral loss of heterozygosity.  

To achieve reliable HLA assignment, all patients had been typed with a combination 

of different methods. During the typing processes of these patients we repeatedly 

observed that the SSP method could confirm the HLA heterozygosity of the patient, 

whereas it could be suspected (rSSO background reactivity) or missed altogether 
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(Sanger sequencing) by the primary methods. Figure 3 depicts examples of an rSSO 

and a sequencing analysis of a LOH patient’s HLA-B.  

Figure 3. HLA-B typing result of a LOH-patient. Left: Luminex SSO analysis. The red 

columns have been assigned “positive” by the Fusion software, and belong to the 

remaining allele. The blue columns are assigned “negative” by the software, with the 

six higher blue columns, here marked with green arrows, all belonging to the “lost” 

allele, while the very low blue columns are unspecific noise and do not belong to 

either allele. Right: DNA sequence analysis by Sanger sequencing of HLA-B of the 

same patient. The two heterozygous peaks (green arrows) are almost impossible to 

discern. 

In the study, the observed sensitivities of the three available HLA typing methods 

were confirmed by creating an artificial LOH: two samples homozygous for the 

HLA-A gene were mixed together in varying proportions.  The results show that the 

SSP method is the most sensitive in detecting heterozygosity: with it, a mix 

containing only 2.5% or the minor sample gave a sufficient signal for detecting both 

alleles. The threshold with rSSO was 5%–17% when the manufacturer’s default 
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settings were used, and as high as 17%–33% with Sanger sequencing (Table 1). 

However, the threshold of rSSO can be lowered by taking into account the 

background reactivity, apparent in Figure 3 (left). 

 

 

Table 1. The differences between typing methods in detecting heterozygosity with an 

HLA-A*02-homozygous sample diluted with an HLA-A*24-homozygous sample. 

 

8.1.2 Prevalence of LOH with implications for HLA typing  

Five patients with LOH among the 950 hematological patients that had been HLA 

typed in our laboratory between 2011 and 2013 indicate a frequency of 0.4% for LOH 

in our material. As most previous publications only reported individual LOH cases, 

the true frequency of LOH phenomenon strong enough to endanger correct HLA 

typing, was unknown. There were no previously recognized LOH cases in FRCBS 

HLA laboratory before the five that we reported, and it seemed quite possible that 
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some mistyped LOH cases might previously have gone unnoticed. To check this, 

2893 hematological patients, HLA typed between 2003 and 2012, and a control group 

of 2895 healthy siblings and solid organ transplantation patients were first screened 

for HLA homozygosity. The frequency of HLA homozygosity between hematological

patients and the control group was compared, and no statistically significant 

difference was observed (Table 2).

All HLA-A-B or HLA-B-

DRB1 homozygous

HLA-A-B-DRB1 

homozygous

Number number % number %

Hematological 

patients

2893 108 3,7 79 2,7

Control group 2895 118 4,1

(p=0,54)

75 2,6

(p=0,74)

Table 2. Individuals homozygous for two or three adjacent HLA gene loci, and the 

proportions of HLA homozygotes among hematological patients and a control group. 

The control group consists of their siblings (n= 1365), solid organ transplantation 

patients (n= 1468) and related donors of kidney transplantation patients (n=62). 

Additionally, 65 of the 2893 hematological patients were retrospectively chosen for 

confirmatory typing by low resolution SSP, to exclude previously undetected LOH.  

All 65 were homozygous for a single rare allele or two to three adjacent HLA loci, 
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had no family data confirming the homozygosity, and had either been HLA typed 

only once or the two samples had been drawn less than two months apart. Re-typing 

with SSP revealed no additional LOH cases among this group. The results indicate 

that in patients who are HLA typed for hematological reasons, the frequency of HLA 

LOH that is grave enough to cause HLA mistyping, is 0.4 % at most. Since 2012, we 

have however encountered altogether 13 such cases among the 2620 HLA 

genotypings performed for hematological patients, resulting in a frequency of 0.49 %,  

and averaging 1-2 cases annually (unpublished observation).  

The probability of LOH inflicting HLA mistyping depends obviously not only on the 

frequency of LOH itself, but also on the proportion of affected cells in the HLA 

typing sample and the typing methods that have been used. The fact that no mistyped 

HLA analyses were detected before 2012 may thus be partly due to the characteristics 

of older typing methods that detect the “lost” HLA easier; it is also conceivable that 

the apparent increase of HLA LOH is due to different national protocols for HLA 

sampling. It is now included in the set of protocol blood tests that are drawn at the 

very outset of leukemia diagnosis, the exact point of time when the faulty typing 

result is most likely.  

As the proportion of aberrant cells in the sample must be substantial to inflict 

problems with HLA typing, it is likely that even today a number of HLA-associated 

LOH-phenomena go undetected. When there is only a minor imbalance between the 

HLA alleles in the sample, an upfront heterozygous HLA assignment even with the 

manufacturer’s default settings is likely. On the other hand, it is also possible that the 

proportion of aberrant cells in peripheral blood is so high that none of the common 

typing methods is able to detect the missing alleles. In such cases re-sampling HLA 

homozygous patients by either a buccal swab or at remission is the only way to 

confirm the heterozygous phenotype.   
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8.2 CHARACTERISTICS OF THE FINNISH HLA ISOLATE (II-III)

8.2.1 Comparisons to Sweden, Russia Samara and Germany (II) 

The HLA haplotype frequencies of Finland, Sweden, Germany and Russia Samara 

were estimated using registry donor HLA data and ZKRD’s EM algorithm. Although 

most of the individuals in the registries have been HLA typed only once, it is 

improbable that potential typing errors should have a significant effect on the 

estimated haplotype frequencies: the reported proportion of discrepant results among 

the WMDA member registries has been well under 1 % and in Finland < 0.5 % (Anne 

Arvola, FSCR, personal communication). A recent publication from the DKMS 

showed that with modern NGS assays, the frequency of typing discrepancies is 

actually as low as, 0.012-0.019 % (Baier et al., 2019).  

The resulting HLA haplotype frequencies of the four registries were compared with 

each other, first by the Simpson index, depicting the homogeneity of the population. 

Finnish HLA was by far the most homogenous of the four studied populations, by 

both low and high resolution (Figure 4). Russia Samara was the most heterogeneous, 

although Russian high resolution frequencies could not be estimated due to the low 

number of high resolution typed donors in the registry.   
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Figure 4. The HLA homogeneity of the four studied populations, depicted by the 

Simpson index. The higher the index, the more homogenous the population; the index 

values can vary from zero to one. 

The genetic distances between the populations were assessed using both low and high 

resolution haplotype frequencies. The distance was shortest between Sweden and 

Germany, and longest between Finland and Russia (Figures 5a and 5b); the 

population nearest Finland was Sweden, which was not surprising, considering the 

long history of Finland as the eastern part of Sweden. 
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Figure 5a. The genetic distances (low resolution HLA haplotype frequencies) 

between the four studied populations. 

