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1. Background and introduction to the study 

The amount of underground fossil fuels is decreasing day by day, and the energy crisis is one of 

the main concerns of our modern times. Besides, frequent use of fossil fuels, especially raw oil 

and coal, is responsible for climate change (accumulation of greenhouse gases like carbon dioxide) 

and environmental pollution. The creation of sustainable energy sources might be a potential way 

to save our planet’s nature as well as to fulfill the increasing global energy demand. 

Production of biofuels is a promising alternative to fossil fuels for transportation. 

According to FAO (Food and Agricultural Organization of the United Nations) definition, biofuels 

are “fuels such as fuelwood, charcoal, bioethanol, biodiesel, biogas or bio-hydrogen produced 

directly or indirectly from biomass” (FAO, 2019). Regarding transportation, both renewable and 

sustainable fuel alternatives such as bioethanol, renewable diesel and biogas, are presently 

available. Based on feedstocks and conversion technology used for production, biofuels and 

especially, production of bioethanol is divided into the first, second, third and fourth generation 

biofuels (Aro, 2016). 

1.1 Production of biofuels, especially bioethanol 

Food crop feedstock including sugarcane, corn, whey, barley, potato waste, sugar beets, and 

vegetable oils are known as the starting materials for first-generation biofuels (Mohr & Raman, 

2013). Second-generation bioethanol, also called cellulosic bioethanol is produced from non-food 

feedstocks, such as wood and lignocellulose biomass, municipal solid wastes, and agricultural and 

forest residues. Third-generation biofuels are based on aquatic, light-energy fixing microbial 

feedstock like algal biomass and considered as an emerging biofuel production technology with 

great production potentiality (Saladini et al., 2016). Production of the fourth-generation biofuels 

comprises the construction of synthetic living factories and designing microorganisms for efficient 

carbon dioxide fixing ability and conversion of solar energy to biomass and fuel. Electrobiofuels 

are an example of an emerging technology for the efficient production and storage of liquid fuels 

(Aro, 2016). 

Bioconversion of sugars and starchy materials into bioethanol is, however, not sustainable 

due to negative impact on our food chain and supply (Mohr & Raman, 2013). Therefore, the use 

of lignocellulosic materials such as wood waste, agricultural residues, and by-products from paper 

and pulp industries are gaining more acceptance to produce second-generation bioethanol. 

However, the use of lignocellulose is challenging because of the complex and rigid structure of 
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the raw material (Saini et al., 2015). Utilization of second-generation raw materials usually 

requires physico-chemical and enzymatic pretreatments which in turn complicate the processes 

and increase the overall production costs. 

An advantage for second-generation bioethanol production is that lignocelluloses derived 

from plant biomass are locally available in vast quantities, and globally around 2*1011 tons of plant 

biomass is produced in each year (Lin & Tanaka, 2006). Sources of lignocelluloses include 

agricultural, forestry, and industrial wastes as well as biomass from non-edible energy crops. Use 

of biofuels are environmentally more sustainable, and compared to fossil fuels, reduction from 

60% to 90% of CO2 emissions are accomplished (Wang et al., 2007). Among different biofuels, 

bioethanol gets more commercial acceptance globally. Bioethanol production has notably elevated 

in the past ten years with increasing estimations from current total production of 120*109 liters (in 

2017) to 131*109 liters by 2027, while global biodiesel production is predicted to stay at the current 

level of about 40*109 liters of annual production (OECD-FAO, 2018). 

1.2 Current state of biofuel production 

Number of vehicles are increasing globally and unless new renewable fuel sources are created, 

current number of vehicles (1.2*109) will depend on natural oil based fuels for their operation 

(Kazemi et al., 2019). The use of bioethanol as liquid transportation fuel is currently gaining more 

acceptance due to its sustainable and renewable nature. Countries including mainly Brazil, and the 

United States have been using bioethanol as part of transportation fuel from 1980s. Bioethanol is 

mainly utilized in Flexi-Fuel Vehicles (FFV) by blending it with fossil gasoline ranging in 

mixtures between 10% (E-10 fuel) and 85% (E-85 fuel). In Europe, bioethanol or biodiesel are 

mixed with fossil petrol or diesel fuels, respectively, in different percentages. For instance, in 

Norway, 7% bioethanol in octane petrol and 10% biodiesel in diesel oil, respectively, mixtures are 

in use for transportation (Sundvor & López-Aparicio, 2014).            

The selection and use of suitable microorganisms with the potentiality of fermenting 

lignocelluloses without pretreatments might overcome the raw material influenced and other 

current obstacles in more sustainable production of bioethanol. Recently, genetically modified 

yeasts and bacteria have been constructed together with research on natural microbial consortia in 

order to enhance lignocellulose utilization and fermentation to ethanol and other alcohols (Kricka 

et al., 2015). 
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However, most of the fermenting microorganisms, for instance, baker’s yeast 

Saccharomyces cerevisiae, is not capable of direct fermentation of cellulose due to the lack of 

generation of extracellular enzymes necessary for the hydrolysis of cellulose. More precisely, yeast 

is unable to ferment pentose sugars such as xylose and arabinose (Kricka et al., 2015) that are 

predominant in many hemicelluloses. On the other hand, wood-decaying fungi possess wide 

metabolic and plant biomass degrading abilities, for instance, the fungal isolate Phlebia radiata 

79 can decompose lignocellulosic biomass without pretreatment and thereby produce bioethanol 

through fermentation (Mattila et al., 2017).  

Fungal bioconversion of wood biomass is regulated by various factors such as atmosphere 

and aeration, incubation temperature, substrate size, light, moisture, and other culture conditions 

connected to growth and production of proper enzyme activity. The selection of suitable fungi and 

optimization of the fermentation conditions will contribute to the industrial production of second-

generation bioethanol. Also, enzyme activity assays will help to determine the fungal 

decomposition efficiency of the wood-based substrates.  

1.3 Fungi, their importance and ecological diversity  

Fungi are multi- or unicellular, heterotrophic eukaryotic organisms which can be classified as 

saprotrophic, pathogenic, or symbiotic for plants and animals, and associated with algae or 

cyanobacteria in lichens (Deacon, 2009).  Among Eukarya, fungi form their own phylogenetic 

lineage within Opisthokonta with nucleariids as their sister lineage (Steenkamp et al., 2006). Fungi 

are distributed worldwide and can be found from the temperate zones to the polar zones as well as 

in tropical habitats (Mohanta & Bae, 2015). Besides their ecological importance as major degrader 

of especially plant-based organic matters, different fungi such as mushrooms and truffles are 

consumed as human food. Fungi are also capable of producing proteins and enzymes, together 

with antibiotics, mycotoxins, alkaloids, polyketides and other industrially important chemical 

compounds (Barke et al., 2010).  

Based on morphological and other characteristics and phylogenetic studies, the kingdom 

fungi is classified into several (seven to thirteen) major phyla consisting of Ascomycota, 

Basidiomycota, Chytridiomycota, Monoblepharidomycota, Neocallimastigomycota, 

Blastocladiomycota, Glomeromycota, Entomophthoromycota, and others (Hibbett et al., 2007; 

Tedersoo et al., 2018). A large number of species from the phyla Ascomycota and Basidiomycota 

play a remarkable role in the decomposition of plant biomass based materials (Hibbett et al., 2007). 
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Huge diversity and long evolutionary history of this kingdom provide a great opportunity to study 

their various activities in different ecosystems. Wood-decaying fungi are filamentous 

Basidiomycota and a few Ascomycota species with various strategies for inhabitation, 

decomposition and nutritional utilization of dead wood biomass (Lundell et al., 2014). These fungi 

are characterized as white rot, brown rot or soft rot according to the physical and visual properties 

of the degraded wood.  

White rot fungi are common in decayed hardwood, which is softened to fibrous, white to 

yellow matter often containing dark manganese deposits ( Hatakka & Hammel, 2010; Lundell et 

al., 2014). Brown rot fungi decompose wood polysaccharides mainly through a non-enzymatic 

attack including Fenton chemistry. Brown rot fungi leave the decayed wood usually dry, brown, 

powdery, and cracking to cubicles. Soft rot fungi are Ascomycota species characterized by 

colonized green or dark mold colonies and zones mainly on the wood surface. Many soft rot fungi 

are efficient decomposers of plant litter and also can decompose cellulose-hemicellulose parts of 

wounded or cut wood surfaces (Lundell et al., 2014). Litter-decomposing fungi of Basidiomycota 

are another type of plant biomass decomposing and mushroom forming fungi. Litter decomposing 

fungi are often capable of producing pectinolytic enzymes and participate significantly in the 

global carbon cycle by acting on non-woody plant tissues (Rytioja et al., 2014). 

White rot fungi can enzymatically degrade the lignocellulose main polymers cellulose, 

hemicellulose, and lignin efficiently, whereas brown rot fungi decompose cellulose and 

hemicellulose but modify lignin only  partially (Lundell et al., 2014). Therefore, between white 

rot fungi and brown rot fungi, fundamental and applied research has been performed extensively 

on white rot fungi to discover the best isolates for biotechnological and industrial purposes. Wood-

decaying fungi have both ecological and economic importance such as in the pulp and paper 

industry (Gutiérrez et al., 2011).  

