Heavy metal content and health risk assessment of commonly patronized herbal medicinal preparations from the Kumasi metropolis of Ghana

Frank Adusei-Mensah^{1,2}⁵, David Kofi Essumang³, Richard Osei Agjei⁴, Jussi Kauhanen⁵, Carina
Tikkanen-Kaukanen⁶, Martins Ekor^{7*}

7	¹ School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland; ² School								
8	of Public Health, Texila American University, Guyana; ³ Department of Chemistry, School of								
9	Physical Sciences, University of Cape Coast, Cape Coast, Ghana; ⁴ Department of Chemistry, The								
10	University of Eastern Finland, Finland; ⁵ Institute of Public Health and Clinical Nutrition, School of								
11	Medicine, University of Eastern Finland; ⁶ Helsinki Institute of Sustainability Science and Ruralia								
12	Institute, University of Helsinki, Finland; ⁷ .Department of Pharmacology, School of Medical								
13	Sciences, University of Cape Coast, Cape Coast, Ghana.								
14									
15									
16									
17	Running title: Heavy metal content of herbal medicinal products								
18									
19									
20									
21									
22	*Correspondence: Martins Ekor. Department of Pharmacology, School of Medical Sciences,								
23	University of Cape Coast, Cape Coast, Ghana. E-mails: martins.ekor@ucc.edu.gh; Phone:								
24	+233247950762; Fax: 0332138191.								

26 Abstract

27 Purpose

To address the question of whether users of herbal products (HPs) are exposed to harmful contaminants, we evaluated six HPs mostly patronized in Kumasi for heavy metal contamination and assessed the health risk associated with their use. This study is one of the first safety evaluation studies on finished multiherbal products in the region.

32 Method

Three antimalarial, two antidiabetic and one antihypertensive HPs were selected after a mini-survey and coded randomly as HP A-F. The HPs were acid digested for quantitative analysis of heavy metals using Inductively Coupled Plasma Mass Spectrometer. Hg quantification was carried out using cold vapour atomic absorption spectroscopy.

37 **Results**

The cancer risk estimation values for the carcinogenic metals ranged between 1.54×10^{-9} to 3.73×10^{-4} and were all within acceptable limits. The non-cancer health risk evaluation revealed that, some of the products pose health risk to consumers. The estimated daily intake (EDI) for As in HPF was 2.48×10^{-4} mg/kg/day compared to the reference limit of 1.67×10^{-4} mg/kg/day. HPF also had high hazard index (HI) of 5.70 (HI >1) in children as compared to 1.68 (HI >1) in adults showing a 3.4 folds increase in the health risk among the former.

44 Conclusion

The six polyherbal products exhibited carcinogenic risk within acceptable limits. Although, the noncarcinogenic risk assessment of products HPA to HPE suggests safety, this can only be ascertained after further characterization of their health risks in detailed chronic toxicity studies. The high HI for
product HPF suggests health risk for consumers of this product.

49

50 Keywords: Cancer risk, estimated daily intake, exposure, hazard index, hazard quotient, heavy
51 metals, herbal medicinal products, risk assessment.

52

53 **1.0 Introduction**

54 The use of Herbal Medicines (HM) for healthcare delivery dates back in centuries, and it is likely one 55 of the oldest methods of healthcare delivery in many parts of the world, [1]. HMs are used for 56 preventive, curative and chronic disease management. HM forms the fabric of the healthcare systems 57 in many low income and middle-income countries and has had an enormous contribution to the health care system in Ghana. In recent years, the production and patronage of herbal medicinal products 58 59 (HMPs) in Ghana for therapeutic purposes have increased substantially, [2]. The WHO estimated that 60 close to 80% of the developing world's population rely on herbal medicine for their basic healthcare needs, [3]. In the light of modern tools and technologies, HMs in Ghana have seen substantial 61 62 improvement in dosage form formulations, packaging and reported efficacies, [4]. Medicinal value of these herbal preparations is usually due to the presence of essential phytochemicals such as tannins, 63 64 alkaloids, flavonoids and phenolic compounds that serve as active compounds in these medicinal products, [5]. The phytochemicals are secondary plant metabolites produced and or stored for a 65 variety of reasons including defence and protection against pest and diseases. In addition to the 66 presence of active principle or compound(s), the herbal mixture may contain foreign toxic substances 67 68 including pesticides and heavy metal residues which may cause a health risk to human systems and 69 animals, [6].