 

 Figure 5b. The genetic distances (high resolution haplotype frequencies) between 

the four studied populations. 
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8.2.2 FER haplotypes (II and III) 

Finnish haplotype frequencies were estimated from the Finnish registry donor data 

retrieved from the Bone Marrow Donors Worldwide database at the turn of the year 

2014-2015 (study II), and Finnish registry donor data in the Prometheus database in 

2018 (study III). The results of both studies show that the Finnish HLA landscape has 

a dualistic character. HLA allele variation is limited, and individual HLA alleles and 

the majority of the 5-locus haplotypes are commonly found in all Europeans (Table 

3); on the other hand, approximately one third of the Finnish 5-locus HLA haplotypes 

are much more frequent in Finland than in other populations with known HLA-

haplotype frequencies. The frequencies of the hundred most frequent Finnish HLA 

haplotypes and their respective frequencies in Germany and among the NMDP 

Caucasians are depicted in Figure 6 and Figure 7. For comparison, the hundred most 

frequent Swedish HLA haplotypes with their respective frequencies in Germany 

(Figure 8), show that on average, the Swedish frequencies are much closer to the 

German frequencies, with only some individual exceptions. Among the hundred most 

frequent Finnish 5-locus haplotypes there were, in both studies, 34 haplotypes with a 

frequency lower than 0.0003 in both the German registry donor pool and NMDP 

Caucasians, and with an at least 8-fold higher frequency in Finland. We named such 

haplotypes Finnish enriched rare or “FER”-haplotypes. Of the FER haplotypes, 30 

were identical for both studies, but four in the earlier study were replaced by different 

ones in the later study, showing that Finnish enriched haplotypes extend beyond the 

hundred most frequent (Table 3).  



 Results 
 

56 
 

 

Figure 6. The frequencies of the hundred most frequent Finnish 5-locus HLA 

haplotypes compared to their frequencies in Germany. To better depict the 

differences between the haplotypes outside the four most frequent, x-axis has been cut 

off at 0.02. 

0

0.005

0.01

0.015

0.02

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Freq Finland Freq Germany



 Results 
 

57 
 

 

Figure 7. The frequencies of the hundred most frequent Finnish 5-locus HLA 

haplotypes compared to their frequencies among NMDP Caucasians. To better depict 

the differences between the haplotypes outside the four most frequent, x-axis has been 

cut off at 0.02. 
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Figure 8. The frequencies of the hundred most frequent Swedish 5-locus HLA 

haplotypes compared to their frequencies in Germany. To better depict the 

differences between the haplotypes outside the three most frequent, x-axis has been 

cut off at 0.02. 

It is of note that although the majority of Swedish HLA haplotype frequencies 

resemble the German frequencies, among the hundred most frequent Swedish HLA 

haplotypes there were four haplotypes fulfilling identical “SER” (Swedish enriched 

rare) criteria. Two of these four are shared by Finland and Sweden, being FER 

haplotypes as well, but two are specific for Sweden. One of the Swedish specific 

haplotypes (A*02:06, B*35:03, C*04:01, DRB1*13:02, DQB1*06:04) didn’t have a 

reported frequency in Germany at all, thus being less frequent in Germany than any of 

the 34 FER haplotypes. 
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Rank 2018 Rank 2014 HLA-A HLA-B HLA-C
HLA-
DRB1

HLA-
DQB1

Freq 
2018 Freq 2014

1 1 03:01 35:01 04:01 01:01 05:01 0.083115 0.081422
2 2 01:01 08:01 07:01 03:01 02:01 0.0492 0.053315
3 3 03:01 07:02 07:02 15:01 06:02 0.033665 0.034424
4 4 02:01 07:02 07:02 15:01 06:02 0.022705 0.02222
5 6 02:01 13:02 06:02 07:01 02:02 0.01993 0.018392
6 5 03:01 07:02 07:02 13:01 06:03 0.018766 0.019849
7 8 02:01 27:05 02:02 08:01 04:02 0.017792 0.017152
8 7 02:01 15:01 03:04 04:01 03:02 0.01726 0.017635
9 9 02:01 15:01 04:01 08:01 04:02 0.013618 0.013955

10 10 02:01 15:01 03:03 13:01 06:03 0.013159 0.013799
11 12 02:01 51:01 15:02 09:01 03:03 0.011768 0.011514
12 13 31:01 18:01 07:01 15:01 06:02 0.01159 0.011059
13 11 24:02 40:01 03:04 13:02 06:04 0.010938 0.011526
14 15 02:01 27:05 01:02 01:01 05:01 0.010848 0.010244
15 17 03:01 07:02 03:04 01:01 05:01 0.009375 0.008914
16 16 03:01 18:01 07:01 04:04 03:02 0.008912 0.009103
17 19 03:01 15:01 03:03 08:01 04:02 0.008886 0.008115
18 21 02:01 44:02 05:01 12:01 03:01 0.008674 0.00765
19 20 02:01 40:01 03:04 13:02 06:04 0.008525 0.007881
20 18 02:01 08:01 07:01 03:01 02:01 0.007999 0.008408
21 14 68:01 08:01 07:01 03:01 02:01 0.007855 0.010276
22 28 02:01 35:01 04:01 01:01 05:01 0.005803 0.005713
23 29 02:01 27:05 01:02 04:08 03:01 0.005795 0.005514
24 23 24:02 39:01 07:02 04:04 03:02 0.005756 0.005972
25 27 02:01 40:01 03:04 08:01 04:02 0.005236 0.005726
26 30 24:02 39:01 07:02 08:01 04:02 0.005213 0.005344
27 33 24:02 07:02 07:02 15:01 06:02 0.005152 0.004914
28 22 32:01 39:01 07:02 08:01 04:02 0.005136 0.00608
29 25 01:01 57:01 06:02 07:01 03:03 0.005106 0.005921
30 32 24:02 35:01 04:01 01:01 05:01 0.005097 0.004919
31 24 02:01 56:01 01:02 04:01 03:02 0.005081 0.005936
32 31 03:01 15:01 03:04 04:01 03:02 0.00469 0.004997
33 34 24:02 40:01 03:04 09:01 03:03 0.004683 0.004563
34 36 31:01 51:01 01:02 13:01 03:03 0.004643 0.004217
35 40 11:01 35:01 04:01 01:01 05:01 0.004449 0.003926
36 37 03:01 47:01 06:02 15:01 06:02 0.00437 0.004165
37 38 02:01 44:02 05:01 04:01 03:01 0.004318 0.004042
38 41 02:01 40:02 02:02 11:01 03:01 0.004002 0.003919
39 26 68:01 35:01 03:03 08:01 04:02 0.003923 0.00591
40 42 25:01 18:01 12:03 15:01 06:02 0.003844 0.003576
41 48 32:01 44:02 05:01 04:01 03:02 0.003775 0.003083
42 35 02:01 15:01 03:03 04:01 03:02 0.003755 0.004426
43 46 24:02 15:01 03:03 01:01 05:01 0.003351 0.003199



