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Plant-water relationships are strong across the 
tundra. Soil moisture and its spatial variation 
are controlled by the soil characteristics and 
topographic features in the landscape, but 
also by the abundance of woody plants. Water 
conditions affect vegetation across species 
groups, from individuals to the communities. 
This knowledge unravels the importance 
of soil moisture in a vulnerable ecosystem 
undergoing rapid changes.

I am a soil moisture enthusiast to the core 
and a plant lover at heart. In my PhD, I first 
modelled soil moisture, then analysed plant-
water relationships and finally used plants to 
model soil moisture. Now me, soil moisture 
and the tiny tundra plants have come full 
circle in this exciting Arctic adventure.
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Abstract

Water is fundamental for plant life, as it affects 
the growth, survival, and spatial patterns of 
vegetation. Here, I explored soil moisture and 
its ecosystem effects to answer: 1) What controls 
soil moisture variation? 2) How is water linked 
to vegetation? 3) Do plants influence water 
resources? I focused on the moisture of the top-
soil layer (0 – 10 cm) in Fennoscandian mountain 
tundra.

First, I evaluated environmental conditions 
controlling soil moisture variation. I used 
different modelling methods (generalized linear 
models, generalized additive models, generalized 
boosted regression models, and random forests) 
to account for the uncertainties related to each 
multivariate technique. On average, the model fit 
was R2 = 0.60 and the predictive performance R2 
= 0.47. The spatial variation of soil moisture was 
most related to a topographic proxy of soil water 
accumulation and the depth of the organic soil 
layer. These results demonstrated that moisture 
can be modelled using topography and soil data.

Secondly, I examined the influence of three 
water aspects (spatial and temporal variation 
of soil moisture, and fluvial disturbance) on 
vascular plants, mosses, and lichens. I used 
species distribution modelling, a framework 
for analysing the spatial patterns of species in 
relation to the environment. The species groups 
were most related to the spatial variation of soil 
moisture, albeit species had diverse responses. In 
general, water is not scarce in the tundra, yet the 
water aspects improved the models highlighting 
water as a multifaceted driver of the ecosystem. 

In addition, I investigated if plant-environment 
relationships were universal in the tundra. Here, 
I used hierarchical generalized additive models 
to compare sites across the hemispheres. I 
combined plant trait records with data on their 
environmental drivers. The local variation of 
conditions within the sites was overridden by 
global relationships indicating that these links are 
generalisable across the tundra sites. The results 
provide empirical evidence for a fundamental 
assumption in community ecology: consistent 
plant-environment relationships.

Last, I introduced plants to my first question 
regarding controls of soil moisture. I considered 
other factors potentially influencing vegetation 
and soil conditions by using structural equation 
modelling, a theory-based hierarchical modelling 
technique. Woody plants correlated negatively 
with soil moisture, soil temperature, and soil 
organic carbon stocks (standardised coefficients 
= -0.16; -0.22; -0.27). As the abundance of 
woody plants increases, they feedback into the 
climate system through the water, energy, and 
carbon cycles.

To conclude, plant-water relationships are 
strong across the tundra. Soil moisture and 
its spatial variation are controlled by the soil 
characteristics and the topographic features in 
the landscape, but also by the abundance of 
woody plants. Water conditions affect vegetation 
across species groups, from individuals to the 
communities. This knowledge unravels the 
importance of soil moisture in a vulnerable 
ecosystem undergoing rapid changes.

Kemppinen J., 2020. Soil moisture and its importance for tundra plants. Department of Geosciences 
and Geography A82. 32 pages and 6 figures.
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Abstract in Finnish

Vesi on välttämätöntä elämälle, myös kasveille. 
Vesi vaikuttaa kasvillisuuden kasvuun, 
eloonjääntiin ja alueelliseen esiintyvyyteen. 
Tässä väitöskirjassa tutkin maaperän kosteutta 
ja sen vaikutuksia paljakkaekosysteemiin 
vastaamalla seuraaviin kysymyksiin: 1) Mikä 
vaikuttaa maaperän kosteuden vaihteluun? 
2) Kuinka vesi kytkeytyy kasvillisuuteen? 
3) Vaikuttavatko kasvit vesiresursseihin? 
Tutkimuksissani tarkastelin pintamaan (0 – 10 
cm) kosteutta Fennoskandian tunturipaljakalla.

Väitöskirjani ensimmäisessä osassa tutkin 
kosteuden säätelijöitä. Käytin useita tilastollisia 
mallinnusmenetelmiä (yleistä lineaarista 
mallia, yleistä additiivista mallia, yleistettyä 
luokittelupuu menetelmää ja satumetsää), 
sillä kaikissa on omat epävarmuustekijänsä. 
Keskimäärin mallin istuvuus oli R2 = 0.60 ja 
ennustuskyky R2 = 0.47. Kosteuden alueellista 
vaihtelua sääteli eniten pinnanmuotoihin 
perustuva kosteusindeksi ja turpeen paksuus. 
Tulokset osoittavat, että kosteutta voi mallintaa 
topografia- ja maaperäaineistolla.

Toisessa osassa tarkastelin kolmea 
vesimuuttujaa (kosteuden alueellista ja 
ajallista vaihtelua sekä veden aiheuttamia 
häiriöitä) ja niiden vaikutusta putkilokasveihin, 
sammaleisiin ja jäkäliin. Käytin lajimallinnusta, 
joka on kehitetty lajien ja niitä säätelevien 
tekijöiden alueelliseen tarkasteluun. Kolmesta 
vesimuuttujasta kaikkia lajiryhmä sääteli eniten 
kosteuden alueellinen vaihtelu. Vesimuuttujat 
paransivat malleja, mikä osoittaa, että vesi 
vaikuttaa suuresti paljakkaekosysteemissä, 
missä vedestä ei yleensä ole pulaa. 

Lisäksi tutkin kasvien ja ympäristön välistä 
suhdetta ja sen yleistettävyyttä paljakalla. 
Käytin hierarkkista yleistä additiivista 
mallia vertaillakseni alueita kummaltakin 
pallonpuoliskoilta. Tarkastelin kasvien 
toiminnallisten ominaisuuksien säätelijöitä. 
Paikallista ympäristövaihtelua merkittävämpää 
oli kasvien ja ympäristön johdonmukainen suhde. 
Tulokset osoittavat todeksi yhden toiminnallisen 
ekologian tärkeimmistä olettamuksista: kasvien 
ja ympäristön suhde on yleismaailmallinen.

Viimeisessä osassa palasin ensimmäiseen 
kysymykseeni kasvien kera. Käytin 
rakenneyhtälömallia, joka on teoriaperusteinen 
hierarkkinen menetelmä ja mahdollistaa 
taustamuuttujien huomioimisen. Puuvartinen 
kasvillisuus korreloi negatiivisesti maaperän 
kosteuden, maaperän lämpötilan ja maaperän 
eloperäisen hiilivaraston kanssa (standardoidut 
kertoimet = -0.16; -0.22; -0.27). Kun paljakka 
ympäristö pensastuu, puuvartinen kasvillisuus 
tulee vaikuttamaan ilmastoon veden, energian 
ja hiilen kierron kautta.

Johtopäätökseni on, että kasvien ja veden välinen 
vuorovaikutussuhde on voimakas paljakalla. 
Maaperän kosteus ja sen alueellinen vaihtelu 
on maaperän ja pinnanmuotojen säätelemää, 
mutta myös puuvartinen kasvillisuus säätelee 
sitä. Vesiolot vaikuttavat kasvillisuuden eri 
lajiryhmiin, niin yksilöihin kuin yhteisöihin. 
Tämä tieto korostaa kosteuden merkitystä 
herkässä ekosysteemissä, jota koettelevat suuret 
mullistukset.
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1 Introduction

Water is pivotal for life on planet Earth. In climate 
change impact studies, the importance of water 
is often underestimated in tundra environments 
(le Roux et al. 2013). Nevertheless, climate 
change will significantly affect the hydrosphere 
and cryosphere of these systems (Fountain et 
al. 2012, Bring et al. 2016). As temperature, 
precipitation, ice, snow, permafrost, and the 
overall hydrological conditions are changing in 
the tundra, plant-available water is also likely 
to change (Barnett et al. 2005, Blankinship et 
al. 2014). Thus, in a warmer future, plant-water 
relationships will be more important than ever 
(McLaughlin et al. 2017, Robinson et al. 2019).

Knowledge on soil moisture and its spatial 
and temporal variation is crucial for ecosystem 
research. Water affects the growth, survival, and 
spatial patterns of vegetation (Whittaker 1972, 
Franklin et al. 2016). Yet, in the tundra, the 
influence of fine-scale distribution of moisture 
on terrestrial vegetation characteristics is a 
pronounced research gap in ecology (Hodkinson 
et al. 1999, Crimmins et al. 2011, Silvertown et 
al. 2015, McLaughlin et al. 2017).

1.1 Objectives
A major motivation for this thesis is global 
environmental change (Seddon et al. 2016), 
which is particularly rapid (Post et al. 2019) and 
strongly connected to soil moisture across the 
tundra regions (Winkler et al. 2016, Robinson 
et al. 2018, Saros et al. 2019). Here, plant-water 
relationships must be thoroughly investigated. 
Tundra ecosystems also provide an ideal 
environment for testing ecological hypotheses 
and exploring complicated questions (French and 
Smith 1985). It is a rather simple ecosystem with 
relatively few species and due to its remoteness, 
human impact on soil, water, and plants is low.

In the tundra, important issues regarding 
plant-water relationships calls for investigation. 
Firstly, the fine-scale spatial variation of soil 
moisture influenced by the landscape factors 
are rarely quantified (Robinson et al. 2008, 
Korres et al. 2015). Secondly, the role of plant-
available water shaping the spatial distributions 
and functional traits of tundra plants requires 
evaluation (Crimmins et al. 2011, le Roux et 
al. 2013, Bjorkman et al. 2018a). Lastly, the 
significant impact of plants on water resources 
must be addressed in examining plant-water 
relationships (Aalto et al. 2013, Robinson et al. 
2019).

Here, I dig deep into the complex plant-
water relationships to provide insights to 
urgent scientific concerns. I explored surface 
soil moisture (< 10 cm) and its importance for 
tundra plants as I seeked answers to my questions 
(Table 1).

1.2 Soil moisture
Soils are the interface on the life-sustaining 
critical zone (Lin 2010, Banwart 2011, Kirkby 
2016). Soil moisture is an important storage of 
water and a key component of the hydrological 
cycle (Figure 1) (Western et al. 2002, Legates 
et al. 2011), although this liquid or frozen water 
stored in soils constitutes a minor proportion of 
all water (Shiklomanov 1993). Soil moisture is 
affected by water fluxes between the soils, biota, 
and climate that influence, for instance, surface 
runoff, transpiration, and precipitation (Figure 
1) (Huggett et al. 2002). In addition, terrain 
ruggedness and other landscape characteristics 
play a major role in controlling the hydrological 
cycle of the ecosystem, particularly in mountain 
tundra.

Soil moisture is an integrative and unifying 
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theme in physical geography, as it is in 
the intersection of climatology, hydrology, 
geomorphology, and biogeography (Figure 
1) (Legates et al. 2011). It influences land-
atmosphere fluxes, runoff generation, landscape 
denudation, and the establishment of vegetation. 
In turn, the abiotic and biotic factors also shape 
the spatial and temporal variation of soil moisture 
through example evaporation, precipitation, 
drainage, and transpiration (Figure 1).

Soil moisture may vary across scales (Figure 
2) (Engstrom et al. 2005, Seneviratne et al. 
2010, Korres et al. 2015), due to factors of 
multiple scales controlling the lateral and vertical 
movement of water in soils (Robinson et al. 
2008). Planetary scale factors determine global 
and continental precipitation and evaporation, 
whereas at the fine scale, local factors are more 
significant for soil moisture (Grayson et al. 1997, 
Wilson and Gallant 2000, Korres et al. 2015). 

For instance, local distribution of soil water is 
influenced by the physical soil characteristics, 
terrain ruggedness, and the overlaying vegetation 
(Crave and GascuelOdoux 1997, Western et al. 
2002).

Essentially, there are two ways to obtain soil 
moisture data: ground-based point-measurements 
and remotely-sensed satellite observations. The 
first represents a fine-scale approach, with the 
high support of circa 1 dm³ (depending on the 
measurement device) and has the possibility for 
frequent spacing, but a relatively limited spatial 
extent (Robinson et al. 2008) (Figure 3). The 
latter is at a broader scale, as its spatial extent may 
cover the entire land surface of the Earth, but it 
has a low support (Figure 3). However, there is a 
knowledge gap regarding the intermediate scale, 
representing, for instance, small watersheds, such 
as catchments and sub-watersheds (Crave and 
GascuelOdoux 1997, Robinson et al. 2008).

Field measured soil moisture can be 
 
Table 1. Hypotheses. The data and model structures are described in Table 2 and Table 3.  

Question Article Aims and hypotheses

1. What 
controls soil 

moisture 
variation?