1.4 Phlebia radiata isolate 79 

The Basidiomycota class Agaricomycetes order Polyporales in the phlebioid clade can be 

phylogenetically divided into sub-clades of the genera Phlebia, Phanerochaete, and Byssomerulius 

(Kuuskeri et al., 2015; Floudas & Hibbett, 2015). Phlebia radiata is a phlebioid white rot species 

of the order Polyporales (Justo et al., 2017) and P. radiata 79 is a Finnish isolate capable of 

degrading a wide range of plant biomasses (Kuuskeri, 2016). This fungus expresses and secretes 

a set of carbohydrate-active enzymes (CAZymes) and oxidoreductases necessary for the 
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bioconversion of wood lignocelluloses (Kuuskeri et al., 2016; Mäkinen et al., 2019). The fungus 

is capable of hydrolyzing lignocellulose biomass without harsh pretreatments and can ferment both 

pentose and hexose sugars into bioethanol (Mattila et al., 2020). This simultaneous saccharification 

and fermentation (SSF) process adopting a single organism may be characterized as a simplified 

modification of consolidated bio-processing (Mattila et al., 2017; Mattila et al., 2018). 

1.5 Decomposition of wood lignocelluloses 

Global carbon cycle is directly connected to decomposition of organic matter like lignocelluloses 

in terrestrial ecosystems. Trees and grasses are the largest sources of these lignocelluloses 

(Crowther et al., 2015). Recycling of carbon in lignocellulose is difficult because of the rigid 

structure of the plant cell wall as well as the presence of recalcitrant compounds such as lignin. 

Saprotrophic fungi have a vital role in biodegradation of lignocelluloses and ultimately participate 

in the carbon cycle actively. Wood-decaying white rot fungi secrete sets of extracellular enzymes 

to degrade wood biomass, and thus reduces the energy and chemical demand in the pulp and paper 

industry (Rodríguez, 2018). Lignocellulosic material is composed of the bio-polymers cellulose, 

hemicellulose, and lignin. Hydrolysis of cellulose and hemicellulose results in the formation of 

fermentable sugars consisting of hexoses such as glucose, galactose, and mannose, and pentoses 

like xylose and arabinose (Balat & Balat, 2008). These sugars are then assimilated and converted 

to bioethanol through fermentation by yeasts, filamentous fungi or bacteria (Mussatto et al., 2012). 

1.5.1 Structure of lignocellulosic biomass 

Lignocellulosic biomass is composed of the carbohydrate polymers cellulose, hemicellulose, 

pectin, and of the aromatic heteropolymer lignin (Rytioja et al., 2014). Softwood (coniferous tree 

wood) and hardwood (deciduous tree wood) both contain mainly cellulose (40-45% of the dry 

mass), then hemicelluloses (about 30% of the dry mass), and lignin (20-30% of the dry mass) and 

extractives (2-3% of the dry mass) (Sjöström, 1993). However, these proportions and the chemical 

structure of hemicelluloses and lignins vary between plant species and woody tissues (Boerjan et 

al., 2003). 

Presence of lignin together with cellulose, hemicellulose, and pectin form the rigid, 

complex and functional lignocellulose structure of the plant cell wall (Figure 1), which also 

protects plants from external attacks. Cellulose is composed of glucose units linked by β-1,4-
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glycosidic linkages. Linear cellulose chains are linked together by hydrogen bonds to create 

crystalline structures called microfibrils at the lignified plant cell wall (Fernandes et al., 2011). 

 

  

Figure 1. Simplified model of plant cell wall structure. (A) The structure consists of several layers: the 

middle lamella attached to primary wall and secondary walls. (A and B) The main polysaccharides and 

lignin which form the wood cell wall lignocellulose are present at the primary (B) and the secondary (C) 

cell walls. Picture copied from publication (Rytioja et al., 2014; Microbiology Molecular Biology Reviews, 

doi:10.1128/MMBR.00035-14) with allowance from the publisher (American Society of Microbiology). 

Hemicellulose is composed of mainly xylan, xyloglucan or mannan backbones (van den Brink & 

de Vries, 2011), comprising 20% to 30% of plant dry weight. Hemicelluloses are known for their 

structural support of the cellulose microfibrils embedded in both primary and secondary cell walls 

(Sjöström, 1993). 

Lignin is the third main biopolymer of wood composed of phenylpropanoid residues and 

is partially covalently bound via ether and benzyl ester linkages to the carboxyl groups of 

hemicellulose (Boerjan et al., 2003). Lignin contains three types of aromatic subunits, which are 

as p-hydroxyphenyl, guaiacyl and syringyl monolignols. Various linkages and subunits in lignin 

units with attachment and linkages to both cellulose and hemicellulose provides rigidity and 

toughness of woody cell walls, which ultimately give resistance to chemical and enzymatic 

degradation of wood (Halpin, 2013). 

Pectin is the non-cellulosic polysaccharide of many plant fruits as well as plant primary 

cell walls and composed of the galacturonic acid backbone. Pectins have variable branching 

linkages containing also rhamnose units, and may create additional cross-links between the 

cellulose and hemicellulose polymers to strengthen the rigid wood structure (Caffall & Mohnen, 

2009). In woody tissue, for instance, the primary cell walls and middle lamellae contains pectin 

(Figure 1).  
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1.5.2 Enzymatic breakdown of lignocelluloses 

For the degradation of lignocellulosic feedstock, groups of enzymes are essential for the 

modification of cellulose and hemicelluloses to get monomeric carbohydrates and especially 

sugars (Rytioja et al., 2014). Lignin and pectin modifying enzymes are essential to break down the 

basic structure of the lignocellulose. Subsequently, free sugars are converted into ethanol through 

microbial fermentation. 

 

Figure 2. Schematic representation of enzymatic cellulose degradation, while exo-action of reducing-end 

(orange) and non-reducing-end (green) cellulases generate disaccharide cellobiose units from cellulose.  

Subsequently, cellobiose units are converted into glucose by β-glucosidases (pink). Hydrolytic action of 

endo-acting cellulases (red) breaks cellulose chain for further modification by exo-acting cellulases. 

Oxidative action of LPMOs (blue) participate in breakage of cellulose chains which are further degraded 

by processive cellulases. Picture copied from publication (Hemsworth et al., 2015; Trends in 

Biotechnology) with a licence from the publisher, Elsevier Ltd. 

For cellulose breakdown, a set of hydrolytic cellulases including endoglucanases (EG) 

(CAZy class GH-5), cellobiohydrolases (CBH) (GH-6 & GH-7), and β-glucosidases (BGL) (GH-

3) are essential (Figure 2; Table 1). The hydrolytic cellulases act synergistically to degrade 

crystalline as well as non-crystalline cellulose chain regions into its monomeric units which is 

glucose. In addition, auxiliary oxidoreductive enzymes like cellobiose dehydrogenase (CDH) and 

lytic polysaccharide monooxygenases (LPMO) are involved in effective biodegradation and 

modification of cellulose. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/beta-glucosidase
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EG releases glucooligosaccharides by cleaving cellulose chains and CBHs release 

cellobiose from the ends of the cellulose chains (Figure 2; Table 1). Two types of CBHs (GH-6 & 

GH-7) are responsible for the sequential hydrolysis of reducing and nonreducing ends of cellulose 

chains, respectively. BGLs act on shorter oligosaccharides of cellulose and release glucose units. 

CDH acts by oxidizing cellobiose and cello-oligosaccharides to the corresponding lactones. These 

enzymes may also contribute to lignin modification for instance by producing hydroxyl radicals 

according to Fenton chemistry, and may ultimately help in LPMO catalyzed cellulose 

depolymerization by cleaving glycosidic bonds releasing monomeric sugars (Henriksson et al., 

2000).  

EG enzymes together with other cellulases work synergistically to hydrolyze β-1,4 linkages 

in cellulose chains consequently breaking the polymer into sugar monomers through the 

involvement of different catalytic modules. BGLs are involved in cellobiose degradation by 

binding nonreducing glucose units through its pocket shaped active site to release glucose 

monomers (Zhang & Zhang, 2013; Rytioja et al., 2014). 

Table 1. Carbohydrate active enzyme (CAZyme) activities experimentally studied in the research. 

Classification and abbreviation is depicted according to (http://www.cazy.org/); EC numbering is following 

the classification of ExplorEnz- The Enzyme Database (https://www.enzyme-database.org/). GH= 

Glycoside hydrolases; PL= Pectate lyases. 

CAZy enzyme Activity EC number Main substrate 

GH-3 β-glucosidase; BGL 3.2.1.21 Cellobiose, 

β-D-glucosides 

GH-5 Endo-β-1,4-glucanase (endo-

glucanase, cellulase); EG 

3.2.1.4 Cellulose 

GH-6, GH-7 Cellobiohydrolase, reducing end-

acting cellobiohydrolase; CBH 

3.2.1.91 and 

3.2.1.176 
 

Cellulose 

GH-11 Endo-β-1,4-xylanase; XLN 3.2.1.8 Xylan 

hemicellulose 

PL-1, PL-2, PL-3 Pectate lyase; PL 4.2.2.2 Pectin 

A specific set of carbohydrate-active enzymes is essential to get monomeric sugars from 

hemicelluloses, which have a branching structure.  β-1,4-endoxylanase (XLN), β-1,4-xylosidase, 

β -1,4-endomannanase and β-1,4-mannosidase are the major hemicellulose-active enzymes (van 

https://www.enzyme-database.org/
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den Brink & de Vries, 2011). XLN acts on xylan by clipping the polymer backbone into oligomers, 

whereas β-1,4-xylosidase performs the hydrolysis of xylobiose into its monomeric units and 

discharges D-xylose from the nonreducing terminal of larger xylooligosaccharides. Similarly, 

mannan hemicelluloses (galactoglucomannans) are cleaved to produce mannooligosaccharides 

and further modified to D-mannose. Hydrolysis of xyloglucan is conducted by EGs, CBHs, and 

BGLs, and is similar to the cellulose hydrolysis. Besides, LPMOs may have the potentiality of 

cleaving xyloglucan, β-glucan, and even glucomannan with varying efficiency (Agger et al., 2014).   