 Results 
 

60 
 

44 47 02:01 56:01 01:02 15:01 06:02 0.00334 0.003131
45 45 25:01 18:01 12:03 01:01 05:01 0.003332 0.003246
46 53 03:01 44:27 07:04 16:01 05:02 0.003285 0.002696
47 44 03:01 27:05 01:02 04:08 03:01 0.003178 0.003302
48 73 24:02 44:02 05:01 04:01 03:01 0.003067 0.001938
49 51 24:02 07:02 07:02 13:01 06:03 0.003027 0.002904
50 60 32:01 15:01 03:03 11:01 03:01 0.003001 0.0024
51 56 02:01 40:01 03:04 01:01 05:01 0.002985 0.002517
52 58 03:01 27:05 01:02 01:01 05:01 0.002967 0.002437
53 49 03:01 35:01 04:01 04:01 03:02 0.002936 0.003072
54 63 02:01 15:01 04:01 15:01 06:02 0.002916 0.002314
55 39 68:01 51:01 14:02 13:01 06:03 0.002877 0.003974
56 55 02:01 57:01 06:02 07:01 03:03 0.002869 0.002623
57 43 03:01 08:01 07:01 03:01 02:01 0.002781 0.003332
58 50 02:01 44:02 05:01 15:01 06:02 0.002634 0.002984
59 52 24:02 15:01 03:03 13:01 06:03 0.002521 0.002705
60 54 02:01 44:02 05:01 13:01 06:03 0.002504 0.002677
61 71 02:01 27:05 02:02 01:01 05:01 0.002472 0.001956
62 83 02:01 35:01 04:01 14:01 05:03 0.00216 0.001704
63 64 01:01 37:01 06:02 10:01 05:01 0.002125 0.002291
64 90 02:01 40:01 03:04 09:01 03:03 0.002117 0.001623
65 68 02:01 39:01 12:03 09:01 03:03 0.002113 0.002109
66 59 02:01 15:01 03:04 08:01 04:02 0.002107 0.002402
67 70 31:01 27:05 01:02 04:04 03:02 0.002079 0.002054
68 86 02:01 13:02 06:02 09:01 03:03 0.002015 0.001657
69 115 02:01 51:01 15:02 13:01 06:03 0.00196 0.001386
70 66 03:01 15:01 03:03 13:01 06:03 0.001945 0.002204
71 69 29:02 44:03 16:01 07:01 02:02 0.001933 0.00208
72 95 03:01 07:02 07:02 01:01 05:01 0.001928 0.00157
73 82 01:01 15:01 03:03 13:01 06:03 0.001928 0.001704
74 76 11:01 07:02 07:02 15:01 06:02 0.001908 0.001847
75 80 68:01 40:01 03:04 04:04 03:02 0.001884 0.001737
76 65 68:01 44:02 07:04 11:01 03:01 0.001881 0.002211
77 57 03:01 15:01 03:03 01:01 05:01 0.001873 0.002496
78 78 02:01 07:02 07:02 13:01 06:03 0.001855 0.001799
79 79 29:01 41:01 17:01 07:01 03:03 0.001826 0.001746
80 85 11:01 44:02 05:01 12:01 03:01 0.001815 0.001664
81 105 23:01 44:03 04:01 07:01 02:02 0.001783 0.001465
82 84 02:01 44:02 05:01 07:01 02:02 0.001777 0.001698
83 62 02:01 27:05 02:02 04:04 03:02 0.001773 0.002322
84 118 11:01 44:02 05:01 08:01 04:02 0.00176 0.00133
85 154 32:01 40:02 03:04 14:02 03:01 0.001733 0.001016
86 101 03:01 15:01 03:03 13:02 06:04 0.001703 0.001478
87 74 03:01 35:01 04:01 04:01 03:01 0.0017 0.001911
88 103 31:01 39:01 12:03 12:01 03:01 0.001687 0.001475
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Table 3. The combined results for the 110 most frequent 5-locus haplotypes. The 

haplotypes are arranged according to their frequencies in the more recent (2018 

registry data) study. The FER haplotypes are shown in boldface. The four haplotypes 

that fulfilled the FER criteria in the later study but not the earlier one are shown in 

italics and boldface, and the four that fulfilled the criteria only in the earlier study 

are underlined and in boldface. 

89 88 02:01 27:05 01:02 08:01 04:02 0.001648 0.001635
90 96 24:02 38:01 12:03 13:01 06:03 0.001643 0.001557
91 116 26:01 40:02 03:04 08:02 04:02 0.00164 0.001371
92 110 01:01 07:02 07:02 15:01 06:02 0.001628 0.001422
93 89 68:01 51:01 14:02 03:01 02:01 0.001614 0.001632
94 81 03:01 51:01 14:02 13:01 06:03 0.001612 0.001707
95 77 02:01 18:01 12:03 01:01 05:01 0.001611 0.001829
96 87 24:02 15:01 03:03 04:01 03:02 0.001582 0.001644
97 91 24:02 13:02 06:02 10:01 05:01 0.001579 0.001617
98 93 02:01 15:01 03:04 13:01 06:03 0.001571 0.001592
99 61 68:01 38:01 12:03 15:01 06:02 0.001565 0.002337
100 139 30:02 18:01 05:01 03:01 02:01 0.001531 0.001125
101 98 26:01 15:01 04:01 01:01 05:01 0.00153 0.00154
102 100 03:01 40:02 03:04 14:02 03:01 0.00151 0.001478
103 148 01:01 35:01 04:01 01:01 05:01 0.001476 0.001054
104 109 32:01 35:01 04:01 04:01 03:01 0.001475 0.001432
105 94 02:01 18:01 07:01 15:01 06:02 0.001455 0.001587
106 99 11:01 44:02 01:02 12:01 03:01 0.001455 0.001526
107 72 32:01 08:01 07:01 03:01 02:01 0.001453 0.00194
108 138 01:01 51:01 14:02 13:01 06:03 0.001433 0.001126
109 146 02:01 15:01 03:03 01:01 05:01 0.001431 0.001076
110 147 30:01 13:02 06:02 07:01 02:02 0.001404 0.001074
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8.2.3 Impact of Finnish 5-locus haplotype frequencies on HSCT donor matching 

for Finnish patients (II) 

To assess the practical consequences of the Finnish HLA landscape, analyses of 

actual Finnish registry donor searches were performed. Of the 989 unrelated registry 

donor transplants performed in Finland from 2003 to 2016, 78 % were 10/10 matched 

(unpublished). Every year there have also been patients who have either not been 

transplanted at all, or, in recent years, have received a haploidentical transplant 

because no suitably HLA matched registry donor has been found. The proportion of 

these patients has been approximately 5 % (unpublished). It follows that a 10/10 

matched donor has been found for a little less than three quarters of Finnish patients. 