I

To quantify both spatial and temporal variation of fine-scale soil 
moisture across a high-latitude landscape, as I hypothesised that 
the soil and topography properties would influence the moisture 

patterns and they would increase the predictive performance of the 
models.

2. How is 
water linked to 

vegetation?

II

To study how multiple water aspects influence fine-scale species 
distributions, species richness and community composition in the 
tundra, as I hypothesised that water would have a significant role 
in shaping assemblages of vascular plants, mosses and lichens in 

tundra.

III

To assess if there are consistent plant-environment relationships 
within and across tundra ecosystems for testing a fundamental 

hypothesis in community ecology: relationships between plants and 
environmental conditions are globally consistent.

3. Do plants 
influence water 

resources?
IV

To investigate if woody plants affect fine-scale soil properties in 
the tundra, while controlling for other influencing factors, as I 

hypothesised that woody plants would have direct effects on soil 
moisture, soil temperature, and soil organic carbon stocks.
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determined as a volumetric value, meaning that 
the volume of water is divided by the volume of 
the soil (Western et al. 2002). It is also important 
to define the soil depth that the value represents, 
as for instance, in the upper soil layers (< 50 
cm depth), water is more affected by plant-
atmosphere fluxes compared to deeper soil 
layers. Soil moisture varies over space and time, 
as it is affected by processes of different scales 
(Western et al. 2002). These scale effects must 
be carefully considered from the extent, spacing, 
and support perspectives (Figure 3).

Field-quantified, intensively spaced, and spatially 
extensive soil moisture data are expensive 
and time-consuming to collect (Famiglietti 
et al. 2008, Hájek et al. 2013, Wild et al. 
2019). Consequently, it is difficult to measure 
comprehensively in situ soil moisture at the fine 
scale on large extents (Robinson et al. 2008). 
For this reason, topography-based proxies are 
often used instead (Kopecký and Čížková 2010). 
Proxies are based on the physical characteristics 
of landscape features, as topography influences 
the flow of the surface and subsurface water 

 
Figure 1.  Soil moisture in the field of physical geography. Multiple water fluxes affect soil moisture (in blue), even 
when lateral flow (Figure 4) is minimal. Dark arrows represent strong links. Modified from Western et al. (2002) and 
Legates et al. (2011).
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Figure 3.  The scale of soil moisture. The extent  refers  to  the overall spatial or  temporal coverage of  the values. 
As spacing decreases in time or space, the amount of details increases. Support describes the area or time, over 
which homogenous conditions are assumed. In other words,  it expresses the coverage or volume, which a given 
soil moisture measurement represents. The dots represent individual measurements in space or time. Modified from 
Western et al. (2002), Kemppinen (2016).

 
Figure 2. Spatial distribution of soil moisture. The top row represents field-measured soil moisture 
variation  at  the  fine-scale.  Each  pixel  represents  1  m²  and  the  six  grids  are  located  <  200  m  apart.  The 
global  map  shows  the  remotely  sensed  distribution  of  soil  moisture  with  a  40  km  spatial  resolution.  White 
regions  on  land  are  missing  data.  Modified  from  le  Roux  et al.  (2013),  McColl  et al.  (2017),  Article II. 
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(Beven and Kirkby 1979). 
In complex topography, the slope angle and 

upslope ground-surface conditions can vary from 
one meter to another, which is reflected on the 
spatial distribution of surface water flow (Figure 
2) (Isard 1986, Crave and GascuelOdoux 1997). 
This means that slope variation is reflected in the 
availability of moisture in shallow soils in hilly 
landscapes (Figure 4) (Hoylman et al. 2018). 
Thus, topographic wetness indices provide a 
relatively realistic and accessible model of the 
general patterns of surface moisture and its 
spatial distribution (Beven and Kirkby 1979, 
Kopecký and Čížková 2010).

In addition to topography, also soil physical 
characteristics influence moisture conditions 
(Darmody et al. 2004). Soil structure and 
texture affects the water-holding capacity of the 

soil and, in turn, controls water infiltration and 
percolation (Cosby et al. 1984, Teuling and Troch 
2005, Fatichi et al. 2020). For instance, organic 
soils can store water relatively well (Figure 4) 
(Darmody et al. 2004, Legates et al. 2011), 
whereas impeding layers in the soil profile direct 
the drainage within the soil. Drainage of moisture 
through the soil layers is the main source of 
groundwater recharge (Western et al. 2002).

Besides abiotic conditions, plants also 
play an important role in soils through their 
biophysical and biochemical properties (Loranty 
et al. 2011, Parker et al. 2015, Seaton et al. 
2019). For instance, plants influence the above- 
and below-ground soil processes (Figure 4), 
such as decomposition (Cahoon et al. 2012), 
evapotranspiration (Robinson et al. 2008), soil 
water repellency (Seaton et al. 2019), and soil 

 
Figure 4.  Topography and soil properties on soil moisture. In addition to the water fluxes (Figure 1), lateral flow has 
a significant control on the spatial distribution of soil moisture in varying topography. In the higher parts of the relief, 
such as ridges and hilltops, more water (blue) is depleted due to lateral flow and drainage. This channels water into 
the lower parts of the relief, such as depressions, leading to saturation and formation of organic soils, if water and 
plant material accumulates on top of  the  impeding  layer. Organic soils (in dark grey) can store  larger amounts of 
water compared to mineral soils (light grey). In water-accumulating depressions, saturation creates anoxic conditions, 
where plant roots absorb oxygen poorly from the soil. Whereas, on well-drained ridges and slopes, plants are exposed 
to drier soils due to drying winds, higher evaporation, and soils that contain less organic material, and in turn, less 
moisture. Gradients in elevation and aspect affect the amount of water and energy that is available for plants. Overall, 
topographic complexity increases variability in the spatial distribution of soil moisture (Crave and GascuelOdoux 1997) 
and, in turn, decreases ecosystem sensitivity to climatic changes (Hoylman et al. 2018). Modified from Billings (1973), 
Western et al. (2002), (Kemppinen 2016).
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formation (Billings 1973).
Plants transpire water. Transpiration can lead 

to significant decreases in soil water storages 
during increased temperatures (Mastrotheodoros 
et al. 2020). In the tundra, plants also shade 
soils, which decreases soil temperatures, and in 
turn, decreases evaporation (Humphreys 1907, 
Graham et al. 2012, Aalto et al. 2013). In addition, 
vegetation may also influence the availability 
of soil moisture through rainfall interception 
and increase drainage in the root zone as their 
roots dig macropores into the soil (Western et 
al. 2002, Bonfils et al. 2012, Zwieback et al. 
2019). Thus, this ecohydrological aspect of plant 
influence must be accounted for in soil moisture 
investigations (Porporato and Rodriguez-Iturbe 
2002, Robinson et al. 2019, Mastrotheodoros et 
al. 2020).

1.3 Tundra
The tundra biome is characterised by its 
short growing season, which is due to the 
macroclimatic conditions of the Arctic, Antarctic 
and alpine realms (Strahler and Strahler 2005) 
(Figure 5). Towards the winter of the high-
latitudes, days get short, dark, cold, and snowy 
as solar elevation decreases and, in turn, night 
length increases (Sakai and Larcher 2012). 
Contrastingly in summer, the days are long and 
nights very short or even absent. Consequently, 
the daytime temperatures rise above 0°C degrees, 
the soil surface thaws, and plants can grow during 
this brief period of abundant resources: light, 
nutrients, and water found in its liquid phase 
(Sonesson and Callaghan 1991). 

Tundra plants and landscapes are influenced 
by frost and snow (Billings and Mooney 1968, 
Sakai and Larcher 2012). Seasonality controls 
the plant-available resources and plant-affecting 
disturbances. Most of the plant-available water is 
found in the topsoil layer supplied by precipitation, 
groundwater, melting snow patches, and thawing 

permafrost (Barichivich et al. 2014, Blankinship 
et al. 2014, Bring et al. 2016). In winter, moisture 
freezes and forms ground frost, needle ice, and 
frost-heaving (French 2007), which damages 
plants as roots are exposed and uprooted (Sakai 
and Larcher 2012). 

In spring, snow provides an abundance 
of meltwater streams, which cause fluvial 
disturbance that affects vegetation as water 
erodes and accumulates sediments on the ground 
surface (Giblin et al. 1991). Although meltwater 
is a disturbance, it also provides moisture, but 
when surface flow is excessive, waterflow may 
rip small sessile organisms from the soil or cover 
them under sediments (Giblin et al. 1991). On 
the other hand, this type of disturbance may also 
have positive effects, for instance, on specialist 
alpine vascular plants species, as they compete 
with boreal species for resources (le Roux et 
al. 2014).

Towards the end of the growing-season, 
melting snow patches provide moisture as the 
landscape dries (Barichivich et al. 2014, Winkler 
et al. 2016). However, earlier melting interrupts 
the recharge of this vital resource (Blankinship 
et al. 2014). This may lead to drying later in 
summer and forces plants under water-stress 
(Bintanja and Andry 2017, Kankaanpää et al. 
2018).

In the tundra, soil moisture and soil temperature 
have a significant negative correlation during the 
growing-season (Aalto et al. 2013). Soil moisture-
temperature relationship is crucial for the above- 
and below-ground ecosystem functions (Classen 
et al. 2015). From an abiotic perspective, a slight 
increase in soil moisture can buffer against 
enhanced freeze-thaw cycling of the top-layer 
of permafrost (Wlostowski et al. 2018). This 
negative relationship with soil temperature 
also promotes the establishment of habitats in 
favourable microclimatic conditions, which are 
referred to as refugias (Ashcroft and Gollan 2013). 
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This means that fine-scale variation of moisture 
creates microclimatic pockets or microhabitats, 
that is, the environmental conditions, which 
may shift over short distances (McLaughlin et 
al. 2017). This is reflected on the distribution of 
tundra plant communities creating mosaic-like 
patterns in the landscape (Billings 1973).

Polar tundra across the hemispheres share 
numerous similarities despite their floristic 
differences, that is, unique species pools (French 
and Smith 1985). In general, plants are relatively 

low in stature and long-living, and the main 
groups consist shrubs, dwarf shrubs, graminoids, 
herbs, mosses, and lichens.

On the global scale, tundra vascular plants 
have relatively shallow roots (Canadell et al. 
1996). However, they store most of their biomass 
below the soil surface, as only 10-50% of their 
biomass is located above-ground (Iversen et al. 
2015). Besides vascular plants of the tundra, the 
less studied species groups, mosses and lichens,  
are also affected by the spatial variation of soil 
moisture in multiple ways, although they are 

 
Figure 5.  The tundra in geographical and environmental space. The treeless biomes are underlined. Modified from 
Whittaker (1970), Woodward and Lomas (2004), Dinerstein et al. (2017).
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not as dependent on the water resources of the 
deeper soil layers (Iturrate-Garcia et al. 2016, 
Kern et al. 2019). For instance, mosses and 
lichens lack a root system and therefore, suffer 
less of mechanical disturbance, such as freezing 
and thawing of the soil (Jonasson 1986). Often, 
mosses also dominate in water-logged habitats, 
in conditions where vascular plants may suffer 
of anoxia. All in all, these three species groups 
are the cornerstones of the tundra ecosystem, 
as they are largely responsible for the primary 
production and biomass (Bjerke et al. 2011).

Soils can be divided into mineral and organic, 
depending on the amount of biological material 
in them (Strahler and Strahler 2005). The first 
is formed, when rock cracks into aggregates, 
pieces of soil material. Large aggregates form 
well drained soils, as between the particles 
remain gaps occupied by, for instances, water, 
air, and plant roots (Huggett et al. 2002). Organic 
soils are produced by microorganisms, which 
decompose dead material, such as plant litter. 
In low temperatures, soil microbial activity 
decreases, and decomposition slows down 
(Hugelius et al. 2014). Half of the global below-
ground organic carbon pool is stored in the 
tundra (Tarnocai et al. 2009). In the cool tundra 
ecosystems, thick layers of organic material build 
up onto the soils (Strahler and Strahler 2005). In 
turn, decaying may be impartial, and the partly 
decomposed plant material forms organic soil, 
such as peat (Figure 4). Peat is a porous soil 
type and it has a high water-retention capacity, 
due to its high organic content. Thus, changes in 
tundra vegetation and its decomposition process, 
and in turn, the tundra carbon budget may have 
drastic consequences to the global climate system 
(Myers-Smith et al. 2011).

Climate warming has increased the 
vegetation cover and biomass in the tundra, 
and this is referred to as greening (Forbes et al. 

2010, Normand et al. 2013, Epstein et al. 2016, 
Keenan and Riley 2018). The greening tundra 
ecosystem is undergoing a major shift caused 
by the rapidly rising temperatures (Myers-Smith 
et al. 2015, Myers‐Smith and Hik 2017). This 
may be reinforced by local factors, such as soil 
moisture (Weijers et al. 2018). Certain types of 
tundra vegetation, such as woody plants (dwarf 
shrubs and shrubs), are growing taller, increasing 
their coverage, and expanding their spatial 
distribution (Myers-Smith et al. 2011, Normand 
et al. 2013). This phenomenon is known as 
shrubification or shrub expansion, and it may 
have remarkable consequences beyond tundra 
regions as it feedbacks to climate change through 
the interconnected cycles of water, energy, and 
carbon (Cahoon et al. 2012).