70 Elevated heavy metal levels in medicinal plants have been associated with plants exposed to heavy 71 metal polluted waters, the use of pesticides and other agrochemicals, plants growing along heavy 72 traffic ways, previous dump-sites and near mining arrears, [7, 8]. When the herbal medicinal plants 73 are processed into herbal preparations and consumed by humans, the heavy metal contaminants enter 74 into the human system and cause health problems, [5]. It is believed that herbal medicine is one of 75 the commonest modes of human exposure to heavy metals. Heavy metal intake through herbal 76 products should, therefore, be regulated to avoid excessive build-ups in humans, [5, 6]. Though 77 Ghana's Food and Drugs Authority (FDA) has been charged with controlling commodities for human 78 use including herbal products and the organization is doing its best. Many HPs still enters the market 79 without FDA registration and or without pre-market and post-market safety data. The FDA is also 80 unable to carry out regular post-market surveillance of HPs on the market probably due to resource 81 strength compared to the huge HPs on the market resulting in data gap. There is, therefore, a call for 82 regular monitoring and surveillance studies to protect the health of the general public.

83

84 The increased use of agrochemical such as pesticides in Ghana to fight pest has increased the risk of 85 heavy metal contamination these days and poses a health risk. The surge in the use of mercury and 86 arsenic for small-scale illegal gold mining operations popularly known as 'galamsey' in the country 87 in recent years is a major health concern both to policymakers and public health professionals. The 88 heavy metals may finally end up in the tissues of these higher medicinal plants and into humans 89 through the herbal preparations. Recently, waters near the Obuasi and Takwa gold mines in Ghana 90 were found to be contaminated with heavy metals, [7, 9]. Some foodstuffs [10] and tea products [11] 91 were also found to be contaminated with heavy metals and unsafe for consumption. Mutations in the 92 genetic material, cancer, central nervous system disorders, liver and kidney toxicities are among the 93 reported health problems associated with heavy metals [5]. As, Cd, Pb and Hg are among the most toxic metal contaminants based on previous reports, [12, 13]. Lead poisoning causes abdominal pain, 94

severe anaemia and haemoglobulinuria [5] and arsenic poisoning may cause skin lesions, cancer
[12], diabetes and lung disease [14, 15]. Mercury poisoning has been associated with cardiovascular
problems, neuropathy, tremors, nephrotoxicity, immunotoxicity, carcinogenicity and death, [13,
16]. Cadmium, on the other hand, has been associated with increased risk of hormone-dependent
cancers including endometrial cancer [17], nephrotoxicity, skeletal damage and cardiovascular health
problems, [18].

101

Due to methodological challenges and the complex nature of multi-herbal mixtures, researchers shy away from it until recently resulting in a paucity of data concerning multi-herbal preparations on the market. There is also the lack of pre-market and post-market safety and quality control data on most certified and uncertified herbal medicinal products on the Ghanaian market, [19]. The present study, therefore, determined the presence of heavy metal contaminants in six commonly used herbal medicinal products in Kumasi metropolis of Ghana and evaluated the health and cancer risks associated with their consumption.