In study II, a shorter period was analyzed, but all registry searches (n=647) that had 

resulted in confirmatory typing of donors were analyzed, regardless of whether the 

patient had been transplanted or not. The overall results were consistent with the 

unpublished data:  of the actual URD transplants, 76 % had been 10/10 matched, 

whereas for 74 % of patients at least one 10/10 matched unrelated donor had been 

confirmatory typed. Thus, all confirmatory typed donors had been mismatched for 26 

% of patients. The patients whose search results had been so meagre that no donors 

had been chosen for confirmatory typing could not be included, as the donor supplies 

change over time and the erstwhile results are not saved. 

When the search results were divided according to the patient’s probability of 

carrying a FER haplotype, significant differences between the groups were apparent. 

As expected from the estimated haplotype frequencies, 25 % of the patients carried at 

least one FER haplotype. These patients were less likely to have found a single 10/10 

matched donor (60 % versus 79 %; P<0.0001), more likely to receive a mismatched 

transplant (34 % vs 21 %; P=0.01) and, when transplanted from a matched donor, 

more likely to receive the transplant from a domestic donor (46 % vs 18 %; P<0.001). 

The results show that in spite of the large European and North American registries, 

also donors with a specifically Finnish background are needed, and a higher number 

of such donors would likely be beneficial for Finnish patients. 
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8.2.4 Impact of Finnish haplotype frequencies on a registry donor’s probability 

of being chosen to donate (II) 

The HLA phenotypes of Finnish donors chosen to donate either for Finnish (n= 83) or 

for foreign (n=40) patients were analyzed and the donors divided into probable FER-

haplotype carriers and non-FER-haplotype carriers, according to the estimated 

Finnish haplotype frequencies. Compared to Finnish patients or the average Finnish 

registry donors, both of which are more likely to represent the average Finnish 

population, the donors who had actually donated their stem cells were significantly 

more likely to carry at least one FER-haplotype. The proportion of probable FER-

haplotype carriers in the average population is 25 %, whereas it was 40 % (P=0.0054) 

among the domestic donations and as high as 45 % (P=0.0084) in the foreign 

donations. The results indicate that in addition to supplying stem cells for Finnish 

patients, FER haplotype positive Finnish donors are needed also outside of Finland, 

possibly for patients with a Finnish background. 

8.3 EXTENDED HLA HAPLOTYPES IN FINLAND (III) 

8.3.1 HLA-DPB1-associations of Finnish 5-locus HLA haplotypes  

The annual number of newly recruited stem cell donors in Finland has recently varied 

from approximately 3 000 to 10 000, and, since 2015, the donors have been HLA 

typed by sequencing techniques for the six classical HLA gene loci at the time of 

recruitment.  This has rapidly increased the number of high resolution typed donors in 

the registry, and made an updated haplotype frequency analysis of the Finnish 

population possible. In addition to the traditional 5-locus haplotype frequencies, also 

the 6-locus frequencies could now be estimated, which enabled an analysis of the 

DPB1 associations of the 5-locus HLA haplotypes. Because of the wide variation of 

HLA alleles and haplotypes, a more detailed study of these associations was 

performed for the 100 most frequent 5-locus haplotypes only. Contrary to the 

conception of a weak linkage disequilibrium between HLA-DPB1 and the other class 

II HLA loci, Finnish 5-locus HLA haplotypes were found to carry widely divergent 
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and statistically significant DPB1 associations. The associations were more 

conspicuous among the FER haplotypes: of 34 FER haplotypes, all carried at least 

one statistically significant DPB1 association, while of the non-FER haplotypes, 19 of 

66 did not (p=0.0002). While DPB1*04:01 allele is by far the most frequent DPB1 

allele in Finland (f=0,40) as well as in other European countries, it was the most 

frequent DPB1 allele for only 50 % of the hundred analyzed 5-locus haplotypes. 

DPB1*04:02 (f=0,20) was the most frequent DPB1 allele for 15 % of haplotypes, and 

the respective numbers for the rest of the most frequent DPB1 alleles were: 

DPB1*02:01 (f=0.14) 11 %, DPB1*03:01 (f=0.12) 13%, DPB1*01:01 (f=0.05) 4 %, 

DPB1*05:01 (F=0.02) 2 %, DPB1*14:01 (f=0.01) 2 %  and DPB1*15:01, 16:01 and 

19:01 (f<0.01) 1%. The proportion of the most frequent haplotype-specific DPB1 

allele varied from 29 % to 100 %, with the median for all haplotypes being 71 %. 

Again, FER-haplotypes differed from the others: the median for FER haplotypes was 

81 % (range 40 %-96 %) while it was 62 % (range 29 %-100 %) for the non-FER 

haplotypes (Figure 9). The results indicate that DPB1 associations of 5-locus 

haplotypes are not random, and that predicting the DPB1 matching probabilities of 

unrelated donors is feasible. 

 

Figure 9. Medians and ranges for the proportion of the most frequent DPB1 allele for 

individual 5-locus HLA haplotypes. All the hundred most frequent Finnish 5-locus 

haplotypes on the left, the non-FER haplotypes (n=66) in the middle and the FER 

haplotypes (n=34) on the right. 
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8.3.2 Impact of DPB1-associations on DPB1 matching in Finnish unrelated 

donor stem cell transplants  

Of the 769 10/10 matched transplants that had been performed in Finland between 

2003-2016, 235 (31 %) had been from a domestic and 534 (69 %) from a foreign 

donor. Of domestic donor transplants 97 (41 %) had been matched for both DPB1 

alleles, while the number was 133 (25 %, p<0.0001) for transplants from a foreign 

donor. In the study, the DPB1 mismatched transplants were further divided into 11/12 

(one DPB1 mismatch) and 10/12 (two DPB1 mismatches) transplants. 122 (52 %) of 

Finnish donors had been mismatched for one DPB1 allele, and only 16 (7 %) for two 

DPB1 alleles, whereas for foreign donors the respective numbers were 309 (58 %,

p=0.13) and 92 (17 %, p<0.0001). The three Finnish transplant centers have for years 

had different donor selection practices, with one center (TC1) prioritizing DPB1 

matched registry donors and the other two (TC2 and TC3) prioritizing other donor 

characteristics over DPB1 match. This led us to analyze the proportions of DPB1 

mismatches separately for the centers. The transplant center with DPB1 priority, had 

achieved a total number of 66 of 140 domestic transplants (47 %) being DPB1 

matched, while 90 / 311 (29 %) of their foreign transplants had been DPB1 matched 

(p=0.0003). For the other two transplant centers, analyzed together, the respective 

numbers were 31/95 (33 %) and 43/223 (19 %), p=0.013. TC1 had minimized the 

frequency of two DPB1 mismatches as well: only three (2 %) of their 10/10 matched 

domestic transplants had been mismatched for both DPB1 alleles, while the number 

was 35 (11 %) for foreign donors, p=0.0008 (Figure 10). These results show that the 

DPB1 associations of the 5-locus haplotypes in Finland are either different from other 

Europeans, or that the associations in Finland are stronger. Considering the Finnish 

HLA landscape and the fact that most isolates show substantially higher levels of LD 

than outbred populations (Service et al., 2006), it is in fact likely that both 

explanations are true.  
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Figure 10. The proportion of DPB1 matched and one or two DPB1 allele mismatched 

transplants, when the donor is either Finnish or foreign. Transplant center 1 (TC1) 

has prioritized DPB1 matching over other donor characteristics, while transplant 

centers 2 and 3 (TC2, TC3) have not. 