The amount of lignin is quite high in lignocellulose (up to 30% of dry mass; Sjöström, 

1993); Boerjan et al., 2003) and its modification is essential for the optimal release of monomeric 

sugars from cellulose and hemicellulose components (Ruiz-Dueñas & Martínez, 2009). Various 

heme-including, fungal secreted peroxidases including lignin peroxidases (LiPs), manganese 

peroxidases (MnPs), and versatile peroxidases (VPs) together with laccases are capable of 

depolymerizing lignin polymers (Hofrichter et al., 2010; Lundell et al., 2010). 

Polygalacturonic acid is the backbone of pectin, and a group of enzymes are required for 

the degradation of this polymer. Pectin hydrolysis also enables the proper release of sugar contents 

from cellulose and hemicellulose parts. Pectin degrading enzymes include mainly endo-and exo-

polygalacturonases, pectate lyases (for instance classes PL-1, PL-2, PL-3, PL-9 & PL-10), and 

rhamnogalacturonan lyases (for instance classes PL-4 & PL-11) (carbohydrate Active Enzyme 

database- http://www.cazy.org; Lombard et al., 2014)). The cumulative effect of these enzymes 

degrades pectin and releases monomers like galacturonic acid, while favors in loosening the 

structure of lignocellulosic feedstock (van den Brink & de Vries, 2011).  

1.6 Accumulation of bioethanol and natural by-products during lignocellulose decomposition 

Fungal saccharification and fermentation may be a simultaneous process with suitable 

microorganisms like wood-decaying fungi, while bioethanol accumulates during fermentation of 

available sugars generated by lignocellulose decomposition by fungal enzymatic activity (Mattila 

et al., 2018). Accumulated sugars can be utilized by fungal hyphal intake either through respiration 

under aerobic conditions or through fermentation under oxygen-limited to anaerobic conditions. 

In ethanol fermentation by the baker’s yeast Saccharomyces cerevisiae, glucose is converted to 

pyruvate through glycolysis, and acetaldehyde is generated by the action of pyruvate 

decarboxylase (Pdc) (Figure 3). Finally, alcohol dehydrogenase (Adh) acts on acetaldehyde by 

reducing it into ethanol (Pfeiffer & Morley, 2014).  
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Besides ethanol, this process generally facilitates the generation of various industrially 

important chemicals such as acetate and glycerol. Glycerol is the natural by-product of ethanol 

fermentation by S. cerevisiae and other yeasts (Karimi et al., 2006), and can also be used for the 

generation of fuels and chemicals. Also, glycerol might be used by fungi and bacteria to produce 

glycolytic intermediates such as pyruvate from which ethanol will be generated (Yazdani & 

Gonzalez, 2007). Usually, some acetate accumulates during ethanol fermentation. Through ethanol 

fermentation, NADH is consumed and NAD+ is generated through reduction of acetaldehyde to 

ethanol by Adh enzymes (Wei et al., 2013). 

 

Figure 3. Generalized pathways of glucose utilization and ethanol formation by the baker’s yeast fungus 

Saccharomyces cerevisiae. Glucose is converted into pyruvate through glycolysis, and pyruvate will be 

further converted into acetyl-coenzyme A to enter TCA cycle in respiration and for biosyntheses or 

fermented into ethanol through acetaldehyde formation. ATP=adenosine triphosphate; Pdh= pyruvate 

dehydrogenase; Pdc= pyruvate decarboxylase; Adh= alcohol dehydrogenase; Ald= aldehyde 

dehydrogenase; Acs= acetyl-CoA synthetase; TCA= tricarboxylic acid cycle; OXPHOS= oxidative 

phosphorylation. Illustrated according to a published scheme (Pfeiffer & Morley, 2014).  

From lignocellulose starting materials for ethanol fermentation, lignin may also serve as a 

source for useful by-products. For instance, the production of bio-adhesives and second-generation 

bioplastics from lignin might be an interesting addition in the global market. Moreover, 10% to 

20% of lignin can be converted into valuable aromatic compounds such as guaiacol, cathecol, and 

phenol (Beauchet et al., 2012). Lignin can also be chemically converted into valuable 

transportation diesel oil fuels like jet fuels (Cheng & Brewer, 2017). 
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2. Aims and hypotheses of the study 

The CBP (consolidated bioprocessing) ability of the filamentous fungus Phlebia radiata isolate 79 

was conducted on different mixtures of lignocellulose substrates including barley straw, spruce 

wood sawdust, and birch wood sawdust, with spent brewery barley mash. This thesis aimed to 

identify how atmospheric conditions affect enzymatic biodegradation of lignocellulose and 

metabolic activity, especially production of ethanol by the fungus. Another aim of the study was 

to establish an assay method for enzymatic pectin degradation and conversion.  

In this study, P. radiata isolate 79 was cultivated on solid lignocellulose mixtures under three 

different atmospheric conditions: anaerobic (N2 gas flushed), semi-aerobic (partially N2 gas 

flushed) and aerobic (air flushed). The effect of the culture gas phase was monitored by measuring 

activities of lignocellulose degrading enzymes and bioethanol production by the fungus. 

Research hypotheses were: 

1. Change of atmosphere to oxygen-depleted, fermentative conditions will affect the 

production of fungal extracellular enzymes, expectably negatively by suppressing their 

production and detectable activities. 

2. Semi-aerobic culture atmosphere would allow the fungal mycelium to grow and produce 

more enzymes against the lignocellulose substrates, thereby improving the bioconversion 

and ethanol production. 

3. Together with enzymatic degradation of cellulose and hemicellulose, enzymatic 

degradation of pectin is an important activity for the fungus during growth and 

bioconversion of lignocellulose, in order to produce ethanol under fermentative conditions.  
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3. Materials and methods  

3.1 Microorganism 

In this study, the Basidiomycota fungus Phlebia radiata isolate 79 (FBCC0043) (Kuuskeri et al., 

2015; Mäkinen et al., 2019) stored at the FBCC sub-collection of the Microbial Domain Biological 

Resource Centre HAMBI of the Helsinki Institute of Life Science, University of Helsinki, 

Helsinki, Finland, was used for bioconversion of the lignocellulosic materials into ethanol. This 

filamentous fungus was selected also to monitor the activity of different enzymes secreted by the 

organism to modify lignocelluloses during cultivations.  

3.2 Chemicals 

Chemicals used during the experimental part are given below in Table 2. 

Table 2. Purity and manufacturer of various chemicals used in the study 

 

Chemical Purity grade Manufacturer 

Sodium hydroxide (NaOH) 98.8% VWR(BDH), Prolabo 

chemicals, Belgium 

Hydrochloric acid (HCl) n.k.1) Merck, Darmstadt, Germany 

p-nitrophenyl beta-D-glucopyranoside n.k.1) Calbiochem, China 

Citric acid 99.5% Sigma-Aldrich, China 

Sodium carbonate (Na2CO3) 99.6% Acros Organics, Spain 

4-methylumbelliferyl-betad-lactoside 

(MULac) 

n.k.1) Biokemis, Russia 

Glucose 99.5% Sigma-Aldrich, USA 

Polygalacturonic acid 90% Sigma-Aldrich, Switzerland 

D-galacturonic acid 97% Sigma-Aldrich, Slovakia 

KNa-tartrate 99.9% VWR (BDH) chemicals, 

Germany 

           1)n.k. not known 
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3.3 Malt extract agar medium 

Malt extract agar (MEA) medium containing 20 g/L of malt extract (Biokar Diagnostics, Beuvais 

Cedex, France) and agar-agar, 20 g/L (Amresco, Solon, Ohio, USA) was prepared for the 

maintenance and cultivation of the fungus. The medium was autoclaved (121 °C, 15 minutes, 1 

atm) prior pouring into sterile plastic petri dishes (50 mL MEA in each). pH of the medium was 

5.5 after autoclaving. 

3.4 Preparation of lignocellulose substrates 

Solid-state cultures of mixed lignocellulose substrates including spent brewery barley mash 

(SBBM) (obtained from prof. Per-Erik Saris group microbrewery, Department of Microbiology, 

Viikki Campus, University of Helsinki), barley straw (straw from Hordeum vulgare crop harvest 

of summer 2017, Viikki, Helsinki, Finland; Veloz Villavicencio et al., 2020), spruce wood (Picea 

abies sawdust; Mali et al., 2019) and birch wood (Betula pendula sawdust; Veloz Villavicencio et 

al., 2020) were used as carbon sources for bioethanol production by P. radiata 79 at different 

atmospheric conditions. Air-dried barley straw was cut into small pieces (about 2 cm), and spent 

brewery barley mash was milled with IKA A 11 basic analytical laboratory mill (IKA-Werke 

GmbH & Co. KG, Staufen, Germany) after drying in oven (Memmert GmbH & Co. KG, 

Schwabach, Germany) at 70 °C overnight. Spruce wood and birch wood sawdust pieces were dried 

in oven overnight at 70 °C and sieved (through a metal sieve) to separate ≤ 2 mm sized pieces. 