1.4 Plants
Water is a crucial resource for plants, yet, 
when scarce or excessive, it can lead to stress 
and disturbance (Giblin et al. 1991, Trahan 
and Schubert 2016). Plants use water in their 
physiological functions (Silvertown et al. 2015), 
such as nutrient uptake, photosynthesis, and 
reproduction (Rodriguez-Iturbe 2000, Kirkby 
2016). Thus, water is the most important resource 
for vegetation and its establishment in many 
terrestrial biomes (Porporato and Rodriguez-
Iturbe 2002). Soil moisture and other water 
aspects affect spatial patterns of vegetation, 
such as species occurrences, species richness, 
and community composition (le Roux et al. 2013, 
le Roux et al. 2014, Buri et al. 2020).

In addition to soil moisture, various 
indirect and direct factors affect plant growth, 
development, and geographical distribution (Mod 
et al. 2016). Geology, topography, macroclimate, 
and distance to the equator are indirect factors 
influencing direct factors, such as soils, water, 
temperature, wind, and solar radiation (Guisan 
and Zimmermann 2000). The direct factors 
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influence vital resources, such as soil and air 
moisture, nutrients, and photosynthetically active 
radiation (Whittaker 1965). These key factors 
for plant life, the resources and direct drivers, 
must be considered in ecological investigations 
(McGill et al. 2006, Austin and Van Niel 2011, 
Mod et al. 2016).

A topical approach for understanding the 
spatial distribution of plants is species distribution 
modelling (SDM). SDM is a framework for 
analysing the spatial or temporal patterns of 
species in relation to the environment (Guisan 
and Zimmermann 2000, Franklin 2010). This 
framework consists of three conceptual models: 
1) an ecological model (such as the hypothesis, 
Table 1), 2) a data model (data structure, Table 
2), and 3) a statistical model (model structure, 
Table 3) (Austin 2002). SDM is based on the 
spatial information on the occurrences of a given 
species and its key environmental predictors, and 
therefore, the predictors should represent a scale 
that is relevant for the ecology and physiology of 
the species (Austin and Van Niel 2011).

Plant communities and their relations to 
the environment can also be examined through 
plant functional traits (McGill et al. 2006). Traits 
provide a common currency for comparing 
ecosystems that have no species in common 
(Wright et al. 2004, Díaz et al. 2016). A functional 
trait is a direct measurement of plant properties 
related to the fitness of a plant and it reflects plant 
growth, survival, and reproduction (Violle et al. 
2007). Plant size represents the net accumulated 
growth and loss processes and can be measured, 
for instance, as plant height. Plant structure can 
be represented, for example by leaf area, which 
controls the energy and water balance of a leaf 
(Díaz et al. 2016). Plant reproduction can be 
represented, for instance, by seed mass, which 
is related to the dispersal, seed bank persistence 
(e.g. frost-tolerance), germination timing, and 
establishment of a plant (Leiblein-Wild et al. 

2014, Barak et al. 2018, Saatkamp et al. 2019). 
All in all, plant communities, their traits, and 
relationship to the environment influence 
multiple ecosystem processes and mechanisms 
related to soil water across biomes.

2 Materials and methods

I conducted these observational studies in 
mountain tundra at an ecologically relevant scale. 
This scale matches variation found in fine-scale 
soil moisture (I, II, III & IV) and other local 
factors, which have been shown to interact with 
tundra vegetation (II & IV). The study settings 
span over a large range found in these key factors 
(I, II, III & IV) and they cover a great number 
of tundra species (II & IV) and functional traits 
(IV), increasing the generalisability of the results 
(Franklin 1995, Austin 2002, McGill et al. 2006). 
In the ecological investigations (II & IV), I have 
used only main predictors and resource predictors 
for the given species or trait (Austin 1980).

Chiefly, I focused on a landscape between 
two massifs in sub-Arctic Fennoscandia (Table 
2). In my analyses, I used data from extensive 
in situ moisture measurements from the top-soil 
layer (0 - 10 cm; I, II, III & IV) and intensive 
fine-scale vegetation surveys (1 m2 plots; II, III 
& IV). Data for I and III were collected in the 
valley between Mount Saana and Mount Jehkas 
(69.05 N, 20.81 E), and for II on Mount Saana. 
In addition to Mount Saana, data for IV were 
collected in three other tundra sites located on 
both hemispheres: high-Arctic Svalbard (78.20 
N, 15.73 E), low-Arctic western Greenland 
(66.95 N, -50.72 W), and sub-Antarctic Marion 
Island (-46.90 S, 37.73 E).

All data are based on 1 m2 study plots. The 
study setting in I and III is based on 1043 plots in 
a systematically sampled grid (1.5 km x 2.0 km). 
In I, I used the full data set (n = 1043), whereas 
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in III, only a subset of the plots (171). In II, I 
had data from 21 study grids (8 m x 20 m), which 
were situated above the treeline (comprising of 
Betula pubescens ssp. czerepanovii). In II, I used 
a subset of 18 plots per grid, as the data on all 
three species groups (vascular plant, mosses, and 
lichens) were available only from this subset of 
plots (378). Whereas in IV, I used all 160 plots 
from each 21 grids in the sub-Arctic, in addition 
to the six high-Arctic grids, six low-Arctic grids, 
and nine sub-Antarctic grids.

Soil moisture was measured in volumetric 
water content (VWC%) using a hand-held time-
domain reflectometry sensor. In I, the data were 
collected during the growing-season of 2016. In 
addition to soil moisture, I had data on the in 
situ measured depth of the soil organic layer. 
In III, the soil moisture measurements were 
carried out during the growing season of 2017, 
in addition to in situ measured soil temperature 
(snap-shot measurements), laboratory analysed 
data on soil organic carbon stocks, and field-
quantified snow depth measurements. In II, 
I worked with three different water aspects: 
soil moisture level, temporal variation of soil 
moisture, and fluvial disturbance (sensu le Roux 
et al. 2013, le Roux et al. 2014). In addition, I 
had in situ data on soil temperature (miniature 
loggers), solar radiation (based on in situ slope 
and aspect measurements), soil pH (laboratory 
analyses from soil samples), geomorphological 
disturbances, and the coverage of the dominant 
allelopathic plant species (Empetrum nigrum) to 
account for biotic interactions (sensu Austin and 
Van Niel 2011, Mod et al. 2016). In IV, I used 
a harmonised dataset consisting of in situ soil 
moisture, soil temperature (miniature loggers), 
soil pH (laboratory analyses from soil samples), 
and solar radiation (based on in situ slope and 
aspect measurements) across all four study sites.

Articles II, III, and IV were based on 

intensive vegetation surveys. In III, I used data 
on the coverage and height of woody plants as 
well as the overall coverage of vascular plants 
surveyed in 2016–2017. In II and IV, the species 
data from the sub-Arctic was collected in 2011–
2013. In II, this data comprised the species 
occurrence and coverage percentage of vascular 
plants (n = 116), mosses (68), and lichens (87). 
In IV, I used only the species composition data 
of vascular plants, which had been collected 
from the high- and low-Arctic in the growing 
season of 2018, and from the sub-Antarctic in 
2016–2017. In the high-Arctic there were 61 
species, low-Arctic 75, sub-Arctic 134, and sub-
Antarctic 18. Based on the species composition 
data, seven plant functional traits were derived 
from the Tundra Trait Team, TRY, and BIEN 
databases (Kattge et al. 2011, Bjorkman et al. 
2018b, Maitner et al. 2018). This information 
was used to calculate community weighted 
means for seven functional traits, namely plant 
height, specific leaf area, seed mass, leaf dry 
mass content, leaf area, leaf nitrogen content, 
and leaf phosphorus content.

I collected the extensive field datasets together 
with the BioGeoClimate Modelling Lab (sub-
Arctic site) and the le Roux Lab (sub-Antarctic 
site). In I, I measured a significant portion of 
the soil moisture and soil depth data in 2016. In 
II, I collected data on vascular plants and soil 
samples in 2013. In III, I collected most of the 
soil moisture data, and all the woody plant and 
snow data with my colleague Pekka Niittynen in 
2017. In IV, I collected data on vascular plants 
and soil samples in the sub-Arctic site in 2013, 
and all the field data in the low-Arctic and high-
Arctic sites with Pekka Niittynen in 2018. The 
data collected for this thesis are also used in other 
published articles (Happonen et al. 2019) and 
articles currently under review (Happonen et al., 
Riihimäki et al., Niittynen et al.).

I utilised topography-based variables derived 
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from high-resolution light detection and ranging 
(LiDAR) data provided by the National Land 
Survey of Finland (I & III). Based on the 
LiDAR data, a digital terrain surface model 
(1 m resolution) was calculated, from which 
elevation, potential solar radiation, topographic 
wetness index (TWI), and topographic position 
index (TPI) were calculated. In I, I also classified 
the surficial deposits of the study area using aerial 
imaging (0.5 m resolution; National Land Survey 
of Finland).

I analysed the data using several multivariate 
and correlative modelling methods (Table 3). In 
I and II, I used generalized linear models (GLM; 
Nelder and Wedderburn 1972), generalized 
additive models (GAM; Hastie and Tibshirani 
1987), generalized boosted regression models 
(GBM; Elith et al. 2008, Greenwell et al. 2019), 
and random forests (RF; Breiman 2001) as I 
wanted to account for the uncertainties related 

to each multivariate technique. I incorporated 
these four methods also in the SDMs (II). GLM 
and GAM represent regression models, whereas 
GBM and RF are regression tree models based 
on machine learning. These modelling methods 
are commonly used in ecosystem research and 
are suitable tools for investigating geographical 
and ecological phenomena.

In III, I used structural equation modelling 
(SEM). SEM is a theory-based hierarchical 
modelling technique, which enabled me to 
control for hierarchical position of other factors 
potentially influencing both vegetation and the 
soil conditions (Lefcheck 2016). SEM allows 
the simultaneous evaluation of several potential 
causal structures and I could model both direct 
and indirect effects. I assumed that various 
topographical factors would have an indirect 
effect on the soil and that vegetation would 
mediate this effect.

In IV, I used hierarchical generalized additive 
 
Table 2. Data structures.

Question Article Water data Plant data Study sites, plots Soil moisture 
measurements

1 I Spatial                      
Temporal - Sub-Arctic, 1043 9387

2

II
Spatial                       

Temporal                                
Disturbance

Vascular plants                 
Mosses                        
Lichens

Sub-Arctic, 378 3402

III Spatial Woody plants               
Vascular plants Sub-Arctic, 171 2565

3 IV Spatial Plant functional 
traits

High-Arctic, 960             
Low-Arctic, 960                  
Sub-Arctic, 3360                

Sub-Antarctic, 1440

2880                                  
2880                         

30240                              
21600
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Table 3. Model structures.

Question Article Predictor Mediator Response Method

1 I Topography                 
Soil -

GLM                              
GAM                          
GBM                            

RF

2

II
Resources                                    

Direct drivers

-

GLM                              
GAM                          
GBM                            

RF                                
NMDS

III Topography                       
Snow SEM

3 IV
Resources                                    

Direct drivers

-
HGAM                                 
GAM                        
PCA

models (HGAM), a conceptual extension 
of GAMs, to compare study sites across the 
hemispheres (Pedersen et al. 2018). I chose to 
use HGAM as the hierarchical approach enabled 
me to account for the structure of the study 
design and to compare if the four sites deviated 
from the global (all four sites) trait-environment 
relationship. In addition, HGAM can detect 
nonlinear functions of the predictor variables.

In addition, I analysed the data using 
ordination techniques (II & IV). The idea is to 
reduce dimensions in a multidimensional dataset, 
which may contain collinear variables, and to 
find the principal dimensions, according to which 
the data vary (Husson et al. 2017). By principal 
dimensions I mean, for instance, environmental 
variation (II & IV) and plant functional 
trait variation (IV). In II, I used non-metric 
multidimensional scaling (NMDS), which is a 
robust way to analyse unconstrained ordination 
in community ecology (Minchin 1987). In IV, I 

performed principal component analyses (PCA). 

3 Results and discussion

I found that in the tundra, topography and soil 
factors control the spatial variation of fine-scale 
soil moisture (< 10 cm), but not the temporal 
variation, which calls for more investigation 
(I). Water is strongly linked to local spatial 
vegetation patterns. Soil moisture and other 
water aspects influence species distribution, 
species richness, and community composition 
of vascular plants, mosses, and lichens (II). The 
relationships between environmental factors and 
plant functional traits are transferable between 
tundra sites (IV). I also found that while water is 
vital to plants, plants also influence soil moisture, 
as woody plants had a significant negative 
correlation with surface soil moisture (III).
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resolution terrain data is made openly available and 
used for creating moisture proxies (Jaboyedoff et 
al. 2012), which are widely used in microclimate 
and vegetation studies (Riihimäki et al. 2017, 
Greiser et al. 2018). These moisture proxies must 
be validated with field-quantified data to discuss 
how well they represent the spatial patterns of soil 
moisture. Overall, LiDAR has a huge potential 
in exploring moisture phenomena influenced 
by fine-scale terrain features (Lookingbill and 
Urban 2004, Famiglietti et al. 2008, Moeslund 
et al. 2019).