8.3.3 DPB1 matching in worldwide donor searches for patients with two non-

FER haplotypes  

To examine whether the internationally frequent HLA haplotypes carry significant 

DPB1 associations as well, URD searches for 84 Finnish patients, each carrying a 

different combination of frequent 5-locus HLA haplotypes, were performed in the 

BMDW database. Although the majority of registry donors in the BMDW database 

are not DPB1 typed, 67 of the 84 searches resulted in more than 100 DPB1 typed 

10/10 matched international donors, and only one in no DPB1 typed donors 

worldwide.  The number of Finnish donors was lower: 11 (13 %) patients had no 

DPB1 typed Finnish donors, and only two had more than a hundred; the median of 

DPB1 typed Finnish donors was 9 per search. 79 searches (94 %) yielded at least one 
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DPB1 matched donor. When the search results for the 84 searches were grouped 

together, DPB1 match probability of Finnish donors clearly differed from 

international donors: of the 1521 Finnish donors, 452 (30 %) were DPB1 matched 

with the patient, while the proportion was 1308 out of the 7407 international donors 

(14 %; p<0.0001). The proportions were higher for the 34 patients who, according to 

the EM analysis, carried the most probable DPB1 alleles: 372/872 (43 %) for Finnish 

donors, and 633/2994 (21 %) for international donors. DPB1 match frequencies were 

further compared between searches for patients carrying identical DPB1 alleles but 

different 5-locus haplotype combinations. 16 of the 84 searches were for a 

DPB1*04:01-homozygous patient, and for these patients, the DPB1 match frequency 

in international searches varied between 1/28 (3.7 %) and 55/100 (55.0 %), p=0.0001. 

For the 12 patients with allele pair DPB1*04:01, 04:02 the variation was from 4/100 

(4.0 %) to 36/100 (36.0 %) p<0.0001. The extremes for the eight searches with allele 

pair DPB1*03:01,04:01 were seen in searches resulting in few 10/10 matched donors 

(0/7 to 4/7), but large differences were seen in more prolific searches as well (6/100 

(6 %) vs 40/100 (40 %), p<0.0001). The widely differing DPB1 match frequencies 

clearly indicate that DPB1 associations of the 5-locus haplotypes are not random 

outside of Finland either. 
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Figure 11. Proportions of DPB1 matched international donors for 16 patients 

homozygous for DPB1*04:01 allele (left), 12 patients heterozygous for DPB1*04:01 

and 04:02 (middle), and 8 patients heterozygous for DPB1*03:01 and 04:01 (right). 

Each patient carries a different 5-locus haplotype combination. 

 

8.4 SELECTING HLA-ACCEPTABLE PLATELETS FOR HLA IMMUNIZED 

PATIENTS (IV) 

8.4.1 Predictors for inferior platelet transfusion responses in HLA immunized 

patients  

The majority of the 40 patients included in the study were highly HLA immunized: 

35/40 (88%) had a PRA% ≥ 80%, and 25/40 (63%) ≥ 95-100%; the median of the 

PRA values was 96%. Of the 270 analyzed transfusions, 37 were from two donors 

against whom the patient carried widely differing levels of donor specific antibodies. 

These transfusions were excluded from further analyses. For the rest of the 

transfusions, in both multivariate analysis and the logistic regression model predicting 

the probability of a good transfusion response, donor specific HLA antibody levels 

(~−2 ACI/1000 MFI, P <0.001) and ongoing infection (−9,9 ACI, P =0.004) played a 

significant role as independent risk factors for inferior transfusion responses (Figure 

12). Cumulative MFI level of 1000 maximized the sensitivity and specificity for the 
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risk of inferior transfusion response in the ROC analysis, and this was confirmed by 

the ߯2 test and Fisher’s exact two-tailed test. A considerable proportion of 

transfusions against cumulative MFI levels above 1000 MFI were acceptable, but 

when the cumulative levels were higher than 5000 MFI (n= 20), acceptable 

transfusion responses were infrequent (21 %) (Table 4). Also the number of

individual donor specific antibodies had a significant impact (−7,8 ACI/additional 

antibody, P <0.01), and it displayed a statistically significant interaction with the 

HLA antibody levels (p<0.05). The age of the infused platelet product had a 

significant impact (-2,6 ACI/ one day of age, p=0.04) in multivariate analyses, but not 

in the logistic regression model.

ACI (18-24h) 

10⁹/l median 

(range)

ACI (18-24h) 

>15x10⁹ % of 

transfusions

No of transfused 

platelets x 

10¹¹/m²

Number of 

transfusions

HLA matched 36 (-61-103) 86 % 2,6 (1,5-3,7) 50

No DSA 34 (-11-123) 76 % 2,7 (1,9-3,5) 45

DSA 200-1000

MFI
25 (-11-92) 72 % 2,6 (2,1-3,9) 35

DSA 1000-

5000 MFI
21 (-28-88) 54 % 2,6 (1,6-3,7) 86

DSA > 5000 

MFI
4 (-15-34) 21 % 2,5 (1,8-3,7) 20

Table 4. The proportions of acceptable platelet transfusion responses against 

different levels of cumulative donor specific antibodies. 



 Results 
 

70 
 

 

8.4.2 Relation of HLA eplet mismatch numbers with HLA antibody levels  

It would often be quicker and cheaper if platelet donors could be selected without 

HLA antibody testing, using the relative similarity of the donor’s and patient’s HLA 

antigens as the sole selection criterion. For this, an algorithm called Matchmaker can 

be used (Duquesnoy, 2006, 2008). It counts the number of mismatching eplets 

between the patient’s and donor’s HLA-A and –B antigens. To evaluate the predictive 

value of the eplet mismatch number for the presence of HLA antibodies in our 

material, the levels of all HLA antibody specificities and the number of eplet 

mismatches for the respective antigens were analyzed for all patients. The results are 

depicted in Figure 13. 

Figure 12. Absolute platelet count 
increments at 18-24 h in relation to 
the cumulative donor specific 
antibody levels (MFI).  

Cumulative DSA (MFI) 

Cumulative DSA (MFI) 
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 Figure 13. Comparison between the number of eplet mismatches and the proportion 

of antibody positive HLA antigens. 