Three combinations of substrate mixtures were prepared in 100 ml glass Erlenmeyer flasks: a) a 

mixture of 1.5 g (dry weight, dw) barley straw and 0.5 g (dw) milled barley mash, b) a mixture of 

2.5 g (dw) spruce wood sawdust and 0.5 g (dw) milled barley mash, and c) a mixture of 2.5 g (dw) 

birch wood sawdust and 0.5 g (dw) milled barley mash, into each 100 ml Erlenmeyer flask. All 

flasks containing lignocellulose substrate mixtures were closed with cellulose stoppers and 

aluminium caps, then autoclaved (dry program at 121ºC for 15 min). After autoclaving, 20 ml of 

sterile Milli-Q water was added into each flask and mixed well, aseptically inside the laminar hood. 

pH of the water phase was adjusted to 3.0 by adding sterile 5.0 M HCl solution, and the substrate 

flasks were kept at room temperature overnight to stabilize. 

3.5 Solid-state cultivations of the fungus on the lignocellulose mixtures  

One mycelial agar plug (diameter 6 mm) of P. radiata 79 cultivated on MEA medium was added 

into each flask at the top of the lignocellulosic substrate mixture. Three different atmospheric 

conditions in the culture flasks were generated by 1) selection of closing of the cultivation flasks, 
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and 2) sequential flushing of the gas phase with either air (aerobic cultures) or 100% nitrogen gas 

(semi-aerobic and anaerobic fermentative cultures).  Anaerobic and semi-aerobic flasks were 

closed with tight rubber plugs containing an inlet and valve system (Mattila et al., 2017) while the 

aerobic flasks were closed with ventilating cellulose plugs covered with a loose aluminium cap. 

All flasks were incubated in four biological replicates as stationary cultures (non-agitated) at 25 

°C in a laboratory incubator, and cultivations were continued for four weeks in the dark. Negative 

controls (four replicates of lignocellulose mixtures without fungus) were also incubated under the 

same cultivation conditions.  

3.6 Nitrogen gas flushing and treatments  

Three atmospheric conditions were chosen to identify the effect of the gas phase for lignocellulose 

bioconversion, enzyme activities, and ethanol accumulation by P. radiata 79. The average volume 

of the cultivation Erlenmeyer flasks was 139 ml, where solid barley straw blended with SBBM 

along with Milli-Q water (20 ml) occupied 26 ml of space. The remaining gas space was estimated 

to take 113 ml in volume. All flasks from the anaerobic and semi-aerobic groups were flushed with 

nitrogen gas ten times through the stealing plug inlet valve system, each time with 35 ml of pure 

nitrogen, thereby summing to over 3x the total gaseous phase volume. To get semi-aerobic 

conditions, 50% (54 ml) of the fermentation gas phase was taken out from the culture flask by 

syringe through the inlet valve system, and replaced with an equal volume of laminar hood air by 

pushing the air aseptically into the flask through a sterile membrane filter and the valve. For the 

culture flasks containing spruce wood sawdust blended with SBBM as well as birch wood sawdust 

blended with SBBM, remaining gas space was 114 ml, and therefore, the same gas exchange 

procedures as described above were followed to get anaerobic and semi-aerobic conditions. 

Nitrogen gas treatments were conducted once a week after collection of the liquid phase sample 

from each culture flask.      

3.7 Sample collection and HPLC analysis 

Liquid samples (1 ml/flask) were aseptically collected from all flasks once a week (every seventh 

day of cultivation time) and equal volume (1 ml) of sterile Milli-Q water was added to maintain 

the humidity and constant water content in the solid-state cultures. HPLC samples were processed 

by centrifuging the solids of the liquid samples in sterile plastic (Eppendorf) tubes at 13000 rpm 

for 5 minutes at room temperature. After centrifugation, 0.1 ml of the liquid sample was transferred 

to HPLC vial by filtering through 0.2 μm pore size Acrodisc GHP syringe filters (Pall Laboratory, 
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Pall Corporation, via VWR Finland). HPLC analysis was performed by Hans Mattila using the 

Waters Alliance e2695 HPLC coupled with photodiode array and refractive index detectors 

(Department of Food and Nutrition, Faculty of Agriculture and Forestry, Viikki Campus, 

University of Helsinki) adopting the chromatographic method applied previously (Mattila et al., 

2018; Mattila et al., 2020). The aim was to identify and quantify the expected fermentation 

products such as ethanol, glycerol, and acetic acid, together with analysis of the released sugars, 

especially glucose and xylose. Remaining liquid samples were stored at -20 °C for further analysis 

and enzyme activity assays.  

3.8 Enzyme activity assays 

Activities of β-glucosidase, cellobiohydrolase (CBH) and pectinase at cultivation time points (four 

weeks) were measured by using the -20 °C stored liquid samples of all cultivations. Frozen samples 

were thawed at room temperature and vortexed before measuring the enzyme activity. Activity of 

β-glucosidase and CBH were measured by the 96-well plate assay methods optimized previously 

(Rytioja et al., 2014; Kuuskeri et al., 2015; Mäkinen et al., 2018) and measured with the Spark 

M200 multimode microplate reader (Tecan, Switzerland) and VICTOR fluorescence plate reader 

(PerkinElmer Inc., USA), respectively.  

For β-glucosidase assay, 1.0 mM 4-nitrophenyl β-D-glucopyranoside (Table 2) was used 

as substrate, and activity was determined by measuring the amount of p-nitrophenol released at 

400 nm (Kuuskeri et al., 2015). CBH activity was measured in 96-well plastic microtiter black 

plates by using the VICTOR fluorescence plate reader and 2 mM 4-methylumbelliferyl-β-D-

lactoside (MULac, Table 2) as substrate (Mäkinen et al., 2018). For both β-glucosidase and CBH 

assay, 50 mM Na-citrate (pH 5) was used as buffer and incubation temperature was 45 ºC  (Rytioja 

et al., 2014), while various incubation temperatures were tested for the pectinase activity assay. In 

all cases, incubation time was 10 minutes, while the pectinase assay required additional boiling for 

5 minutes before transferring the cooled reaction mixtures (150 μl each portion) to the NUNC F 

plastic microwell plates for measurement.    

3.9 Pectin degradation and conversion assay 

Development of pectinase (pectin degrading) enzyme activity assay was established as part of the 

thesis project by using the Tecan Spark M200 multimode microplate reader and SparkControl 

software (Tecan Switzerland), and plastic transparent 96-well plates. Polygalacturonic acid (PGA) 

was used as substrate by adding 0.5 g of polygalacturonic acid into 100 ml of 50 mM sodium 



16 
 

citrate buffer (pH 5) and dissolved with a magnetic stirrer. DNS (dinitrosalicylic acid) was used as 

the reagent selective for released, dissolved sugars with reducing end reactivity for coupling with 

the reagent (Sumner & Somers, 1949). Coupled DNS methods are generally adopted for respective 

polysaccharide cleaving activity assays for cellulose degradation (endocellulase, endoglucanase) 

and hemicellulose degradation (xylanase) (Rytioja et al., 2014; Kuuskeri et al., 2015; Mali et al., 

2017). DNS reagent was prepared in the laboratory as containing 10 g of 3, 5-dinitrosalicylic acid, 

16 g NaOH, and 300 g KNa-tartrate in 1000 ml of DNS reagent. 

In pectinase assay, 20 mM (20 μmol/ml) D-galacturonic acid was used as reference for 

standard regression calculation. 4.2 g of D-galacturonic acid was dissolved into 50 ml of 50 mM 

sodium citrate buffer using a magnetic stirrer. Five standard solutions, St4 (20 μmol/ml), St3 (10 

μmol/ml), St2 (6.7 μmol/ml), St1 (4.0 μmol/ml), and St0 (only buffer) were used for the assay, in 

three replicate reactions, respectively.  

3.9.1 Change of incubation time and temperature 

This experimental part aimed to establish a 96-well mediated pectinase assay. As part of the 

optimization process, different incubation temperatures between 30 °C and 45 °C with several 

incubation times ranging from 2.5 to 30 minutes were tested. For these purposes, liquid samples 

from the solid-state cultivations of the fungus on barley straw mixed with SBBM were used. In 

the primary trial, 60 μl of the substrate solution was used for 30 μl of sample solution and 

incubation temperature was 30 °C, 35 °C, 40 °C and 45 °C, respectively (Figure 13), whereas 

incubation time in the primary trial was 5 minutes, 10 minutes and 15 minutes, respectively. 