109

110

111 **2.0 Method**

112 **2.1 Sample selection**

A mini survey was carried out among some randomly selected herbal medicine users and pharmacy shops that also sell herbal medicine on wholesale or in retail. The mini survey was carried out in Kejatia, Bantama and Ash-town districts in the Kumasi Metropolis. Herbal medicine users were asked about the anti-malarial, anti-hypertensive and anti-diabetic herbal medicinal products they go for when unwell. Also, the wholesale and retail pharmacy shops involved in the study were asked about the most patronized antimalarial, anti-diabetic and anti-hypertensive HMPs in their collections. Participation in the interview was entirely voluntarily, interviewees were free to opt out of the study at any time, no minors were involved in this study and the minimum age of the participants was over 20 years. To partake in this mini-interview, the herbal medicine user needed to be at least 18 years and over and gave their consent and wiliness to part take in the study. Participants were asked not to give any identification numbers or their family names during the short interview. The list was compiled and tallied. The top 3 antimalarial (fig. 4A), top 2 anti-diabetics (fig. 4B) and the top 1 antihypertensive (fig. 4C) were selected for the heavy metal study. The six HMPs were randomly coded for ethical reasons and henceforth shall be represented by their random codes; HPA, HPB....HPF.

127

128 **2.2 Wet di-acid digestion of the herbal products (HPs)**

For the herbal preparations wet di-acid digestion comprising of nitric acid (HNO₃) and perchloric acid (HClO₄) digestion method was employed, [20 - 22]. Measurements were made in triplicate and the averages were reported.

132

133 2.3 Agilent ICP-MS 7700 series heavy metal and elemental analysis

Heavy metals and trace elements present in the digested herbal samples were analyzed using 134 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS); Agilent ICP-MS 7700x (Agilent 135 136 Technologies, Inc. Hachioji-shi, Tokyo, Japan). Analytical grade calibration standards solution and blank were run prior to sample injection. All solutions used were of analytical grade. The ICP-MS 137 138 7700x has high detection power, [23-24] and the obtained results were in parts per billion (ppb) and 139 the final results were obtained by calculating back into the undiluted solution. The Pb, As, Cd, Cr, 140 Cu, Ni, and Mn content in the HMPs were determined using this ICP-MS instrument and standard 141 method for metal analysis with this instrument was followed.

142

143 Instrument conditions and quality control

144 The instrument was rinsed with water and recalibrated after every ten runs. Linear analytical range 145 (LAR) standards of known concentrations (cal zero, 25 ppb, 50 ppb and 100 ppb) of each metal were 146 used as external standards. The analysis was first carried out in no gas mode (without the introduction 147 of He gas). It was repeated in a gas mode (He gas was introduced) due to the polyvalent metals like Cr. The detector was set at analogue mode during the no gas mode analysis, but the detector was set 148 149 at pulse during the gas mode analysis. The recovery for the standards of Cr, Pb, As, Cd, Mn, Cu and 150 Ni were between 91% and 108%. The relative standard deviations between replicate analyses were 151 all less than 6%. Continue calibration verification standard (CCV) of 25 ppb was run after every 10 152 samples and at the end of every sequence. The measured CCV values ranged from 23.0 ppb to 27.31 153 ppb (within \pm 10%). The quality control parameters of all steps of validation proved the accuracy of 154 the results, [23-25]. The limit of detection (LOD) for Cr, As, Cd, Mn, Pb, Cu and Ni was 0.004 ppm.

155

156 **2.4 Mercury analysis with cold vapour atomic adsorption spectrometer (CV-AAS)**

157 Mercury analysis and quantification was carried out on cold vapour atomic adsorption spectrometer 158 Varian SpectrAA.240FS (Varian Inc, California, USA) equipped with cold vapour generation 159 accessory (VGA-77) using the cold vapour technique. Mercury in the digested sample was reduced 160 to elemental mercury using SnCl₂ solution as reductant and deionized water as an acid to cold vapour 161 VGA system. Freshly prepared Hg standard solution (1 mL/L) was made by appropriate dilution and 162 used for prepared working standard solution, [26-27]. Standard samples and blanks were analysed 163 following the same procedure. The system plots calibration curve for the standards which it uses to 164 determine the Hg content in the diluted sample. The final concentrations were obtained by calculating 165 back the Hg concentrations in the original samples.