Any antibody with a reactivity stronger than 1000 MFI was deemed positive, and 

antibodies with strengths higher than 5000 MFI as strongly positive.  The eplet 

mismatch number did carry an association with the probability of HLA antibody 

positivity: the likelihood was higher for HLA antigens with higher numbers of eplet 

mismatches, but HLA antibodies against antigens with only 0 or 1 eplet mismatches 

were quite frequent as well (16% and 33% respectively). High antibody levels (> 

5000 MFI) represented 32-49% of all antibodies, and also high level antibodies were 

seen against antigens with few eplet mismatches.  The only HLA antigens against 

which the patients never carried HLA antibodies were the patient’s own. On the other 

hand, a considerable proportion (26 %) of antigens with more than seven eplet 

mismatches were antibody negative. 59% of antibody negative non-self  HLA 

antigens were mismatched for at least 4 eplets (Figure 14). Thus, although an 

association between the number of eplet mismatches and the existence of a respective 

HLA antibody unquestionably existed, it was not strong enough for optimally 
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predicting the acceptable HLA mismatches for an individual, highly HLA immunized 

patient. 

 

Figure 14. HLA antigens with 0 to >7 eplet mismatches and their proportions of all 

antibody negative HLA antigens. A significant proportion (59 %) of antibody negative 

non-self HLA antigens were mismatched by at least four eplets with the patient. 

 

 

 

8.4.3 The frequency of HLA immunization in platelet transfusion refractory 

patients 

Earlier on, Finnish patients could be repeatedly transfused with HLA selected 

platelets, based solely on a clinical suspicion of immune mediated refractoriness. To 

assess the justification of this policy, we analyzed a separate group of HLA antibody 

analyses performed for hematological patients. 108 patients (55 men and 53 women) 

0 1 2 3 4 5 6 7 >7
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had been analyzed for HLA antibodies due to platelet transfusion refractoriness 

between 2013 and 2016 in the FRCBS HLA laboratory.  The frequency of HLA 

immunization, high enough to explain the platelet transfusion refractoriness, was 

retrospectively assessed for this group. A total of 47 patients (44 %) were with PRA 

% 1%, a result not even partly explaining the refractoriness; of this group 32 (68 %) 

were men and 15 (32 %) women (P =0.002). Men were also less likely to be highly 

immunized than women: only 14 (25%) of men had PRA% higher than 50%, whereas 

for women the number was 33 (62%) (P =0.0002). The results likely reflect the 

central role of pregnancies in clinically significant HLA immunization, and, on the 

other hand, raise questions as to the reasons of platelet transfusion refractoriness in 

men. They also highlight the utility of HLA antibody testing before sustained 

transfusion support using HLA selected products, which is both costly and likely to 

cause delays in therapy.
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9 DISCUSSION 

9.1 THE FINNISH HLA ISOLATE 

I can easily recall the registry donor search that initiated my interest in the Finnish 

HLA haplotypes. The search in the worldwide database, for this elderly Finnish 

patient, resulted in hundreds of HLA-A, -B, -DRB1 matched international donors, but 

virtually all were HLA-C- mismatched. At the end of the day, five HLA-C-matched 

donors were however detected on the list. One of them was from Switzerland, one 

from Sweden and three from Finland; in fact all HLA-C-typed Finnish donors seemed 

to be HLA-matched with the patient. At the time of this search, serological HLA-C-

typing results were not shown in the international search lists, but when an additional 

search was performed in the domestic registry database,  fifteen additional Finnish 

donors, all serologically HLA-C-typed, were found, and all except one carried the 

same exceptional HLA-C allele as the patient. The difference between Finnish and 

foreign donors was so obvious and so surprising that it left a permanent mark. When 

the first high resolution haplotype frequency estimates by David Steiner (Steiner Ltd.) 

from the Finnish registry database (unpublished) became available in 2013, it was 

evident that the referred haplotype was not by far the only one that was peculiar to 

Finland.  Our finding that, on the other hand, two thirds of the Finnish HLA 

haplotypes are frequent among other Europeans as well, and one third is specifically 

enriched in Finland, probably reflect the somewhat dualistic character of the Finnish 

pedigree: it has been reported to be mostly European but to contain some 

Eastern/Uralic components as well (Guglielmino et al., 1990; Zerjal et al., 1997; 

Salmela et al., 2008). The very sparse population in the unfavorable climate 

conditions has led to repeated bottleneck events during centuries, and this has 

probably taken care of the rest. The Finnish HLA heritage has had a profound impact 

on the Finnish Stem Cell Registry. In the 90’s, when international registries were 
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small compared to the present situation, it was easiest to procure HLA matched 

donors from the domestic registry. Even now, when the German registry alone has 

more donors than Finland has inhabitants, there are several Finnish patients annually, 

whose only HLA matched donors are Finnish. This, together with the high 

homogeneity of the Finnish HLA, has led to a relatively high usage of FSCR, 

compared to most of the small to medium sized European registries. The fact that 

Finnish HLA haplotypes seem to significantly extend beyond the traditional 5-locus 

haplotypes has also enabled the Finnish transplant centers to avoid DPB1 

mismatching, and thus lower the risk of aGvHD, years before the international 

registries began to DPB1 genotype the newly recruited donors upfront.   

9.2 FROM THEORY TO PRACTICE  

As the motivation behind the separate studies of this thesis has been very practical, 

also the results of each individual study have been readily implementable to the 

histocompatibility testing and URD search practices, and have, by now, all been put 

to use in the FCRBS.  

After the LOH study, the validity of a potential HSCT patient’s homozygous HLA 

typing results is now always ascertained in the FCRBS HLA laboratory by several 

simple methods: the patient’s diagnosis, the frequency of the resulting HLA 

haplotypes in the respective population, the family typing results, and the presence of 

background reactivity in the typing analysis are always confirmed. If any suspicion of 

an erroneous result remain after these check-ups, the analysis is repeated by a second, 

more sensitive typing method, or an extra sample is requested from the treating 

hospital.  

The study on the impact of HLA antibody levels on transfusion responses was 

initiated because two different cut-off levels had been in use in the FRCBS but no 
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studies could be found to back up either. Our study indicated that both our former 

levels (5000 MFI and 1500 MFI) had been too high, and the cut-off was accordingly 

further lowered down to 1000 MFI. Also the observed deleterious impact of multiple 

individual DSAs is now considered: antigens with lower (500-999) MFI levels are not 

applied when more optimal platelet donors are available, and whenever platelet 

donors carrying DSA positive HLA antigens have to be accepted due to a patient’s 

extensive immunization, only one DSA positive HLA antigen at a time is allowed. As

the predictive value of the HLA Matchmaker system for the respective antibody 

levels seemed relatively low, and almost half of the platelet refractory patients on the 

other hand do not carry significant HLA antibodies, the urgency of HLA antibody 

samples is emphasized to the treating physicians, and the period of providing 

HLAMatchmaker-based platelet products is thus kept as short as possible. 