3.2 Plants
I approached my second question “How is water 
linked to vegetation?” from two perspectives: 
spatial vegetation patterns (II) and plant traits 
(IV). In II, I examined this from different aspects 
by quantifying three water variables (spatial and 
temporal variation of soil moisture and fluvial 
disturbance) and their influence on vascular 
plants, mosses, and lichens. More specifically, 
I explored the influence of these water aspects 
on the species distributions, species richness, 
and community composition of the three species 
groups. 

In the model including all species groups, 
the inclusion of the water variables improved 
the predictive performance of the distribution 
models (area under the curve value from 0.73 to 
0.75). When comparing the models of individual 
species groups, the increase was the highest in 
the species distribution models of mosses (from 
0.69 to 0.73).

Of the three water aspects, the species 
distribution patterns were most related to the 
spatial variation of soil moisture. The species 
groups had diverse responses to soil moisture. 
Species distribution models of vascular plants 
responded positively or unimodally to moisture. 
Moss species had a strong positive response, 
whereas lichen species were most divided among 

3.1 Soil moisture
To answer my first question “What controls soil 
moisture variation?”, I evaluated the physical 
conditions controlling soil moisture (I). I 
modelled the spatial variation of soil moisture 
using field-quantified information on the depth 
of the organic layer, aerial imaging-based 
surficial deposits classification, and LiDAR-
based topography data. I used several statistical 
methods in the analyses, and the results indicated 
that the models performed similarly. On average, 
the model fit was reasonably good (R2 = 0.60) as 
well as the predictive performance (R2 = 0.47). 

I found that fine-scale soil moisture shows 
great spatial variation over short distances. On 
average, soil moisture was 22.0 VWC%, ranging 
within the landscape from 4.6 to 78.2 VWC%. 
Both in varying terrains and flat landscapes, the 
fine-scale spatial distribution of soil moisture 
can be very heterogenous (Engstrom et al. 
2005, le Roux et al. 2013). However, I found 
that topography and soils provide only little 
information on the proneness of the soil for 
temporal variation of moisture. Thus, this calls 
for re-evaluation of the conceptual model. In 
other words, the factors that control the spatial 
dimension of moisture are not the same for the 
temporal dimension, and therefore, it must be 
investigated with other types of data and from 
another perspective.

In the model, the spatial variation of soil 
moisture was most related to peat depth and 
the varying topography. Based on the relative 
importance of each variable, soil moisture related 
the most to the topography-based wetness proxy, 
TWI. This was also indicated by the relatively 
strong correlation between soil moisture and 
TWI (Spearman correlation 0.46). These results 
provide field-quantified evidence supporting 
previous studies (Isard 1986, Lookingbill and 
Urban 2004, Milledge et al. 2013).

The results are important as more high-
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positive, negative, and unimodal responses. 
Species richness patterns of vascular plants 
and mosses showed similar patterns as in the 
distribution models, whereas lichen richness had 
an overall negative response to soil moisture.

The NMDS supported the results, as the 
community composition consisting of the three 
groups varied primarily according to fluvial 
disturbance and spatial variation of moisture 
among other important factors. The analysis also 
provided evidence for the independency of the 
distinct water aspects.

As climate change increases temperatures 
in tundra regions (Post et al. 2019), and in turn 
evaporation, the spatial distribution of vegetation 
is likely to become more reliant on water 
conditions (Crimmins et al. 2011, le Roux et al. 
2013). Consequently, vascular plant, moss, and 
lichen communities will respond to the altered 
hydrological conditions (Iturrate-Garcia et al. 
2016, Robinson et al. 2018, Kern et al. 2019). 
Soil moisture is important for tundra vegetation 
in multiple ways, and this is highlighted in its 
mediating potentials in the impacts of warming 
(Winkler et al. 2016, Nabe-Nielsen et al. 2017).

In IV, I explored soil moisture influencing plants 
by assessing if plant-environment relationships 
were generalisable in the tundra. The models 
explained 54% of the deviance in community 
weighted mean plant height, 60% in specific 
leaf area, 57% in seed mass, 80% in leaf dry 
matter content, 83% in leaf area, 64% in leaf 
nitrogen content, and 67% in leaf phosphorus 
content. Except for one, the plant-environment 
relationships were significant in all models (p 
= 0.01).

The local variation of environmental 
conditions within the four distinct sites was 
overridden by global relationships indicating 
that these links are generalizable. HGAM 
enables the analysis of whether the functional 

relationship between the response and predictors 
had the same form for all four study sites and for 
them combined, in other words if generalisable 
relationships exist between the distinct plant 
communities and the environmental factors. 
The results provide empirical evidence for a 
cornerstone assumption in trait-based ecology: 
trait-environment relationships are transferable 
between plant communities (McGill et al. 2006, 
Shipley et al. 2016).

The results support studies based on 
macroclimatic water variables, qualitatively 
assessed soil moisture, and experimental studies, 
which have linked traits to plant-available water 
(Moles et al. 2009, Bjorkman et al. 2018a, 
Oddershede et al. 2018). Yet, there are only 
few field-quantified examples addressing this 
fundamental assumption on the generality and 
transferability of trait-environment relationships 
(McGill et al. 2006, Shipley et al. 2016).

In addition to soil moisture, the traits were most 
related to mean annual soil temperature. From 
a global change perspective, the results provide 
evidence to the expectation that tundra plants and 
their traits will respond to warming conditions 
(Bjorkman et al. 2018a). As temperatures will 
rise, plants will grow taller and have larger leaves 
with higher nutrient contents. If there are not 
enough water resources for plants to use, soil 
moisture may limit the growth of tundra plants. 
Overall, these shifts and their consequences are 
likely to feedback to the global climate system 
(Pearson et al. 2013). 

3.3 Plants on soil moisture
In my third question “Do plants influence water 
resources?” I built upon the knowledge gained in 
answering the first question. I introduced plants 
into the equation to investigate if they had a 
direct impact on tundra soils, which mediated the 
influence of other factors (III). I approached the 
question from a hierarchical perspective using 
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SEM and constructing on the physical foundation 
(topography and snow) known to influence both 
tundra soils and vegetation. I found that the 
coverage of woody plants had a direct effect, 
as they inversely correlated with multiple soil 
properties.

While controlling other factors influencing 
both vegetation and soil properties, woody 
plant coverage correlated negatively with soil 
moisture, soil temperature, and soil organic 
carbon stocks (standardised coefficients = -0.16; 
-0.22; -0.27). None of the soil conditions were 
influenced by woody plant height. This indicates 
that as woody plants are expanding in the tundra, 
their effects on the soil conditions depend upon 
how the expansion occurs.

This fine-scale examination provides evidence 
supporting previous studies, which have found 
soil moisture to be lower in habitats with woody 
plants compared to other tundra habitats (Ge et al. 
2017, Lafleur and Humphreys 2018), as well as 
studies, which have found that soil temperature 
is decreased by the overall shading of plants 
(Aalto et al. 2013, Myers-Smith and Hik 2013). 
Experimental studies suggest that the presence of 
shrubs also affect moisture retention negatively 
in reoccurring drought (Robinson et al. 2016).

Tundra plants influence the water (Bonfils et 
al. 2012), energy (Aalto et al. 2018), and carbon 
cycles (Cahoon et al. 2012). Yet, the impact on 
carbon stocks can be entirely context dependent, 
as currently there is no consensus on the impacts 
of woody plant on tundra carbons stocks. These 
results indicate that the presence of woody plants 
may decrease organic soil carbon stocks. This 
supports previous studies (Cahoon et al. 2012), 
but is also in contrast with others (Qian et al. 
2010). Yet, the results are significant in the light 
that it is likely that expanding woody plants will 
feedback to the climate system in multiple ways 
through soils (Myers-Smith et al. 2011, Sørensen 
et al. 2018, Strimbeck et al. 2019).

3.4 Methodological issues
The results I found in I, II, III, and IV are based 
on correlative analysis of local observational 
data, which rises the issues regarding causality 
and scaling.

Firstly, without a solid conceptual model 
(Table 1), meaning the ecological theory and 
hypothesis, the interpretation of correlative 
results may lead to erroneous conclusions 
(Austin 2002). Yet, observational studies can 
be highly useful in ecosystem research and 
by using multivariate analysis it is possible to 
identify spatial patterns and influencing factors 
(Franklin 2010). Advanced tools enable the 
consideration of hierarchical structures within the 
data or environment (Lefcheck 2016, Pedersen 
et al. 2018). In III, SEM provided a valuable 
way to separate the direct and indirect effects 
of predictors and evaluate the mediating role of 
woody plants. In IV, I wanted to compare the 
study sites, but they shared no common species, 
which is why I used universal plant functional 
traits and the HGAM approach to assess whether 
the sites followed general patterns of plant-
environment relationships.

Lastly, the spatial extent of the data can 
limit the generalisability of results. This I have 
addressed by utilising topographic complexity 
as an advantage (I, II, III & IV). Complexity 
increases patchiness of the landscape and 
controls the climatic range of the site (Graae et al. 
2018). Consequently, a relatively concise spatial 
extent can contain broad gradients (such as soil 
moisture) covering a range of environmental 
conditions (Whittaker 1965, Billings 1973). 
Local variation can be overlooked by coarse-
scale climatic data (Aalto et al. 2018), thus, 
fine-scale ecological studies should use relevant 
microclimatic data (Graae et al. 2012). Relevance 
depends also on the question, as variables can be 
presented in nearly limitless ways (Körner and 
Hiltbrunner 2018). Here, moisture is measured 
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from the surface soil (< 10 cm; I, II, III & IV), 
thus it does not represent the full soil layer or 
water reservoirs beneath it. Point measurements 
have a limited spatial and temporal extent (Figure 
3). The first can be compensated by repeating 
the measurements over larger extents with 
dense spacing (Figure 2; I, II, III & IV). Yet, 
the temporal aspect of soil moisture can be truly 
captured only with continuous data (I). Luckily, 
new methods are developed and can be applied 
in future studies (Wild et al. 2019).

4 Future perspectives

Soil moisture has multiple effects on tundra 
plants (II & IV), and so do plants have on tundra 
soils (III). It is evident that climate change will 
affect the tundra ecosystems through the two-
way link between plants and water. The next step 
is to address the chain of uncertainties between 
climate change, soil moisture, and tundra plants 
(Figure 6) (Porporato et al. 2004, Falloon et al. 
2011, McLaughlin et al. 2017). 

First, we must understand how climate change 
impacts are realised on the spatio-temporal 
patterns of fine-scale soil moisture (Bintanja 
and Andry 2017). As the climate is warming, 
the availability of soil water is likely to become 
globally threatened (Xu et al. 2013). Snow melt 
patterns have already shown evidence of change 
(Musselman et al. 2017, Niittynen et al. 2018). 
Snow melt timing influences temporal availability 
of soil moisture in the tundra (Blankinship et al. 
2014), and is mediated by vegetation (Conner et 
al. 2016). Tundra ecosystems appear to be drying 
due to increased evaporation for the past decades 
in both the Arctic and the Antarctic. Ponds and 
lakes have dried (Smol and Douglas 2007, Nitze 
et al. 2017, Finger Higgens et al. 2019), and 
moss community composition and health as well 
as bird species richness have already declined 

showing a strong negative responses to drying 
(Roach and Griffith 2015, Robinson et al. 2018). 
On the other hand, moisture released from 
thawing permafrost may temporarily increase 
the water content in surface soils (French 2007). 
As the climate change impacts will be uneven 
across the globe, the spatial distribution of soil 
moisture will be even more significant in the 
future (Jung et al. 2010).

Secondly, we need to find tools to accurately 
predict plant-available water at an ecologically 
relevant scale, especially from the temporal 
perspective (Nasta et al. 2018, Wild et al. 2019). 
The temporal variation of fine-scale soil moisture 
is controlled by other factors compared to its 
spatial variation (I). On coarse spatial scales, 
there are tools to investigate soil moisture 
globally (McColl et al. 2017) and regionally 
(Blyverket et al. 2019), and long-term records 
(> 40 years) are also available (Gruber et al. 
2019). Yet, in order to understand soil moisture 
and its future, we need fine-scale predictions 
on factors influencing the temporal variation 
of soil moisture (Fatichi et al. 2020), such 
as precipitation (Bintanja and Andry 2017), 
evaporation (Mastrotheodoros et al. 2020), and 
snowmelt (Niittynen et al. 2018), which are 
highly impacted by increasing temperatures of 
the high-latitudes and high-altitudes. Most of all, 
we need tools for transforming this information 
into temporal predictions of fine-scale soil 
moisture over large regions (Blyverket et al. 
2019, Fatichi et al. 2020). It is challenging to 
predict the influence of climate change on plant-
available water, as the prevailing microclimate 
does not directly reflect on soil moisture 
conditions (Brocca et al. 2012), and can be 
remarkably decoupled from the macroclimate 
(Aalto et al. 2018).