166

167

168 Instrument conditions and quality control for Hg

169	The Varian SpectrAA.240FS cold vapour atomic absorption spectrometer equipped with autosampler
170	was set at automix sampling mode for mercury analysis. Measurements were done as described before
171	[26-28]. The peak height measurement mode was used for the analysis. Measurements were carried
172	out in triplicate. Smoothing was set at 10 points and reading was done at 253.7 nm with a slit width
173	of 0.5R nm and a lamp current of 4.0 mA. Gain for the analysis was at 83%. Standards of 10 μ g/L,
174	20 μ g/L and 50 μ g/L were used. Re-slope rate was 500 with 2 re-slope standards. Re-slope lower
175	limit was 85% and the upper limit was 115%. Calibration algorithm was set to linear with a lower
176	calibration limit of 75% and an upper calibration limit of 150%. Measurement time was 5.0 seconds
177	with a pre-read delay of 45 seconds. The relative standard deviation between replicate analyses ranged
178	from 2.3% to 4.4 %. The 'r' value was 0.9998. The linear absorption equation for the estimation of
179	analyte concentration (C) was
180	Abs = $0.01731 * C + 0.01271$ (1)
181	Where Abs is the sample absorption at 253.7 nm wavelength.
181 182	Where Abs is the sample absorption at 253.7 nm wavelength.
	Where Abs is the sample absorption at 253.7 nm wavelength. 2.5 Health risk assessments
182	
182 183	2.5 Health risk assessments
182 183 184	2.5 Health risk assessments2.5.1 Estimated Daily Intake of the heavy metals
182 183 184 185	 2.5 Health risk assessments 2.5.1 Estimated Daily Intake of the heavy metals The estimated daily intake (EDI) of each heavy metal (Cr, Mn, Ni, Cu, As, Cd, Pb and Hg) present
182 183 184 185 186	 2.5 Health risk assessments 2.5.1 Estimated Daily Intake of the heavy metals The estimated daily intake (EDI) of each heavy metal (Cr, Mn, Ni, Cu, As, Cd, Pb and Hg) present in the mixture was determined by the following equation [29, 30];
182 183 184 185 186 187	2.5 Health risk assessments 2.5.1 Estimated Daily Intake of the heavy metals The estimated daily intake (EDI) of each heavy metal (Cr, Mn, Ni, Cu, As, Cd, Pb and Hg) present in the mixture was determined by the following equation [29, 30]; $EDI = \frac{E_D \times C}{W_{AB}}$ (2)
182 183 184 185 186 187 188	2.5 Health risk assessments 2.5.1 Estimated Daily Intake of the heavy metals The estimated daily intake (EDI) of each heavy metal (Cr, Mn, Ni, Cu, As, Cd, Pb and Hg) present in the mixture was determined by the following equation [29, 30]; $EDI = \frac{E_D \times C}{W_{AB}}$ (2) Where; EDI is the estimated daily intake of the heavy metal, C is the determined heavy metal
182 183 184 185 186 187 188 189	2.5 Health risk assessments 2.5.1 Estimated Daily Intake of the heavy metals The estimated daily intake (EDI) of each heavy metal (Cr, Mn, Ni, Cu, As, Cd, Pb and Hg) present in the mixture was determined by the following equation [29, 30]; $EDI = \frac{E_D \times C}{W_{AB}}$ (2) Where; EDI is the estimated daily intake of the heavy metal, C is the determined heavy metal content in the HP, E _D is the daily dosage of the HP and W _{AB} is the Ghanaian average body weight;

FAO/WHO (Codex Alimentarious Commission) [32], US EPA 2015 [33] and other published
materials [27- 30, 34].

195

199

196 **2.5.2 Target hazard quotient for non-carcinogenic risk**

The equation below was used to estimate the targeted hazard quotient (THQ) of the noncarcinogenic effects of the heavy metals present in the herbal products.

$$THQ = \frac{EFr \times EDtot \times IFR \times C}{RfDo \times BWa \times ATn}.$$
(3)

200 Where;

EFr (exposure frequency): Malaria incidence density of approximately 5 infections per person per year was considered for sub-Saharan African and for this study [35]. Anti-malarials: 5 malaria incidences a year and dosages as written on the product label were used. Anti-diabetic or hypertensive drugs are used as stated on the product label or throughout the year due to the chronic nature of the disease; 365 days a year and dosages as stated on the product label.