The primary idea behind assessing the Finnish 5-haplotype frequencies was to be able 

to predict the 5-locus high resolution typing result of both patients and donors when 

only the first, low resolution typing result of 3 loci is available. Accurate predictions 

save both time and costs, when the donor candidates for confirmatory typing must be 

selected out of several low resolution typed donors. The Finnish HLA landscape was 

shown to be unique compared to other European populations, in regard to both 

homogeneity and HLA haplotype frequencies. These characteristics were utilized 

when the Finnish registry donors were used as a pilot population for registry specific 

matching predictions in the WMDA Search and Match –program. Similar registry 

specific predictions are now available to all partly high resolution typed registry 

populations, which significantly enhances the accuracy of optimal donor selection 

worldwide. 

In addition to the registry searches, HLA genotype predictions were performed daily 

when Sanger sequencing was used for high resolution typing: an extra sequencing 

round could be avoided if the predicted allele ambiguities could be excluded 

concomitantly with the basic sequencing. Before the estimations for Finnish-specific 

high resolution haplotype frequencies were completed, US Caucasian HLA 
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frequencies were applied also for Finnish patients and donors, and regularly resulted 

in erroneous predictions.  

Although NGS typing and the WMDA Search and Match registry-specific match 

prediction algorithms have eliminated the need to utilize haplotype frequencies for 

some of the previous purposes, the haplotype frequencies are still an essential tool in 

an HLA laboratory. They are needed for the evaluation of donor specific antibodies 

and the plausibility of HLA typing results, when the possibility of a typing error is 

weighted due to rare alleles or haplotypes, or a patient’s homozygous typing result. 

One possible warning sign of LOH is that the patient appears homozygous for a very 

rare HLA haplotype, making it more improbable that both of the patient’s parents 

have carried the same haplotype, or, in case of erroneous homozygosity in fewer HLA 

genes, that the resulting HLA haplotypes are very rare or have no frequency at all in 

the patient’s population. Without detailed knowledge of the haplotype frequencies in 

different populations this tool would be lacking while screening potential cases of 

HLA LOH.  

With the increase of haploidentical stem cell transplantations, also the need for the 

analysis of HLA haplotype segregation in families has increased, establishing yet 

another application for population haplotype frequencies: when a sibling is 

considered as a potential haploidentical stem cell donor but all four HLA haplotypes 

of the family are not known, the risk of an erroneous interpretation of haploidentity is 

highest if the seemingly shared haplotype is very frequent in the population.   

An international prediction tool for DPB1 is still lacking in the worldwide registry 

donor database. Because of this, the Finnish 6-locus haplotype frequencies are now 

used in the Finnish Stem Cell Registry to predict the likelihood of a DPB1 match or 

the permissiveness of a DPB1 mismatch in domestic donor searches. This is essential, 

as the vast majority of Finnish registry donors have been recruited at a time when 

DPB1 was not typed upfront.  
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9.3 A MOVING TARGET – WHAT NEXT? 

The hematological stem cell transplantation has been a field of active research since 

its beginning, and the pace is, if anything, speeding up. The same applies to HLA 

typing and antibody testing and their application in the transplant field; new typing 

techniques and new search programs have been introduced into widespread use even 

in the last few years.  

Both the real time –PCR technique and next generation sequencing have been 

validated and implemented in the FRCBS HLA laboratory after the Loss of 

heterozygosity study was published in 2016. The sensitivity of these techniques in 

detecting the lost allele or haplotype could thus not yet be studied at the time. 

However, since LOH as a real, recurring phenomenon is now well recognized, both of 

these new typing techniques have been tested also as to this aspect. In an earlier LOH 

case, RT-PCR was estimated to be at least as sensitive as SSP, the technique that was 

shown to be the most sensitive one of our original three. In a recent, quite severe case 

of LOH in an AML patient, next generation sequencing was deemed to be even more 

sensitive than RT-PCR: a heterozygous typing result was assigned without any 

adjustment of cut-off levels. However, as LOH is not a frequent phenomenon, and 

may affect only some individual HLA genes, extensive experience as to the 

differences in sensitiveness between different techniques on the various HLA genes 

and alleles is difficult to achieve. New NGS platforms for typing more HLA genes are 

being developed, and some of these are already known to decrease the sensitivity for 

background signals (Timo Saarinen, FRCBS histocompatibility laboratory, personal 

communication).   In this regard, co-operation between HLA laboratories might be 

useful, considering the increasing number of platforms that are currently used for 

HLA typing. 
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After the study on acceptable cut-off level of HLA antibodies had been published, the 

antibody levels in a serum of an individual platelet refractory hematological patient 

were found to vary significantly in repeated analyses. There had been a report of a so 

called pro-zone effect (Schnaidt et al., 2011), which is particularly prone to affect 

sera with very high antibody levels, making them appear too low or even negative. 

EDTA pretreatment has been reported to remove the pro-zone effect (Schnaidt et al.,

2011). These results have more recently been confirmed by later studies (Anani, 

Zeevi and Lunz, 2016; Wang et al., 2017; Guidicelli et al., 2018). Based on these 

reports and the experience with the one individual patient, sera of highly immunized 

patients were re-analyzed with and without EDTA pretreatment in the FRCBS HLA 

laboratory. The HLA antibody levels of a considerable proportion of hematological

patients were seen to be affected by the treatment, whereas for patients waiting for a 

solid organ transplantation a significant effect was infrequent. Based on these 

findings, EDTA pre-treatment is now applied to all sera that are analyzed for HLA 

antibodies in our laboratory. The significance of even very low levels (1000-2000 

MFI) of HLA antibodies that was seen in our platelet study may thus at least partly 

result from the pro-zone effect, as EDTA pre-treatment was not yet in use at the time 

of the study. To assess the safety of accepting higher donor specific antibody levels, 

and thus increase the number of acceptable platelet donors, a new study with EDTA 

pre-treated sera would thus be required, preferentially in a prospective setting.  

Because of the polymorphism of the HLA system, the HLA haplotype frequency 

estimations made from a population sample, even a relatively large one like a stem 

cell registry, does not give an exact picture of the whole population. The first 

published study on the Finnish high resolution haplotype frequencies (Haimila 2013)

was done from a sample of 504 high resolution typed patients, the second study in 

this thesis from a registry donor sample of 9774 individuals (II). In the third study of 

this thesis typing results of 43 365 registry donors, of which 15 288 were high 

resolution typed for all six HLA genes, were included (III). Only the three most 

frequent HLA haplotypes had the same ranking in all three analyses, but due to the 
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increasing sample size, the differences between frequencies and ranks are already 

much less obvious between the last two studies.  