Thirdly, plant-water relationships cannot be 
explored without acknowledging the significant 
impacts that plants have on soil moisture (III) 
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(Aalto et al. 2018, Mastrotheodoros et al. 2020). 
It is important to analyse the mechanisms of 
how the on-going tundra vegetation changes 
will affect soil water conditions (Robinson et 
al. 2019). Here, global databases can help as 
they provide useful snapshots of biodiversity 
(IV), yet so far only a fraction of all plants have 
been thoroughly documented and openly shared 
with the research community (Cornwell et al. 
2019). More field data, climate change research, 
and standardised protocols are urgently needed 

(Halbritter et al. 2019, Lembrechts and Lenoir 
2019), especially when it comes to less studied 
organisms, which yet are a significant part of the 
tundra (Roos et al. 2019). For instance, mosses, 
lichens, and microalgae are abundant and 
ecologically important producers and regulators 
in the tundra (Sommerkorn et al. 1999, Uchida 
et al. 2006, Blok et al. 2011, Pushkareva et al. 
2016). Thus, not only vascular plants, but all the 
cornerstone species groups must be studied in 
relation to water resources and climate change, 

 
Figure 6.  Future perspectives. Climate change impacts may drastically affect fine-scale plant-water relationships, 
which may, in turn, feedback to global climate change through the effects of water conditions on plants as well as 
the effects of plants on soil water.
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if we want to comprehensively understand the 
ecosystem functions and processes in future (II).

Finally, climate change impacts on the 
water cycle are likely to affect all life on Earth, 
from humans to microbes (Barnett et al. 2005, 
McCalley et al. 2014, Classen et al. 2015, Hansen 
et al. 2016), and from the tropical rainforests 
to the polar deserts (Engelbrecht et al. 2007, 
Robinson et al. 2018). Complex topography 
increases small-scale heterogeneity in water and 
energy conditions (Graae et al. 2018, Hoylman 
et al. 2018). This is reflected on vegetation, as 
the sensitivity of the ecosystem decreases and its 
climate change buffering capacity increases along 
varying moisture conditions (Alatalo et al. 2017, 
Buri et al. 2020). Soil moisture mediates rising 
temperatures (Crimmins et al. 2011, Ashcroft and 
Gollan 2013, Winkler et al. 2016), which creates 
humid and cool microclimatic pockets increasing 
the overall ecosystem resilience (Holec and 
Wild 2011). Overall, the expected changes in 
the hydrological cycle and their consequences 
are not limited to a single species, ecosystem, or 
biome (Knapp et al. 2008). Thus, the exploration 
of soil moisture and its importance for all life 
must go on.

5 Conclusions

Soil moisture varies remarkably over short 
distances in rugged landscapes. This fine-scale 
variation provides a range of distinct habitats and 
increases biodiversity and decreases sensitivity of 
tundra ecosystems. Influenced both by the abiotic 
and biotic environment, soil water conditions 
affect vegetation across species and functional 
traits, from individuals to plant communities.

It is important to acknowledge that moisture 
and factors influencing it are highly scale 
dependent, and macroclimatic data may not 
provide the necessary information at a meaningful 

scale. Thus, I highly encourage the use of field-
quantified measurements when exploring fine-
scale plant-environment patterns, whether they 
be species assemblages or functional traits.

Climate change is rapidly impacting the 
tundra ecosystems in the Arctic, Antarctic, and 
alpine regions, and part of this is due to the 
impacts on soil moisture. Here, the importance 
of soil moisture is unravelled regarding the 
vulnerable tundra ecosystem. Thus, it is crucial 
to carefully consider plant-water relationships 
in future studies.

In this thesis, I have highlighted the variability 
of fine-scale soil moisture and its importance 
for high-latitude vegetation. Yet, I have barely 
scratched the (soil) surface. The next step is to 
expand this knowledge beyond tundra and plant 
communities.

References
Aalto, J., P. C. le Roux, and M. Luoto. 2013. Vegetation 

Mediates Soil Temperature and Moisture in 
Arctic-Alpine Environments. Arct Antarct Alp 
Res 45:429-439.

Aalto, J., D. Scherrer, J. Lenoir, A. Guisan, and M. 
Luoto. 2018. Biogeophysical controls on soil-
atmosphere thermal differences: implications on 
warming Arctic ecosystems. Environ Res Lett 
13:074003.

Alatalo, J. M., A. K. Jaegerbrand, J. Juhanson, A. 
Michelsen, and P. Luptacik. 2017. Impacts of 
twenty years of experimental warming on soil 
carbon, nitrogen, moisture and soil mites across 
alpine/subarctic tundra communities. Sci rep 7.

Ashcroft, M. B., and J. R. Gollan. 2013. Moisture, 
thermal inertia, and the spatial distributions of near-
surface soil and air temperatures: Understanding 
factors that promote microrefugia. Agric For 
Meteorol 176:77-89.

Austin, M. P. 1980. Searching for a Model for Use in 
Vegetation Analysis. Vegetatio 42:11-21.

Austin, M. P. 2002. Spatial prediction of species 
distribution: an interface between ecological 
theory and statistical modelling. Ecol Model 
157:101-118.

Austin, M. P., and K. P. Van Niel. 2011. Improving 
species distribution models for climate change 
studies: variable selection and scale. J Biogeogr. 



26

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A82

Shetti, L. S. Collier, L. E. Street, K. N. Suding, 
K. D. Tape, A. Trant, U. A. Treier, J. P. Tremblay, 
M. Tremblay, S. Venn, S. Weijers, T. Zamin, N. 
Boulanger-Lapointe, W. A. Gould, D. S. Hik, A. 
Hofgaard, I. S. Jonsdottir, J. Jorgenson, J. Klein, 
B. Magnusson, C. Tweedie, P. A. Wookey, M. 
Bahn, B. Blonder, P. M. van Bodegom, B. Bond-
Lamberty, G. Campetella, B. E. L. Cerabolini, F. 
S. Chapin, 3rd, W. K. Cornwell, J. Craine, M. 
Dainese, F. T. de Vries, S. Diaz, B. J. Enquist, 
W. Green, R. Milla, U. Niinemets, Y. Onoda, 
J. C. Ordonez, W. A. Ozinga, J. Penuelas, H. 
Poorter, P. Poschlod, P. B. Reich, B. Sandel, B. 
Schamp, S. Sheremetev, and E. Weiher. 2018a. 
Plant functional trait change across a warming 
tundra biome. Nature 562:57-62.

Bjorkman, A. D., I. H. Myers-Smith, S. C. Elmendorf, 
S. Normand, H. J. D. Thomas, J. M. Alatalo, H. 
Alexander, A. Anadon‐Rosell, S. Angers‐Blondin, 
Y. Bai, G. Baruah, M. te Beest, L.Berner, R. G. 
Björk, D. Blok, H. Bruelheide, A. Buchwal, 
A. Buras, M. Carbognani, K. Christie, L. S. 
Collier, E. J. Cooper, J. H. C. Cornelissen, K. 
J. M. Dickinson, S. Dullinger, B. Elberling, A. 
Eskelinen, B. C. Forbes, E. R. Frei, M. Iturrate‐
Garcia, M. K. Good, O. Grau, P. Green, M. Greve, 
P. Grogan, S. Haider, T. Hájek, M. Hallinger, K. 
Happonen, K. A. Harper, M. M. P. D. Heijmans, 
G. H. R. Henry , L. Hermanutz, R. E. Hewitt, 
R. D. Hollister, J. Hudson, K. Hülber, C. M. 
Iversen, F. Jaroszynska, B. Jiménez‐Alfaro, J. 
Johnstone, R. Halfdan Jorgensen, E. Kaarlejärvi, 
R. Klady, J. Klimešová, A. Korsten, S. Kuleza, 
A. Kulonen, L. J. Lamarque, T. Lantz, A. Lavalle, 
J. J. Lembrechts, E. Lévesque, C. J. Little, M. 
Luoto, P. Macek, M. C. Mack, R. Mathakutha, 
A. Michelsen, A. Milbau, U. Molau, J. W. 
Morgan, M. Alfons Mörsdorf, J. Nabe‐Nielsen, 
S. Schøler Nielsen, J. M. Ninot, S. F. Oberbauer, 
J. Olofsson, V. G. Onipchenko, A. Petraglia, C. 
Pickering, J. S. Prevéy, C. Rixen, S. B. Rumpf, G. 
Schaepman‐Strub, P. Semenchuk, R. Shetti, N. A. 
Soudzilovskaia, M. J. Spasojevic, J. Speed, L. E. 
Street, K. Suding. K. D. Tape, M. Tomaselli, A. 
Trant, U. A. Treier, J.‐P. Tremblay, M. Tremblay, 
S. Venn, A-M. Virkkala, T. Vowles, S. Weijers, M. 
Wilmking, S. Wipf, and T. Zamin. 2018b. Tundra 
Trait Team. Glob Ecol Biogeogr.

Blankinship, J. C., M. W. Meadows, R. G. Lucas, and 
S. C. Hart. 2014. Snowmelt timing alters shallow 
but not deep soil moisture in the Sierra Nevada. 
Water Resour Res 50:1448-1456.

Blok, D., M. Heijmans, G. Schaepman-Strub, J. 
van Ruijven, F. Parmentier, T. Maximov, and F. 
Berendse. 2011. The cooling capacity of mosses: 
controls on water and energy fluxes in a Siberian 
tundra site. Ecosystems 14:1055-1065.

Blyverket, J., P. D. Hamer, P. Schneider, C. Albergel, 
and W. A. Lahoz. 2019. Monitoring Soil Moisture 

38:1-8.
Banwart, S. 2011. Save our soils. Nature 474:151.
Barak, R. S., T. M. Lichtenberger, A. Wellman‐Houde, 

A. T. Kramer, and D. J. Larkin. 2018. Cracking 
the case: Seed traits and phylogeny predict time 
to germination in prairie restoration species. Ecol 
Evol 8:5551-5562.

Barichivich, J., K. R. Briffa, R. Myneni, G. van der 
Schrier, W. Dorigo, C. J. Tucker, T. J. Osborn, 
and T. M. Melvin. 2014. Temperature and 
Snow-Mediated Moisture Controls of Summer 
Photosynthetic Activity in Northern Terrestrial 
Ecosystems between 1982 and 2011. Remote 
Sensing 6:1390-1431.

Barnett, T. P., J. C. Adam, and D. P. Lettenmaier. 2005. 
Potential impacts of a warming climate on water 
availability in snow-dominated regions. Nature 
438:303-309.

Beven, K. J., and M. J. Kirkby. 1979. A physically 
based, variable contributing area model of basin 
hydrology. Hydrological Sciences Bulletin 
24:1:43-69.

Billings, W. D. 1973. Arctic and Alpine Vegetations 
- Similarities, Differences, and Susceptibility to 
Disturbance. Bioscience 23:697-704.

Billings, W. D., and H. A. Mooney. 1968. Ecology of 
Arctic and Alpine Plants. Biological Reviews of 
the Cambridge Philosophical Society 43:481-&.

Bintanja, R., and O. Andry. 2017. Towards a rain-
dominated Arctic. Nat Clim Change 7:263-+.

Bjerke, J. W., S. Bokhorst, M. Zielke, T. V. Callaghan, F. 
W. Bowles, and G. K. Phoenix. 2011. Contrasting 
sensitivity to extreme winter warming events of 
dominant sub-Arctic heathland bryophyte and 
lichen species. J Ecol 99:1481-1488.

Bjorkman, A. D., I. H. Myers-Smith, S. C. Elmendorf, 
S. Normand, N. Ruger, P. S. A. Beck, A. Blach-
Overgaard, D. Blok, J. H. C. Cornelissen, B. C. 
Forbes, D. Georges, S. J. Goetz, K. C. Guay, 
G. H. R. Henry, J. HilleRisLambers, R. D. 
Hollister, D. N. Karger, J. Kattge, P. Manning, J. 
S. Prevey, C. Rixen, G. Schaepman-Strub, H. J. 
D. Thomas, M. Vellend, M. Wilmking, S. Wipf, 
M. Carbognani, L. Hermanutz, E. Levesque, U. 
Molau, A. Petraglia, N. A. Soudzilovskaia, M. 
J. Spasojevic, M. Tomaselli, T. Vowles, J. M. 
Alatalo, H. D. Alexander, A. Anadon-Rosell, S. 
Angers-Blondin, M. T. Beest, L. Berner, R. G. 
Bjork, A. Buchwal, A. Buras, K. Christie, E. J. 
Cooper, S. Dullinger, B. Elberling, A. Eskelinen, 
E. R. Frei, O. Grau, P. Grogan, M. Hallinger, K. 
A. Harper, M. Heijmans, J. Hudson, K. Hulber, 
M. Iturrate-Garcia, C. M. Iversen, F. Jaroszynska, 
J. F. Johnstone, R. H. Jorgensen, E. Kaarlejarvi, R. 
Klady, S. Kuleza, A. Kulonen, L. J. Lamarque, T. 
Lantz, C. J. Little, J. D. M. Speed, A. Michelsen, 
A. Milbau, J. Nabe-Nielsen, S. S. Nielsen, J. 
M. Ninot, S. F. Oberbauer, J. Olofsson, V. G. 
Onipchenko, S. B. Rumpf, P. Semenchuk, R. 