Afterwards, the sample amount was reduced to 20 μl and two incubation temperatures were 

selected (30 °C and 45 °C) with an extended range of incubation time (2.5 to 30 minutes) (Figure 

14). Subsequently, 20 mM (20 μmol/ml) D-galacturonic acid was used as reference for product 

formation to calculate the relative activity of pectinase. Pectinase activity was measured at 35 °C 

and 40 °C with incubation time of 15 minutes and 10 minutes, respectively. Liquid samples from 

anaerobic, semi-aerobic, aerobic and their corresponding negative controls (lignocellulose 

substrates without fungus) from different (four weeks) time-points were used as sample (20 μl) for 

60 μl of substrate solution. Eventually, the accepted incubation time was either 10 minutes at 40 

°C or 15 minutes at 35 °C and the sample amount was 20 μl, while 60 μl of substrate solution was 

added in each well (Figure 15).  
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3.9.2 Optimized protocol for pectinase assay 

In the optimized pectinase assay protocol, 60 μl of the substrate was transferred to a 96-well 

polypropylene plate (three technical replicas) with a multichannel pipette and the substrate solution 

was pre-warmed to 40 °C.  Subsequently, samples (20 µl/well) were transferred to polypropylene 

plate and incubated for 10 minutes at 40 °C.  Incubation time started immediately when the samples 

were added and therefore the samples were pipetted for example three (3) columns (1-3, then 7-9, 

and so on, and rows A-F) at a time with a multichannel pipette (e.g. 30 sec interval) and covered 

with plastic plate seal. After 10 minutes incubation, reaction was stopped by adding 100 μl DNS 

with a multichannel pipette first to the wells with samples in the same order and with the same 

intervals as when starting the reactions (1-3, then 7-9, so on and rows A-H) and then to the rest of 

the wells (4-6, then 10-12, so on and rows A-H). Later, 20 μl of samples were transferred to enzyme 

zero wells (4-6, then 10-12, so on and rows A-F) and 20 μl of each standard dilution (st1-st4), and 

buffer (st0) was added into standard wells (row G and H). The plate containing reaction mixture 

was boiled for 5 minutes in a water bath by covering with a plastic foil. After boiling, the plate 

was cooled immediately in an ice containing water bath and an equal amount of cooled reaction 

mixtures (150 μl each portion) were transferred to the plastic NUNC F microwell plates for 

measurement. Absorbances were measured spectrophotometrically by Spark (absorbance at 540 

nm) microtiter plate reader by selecting the program DNS-Endoglucanase. Standard curve and 

standard deviations of parallel samples were checked to calculate the results from excel. 

Calculation of the pectinase activity:  

The absorbance value of the sample was converted to enzyme activity units (nkat/ml) using the 

following equation according to the standard curve, where absorbances in Y-axis and nkat/ml in 

X-axis,  

 

Standard zero was subtracted from the standards before drawing the standard curve, and standard 

zero (point 0,0) was also included in the curve. Individual enzyme activities were calculated by 

dividing the absorbances with slope of the standard curve and then multiplying with the dilution 

factor. 
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4. Results 

4.1 Bioconversion of the lignocellulose substrate mixtures by the fungus  

Phlebia radiata 79 was cultivated on a mixtures of lignocellulose substrates to evaluate fungal 

ability to use the lignocellulosic waste materials for hyphal growth as carbon, nutrient and energy 

source, and to evaluate the fungal bioconversion efficiency to valuable end products, especially 

ethanol. 

4.1.1 Mixture of barley straw and spent brewery barley mash 

The fungus was capable of growing on barley straw and spent brewery barley mash subsequently 

converting them into fermentable sugars like glucose and producing various metabolites involving 

ethanol, glycerol, and acetate (Figure 4 and Figure 5). In anaerobic cultures, ethanol accumulation 

was 34 mmol/l, 88 mmol/l, 68 mmol/l and 67 mmol/l on cultivation weeks 1, 2, 3, and 4, 

respectively (Figure 4).  

 

Figure 4. Accumulation of ethanol, glucose, and xylose by P. radiata 79 in anaerobic, semi-aerobic and 

aerobic solid-state cultures. Solid substrate was a mixture of barley straw and spent brewery barley mash. 

Mean values of four replicate culture flasks with standard deviation (bars) are presented. D, cultivation 

day. 

In semi-aerobic cultures, detected ethanol amounts were 38 mmol/l, 90 mmol/l, 58 mmol/l, and 48 

mmol/l, at the corresponding four time-points, while not more than 14 mmol/l and 4 mmol/l of 

ethanol accumulated during the two first weeks of cultivation in the aerobic cultures. It is notable 
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that both under anaerobic and semi-aerobic conditions, the highest concentration of ethanol was 

reached on the second week of cultivation (Figure 4). 

Glucose and xylose were released to the liquid phase from the lignocellulosic substrates by 

fungal metabolic activity. The highest amount of both sugars was detected on the first week of 

cultivation in all atmospheric conditions. However, glucose concentrations were lower than 4 

mmol/l in all cases (3.5 mmol/l, 3.7 mmol/l and 3.4 mmol/l at the day-7 time-point), and xylose 

concentration was slightly lower (3.4 mmol/l, 2.0 mmol/l and 2.1 mmol/l), under anaerobic, semi-

aerobic and aerobic cultivation conditions, respectively. Sugar concentration decreased on the 

second week of cultivation in all atmospheric conditions, and only low concentrations of free 

sugars were detected at the end of the cultivation (Figure 4). 

 

Figure 5. Conversion of the mixture of barley straw and spent brewery barley mash by P. radiata 79 in 

solid-state cultures into acetate and glycerol under anaerobic, semi-aerobic and aerobic cultivation 

conditions. Mean values of four replicate culture flasks with standard deviation (bars) are presented. D, 

cultivation day. 

Acetate (as free acetic acid) was detected in the anaerobic and semi-aerobic culture flasks, 

already after the first week of cultivation (Figure 5). However, no acetate accumulated in aerobic 

culture flasks. Maximal production of acetate was detected on day-14 in both anaerobic (2.5 

mmol/l) and semi-aerobic conditions (4.3 mmol/l). Production of glycerol was limited to hardly 

detectable levels, for instance on day-7 in anaerobic (0.3 mmol/l) and semi-aerobic conditions (0.2 

mmol/l), with the highest concentration of glycerol (0.4 mmol/l) detected after four weeks of 
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cultivation under anaerobic conditions. Under aerobic conditions, no more detectable amounts of 

glycerol could be recorded after day-7, while production of acetic acid was absent throughout the 

cultivation period (Figure 5).  

4.1.2 Mixture of spruce wood sawdust and spent brewery barley mash 

On the substrate mixture of spruce wood sawdust and spent brewery barley mash, the highest 

ethanol concentrations were detected under anaerobic cultivation conditions, peaking on day-14 

time-point to 87 mmol/l, staying at the level of over 70 mmol/l until the end of cultivation (Figure 

6). In the semi-aerobic cultures, a similar production pattern for ethanol was observed, and about 

2/3 of the ethanol concentrations accumulated in comparison to the anaerobic conditions. In 

accordance, the maximum 61 mmol/ml of ethanol accumulation was detected after two weeks of 

cultivation, with about 40 mmol/l still present in the end of the cultivation (Figure 6).  

 

Figure 6. Accumulation of ethanol, glucose, and xylose by P. radiata 79 in solid-state cultures on a mixture 

of spruce wood sawdust and spent brewery barley mash under different cultivation atmospheric 

conditions. Mean values of four replicate culture flasks with standard deviation (bars) are presented. D, 

cultivation day.  

Notable is that some ethanol production was detected also in the aerobic culture flasks on 

the substrate mixture containing spruce wood sawdust. Detected ethanol concentrations were 14 

mmol/l and 2.4 mmol/l on day-7 and day-21 in aerobic cultivation (Figure 6).   
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In comparison to the bioconversion of the substrate mixture of barley straw and spent 

brewery barley mash, less free glucose and xylose was detected on the mixture of spruce wood 

sawdust and spent brewery barley mash, under all atmospheric conditions. Glucose concentrations 

less than 2 mmol/l were detectable after the first week of cultivations under aerobic, semi-aerobic 

and aerobic conditions, while almost the same very low amount of xylose (0.7 mmol/l) was 

observed during the anaerobic cultivation (Figure 6).   

Accumulation of acetate and glycerol was detected only in anaerobic and semi-aerobic 

conditions of spruce wood sawdust blended spent brewery barley mash cultivation. Similar to the 

pattern of acetate production on the substrate mixture containing barley straw, the highest 

concentrations of acetic acid to the levels of over 2.6 mmol/l (up to 3.2 mmol/l on day 28th) were 

detected under semi-aerobic conditions (Figure 7).  

 

Figure 7. Conversion of the substrate mixture of spruce wood sawdust and spent brewery barley mash by 

P. radiata 79 in solid-state cultures into acetate and glycerol under three atmospheric conditions. Mean 

values of four replicate culture flasks with standard deviation (bars) are presented. D, cultivation day. 

Under aerobic conditions, concentrations were below the detection limit. 

Under anaerobic conditions, however, more glycerol accumulated on this substrate mixture to 0.5 

mmol/l, 0.7 mmol/l, and 0.4 mmol/l after 1, 2 and 3 weeks of cultivation, respectively. Under 

aerobic conditions, no detectable amounts of acetic acid or glycerol could be recorded (Figure 7). 
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4.1.3 Mixture of birch wood sawdust and spent brewery barley mash 

The highest concentrations of ethanol production were detected on the substrate mixture of birch 

wood sawdust and spent brewery barley mash, up to the concentrations of about 108 mmol/l after 

the first and second week of cultivation under anaerobic conditions, and after the second week of 

cultivation under semi-aerobic conditions (Figure 8). Under anaerobic conditions, ethanol 

concentration also stayed at a high level (over or near to 80 mmol/l) until the end of cultivation. 

Under semi-aerobic conditions, similarly about 50 % of this amount of ethanol was still present in 

the cultures after four weeks. In aerobic cultures, 21 mmol/l and 8.2 mmol/l ethanol production 

was observed on day-7 and day-14, respectively (Figure 8). 

 

Figure 8. Accumulation of ethanol, glucose, and xylose by P. radiata 79 in solid-state cultures on substrate 

mixture of birch wood sawdust and spent brewery barley mash under different cultivation atmospheric 

conditions. Mean values of four replicate culture flasks with standard deviation (bars) are presented. D, 

cultivation day. 