206

ED_{tot} (Length of exposure) was set to 65 years as the average for Ghanaian males and females based on the average life expectancy in Ghana, adult dose as stated on the product labels starts from age 12 years (i.e. ED is 65-12 = 53 years) for HPA - HPE and from age 6 years (i.e. ED is 65-6 = 59 years) for HPF. IFR: Dosages as indicated on the product bottles (kg/person/day). C is the concentration of the contaminant metal/pesticide in the HMP (mg/kg). RfDo is the oral reference dose (mg /kg/day); BWa is the adult body weight (65 kg); ATn is the average exposure time for non-carcinogens can also be estimated as:

 $ATn = EFr \ x \ ED_{tot} \tag{4}$

215

216	If the value of THQ is less than 1, then the exposed local population (consumers) is said to be safe.
217	But if THQ is equal to or higher than 1, is considered as not safe for human health, therefore poses
218	potential health risk, and related interventions and protective measurements should be taken.
219	
220	2.5.3 Hazard Index (HI)
221	To estimate the risk to human health through more than one contaminant in a given product, the HI
222	has been developed by US EPA, 1989, [36-37]. The chronic hazard index (HI) is the sum of more
223	than one hazard quotient for multiple toxicants in the HP. It is believed that, exposure to two or more
224	pollutants may result in additive and/or interactive effects, [38]. Assuming the additive effects, THQs
225	can be summed across constituents to generate a hazard index (HI) for an oral dosage pathway
226	combination, [38].
227	$HI = \sum_{n=1}^{i} THQn $ (5)
228	
229	Where; THQn is the targeted hazard quotient for the nth term of contaminant, HI is the hazard index
230	
231	2.5.4 Cancer risk estimation
232	CR = CSF * EDI (6)
233	
234	Where, CSF is the oral carcinogenic slope factor of 0.0085 (mg/kg/day) -1 for Pb set by CalEPA
235	(OEHHA) [39] and 1.5 (mg/kg/day)-1 for arsenic (As) set by US EPA [40]. EDI is the estimated
236	daily intake of heavy metals. Acceptable risk levels for carcinogens range from 10 ⁻⁴ (risk of
237	developing cancer over a human lifetime is 1 in 10,000) to 10 ⁻⁶ (risk of developing cancer over a
238	human lifetime is 1 in 1,000,000), [22, 25].
239	
240	Ethical clearance

Study participants provided a written informed consent to participate in the study. Ethical clearance
for the study was issued by the University of Cape Coast Institutional Review Board (UCCIRB)
(ethical approval number: UCCIRB/EXT/2017/07).

244

245 3.0 Results and discussion

246 The internationally established legally permitted maximum residual limits (MRLs) were obtained 247 from the literature, [22, 32, 41-42]. The toxicant level above the established MRLs poses a health risk 248 to consumers and vice versa. It must be stated that chromium IV and VI have different toxicities and 249 MRL for chromium (VI) was used for this study due to its higher toxicity compared to chromium 250 (IV). In this study, all the measured chromium was assumed to be chromium VI with a similar reason as above. In this study, the maximum residual content of Cr, Mn, Ni, Cu and As were above the MRL 251 252 in all the six herbal preparations (Table 1). This indicates that these metal contents are above the legal 253 limits to be on the market. Pb contents for HPC, HPE and HPF were also below the MRL. It must be 254 stated, however, that the MRLs are state or country dependent and vary from one state to the other. 255 MRLs are essential for legal purposes but not conclusive for health risk estimation due to differing 256 consumption frequencies, dosage variations and body weight differences.