27

Drought over Northern High Latitudes from 
Space. Remote Sens Lett 11:1200.

Bonfils, C. J. W., T. J. Phillips, D. M. Lawrence, P. 
Cameron-Smith, W. J. Riley, and Z. M. Subin. 
2012. On the influence of shrub height and 
expansion on northern high latitude climate. 
Environ Res Lett 7:015503.

Breiman, L. 2001. Random forests. Machine Learning 
45:5-32.

Bring, A., I. Fedorova, Y. Dibike, L. Hinzman, J. Mard, 
S. H. Mernild, T. Prowse, O. Semenova, S. L. 
Stuefer, and M. K. Woo. 2016. Arctic terrestrial 
hydrology: A synthesis of processes, regional 
effects, and research challenges. J Geophys Res-
Biogeo 121:621-649.

Brocca, L., T. Tullo, F. Melone, T. Moramarco, and R. 
Morbidelli. 2012. Catchment scale soil moisture 
spatial-temporal variability. Journal of Hydrology 
422:63-75.

Buri, A., S. Grand, S. Yashiro, T. Adatte, J. 
Spangenberg, E. Pinto-Figueroa, E. Verrecchia, 
and A. Guisan. 2020. What are the most crucial 
soil variables for predicting the distribution of 
mountain plant species? A comprehensive study 
in the Swiss Alps. J Biogeogr..

Cahoon, S. M., P. F. Sullivan, G. R. Shaver, J. 
M. Welker, E. Post, and M. Holyoak. 2012. 
Interactions among shrub cover and the soil 
microclimate may determine future Arctic carbon 
budgets. Ecology Letters 15:1415-1422.

Canadell, J., R. B. Jackson, J. B. Ehleringer, H. A. 
Mooney, O. E. Sala, and E. D. Schulze. 1996. 
Maximum rooting depth of vegetation types at 
the global scale. Oecologia 108:583-595.

Classen, A. T., M. K. Sundqvist, J. A. Henning, G. 
S. Newman, J. A. Moore, M. A. Cregger, L. C. 
Moorhead, and C. M. Patterson. 2015. Direct and 
indirect effects of climate change on soil microbial 
and soil microbial‐plant interactions: What lies 
ahead? Ecosphere 6:1-21.

Conner, L. G., R. A. Gill, and J. Belnap. 2016. Soil 
moisture response to experimentally altered 
snowmelt timing is mediated by soil, vegetation, 
and regional climate patterns. Ecohydrology 
9:1006-1016.

Cornwell, W. K., W. D. Pearse, R. L. Dalrymple, and 
A. E. Zanne. 2019. What we (don’t) know about 
global plant diversity. Ecography.

Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. 
R. Ginn. 1984. A Statistical Exploration of the 
Relationships of Soil-Moisture Characteristics to 
the Physical-Properties of Soils. Water Resour 
Res 20:682-690.

Crave, A., and C. GascuelOdoux. 1997. The influence 
of topography on time and space distribution of 
soil surface water content. Hydrological Processes 
11:203-210.

Crimmins, S. M., S. Z. Dobrowski, J. A. Greenberg, 
J. T. Abatzoglou, and A. R. Mynsberge. 2011. 

Changes in climatic water balance drive downhill 
shifts in plant species’ optimum elevations. 
Science 331:324-327.

Darmody, R. G., C. E. Thorn, P. Schlyter, and J. 
C. Dixon. 2004. Relationship of vegetation 
distribution to soil properties in Karkevagge, 
Swedish Lapland. Arct Antarct Alp Res 36:21-32.

Díaz, S., J. Kattge, J. H. Cornelissen, I. J. Wright, S. 
Lavorel, S. Dray, B. Reu, M. Kleyer, C. Wirth, 
and I. C. Prentice. 2016. The global spectrum of 
plant form and function. Nature 529:167.

Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N. 
D. Burgess, E. Wikramanayake, N. Hahn, S. 
Palminteri, P. Hedao, and R. Noss. 2017. An 
ecoregion-based approach to protecting half the 
terrestrial realm. Bioscience 67:534-545.

Elith, J., J. R. Leathwick, and T. Hastie. 2008. A 
working guide to boosted regression trees. J Anim 
Ecol 77:802-813.

Engelbrecht, B. M., L. S. Comita, R. Condit, T. A. 
Kursar, M. T. Tyree, B. L. Turner, and S. P. 
Hubbell. 2007. Drought sensitivity shapes species 
distribution patterns in tropical forests. Nature 
447:80-82.

Engstrom, R., A. Hope, H. Kwon, D. Stow, and D. 
Zamolodchikov. 2005. Spatial distribution of 
near surface soil moisture and its relationship to 
microtopography in the Alaskan Arctic coastal 
plain. Nordic Hydrology 36:219-234.

Epstein, H., U. Bhatt, M. Raynolds, D. Walker, 
B. Forbes, M. Macias-Fauria, M. Loranty, G. 
Phoenix, and J. Bjerke. 2016. Tundra greenness.

Falloon, P., C. D. Jones, M. Ades, and K. Paul. 2011. 
Direct soil moisture controls of future global 
soil carbon changes: An important source of 
uncertainty. Global Biogeochemical Cycles 25:14.

Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and 
T. J. Jackson. 2008. Field observations of soil 
moisture variability across scales. Water Resour 
Res 44:n/a-n/a.

Fatichi, S., D. Or, R. Walko, H. Vereecken, M. H. 
Young, T. A. Ghezzehei, T. Hengl, S. Kollet, N. 
Agam, and R. Avissar. 2020. Soil structure is an 
important omission in Earth System Models. Nat 
Clim Change.

Finger Higgens, R., J. Chipman, D. Lutz, L. Culler, 
R. Virginia, and L. Ogden. 2019. Changing Lake 
Dynamics Indicate a Drier Arctic in Western 
Greenland. Journal of Geophysical Research: 
Biogeosciences 124:870-883.

Forbes, B. C., M. M. Fauria, and P. Zetterberg. 2010. 
Russian Arctic warming and ‘greening’ are closely 
tracked by tundra shrub willows. Glob Chang Biol  
16:1542-1554.

Fountain, A. G., J. L. Campbell, E. A. G. Schuur, 
S. E. Stammerjohn, M. W. Williams, and H. W. 
Ducklow. 2012. The Disappearing Cryosphere: 
Impacts and Ecosystem Responses to Rapid 
Cryosphere Loss. Bioscience 62:405-415.



28

Franklin, J. 1995. Predictive vegetation mapping: 
Geographic modelling of biospatial patterns in 
relation to environmental gradients. Progress in 
Physical Geography 19:474-499.

Franklin, J. 2010. Mapping species distributions. 
Cambridge University Press, Cambridge, 
Yhdistynyt kuningaskunta.

Franklin, J., J. M. Serra-Diaz, A. D. Syphard, and H. 
M. Regan. 2016. Global change and terrestrial 
plant community dynamics. Proc Natl Acad Sci 
U S A 113:3725-3734.

French, D., and V. Smith. 1985. A comparison between 
Northern and Southern Hemisphere tundras and 
related ecosystems. Polar Biology 5:5-21.

French, H. M. 2007. The periglacial environment. 
John Wiley & Sons, Chichester, Yhdistynyt 
kuningaskunta.

Ge, L., P. M. Lafleur, and E. R. Humphreys. 2017. 
Respiration from soil and ground cover vegetation 
under tundra shrubs. Arct Antarct Alp Res 49:537-
550.

Giblin, A. E., K. J. Nadelhoffer, G. R. Shaver, 
J. A. Laundre, and A. J. Mckerrow. 1991. 
Biogeochemical Diversity Along a Riverside 
Toposequence in Arctic Alaska. Ecological 
Monographs 61:415-435.

Graae, B. J., P. De Frenne, A. Kolb, J. Brunet, O. 
Chabrerie, K. Verheyen, N. Pepin, T. Heinken, 
M. Zobel, and A. Shevtsova. 2012. On the use of 
weather data in ecological studies along altitudinal 
and latitudinal gradients. Oikos 121:3-19.

Graae, B. J., V. Vandvik, W. S. Armbruster, W. L. 
Eiserhardt, J.-C. Svenning, K. Hylander, J. Ehrlén, 
J. D. Speed, K. Klanderud, and K. A. Bråthen. 
2018. Stay or go–how topographic complexity 
influences alpine plant population and community 
responses to climate change. Perspectives in Plant 
Ecology, Evolution and Systematics.

Graham, E. A., P. W. Rundel, W. Kaiser, Y. Lam, 
M. Stealey, and E. M. Yuen. 2012. Fine-Scale 
Patterns of Soil and Plant Surface Temperatures 
in an Alpine Fellfield Habitat, White Mountains, 
California. Arct Antarct Alp Res 44:288-295.

Grayson, R. B., A. W. Western, F. H. S. Chiew, and 
G. Bloschl. 1997. Preferred states in spatial soil 
moisture patterns: Local and nonlocal controls. 
Water Resour Res 33:2897-2908.

Greenwell, B., B. Boehmke, J. Cunningham, G. 
Developers, and M. B. Greenwell. 2019. Package 
‘gbm’. R package version 2.

Greiser, C., E. Meineri, M. Luoto, J. Ehrlén, and K. 
Hylander. 2018. Monthly microclimate models in 
a managed boreal forest landscape. Agricultural 
forest meteorology 250:147-158.

Gruber, A., T. Scanlon, R. v. d. Schalie, W. Wagner, and 
W. Dorigo. 2019. Evolution of the ESA CCI Soil 
Moisture climate data records and their underlying 
merging methodology. Earth System Science Data 
11:717-739.

Guisan, A., and N. E. Zimmermann. 2000. Predictive 
habitat distribution models in ecology. Ecol Model 
135:147-186.

Hájek, M., P. Hájková, M. Kočí, M. Jiroušek, E. 
Mikulášková, K. Kintrová, and R. del Moral. 
2013. Do we need soil moisture measurements in 
the vegetation-environment studies in wetlands? 
J Veg Sci24:127-137.

Halbritter, A. H., H. J. De Boeck, A. E. Eycott, S. 
Reinsch, D. A. Robinson, S. Vicca, B. Berauer, C. 
T. Christiansen, M. Estiarte, and J. M. Grünzweig. 
2019. The handbook for standardized field and 
laboratory measurements in terrestrial climate 
change experiments and observational studies 
(ClimEx). Methods Ecol Evol.

Hansen, R. R., O. L. P. Hansen, J. J. Bowden, U. A. 
Treier, S. Normand, T. Høye. 2016. Meter scale 
variation in shrub dominance and soil moisture 
structure Arctic arthropod communities. PeerJ 
4:e2224.

Hastie, T., and R. Tibshirani. 1987. Generalized 
Additive-Models - Some Applications. Journal of 
the American Statistical Association 82:371-386.

Hodkinson, I. D., N. R. Webb, J. S. Bale, and W. 
Block. 1999. Hydrology, water availability and 
tundra ecosystem function in a changing climate: 
the need for a closer integration of ideas? Glob 
Chang Biol  5:359-369.

Holec, J., and J. J. C. M. Wild. 2011. Fungal diversity 
in sandstone gorges of the Bohemian Switzerland 
National Park (Czech Republic): impact of 
climatic inversion. Czech Mycol 63:243-263.

Hoylman, Z. H., K. G. Jencso, J. Hu, J. T. Martin, Z. A. 
Holden, C. A. Seielstad, and E. M. Rowell. 2018. 
Hillslope topography mediates spatial patterns 
of ecosystem sensitivity to climate. Journal of 
Geophysical Research: Biogeo 123:353-371.

Hugelius, G., J. Strauss, S. Zubrzycki, J. W. Harden, 
E. A. G. Schuur, C. L. Ping, L. Schirrmeister, 
G. Grosse, G. J. Michaelson, C. D. Koven, J. A. 
O’Donnell, B. Elberling, U. Mishra, P. Camill, 
Z. Yu, J. Palmtag, and P. Kuhry. 2014. Estimated 
stocks of circumpolar permafrost carbon with 
quantified uncertainty ranges and identified data 
gaps. Biogeosciences 11:6573-6593.

Huggett, R., R. J. Huggett, and J. Cheesman. 2002. 
Topography and the Environment. Pearson 
Education.

Humphreys, W. J. 1907. Note on the Movement of 
Moisture in Soils. Science 26:480-481.