The Finnish genetic structure has been shown to vastly differ between the eastern and 

western parts of the country (Kerminen et al., 2017). For stem cell registry recruiting 

purposes, it would be useful to know whether similar differences apply also for the 

HLA diversity, in spite of the registry members consisting mostly of relatively young 

people, likely to move after study and work opportunities. Unpublished 5-locus 

haplotype frequency analyses were performed simultaneously with the extended 

haplotype analyses of the whole population. For these analyses the Finnish population 

was divided into ten geographical areas according to their available postal codes. The 

areas simulated the divisions used by Kerminen et al. (Kerminen et al., 2017). The 

results indicate that differences have existed and that they have not yet disappeared 

despite the current domestic migration. For example, the frequency of the most 

common Finnish HLA 5-locus haplotype, HLA-A*03:01; HLA-B*35:01; HLA-

C*04:01; HLA-DRB1*01:01; HLA-DQB1*05:01, is at its peak in Northeastern 

Finland and lowest in the Southwestern Finland, whereas the 5-locus haplotype that is 

the most common one in almost all other European countries (HLA-A*01:01, HLA-

B*08:01; HLA-C*07:01; HLA-DRB1*03:01, HLA-DQB1*02:01) had a frequency 

gradient of exactly the opposite direction.  The sparsely populated Northeastern 

Kainuu-Kuusamo region seems to have exceptionally high frequencies of several 

FER haplotypes: in Kainuu-Kuusamo, 10 out of 20 most frequent haplotypes were 

FER haplotypes, with frequencies as high as 7 fold compared to the average Finnish 

population.  The number of registry donors living there at the time of the study 

(n=586) was too low for more detailed analyses, but even with these limitations, the 

results indicate that targeted recruitment at the area might be useful to consider.  

During the study period, transplantations performed from related haploidentical stem 

cell donors have profoundly changed the field of hematological stem cell 

transplantation. Some transplant centers have ceased doing HLA-A, -B, -C or -DRB1 

mismatched unrelated transplants, and their requirements for other donor 
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characteristics, like age, sex, HLA-DPB1 permissiveness and CMV serostatus, have 

increased. This challenges the stem cell registries worldwide to optimize their 

recruitment and HLA typing strategies, and makes understanding the population 

specific HLA characteristics even more important than before. NGS typing 

methodology is making ultrahigh resolution matching of registry donors and patients 

possible, possibly radically improving the transplant results when using registry 

donors (Mayor et al., 2019). The studies on Finnish HLA characteristics (II and III) 

indicate that matching at such level may be more likely between Finnish patients and 

donors than in more heterogenic populations. 

Earlier studies have reported different outcomes for HSCTs according to the ethnic 

backgrounds of the patients and donors, with significantly lower aGvHD in the 

isolated Japanese population (Oh et al., 2005; Morishima et al., 2013), better survival 

with domestic donors (Fürst et al., 2013) and better results when the patient and 

donor are likely to carry identical 5-locus or MHC haplotypes, as opposed to identical 

HLA alleles distributed in different haplotype combinations (Petersdorf et al., 2007; 

Jöris et al., 2013). The results of publications 2 and 3 of this thesis, as well as the 

results of Clancy et al. (Clancy et al., 2019) make the notion of studying the potential 

differences between clinical outcomes using domestic versus imported URD 

transplants for Finnish patients worth considering. 

9.4 FINALLY 

The Finnish system of one centralized HLA laboratory and one stem cell registry, 

both working in close collaboration as integral parts of a national Blood Service, 

gives a possibility for histocompatibility specialists to work with the whole wide 

scope of histocompatibility testing and HLA genetics needed in hematological stem 

cell transplantation: from actual HLA typing, family donor histocompatibility 

assessing and unrelated donor searches to registry recruiting strategies, HLA antibody 

testing and donor selection for alloimmunised platelet transfusion refractory patients. 
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This has allowed the separate studies in this thesis to address diverse aspects of HLA, 

discoursing various very practical problems that have been encountered during day-

to-day work at an HLA laboratory serving hematological transplant centers and 

HSCT patients. In consequence, some of the results can also directly, and in many 

HLA laboratories with minimal costs, be introduced into the daily practices.  

However, co-operation between HLA laboratory, stem cell registry and the 

hematologists who actually treat the patients is crucial for optimally utilizing the 

results of this kind of studies. As to HLA-LOH, although HLA laboratories can 

independently do several additional check-ups to ascertain correct typing results, this 

is not always enough. The risk of mistyping, and also the probability of unnecessary 

repeated HLA testing diminishes when the HLA laboratory receives information on 

the patient’s diagnosis and the proportion of malignant cells in the sample from the 

treating physicians.  In addition to LOH, somatic mutations resulting in an HLA null 

allele or a novel HLA allele are encountered in leukemia cells. When HLA 

homozygosity or rare HLA alleles are encountered in leukemia patients, a new typing 

sample either in remission or from germline cells (i.e. buccal swab) may thus be 

necessary, again requiring collaboration from the clinic. In regard to the platelet 

transfusion responses, an individual platelet transfusion response is affected by many 

patient and product related variables. A meticulous monitoring of transfusion 

responses and relating the results to the blood service enables a more accurate and 

safe platelet donor selection for HLA immunized patients. A close collaboration 

between the HLA laboratory and the patient treating hematologists can thus not be 

over-emphasized.  

The fact that in an ordinary clinical HLA laboratory these kinds of unanswered 

questions have arisen is a reflection of the complexity of the HLA system.  Although 

major leaps have been taken from the beginning of the HLA era in the 1950’s, when 

different Class I HLA antigens were discovered using sera of alloimmunised mothers, 

even current knowledge may represent a tip of the iceberg. Many improvements on 
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how to select optimal stem cell and blood donors and thus improve patient outcomes 

are still on their way.
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10 CONCLUSIONS 

The first study evaluated the frequency, warning signs and detection methods for loss 

of HLA heterozygosity when a leukemia patient with active disease is being HLA 

genotyped. The different typing methods have a widely divergent sensitivity for 

detecting the lost allele when an imbalance between two homologous alleles is 

present, and it is important for an HLA laboratory to be alert for LOH and recognize 

the sensitivity differences in the techniques they use. 

The second and third studies focused on the special characteristics of Finnish HLA, 

which has a significant impact on the probability of finding HLA matched registry 

donors for Finnish patients. Finns were shown to be a homogenous population, 

carrying a significant proportion of HLA haplotypes highly enriched in Finland. 

Patients carrying these haplotypes are more dependent on the domestic registry 

donors, and less likely to find 10/10 matched donors. Finns also carry extended 6-

locus HLA haplotypes, which make domestic registry donors more likely to be DPB1 

matched than non-Finnish donors. Extended 6-locus haplotypes are likely to exist also 

in other populations, although they are probably not similar to the Finnish ones. 

The fourth study evaluated the significance of different levels of HLA antibodies and 

HLA eplet mismatches in platelet transfusion refractory hematological patients, many 

of which need prolonged transfusion support, especially if they go through a 

hematological stem cell transplant procedure. There was no single specific cut-off 

level for acceptable donor specific antibodies, but the likelihood of a good transfusion 

response began to decrease already at 1000 MFI. HLA Matchmaker program alone is 

not sufficient to predict the acceptable HLA antigens for highly HLA immunized 

patients.
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