Regarding the released sugars, very small amounts of glucose (less than 0.3 mmol/l) were 

detected in the culture fluids (Figure 8). Compared to glucose, more xylose (from 1.1 to 1.8 

mmol/l) was detected under aerobic and semi-aerobic conditions. Under aerobic conditions, xylose 

concentration was 1.3 mmol/l, 1.8 mmol/l, 1.5 mmol/l and 1.6 mmol/l on day-7, day-14, day-21 

and day-28, respectively, while no glucose was recorded (Figure 8).  
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Similar to bioconversion of the substrate mixtures containing either barley straw or spruce 

wood sawdust, accumulation of some acetic acid and glycerol were detected in anaerobic and semi-

aerobic cultures. Acetate concentrations of about 2.5 mmol/l at all-time points were detected under 

anaerobic conditions, while glycerol accumulated to 0.8 mmol/l on day-7, then to 0.2 mmol/l on 

day-28 (Figure 9). Under semi-aerobic conditions, acetate production fluctuated between 2.1 

mmol/l (day-7) and 3.5 mmol/l (day-28), whereas very low amount (0.2 mmol/l) of glycerol was 

detected only on day-7. As before, no production of acetic acid or glycerol were detected under 

aerobic conditions (Figure 9).  

 

Figure 9. Conversion of the substrate mixture of birch wood and spent brewery barley mash by P. radiata 

79 in solid-state cultures into acetate and glycerol under different cultivation atmospheric conditions. 

Mean values of four replicate culture flasks with standard deviation (bars) are presented. D, cultivation 

day. Under aerobic conditions, concentrations were below the detection limit. 

4.2 Enzyme activities produced on the lignocellulose substrate mixtures 

Samples for enzyme activity assays were collected four times during fungal growth on the solid 

lignocellulose substrate mixtures to monitor extracellular enzyme activities produced by the 

fungus under the three different atmospheric conditions. During this research project activity of β-

glucosidase, cellobiohydrolase and pectinase were measured.  
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4.2.1 Activities on barley straw-spent brewery barley mash  

The activity of β-glucosidase increased almost linearly until the end of the culture (day-28) under 

anaerobic and semi-aerobic conditions. β-glucosidase activity was 0.2 nkat/ml, 1.7 nkt/ml, 2.0 

nkat/ml and 2.3 nkat/ml after week 1, 2, 3, and 4, respectively under anaerobic conditions. Under 

semi-aerobic cultivation, the recorded activity was 0.5 nkat/ml, 1.7 nkat/ml, 2.5 nkat/ml and 2.6 

nkat/ml after four respective time points. β-glucosidase activity fluctuated between 0.7 nkat/ml 

(day-7) and 5.2 nkat/ml (day-28), under aerobic conditions. Activity of β-glucosidase fluctuated 

between 0.1 nkat/ml and 0.3 nkat/ml in all negative controls of different atmospheric conditions 

(Figure 10 A).  

 

                                     

Figure 10. Production of enzyme activities on the substrate mixture of barley straw and spent brewery 

barley mash under different atmospheric conditions during four weeks of cultivation. Activities of A) β-

glucosidase, B) cellobiohydrolase, and C) pectinase, are presented. Mean values of four replicate culture 

flasks with standard deviation (bars) are presented. NC= negative control; culture substrate flasks without 

the fungus.  
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CBH activity enhanced linearly until the end time point (day-28) of all cultivations and 

CBH activity under aerobic conditions was always dominant. Under anaerobic conditions, CBH 

activity was between 0.02 nkat/ml (day-7) and 0.2 nkat/ml (day-28), while highest activity was 0.3 

nkat/ml after 4 weeks of cultivation under semi-aerobic conditions. CBH activity was 0.03 nkat/ml, 

0.3 nkat/ml, 0.4 nkat/ml and 0.6 nkat/ml after week 1, 2, 3, and 4, respectively, under aerobic 

conditions (Figure 10 B).  

The trend of pectinase activity was similar to the result of CBH activity on barley straw 

and spent brewery barley mash substrate, and the highest activity was observed under aerobic 

cultivations of all time points. Under anaerobic cultivations, pectinase activity was 6.8 nkat/ml, 

17.9 nkat/ml, 17.4 nkat/ml and 20.6 nkat/ml, on day-7, day-14, day-21, and day-28, respectively. 

Under semi-aerobic conditions, activity was between 13.3 nkat/ml (day-7) and 26.3 nkat/ml (day-

28). Pectinase activity was 14.0 nkat/ml, 26.6 nkat/ml, 42.3 nkat/ml, and 83.1 nkat/ml in 

corresponding four time points under aerobic cultivations. The recorded pectinase activity of 

negative controls (lignocellulose substrates without fungus) in all cultivation conditions were 

between 0.4 nkat/ml and 2.6 nkat/ml (Figure 10 C).  

4.2.2 Activities on spruce wood sawdust-spent brewery barley mash  

β-glucosidase activity was very low in spruce wood sawdust cultivation and fluctuated from 0.1 

nkat/ml to 0.2 nkat/ml in all culture conditions. The highest activity 0.22 nkat/ml was recorded on 

day-14 under anaerobic cultivation, which reduced to 0.14 nkat/ml on day-21 and again increased 

to 0.18 nkat/ml.  In semi-aerobic cultivation, except day-21 (0.17 nkat/ml) β-glucosidase activity 

was around 0.1 nkat/ml in all other time points. Surprisingly, activity was much lower under 

aerobic cultivations with the highest value of 0.16 nkat/ml on day-28 (Figure 11 A).  

No detectable CBH activity was recorded during the first and second weeks of cultivations 

in all conditions. On day-21, measured activity was 0.03 nkat/ml in both anaerobic and semi-

aerobic cultivations, while detected CBH activity was 0.04 nkat/ml in aerobic cultivation. CBH 

activity was increased rapidly to 0.7 nkat/ml under aerobic conditions on day-28 (Figure 11 B).  

The trend of pectinase activity was similar to the previous cultivation with barley straw, 

and pectinase activity was dominant under aerobic conditions. The activity was between 2.3 

nkat/ml and 5.4 nkat/ml in both anaerobic and semi-aerobic conditions during the whole 

cultivation period. Pectinase activity was 12.1 nkat/ml, 30.3 nkat/ml, 40.3 nkat/ml and 81.6 
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nkat/ml on day-7, day-14, day-21 and day-28, respectively, under aerobic conditions (Figure 11 

C).   

 

                                      

Figure 11. Production of enzyme activities on the substrate mixture of spruce wood sawdust and spent 

brewery barley mash under different atmospheric conditions during four weeks of cultivation. Activities 

of A) β-glucosidase, B) cellobiohydrolase, and C) pectinase, are presented. Mean values of four replicate 

culture flasks with standard deviation (bars) are presented. NC= negative control; culture substrate flasks 

without the fungus.   

4.2.3 Activities on birch wood sawdust-spent brewery barley mash  

The activity of β-glucosidase on birch wood sawdust and spent brewery barley mash was 

remarkably low and was reduced during the first two weeks of cultivation in all conditions. In 

anaerobic cultivation, activity was about 0.13 nkat/ml on day-7 and day-14, which dropped to 0.05 

nkat/ml on day-21 and again raised to 0.09 nkat/ml on day-28. β-glucosidase activity was about 

0.1 nkat/ml during the whole semi-aerobic cultivation, except a certain drop on day-28 (0.04 

nkat/ml). under aerobic cultivation, β-glucosidase activity fluctuated between 0.12 (day-7) and 

0.03 nkat/ml (day-21) (Figure 12 A).    
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Among all three cultivations, the lowest CBH activity was recorded from birch wood 

sawdust blended spent brewery barley mash cultures. In anaerobic condition, CBH activity was 

about 0.02 nkat/ml in all-time point except time-point day-7 (0.01 nkat/ml). Highest activity 0.05 

nkat/ml was recorded on day-21 under semi-aerobic cultivation, while both in the second and 

fourth week of cultivation, the activity was 0.03 nkat/ml. Lowest CBH activity was observed under 

aerobic cultivation, which vacillated between 0.001 nkat/ml and 0.01 nkat/ml (Figure 12 B).   

 

                                   

Figure 12. Production of enzyme activities on the substrate mixture of birch wood sawdust and spent 

brewery barley mash under different atmospheric conditions during four weeks of cultivation. Activities 

of A) β-glucosidase, B) cellobiohydrolase, and C) pectinase. Mean values of four replicate culture flasks 

with standard deviation (bars) are presented. NC= negative control; culture substrate flasks without the 

fungus.   

Compared to β-glucosidase and CBH, pectinase activity was prominent on birch wood 

sawdust and spent brewery barley mash substrate. Pectinase activity was about 5.5 nkat/ml under 

anaerobic condition during the whole cultivation period with a drop of activity to 1.8 nkat/ml on 

day-21. Highest pectinase activity 23.2 nkat/ml was observed under semi-aerobic conditions and 

activity fluctuated between 8.3 (day-7) nkat/ml and 23.2 nkat/ml (day-28). Pectinase activity was 
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10.9 nkat/ml, 18.7 nkat/ml, 8.4 nkat/ml and 13.3 nkat/ml on day-7, day-14, day-21 and day-28, 

respectively, under aerobic cultivation (figure 12 C). 