Husson, F., S. Lê, and J. Pagès. 2017. Exploratory 
multivariate analysis by example using R. 
chapman and hall/CRC.

Isard, S. A. 1986. Factors Influencing Soil-Moisture 
and Plant Community Distribution on Niwot 
Ridge, Front Range, Colorado, USA. Arctic and 
Alpine Research 18:83-96.

Iturrate-Garcia, M., M. J. O’Brien, O. Khitun, S. 
Abiven, P. A. Niklaus, and G. Schaepman-Strub. 

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A82



29

2016. Interactive effects between plant functional 
types and soil factors on tundra species diversity 
and community composition. Ecol Evol 6:8126-
8137.

Iversen, C. M., V. L. Sloan, P. F. Sullivan, E. S. 
Euskirchen, A. D. McGuire, R. J. Norby, A. P. 
Walker, J. M. Warren, and S. D. Wullschleger. 
2015. The unseen iceberg: plant roots in arctic 
tundra. New Phytol 205:34-58.

Jaboyedoff, M., T. Oppikofer, A. Abellan, M. H. 
Derron, A. Loye, R. Metzger, and A. Pedrazzini. 
2012. Use of LIDAR in landslide investigations: 
a review. Natural Hazards 61:5-28.

Jonasson, S. 1986. Influence of frost heaving on soil 
chemistry and on the distribution of plant growth 
forms. Geografiska Annaler: Series A, Physical 
Geography 68:185-195.

Jung, M., M. Reichstein, P. Ciais, S. I. Seneviratne, J. 
Sheffield, M. L. Goulden, G. Bonan, A. Cescatti, 
J. Chen, R. de Jeu, A. J. Dolman, W. Eugster, 
D. Gerten, D. Gianelle, N. Gobron, J. Heinke, J. 
Kimball, B. E. Law, L. Montagnani, Q. Mu, B. 
Mueller, K. Oleson, D. Papale, A. D. Richardson, 
O. Roupsard, S. Running, E. Tomelleri, N. Viovy, 
U. Weber, C. Williams, E. Wood, S. Zaehle, and 
K. Zhang. 2010. Recent decline in the global land 
evapotranspiration trend due to limited moisture 
supply. Nature 467:951-954.

Happonen, K., J. Aalto, J. Kemppinen, P. Niittynen,  
A-M. Virkkala, and M. Luoto. 2019. Snow is an 
important control of plant community functional 
composition. Oecologia 191:601-608.

Happonen, K., A-M. Virkkala, J. Kemppinen, P. 
Niittynen, and M. Luoto. Under review. Plant 
functional traits and diversity drive fine-scale 
variability in carbon cycling in the tundra.

Kankaanpää, T., K. Skov, N. Abrego, M. Lund, N. 
M. Schmidt, and T. Roslin. 2018. Spatiotemporal 
snowmelt patterns within a high Arctic landscape, 
with implications for flora and fauna. Arct Antarct 
Alp Res 50:e1415624.

Kattge, J., S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, 
G. Bönisch, E. Garnier, M. Westoby, P. B. Reich, 
and I. J. Wright. 2011. TRY–a global database 
of plant traits. Glob Chang Biol  17:2905-2935.

Keenan, T., and W. Riley. 2018. Greening of the land 
surface in the world’s cold regions consistent with 
recent warming. Nat Clim Change 8:825.

Kemppinen, J. 2016. Soil moisture in an arctic 
landscape. University of Helsinki, Helsinki.

Kern, R., V. Hotter, A. Frossard, M. Albrecht, C. 
Baum, B. Tytgat, L. De Maeyer, D. Velazquez, 
C. Seppey, and B. Frey. 2019. Comparative 
vegetation survey with focus on cryptogamic 
covers in the high Arctic along two differing 
catenas. Polar Biology 42:2131-2145.

Kirkby, M. J. 2016. Water in the critical zone: soil, 
water and life from profile to planet. SOIL 2:631-
645.

Knapp, A. K., C. Beier, D. D. Briske, A. T. Classen, 
Y. Luo, M. Reichstein, M. D. Smith, S. D. Smith, 
J. E. Bell, and P. A. Fay. 2008. Consequences of 
more extreme precipitation regimes for terrestrial 
ecosystems. Bioscience 58:811-821.

Kopecký, M., and Š. Čížková. 2010. Using topographic 
wetness index in vegetation ecology: does the 
algorithm matter? Applied Vegetation Science 
13:450-459.

Korres, W., T. G. Reichenau, P. Fiener, C. N. Koyama, 
H. R. Bogena, T. Comelissen, R. Baatz, M. Herbst, 
B. Diekkruger, H. Vereecken, and K. Schneider. 
2015. Spatio-temporal soil moisture patterns - A 
meta-analysis using plot to catchment scale data. 
Journal of Hydrology 520:326-341.

Körner, C., and E. Hiltbrunner. 2018. The 90 ways to 
describe plant temperature. Perspectives in Plant 
Ecology, Evolution and Systematics.

Lafleur, P. M., and E. R. Humphreys. 2018. Tundra 
shrub effects on growing season energy and carbon 
dioxide exchange. Environ Res Lett 13:055001.

Lefcheck, J. S. 2016. PIECEWISESEM: Piecewise 
structural equation modelling in R for ecology, 
evolution, and systematics. Methods Ecol Evol 
7:573-579.

Legates, D. R., R. Mahmood, D. F. Levia, T. L. 
DeLiberty, S. M. Quiring, C. Houser, and F. 
E. Nelson. 2011. Soil moisture: A central and 
unifying theme in physical geography. Progress 
in Physical Geography 35:65-86.

Leiblein-Wild, M. C., R. Kaviani, and O. Tackenberg. 
2014. Germination and seedling frost tolerance 
differ between the native and invasive range in 
common ragweed. Oecologia 174:739-750.

Lembrechts, J. J., and J. Lenoir. 2019. Microclimatic 
conditions anywhere at any time! Glob Chang 
Biol .

Lin, H. 2010. Earth’s Critical Zone and hydropedology: 
concepts, characteristics, and advances. J 
Hydrology

Earth System Sciences 14:25-45.
Lookingbill, T., and D. Urban. 2004. An empirical 

approach towards improved spatial estimates of 
soil moisture for vegetation analysis. Landscape 
Ecology 19:417-433.

Loranty, M. M., S. J. Goetz, and P. S. A. Beck. 2011. 
Tundra vegetation effects on pan-Arctic albedo. 
Environ Res Lett 6:7.

Maitner, B. S., B. Boyle, N. Casler, R. Condit, J. 
Donoghue, S. M. Durán, D. Guaderrama, C. 
E. Hinchliff, P. M. Jørgensen, and N. J. Kraft. 
2018. The bien r package: A tool to access the 
Botanical Information and Ecology Network 
(BIEN) database. Methods Ecol Evol 9:373-379.

Mastrotheodoros, T., C. Pappas, P. Molnar, P. 
Burlando, G. Manoli, J. Parajka, R. Rigon, B. 
Szeles, M. Bottazzi, and P. Hadjidoukas. 2020. 
More green and less blue water in the Alps during 
warmer summers. Nat Clim Change.



30

McCalley, C. K., B. J. Woodcroft, S. B. Hodgkins, 
R. A. Wehr, E. H. Kim, R. Mondav, P. M. Crill, 
J. P. Chanton, V. I. Rich, G. W. Tyson, and S. 
R. Saleska. 2014. Methane dynamics regulated 
by microbial community response to permafrost 
thaw. Nature 514:478-481.

McColl, K. A., S. H. Alemohammad, R. Akbar, A. G. 
Konings, S. Yueh, and D. Entekhabi. 2017. The 
global distribution and dynamics of surface soil 
moisture. Nature Geoscience 10:100-+.

McGill, B. J., B. J. Enquist, E. Weiher, and M. 
Westoby. 2006. Rebuilding community ecology 
from functional traits. Trends in ecology and 
evolution 21:178-185.

McLaughlin, B., D. D. Ackerly, P. Z. Klos, J. Natali, 
T. E. Dawson, and S. E. Thompson. 2017. 
Hydrological refugia, plants, and climate change. 
Glob Chang Biol .

Milledge, D. G., J. Warburton, S. N. Lane, and C. J. 
Stevens. 2013. Testing the influence of topography 
and material properties on catchment-scale soil 
moisture patterns using remotely sensed vegetation 
patterns in a humid temperate catchment, northern 
Britain. Hydrological Processes 27:1223-1237.

Minchin, P. R. 1987. An evaluation of the relative 
robustness of techniques for ecological ordination. 
Pages 89-107 Theory and models in vegetation 
science. Springer.

Mod, H. K., D. Scherrer, M. Luoto, A. Guisan, and S. 
Scheiner. 2016. What we use is not what we know: 
environmental predictors in plant distribution 
models. Journal of Veg Sci 27:1308-1322.

Moeslund, J. E., A. Zlinszky, R. Ejrnæs, A. K. 
Brunbjerg, P. K. Bøcher, J‐C. Svenning, and S. 
Normand. 2019. Light detection and ranging 
explains diversity of plants, fungi, lichens, and 
bryophytes across multiple habitats and large 
geographic extent. Ecological Applications 9(5), 
e01907.

Moles, A. T., D. I. Warton, L. Warman, N. G. Swenson, 
S. W. Laffan, A. E. Zanne, A. Pitman, F. A. 
Hemmings, and M. R. Leishman. 2009. Global 
patterns in plant height. J Ecol 97:923-932.

Musselman, K. N., M. P. Clark, C. H. Liu, K. Ikeda, 
and R. Rasmussen. 2017. Slower snowmelt in a 
warmer world. Nat Clim Change 7:214-+.

Myers-Smith, I. H., S. C. Elmendorf, P. S. A. Beck, 
M. Wilmking, M. Hallinger, D. Blok, K. D. Tape, 
S. A. Rayback, M. Macias-Fauria, B. C. Forbes, J. 
D. M. Speed, N. Boulanger-Lapointe, C. Rixen, 
E. Lévesque, N. M. Schmidt, C. Baittinger, A. 
J. Trant, L. Hermanutz, L. S. Collier, M. A. 
Dawes, T. C. Lantz, S. Weijers, R. H. Jørgensen, 
A. Buchwal, A. Buras, A. T. Naito, V. Ravolainen, 
G. Schaepman-Strub, J. A. Wheeler, S. Wipf, K. C. 
Guay, D. S. Hik, and M. Vellend. 2015. Climate 
sensitivity of shrub growth across the tundra 
biome. Nat Clim Change 5:887-891.

Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. 

Hallinger, T. Lantz, D. Blok, K. D. Tape, M. 
Macias-Fauria, U. Sass-Klaassen, E. Levesque, 
S. Boudreau, P. Ropars, L. Hermanutz, A. Trant, 
L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, 
N. M. Schmidt, G. Schaepman-Strub, S. Wipf, 
C. Rixen, C. B. Menard, S. Venn, S. Goetz, L. 
Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. 
Welker, P. Grogan, H. E. Epstein, and D. S. Hik. 
2011. Shrub expansion in tundra ecosystems: 
dynamics, impacts and research priorities. Environ 
Res Lett 6:15.

Myers-Smith, I. H., and D. S. Hik. 2013. Shrub 
canopies influence soil temperatures but not 
nutrient dynamics: An experimental test of tundra 
snow-shrub interactions. Ecol Evol 3:3683-3700.

Myers‐Smith, I. H., and D. S. Hik. 2017. Climate 
warming as a driver of tundra shrubline advance. 
J Ecol.

Nabe-Nielsen, J., S. Normand, F. K. C. Hui, L. Stewart, 
C. Bay, L. I. Nabe-Nielsen, and N. M. Schmidt. 
2017. Plant community composition and species 
richness in the High Arctic tundra: From the 
present to the future. Ecol Evol 7:10233-10242.

Nasta, P., D. Penna, L. Brocca, G. Zuecco, and N. 
Romano. 2018. Downscaling near-surface soil 
moisture from field to plot scale: A comparative 
analysis under different environmental conditions. 
Journal of Hydrology 557:97-108.

Nelder, J. A., and R. W. Wedderburn. 1972. Generalized 
Linear Models. Journal of the Royal Statistical 
Society Series a-General 135:370-+.

Niittynen, P., R. K. Heikkinen, and M. Luoto. 2018. 
Snow cover is a neglected driver of Arctic 
biodiversity loss. Nat Clim Change 8:997-+.

Niittynen, P., R. K. Heikkinen, J. Aalto, A. Guisan, J. 
Kemppinen, and M. Luoto (Under review). Winter 
outweighs summer thermal conditions in driving 
patterns of tundra vegetation.

Nitze, I., G. Grosse, B. Jones, C. Arp, M. Ulrich, A. 
Fedorov, and A. Veremeeva. 2017. Landsat-based 
trend analysis of lake dynamics across northern 
permafrost regions. Remote Sensing 9:640.