4.3 Optimization of pectin degradation assay on 96-microwell plate scale 

Different reaction temperatures with various incubation times were tested, and absorbances were 

recorded for the optimization of pectin degradation enzyme (pectinase) activity using 

polygalacturonic acid (PGA) as substrate. The highest absorbance values were observed samples 

taken from aerobic, semi-aerobic and anaerobic cultures, after incubating the reaction mixtures for 

15 minutes at 30 °C (Figure 13 A).  

 

 

Figure 13. Optimization of incubation time and temperature of pectinase assay with 60 μl substrate and 

30 μl of each sample. Samples are from barley straw and spent brewery barley mash cultivation of day-28 

time point, incubated under the three variant atmospheric conditions. (A= incubation temperature 30 °C; 

B= incubation temperature 35 °C; C= incubation temperature 40 °C and D= incubation temperature 45 

°C). NC= negative control, culture substrate flasks without the fungus.  

After 10 minutes incubation, the absorbances were 0.8, 0.2 and 0.17, respectively in 

aerobic, semi-aerobic and anaerobic samples. Reaction temperature was increased to 35 °C, 40 °C 

and 45 °C with same incubation time (15 minutes) to monitor the changes in absorbances and 

30 °C 35 °C 

40 °C 
45 °C 
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elevated absorbance values were recorded in all cases. The highest absorbances 1.5, 0.6 and 0.5 

were recorded samples taken from aerobic, semi-aerobic and anaerobic cultures, respectively after 

incubating them for 15 minutes at 45 °C (Figure 13 D). In all these four cases, 60 μl substrate and 

30 μl of the sample solution was used (Figure 13). 

Later, the sample amount was reduced to 20 μl and used only samples from aerobic 

condition with extended incubation time (2.5 to 30 minutes) and the substrate amount was 60 μl 

(Figure 14). Absorbances were 0.3 and 0.7 after 5 minutes incubation, while absorbances were 0.8 

and 1.1 after 15 minutes incubation at 30 °C and 45 °C, respectively. Highest absorbance 1.4 and 

2.2 were recorded after incubating for 30 minutes at 30 °C and 45 °C, whereas absorbances were 

1.1 and 1.8, for 25 minutes incubation at 30 °C and 45 °C, respectively. These absorbances were 

measured without standard solution (Figure 14).  

 

Figure 14. Optimization of incubation time and temperature (30 °C and 45 °C) of pectinase assay with 60 

μl substrate and 20 μl of the sample. Samples are from barley straw and spent brewery barley mash 

cultivation of day 28, incubated under aerobic conditions. NC= negative control, culture substrate flasks 

without the fungus. 

 

Subsequently, pectinase activity was measured using the standard solution at 30 °C and 40 

°C with incubation time 15 minutes and 10 minutes, respectively (Figure 15). For 15 minutes 

incubation at 35 °C detected pectinase activity was 19 nkat/ml, 32 nkat/ml and 77 nkat/ml for 

samples taken from aerobic cultivations on day-14, day-21 and day-28, respectively (Figure 15 A). 
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Figure 15. Activity of pectinase with different incubation times and temperatures. Samples are from barley 

straw and spent brewery barley mash cultivation of different time-points. (A= 15 minutes incubation at 

35 °C and B= 10 minutes incubation at 40 °C). NC= negative control, culture substrate flasks without the 

fungus.  

Pectinase activity increased linearly from 7 nkat/ml (day-7) to 33 nkat/ml (day-28) in semi-aerobic 

condition, while activity was between 6 nkat/ml (day-7) and 28 nakt/ml (day-21) in anaerobic 

culture samples (Figure 15 A). 

For 10 minutes incubation at 40° C, pectinase activity was 25 nkat/ml, 45 nkat/ml and 67 

nkat/ml for samples taken from aerobic cultivations on day-14, day-21 and day-28, respectively. 

Similar trends of pectinase activity were detected in semi-aerobic and anaerobic culture samples 

(Figure 15 B). Notable is the steady increase in enzyme activity until the end of cultivations, 

indicating on-going or even promoted enzyme expression in the fungus (Figure 15).  
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5. Discussion 

This study was performed to evaluate the potential of second-generation bioethanol production at 

different atmospheric conditions from waste lignocelluloses by the white-rot fungus Phlebia 

radiata isolate 79. Second-generation bioethanol production was chosen because feedstock for this 

approach is sustainable and available as waste material in large quantities compared to first-

generation feedstocks. In addition, production and utilization of second-generation bioethanol is 

environment-friendly as well as ethically accepted because of the non-edible nature of the 

lignocellulose biomass (Farrell et al., 2006; Lennartsson et al., 2014).  

First-generation bioethanol is produced by direct fermentation of starchy materials 

including sugarcane, corn, barley, potato waste, and other food crop feedstock (Buijs et al., 2013). 

On the other hand, second-generation bioethanol is produced by applying non-food and non-feed 

plant biomass-based feedstocks, such as wood and non-wood lignocelluloses and agricultural 

wastes, which are at first subjected to pretreatments like steam explosion and chemical hydrolysis 

prior to fermentation of the released carbohydrates. Generally, external cellulases and other 

enzymes are used for commercial hydrolysis processes of lignocellulose substrates, and the 

generated sugars are fermented by yeasts or bacteria in bioethanol production (Kricka et al., 2014). 

This two-step process hinders the industrial goal to produce bioethanol using single 

microorganisms capable of producing biomass hydrolyzing enzymes and fermenting the released 

sugars to bioethanol through consolidated bioprocessing (CBP) (Kricka et al., 2015).  

CBP was the chosen strategy for bioconversion in this study as it does not require the 

pretreatment steps which may lead to sugar losses and lower yield of ethanol produced as well as 

increase in the reactor and associated equipment costs (Alvira et al., 2010). Physical size reduction 

of the solid substrate materials increases microbial accessibility and thus, decreases the 

crystallinity of the substrate which favors the overall fermentation process (Chiaramonti et al., 

2012). Therefore, the lignocellulose biomasses adopted in this study (barley straw, and spruce and 

birch wood sawdust) were cut or sawn into small pieces, and the additional substrate (SBBM, spent 

brewery barley mash) was dried and milled to fine powder to increase the accessible surface area.   

Lignocellulose hydrolysis generates various hexose and pentose sugars, while only a small 

number of yeast species can metabolize pentoses such as xylose and arabinose. In addition, wild-

type and industrially used Saccharomyces species isolates grow very slowly on a medium 

containing xylose or arabinose as the only carbon source (Wenger et al., 2010). Therefore, the 
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filamentous Basidiomycota fungus P. radiata 79 was selected as the fermentative organism instead 

of yeast for CBP. Several fungal species such as the Ascomycota yeasts of the genera Candida and 

Pichia, as well as the species Arxula adeninivorans and Debaryomyces hansenii can metabolize 

pentoses like arabinose (Madhavan et al.,2012). Accordingly, the yeast species Pichia stipitis, 

Candida shehatae, and Pachysolen tannophilus can metabolize xylose naturally (Agbogbo et al., 

2006). 

The baker’s yeast S. cerevisiae is not able to secrete an adequate array of lignocellulosic 

biomass hydrolyzing enzymes to generate sugars. Addition of a little amount of glucose at the 

beginning of fermentation usually accelerates the growth of S. cerevisiae to produce cellulases. 

However, cellulase encoding genes are repressed by high concentrations of glucose (Kricka et al., 

2015). As studied recently, the selected fungus P. radiata 79 does not require any external sugar 

for its growth and development upon CBP on lignocelluloses and lignocellulosic wastes (Mattila 

et al., 2017; Mattila et al., 2018). This fungus is capable of hydrolyzing lignocellulosic biomass 

without any pretreatment, and thereby, it produces significant amounts of ethanol through 

fermentation of the released sugars (Table 3). 

Table 3. Ethanol production potentiality by decomposition and fermentation of different lignocellulosic 

substrates performed by phlebioid white rot fungi. Present study was compared to published studies with 

similar cultivation conditions and approaches. BS= barley straw; BW= birch wood sawdust; SBBM= spent 

brewery barley mash; SW= spruce wood sawdust.  

Substrate Ethanol yield/ 

Substrate (g/100 g) 

Fungal isolate Duration 

(days) 

Reference 

BS+SBBM 5.3 P. radiata 79 14 Present study 

SW+SBBM 3.4 P. radiata 79 14 Present study 

BW+SBBM 4.1 P. radiata 79 14 Present study 

BW+SBBM 10.1˟ P. radiata 79 14 (Mattila et al., 2018) 

Core board 10.4 P. radiata 79 9 (Mattila et al., 2017) 

Newspaper 20 Phlebia sp. MG-60 9 (Kamei et al., 2012) 

Rice straw 9.9 Phanerochaete 

chrysosporium 

19 (Bak et al., 2009) 

˟ concentration was given in g/l 
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Oxygen is essential for respiration and growth of wood-decay fungi, and it is also assumed 

that aeration and oxygen availability favor enzymatic radical-based degradation reactions during 

lignocellulose decomposition ( Kirk & Farrell, 1987; Lundell et al., 2014). In this research project, 

three conditions involving anaerobic, semi-aerobic and aerobic cultivations were chosen to 

investigate the effects of atmospheric conditions on lignocellulose decomposition and ethanol 

production by the white rot fungus P. radiata 79. 

Proteome and transcriptome of the fungus  P. radiata 79 was previously examined on 

spruce wood, while capability of lignin attacking and CAZyme activities were also detected 

(Kuuskeri et al., 2015; Kuuskeri et al., 2016). In addition, the fungus is able to produce a significant 

amount of ethanol on different lignocellulose substrates also in larger scale bioreactors (Mattila et 

al., 2018).  In this research project, the CBP ability of the fungus was conducted on solid-state 

cultures of mixtures of spent brewery barley mash (SBBM, 1/4 of the substrate total mass) blended 

with several lignocellulosic waste materials (Table 3).  

Compared to previous results, less ethanol accumulated in yield (30% to 50% of the 

previous yield and concentrations) in this study than previously with the same fungus (Table 3). 

This experiment was conducted to find out the suitable lignocellulose substrate combinations for 

ethanol production. The substrate mixture containing barley straw (3/4 of the total mass) and spent 

brewery barley mash (1/4 of the total mass) was the best solid substrate combination for P. radiata 

79 in this respect. Birch wood with spent brewery barley mash was also a potential mixture for 

ethanol production by the fungus (Table 3). 

P. radiata 79 was capable of decomposing the waste lignocellulose mixtures under 

different atmospheric conditions (nitrogen gas flushed anaerobic, semi-aerobic, and aerobic 

atmospheres). HPLC results demonstrated that changes in the atmospheric conditions generated 

by nitrogen gas flushing caused direct effects on production of bioethanol and fermentation by-

products (acetate and glycerol). One assumption was that the presence of oxygen would allow 

activity of oxidoreductive enzymes secreted by the fungus, thus favoring more efficient 

decomposition of wood lignocellulose components under semi-aerobic and aerobic conditions. 

In this study, ethanol production under anaerobic conditions was always dominant 

compared to semi-aerobic or aerobic conditions and ethanol accumulation started to decline or 

dropped on the third week of fermentation. These findings imply that ethanol production and 

fermentation occurred until third week of cultivation under above-mentioned cultivation 
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conditions, while the presence of atmospheric oxygen levels affected fermentation negatively. 

Most likely, the presence of oxygen under aerobic conditions initiated oxidation of the produced 

ethanol to acetate ultimately decreasing ethanol yield. It may be assumed that enzymatic 

decomposition of solid lignocelluloses and the consumption of released soluble sugars by wood-

decay fungi is a simultaneous process. Therefore, interpretation of sugar consumption and 

bioethanol accumulation was challenging. 

More acetate with a little amount of glycerol was detected under anaerobic and semi-

aerobic conditions on all substrate mixtures during the cultivations. Through ethanol fermentation, 

yeast (S. cerevisiae) cells re-generate NAD+ by reducing acetaldehyde to ethanol, while the 

opposite reaction oxidation of acetaldehyde to acetate will produce NAD(P)H thus leading to redox 

imbalance under anaerobic and fermentative conditions (Wei et al., 2013). Most likely, a certain 

amount of ethanol was converted to acetate and therefore, ethanol accumulation decreased after 

the third week of cultivation. On the other hand, glycerol is generated naturally by S. cerevisiae 

yeast cells during fermentation to oxidize excess NADH to NAD+ and thus support the cellular 

redox balance (Bideaux et al., 2006). Little amount of glycerol was also detected under anaerobic 

and semi-aerobic cultivations in this study. This by-product can also be used for the generation of 

fuels and chemicals, and for instance, glycerol may serve as fermentation substrate for microbes 

to produce ethanol (Yazdani & Gonzalez, 2007). 

Activity of enzymes on wood degradation and accumulation of fermentation metabolites 

by P. radiata 79 was examined at different atmospheric oxygen concentrations to identify suitable 

cultivation conditions for ethanol production. Addition of atmospheric oxygen favors oxidative 

processes and ultimately increases lignin degradation by white rot fungi (Kamei et al., 2014). In 

this study, elevated activity of β-glucosidase, cellobiohydrolase, and pectinase were recorded 

under aerobic conditions on all substrate mixtures, which indicates that presence of oxygen may 

increase the production of fungal secreted enzymes.  

White rot Polyporales species of fungi have the potentiality to produce cellulose-degrading 

enzymes (activities including β-glucosidase, endoglucanase and CBH), and are able to degrade 

lignocellulose substrates (Kuuskeri et al., 2016; Zhu et al., 2016). Highest β-glucosidase and CBH 

activities were detected on the mixture of barley straw and SBBM under aerobic conditions. On 

spruce wood and birch wood sawdust mixed with SBBM, however, activities of β-glucosidase and 

CBH were quite low. These lower activities may be either due to limited expression and secretion 
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of the enzymes or due to inhibition of cellulases by lignin degradation products (Berlin et al., 2006; 

Rahikainen et al., 2013). One explanation may be glucose repression suppressing transcriptional 

expression of the respective CAZyme encoding genes (Niku-Paavola et al., 1990; Mäkinen et al., 

2018). In addition, P. radiata 79 showed lower activities of cellulolytic enzymes compared to 

lignin-modifying oxidoreductases in solid-state cultures on spruce wood slices (Kuuskeri et al., 

2016).  

Another part of this research and study was to establish an enzyme assay method for pectin 

degradation and conversion. Optimization of this assay was conducted by following the established 

DNS-based enzyme assay methods. After optimization, this 96-well mediated assay was used for 

pectinase activity measurement of liquid samples from all cultivations. The non-cellulosic 

polysaccharide pectin which is characterized by its galacturonic acid backbone, is mainly located 

at wood primary cell walls and middle lamellae (Caffall & Mohnen, 2009). Basidiomycota fungi 

are a potential source of novel pectinases with unique properties such as polygalacturonase, β-1,4-

endogalactanase, rhamnogalacturonan hydrolase, pectin methyl esterase and rhamnogalacturonan 

lyase, all enzymes required for complete pectin modification and degradation (Rytioja et al., 2014). 

In this study, P. radiata demonstrated significant enzymatic activity of pectin degradation. 

The highest pectinase activity (83 nkat/ml) was recorded under aerobic conditions on barley straw-

SBBM substrate mixture. In comparison, the Ascomycota fungus Fusarium moniliforme NCIM 

1276 produces increased amounts of polygalacturonase and pectate lyase enzymes in solid-state 

cultures compared to liquid cultivations (Niture & Pant, 2004). Interestingly and accordingly, 

pectin-degrading enzyme activity of P. radiata 79 was detected on all lignocellulose substrate 

mixtures. 

As part of the pectinase assay optimization, initial goal was to detect the highest 

temperature to reach saturated plateau phase of enzyme activity within the 15 minutes incubation 

time. Different temperatures ranging between 30 °C and 45 °C were tested. It is known that fungal 

secreted polygalacturonases perform better catalytic activity on neutral or acidic conditions with 

an incubation temperature between 40 °C and 60 °C (Pedrolli et al., 2009). For instance, PG 

enzymes from Aspergillus niger (Dinu et al., 2007) and F. moliniforme (Endo-PG II) (Niture & 

Pant, 2004) show optimal activity at 40 °C. Endo-PG secreted by Mucor flavus (Gadre et al., 2003) 

and Rhizopus oryzae  also perform better pectinolytic activity at 45 °C (Saito et al., 2004).   
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In addition, 40 °C incubation temperature was used in a previous study to measure PG 

activity (Dinu et al., 2007). Therefore, in this study, 40 °C was selected as the incubation 

temperature for P. radiata 79 secreted pectinase activity assay. Sample amount was decreased 

from 30 μl to 20 μl, mainly to dilute potential inhibitors and background sugars present in the 

samples, thus also allowing more of available substrates for the enzymes. Pectinase activity was 

increasing linearly at 40 °C during the first 10 minutes of incubation. Most likely this incubation 

time and temperature were adequate for enzyme-substrate saturation before reaching the stationary 

phase. Therefore, these experimental parameters (temperature 40 °C and incubation time 10 

minutes) were chosen for pectinase activity assay throughout the study.   

Finally, it can be concluded that composition of the solid waste lignocellulose substrate 

mixture affected enzyme production by the fungus, whereas production of ethanol was mainly 

controlled by the cultivation atmosphere. 
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6. Conclusions 

The results of this research demonstrated that P. radiata 79 can grow on different lignocellulosic 

substrates under different atmospheric conditions, while converting the substrates into fermentable 

sugars to produce various metabolites involving ethanol, glycerol, and acetate through 

fermentation. In all cases, ethanol accumulation was always dominant under anaerobic conditions 

as well as under semi-aerobic conditions. In addition, this fungus is capable of producing a wide 

number of carbohydrate active enzymes (CAZyme) with varying activities on different substrates. 

Maximal activity of β-glucosidase, cellobiohydrolase, and pectinase was recorded under aerobic 

conditions compared to anaerobic and semi-aerobic conditions on all substrate mixtures. From 

overall findings, anaerobic conditions favored accumulation of fermentation metabolites, 

especially ethanol, and presence of oxygen under aerobic conditions accelerated production of 

CAZyme activities which supports the initial hypotheses of this research. It might be concluded 

that an optimal amount of oxygen is needed for proper CAZyme activity secreted by fungus for 

both lignocellulose decomposition and bioethanol production. Significant amount of ethanol 

accumulation and enzyme activity detection under semi-aerobic conditions also supports our 

hypotheses. Fruitful outcome of these experiments will contribute to the industrial production of 

second-generation biofuels. However, further research is recommended for the biotechnological 

application of this fungus for bioethanol production and optimization of oxygen requirements for 

proper enzyme activity.  
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