Normand, S., R. Randin, R. Ohlemüller, C. Bay, T. 
T. Høye, E. D. Kjær, C. Körner, H. Lischke, L. 
Maiorano, J. Paulsen, P. B. Pearman, A. Psomas, 
U. A. Treier, N. E. Zimmermann, and J-C. 
Svenning. 2013. A greener Greenland? Climatic 
potential and long-term constraints on future 
expansions of trees and shrubs. Phil Trans R Soc 
B 368:20120479.

Oddershede, A., C. Violle, A. Baattrup-Pedersen, 
J.-C. Svenning, and C. Damgaard. 2018. Early 
dynamics in plant community trait responses to 
a novel, more extreme hydrological gradient. 
Journal of Plant Ecology 12:327-335.

Parker, T. C., J. A. Subke, and P. A. Wookey. 2015. 
Rapid carbon turnover beneath shrub and tree 
vegetation is associated with low soil carbon 
stocks at a subarctic treeline. Glob Chang Biol  

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A82



31

21:2070-2081.
Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. 

A. Beck, T. Damoulas, S. J. Knight, and S. J. 
Goetz. 2013. Shifts in Arctic vegetation and 
associated feedbacks under climate change. Nat 
Clim Change 3:673-677.

Pedersen, E. J., D. L. Miller, G. L. Simpson, and N. 
Ross. 2018. Hierarchical generalized additive 
models: an introduction with mgcv. Peerj 
6:e27320v27321.

Porporato, A., E. Daly, and I. Rodriguez-Iturbe. 2004. 
Soil water balance and ecosystem response to 
climate change. Am Nat 164:625-632.

Porporato, A., and I. Rodriguez-Iturbe. 2002. 
Ecohydrology - a challenging multidisciplinary 
research perspective. Hydrological Sciences 
Journal-Journal Des Sciences Hydrologiques 
47:811-821.

Post, E., R. B. Alley, T. R. Christensen, M. Macias-
Fauria, B. C. Forbes, M. N. Gooseff, A. Iler, J. 
T. Kerby, K. L. Laidre, M. E. Mann, J. Olofsson, 
J. C. Stroeve, F. Ulmer, R. A. Virginia, and M. 
Wang. 2019. The polar regions in a 2°C warmer 
world. Science Advances 5:eaaw9883.

Pushkareva, E., J. R. Johansen, and J. Elster. 2016. 
A review of the ecology, ecophysiology and 
biodiversity of microalgae in Arctic soil crusts. 
Polar Biology 39:2227-2240.

Qian, H. F., R. Joseph, and N. Zeng. 2010. Enhanced 
terrestrial carbon uptake in the Northern High 
Latitudes in the 21st century from the Coupled 
Carbon Cycle Climate Model Intercomparison 
Project model projections. Glob Chang Biol  
16:641-656.

Riihimäki, H., J. Heiskanen, and M. Luoto. 2017. The 
effect of topography on arctic-alpine aboveground 
biomass and NDVI patterns. International Journal 
of Applied Earth Observation and Geoinformation 
56:44-53.

Riihimäki, H., J. Kemppinen, M. Kopecký & M. Luoto 
(Under review). Modelling performance of the 
Topographic Wetness Index is affected by grid 
resolution and flow-routing algorithm.

Roach, J. K., and B. Griffith. 2015. Climate-induced 
lake drying causes heterogeneous reductions in 
waterfowl species richness. Landscape Ecology 
30:1005-1022.

Robinson, D., C. Campbell, J. Hopmans, B. K. 
Hornbuckle, S. B. Jones, R. Knight, F. Ogden, 
J. Selker, and O. Wendroth. 2008. Soil moisture 
measurement for ecological and hydrological 
watershed-scale observatories: A review. Vadose 
Zone Journal 7:358-389.

Robinson, D. A., J. W. Hopmans, V. Filipovic, M. van 
der Ploeg, I. Lebron, S. B. Jones, S. Reinsch, N. 
Jarvis, and M. Tuller. 2019. Global environmental 
changes impact soil hydraulic functions through 
biophysical feedbacks. Glob Chang Biol 25:1895-
1904.

Robinson, D. A., S. B. Jones, I. Lebron, S. Reinsch, 
M. T. Domínguez, A. R. Smith, D. L. Jones, M. R. 
Marshall, and B. A. Emmett. 2016. Experimental 
evidence for drought induced alternative stable 
states of soil moisture. Sci rep 6:20018.

Robinson, S. A., D. H. King, J. Bramley-Alves, M. 
J. Waterman, M. B. Ashcroft, J. Wasley, J. D. 
Turnbull, R. E. Miller, E. Ryan-Colton, T. Benny, 
K. Mullany, L. Clarke, L. A. Barry, and Q. Hua. 
2018. Rapid change in East Antarctic terrestrial 
vegetation in response to regional drying. Nat 
Clim Change 8:879-+.

Rodriguez-Iturbe, I. 2000. Ecohydrology: A hydrologic 
perspective of climate-soil-vegetation dynamics. 
Water Resour Res 36:3-9.

Roos, R. E., K. van Zuijlen, T. Birkemoe, K. 
Klanderud, S. I. Lang, S. Bokhorst, D. A. Wardle, 
and J. Asplund. 2019. Contrasting drivers of 
community‐level trait variation for vascular plants, 
lichens and bryophytes across an elevational 
gradient. Functional Ecology.

le Roux, P. C., J. Aalto, and M. Luoto. 2013. Soil 
moisture’s underestimated role in climate change 
impact modelling in low-energy systems. Glob 
Chang Biol 19:2965-2975.

le Roux, P. C., M. Luoto, and R. Michalet. 2014. Earth 
surface processes drive the richness, composition 
and occurrence of plant species in an arctic-alpine 
environment. J Veg Sci25:45-54.

Saatkamp, A., A. Cochrane, L. Commander, L. K. 
Guja, B. Jimenez‐Alfaro, J. Larson, A. Nicotra, P. 
Poschlod, F. A. Silveira, and A. T. Cross. 2019. A 
research agenda for seed‐trait functional ecology. 
New Phytologist 221:1764-1775.

Sakai, A., and W. Larcher. 2012. Frost survival of 
plants: responses and adaptation to freezing stress. 
Springer Science & Business Media.

Saros, J. E., N. J. Anderson, S. Juggins, S. McGowan, 
J. C. Yde, J. Telling, J. E. Bullard, M. L. Yallop, 
A. J. Heathcote, B. T. Burpee, R. A. Fowler, C. 
D. Barry, R. M. Northington, C. L. Osburn, S. 
Pla-Rabes, S. H. Mernild, E. J. Whiteford, M. G. 
Andrews, J. T. Kerby, and E. Post. 2019. Arctic 
climate shifts drive rapid ecosystem responses 
across the West Greenland landscape. Environ 
Res Lett 14.

Seaton, F. M., D. L. Jones, S. Creer, P. B. George, S. 
M. Smart, I. Lebron, G. Barrett, B. A. Emmett, and 
D. A. Robinson. 2019. Plant and soil communities 
are associated with the response of soil water 
repellency to environmental stress. Science of 
the Total Environment 687:929-938.

Seddon, A. W., M. Macias-Fauria, P. R. Long, D. 
Benz, and K. J. Willis. 2016. Sensitivity of 
global terrestrial ecosystems to climate variability. 
Nature 531:229-232.

Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, 
E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. 
Teuling. 2010. Investigating soil moisture-climate 



32

interactions in a changing climate: A review. 
Earth-Science Reviews 99:125-161.

Shiklomanov, I. 1993. World fresh water resources. 
Oxford University Press, Inc, Oxford.

Shipley, B., F. De Bello, J. H. C. Cornelissen, E. 
Laliberté, D. C. Laughlin, and P. B. Reich. 2016. 
Reinforcing loose foundation stones in trait-based 
plant ecology. Oecologia 180:923-931.

Silvertown, J., Y. Araya, and D. Gowing. 2015. 
Hydrological niches in terrestrial plant 
communities: a review. J Ecol 103:93-108.

Smol, J. P., and M. S. V. Douglas. 2007. Crossing the 
final ecological threshold in high Arctic ponds. 
Proceedings of the National Academy of Sciences 
of the United States of America 104:12395-12397.

Sommerkorn, M., M. Bölter, and L. Kappen. 1999. 
Carbon dioxide fluxes of soils and mosses in wet 
tundra of Taimyr Peninsula, Siberia: controlling 
factors and contribution to net system fluxes. Polar 
Research 18:253-260.

Sonesson, M., and T. V. Callaghan. 1991. Strategies of 
Survival in Plants of the Fennoscandian Tundra. 
Arctic 44:95-105.

Strahler, A. H., and A. N. Strahler. 2005. Physical 
geography: science and systems of the human 
environment. Wiley New York, NY.

Strimbeck, G. R., B. J. Graae, S. Lang, and M. V. 
Sørensen. 2019. Functional group contributions to 
carbon fluxes in arctic-alpine ecosystems. Arctic, 
Antarctic, and Alpine Research 51:58-68.

Sørensen, M. V., R. Strimbeck, K. O. Nystuen, R. E. 
Kapas, B. J. Enquist, and B. J. J. E. Graae. 2018. 
Draining the pool? Carbon storage and fluxes in 
three alpine plant communities. 21:316-330.

Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. 
Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil 
organic carbon pools in the northern circumpolar 
permafrost region. Global Biogeochemical Cycles 
23.

Teuling, A. J., and P. A. Troch. 2005. Improved 
understanding of soil moisture variability 
dynamics. Geophysical Research Letters 
32:L05404.

Trahan, M. W., and B. A. Schubert. 2016. Temperature-
induced water stress in high-latitude forests in 
response to natural and anthropogenic warming. 
Glob Chang Biol 22:782-791.

Uchida, M., T. Nakatsubo, H. Kanda, and H. Koizumi. 
2006. Estimation of the annual primary production 
of the lichen Cetrariella delisei in a glacier foreland 
in the High Arctic, Ny-Ølesund, Svalbard. Polar 
Research 25:39-49.

Weijers, S., I. H. Myers-Smith, and J. Loffler. 2018. 

A Warmer and Greener Cold World: Summer 
Warming Increases Shrub Growth in the Alpine 
and High Arctic Tundra. Erdkunde 72:63-85.

Western, A. W., R. B. Grayson, and G. Bloschl. 2002. 
Scaling of soil moisture: A hydrologic perspective. 
Annual Review of Earth and Planetary Sciences 
30:149-180.

Whittaker, R. H. 1965. Dominance and diversity in 
land plant communities: numerical relations of 
species express the importance of competition 
in community function and evolution. Science 
147:250-260.

Whittaker, R. H. 1970. Communities and ecosystems. 
New York: Macmillan.

Whittaker, R. H. 1972. Evolution and measurement 
of species diversity. Taxon:213-251.

Wild, J., M. Kopecky, M. Macek, M. Sanda, J. 
Jankovec, and T. Haase. 2019. Climate at 
ecologically relevant scales: A new temperature 
and soil moisture logger for long-term microclimate 
measurement. Agric For Meteorol 268:40-47.

Wilson, J. P., and J. C. Gallant. 2000. Terrain analysis: 
Principles and Applications. John Wiley & Sons, 
Inc., New York, USA.

Winkler, D. E., K. J. Chapin, and L. M. Kueppers. 
2016. Soil moisture mediates alpine life form and 
community productivity responses to warming. 
Ecology 97:1553-1563.

Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. 
Fortunel, I. Hummel, and E. Garnier. 2007. Let the 
concept of trait be functional! Oikos 116:882-892.

Wlostowski, A., M. Gooseff, and B. Adams. 2018. 
Soil moisture controls the thermal habitat of 
active layer soils in the McMurdo Dry Valleys, 
Antarctica. Journal of Geophysical Research: 
Biogeosciences 123:46-59.

Woodward, F., and M. Lomas. 2004. Vegetation 
dynamics–simulating responses to climatic 
change. Biological Reviews of the Cambridge 
Philosophical Society 79:643-670.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, 
Z. Baruch, F. Bongers, J. Cavender-Bares, T. 
Chapin, J. H. Cornelissen, and M. Diemer. 2004. 
The worldwide leaf economics spectrum. Nature 
428:821.

Xu, W. F., W. P. Yuan, W. J. Dong, J. Z. Xia, D. Liu, and 
Y. Chen. 2013. A meta-analysis of the response of 
soil moisture to experimental warming. Environ 
Res Lett 8:8.

Zwieback, S., Q. Chang, P. Marsh, and A. Berg. 2019. 
Shrub tundra ecohydrology: rainfall interception is 
a major component of the water balance. Environ 
Res Lett 14:055005.

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A82





Soil moisture and its importance 
for tundra plants

JULIA KEMPPINEN

JULIA KEM
PPINEN

DEPARTM
ENT O

F G
EO

SCIENCES AND G
EO

G
R

APHY A82
2020

  DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A82

Plant-water relationships are strong across the 
tundra. Soil moisture and its spatial variation 
are controlled by the soil characteristics and 
topographic features in the landscape, but 
also by the abundance of woody plants. Water 
conditions affect vegetation across species 
groups, from individuals to the communities. 
This knowledge unravels the importance 
of soil moisture in a vulnerable ecosystem 
undergoing rapid changes.
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