257

258 Health risk estimation based on the estimated daily intake (EDI) of the heavy metal contaminant is 259 one of the vital health risk assessment tools. It takes into account the frequency and duration of 260 exposure and the body weight of the exposed persons. The EDI for Cr, Mn, Ni, Cu, As, Cd, Pb, and Hg were all within the upper tolerable daily intake reference limits for HPA-HPE (Table 2). This 261 indicates that the daily intake of these herbal products poses no short to mid-term heavy metal health 262 risk to the public. The EDI for As was determined to be higher $(2.48*10^{-04} \text{ mg/kg/day})$ than the upper 263 tolerable daily intake reference limit $(1.67*10^{-04} \text{ mg/kg/day})$ for HPF. This indicates that consumers 264 of HPF are exposed to short-term to long-term arsenic health risk. Based on previous knowledge, 265

overexposure to arsenic is associated with risk of skin lesions, high blood pressure and diabetes
mellitus [43]. There is also an increased risk of cancer [44].

268

269 The herbal products do not pose long-term health risk per the metal considered if the Hazard risk index (HRI) value is less than 1; and poses a health risk if the HRI is equal to or greater than 1. 270 271 HRI for non-carcinogenic effects measures the long-term exposure of the heavy metal contaminants 272 present in the herbal preparations. The HRI for Cr, Mn, Ni, As, Cd, Pb, and Hg, were all less than 1 273 (Table 3). This means that the consumption of these (HPA - HPF) poses no health risk due to these metals. However, the HRI of Cu for HPF (1.68) is greater than 1. This indicates that long-term 274 275 exposure to HPF poses a health risk due to overexposure to copper. Copper is a microelement, but overexposure to this essential mineral has been reported to predispose the consumer 276 277 to gastrointestinal mucosal ulcerations and bleeding, hepatic necrosis, coma, cardiotoxicity, 278 hypotension [45], leukaemia and cancer [46]. Cd and Hg contents, on the other hand, were well below 279 the MRL limits for all the 6 HPs.

280

It is known that an HI value less than 1 implies that the exposed population is unlikely to experience 281 282 any adverse health effect in their lifetime. However, if the THQ (Tables 4 and 5) is equal to or higher 283 than 1, [25, 47-48], there is a potential health risk to the exposed population and related interventions 284 and protective measures needed to be taken to protect the population. The HI values for HPA – HPE 285 were less than 1. This indicates the combined effects of the heavy metal contaminants present in a 286 particular herbal preparation poses no health risk in the long term for both adults (Fig. 2) and children (Fig. 3). The HI for HPF was higher than 1 probably due to a high daily intake of Cu in this HP. This 287 poses the consumer Cu adverse health effects especially among children due to the very high HI value 288 289 (>4.5) (Fig. 3).

291 The total cancer risk was within the acceptable limits for all the studied herbal products (fig. 3). Acceptable risk levels for carcinogens range from 10^{-4} (risk of developing cancer over a human 292 lifetime is 1 in 10000) to 10^{-6} (risk of developing cancer over a human lifetime is 1 in 1000000), 293 [35]. Values of CR lower than 10^{-6} are considered as negligible, above 10^{-4} are considered to be 294 unacceptable and lying in between 10^{-6} and 10^{-4} are considered an acceptable range, [35]. The cancer 295 risk estimation for As and Pb present in the six herbal products ranged between the values of 1.54*10⁻ 296 09 (least) to $3.73*10^{-04}$ (highest) and were all within the acceptable limits. The total cancer risk due to 297 298 the sum total of risk presented by the individual carcinogenic metals presents per herbal preparation 299 was also all within the acceptable limit. This observation indicates that the consumption of these herbal products does not pose any long-term cancer risk to the public. 300

301

4.0 Conclusion

The polyherbal products (HPA – HPF) evaluated in this study exhibited carcinogenic risk within 303 304 acceptable limits. The non-carcinogenic health risk assessment suggests that five of the products 305 (HPA to HPE) may be safe. However, this safety can be ascertained only when the health risks of 306 these products are further characterized in detailed chronic toxicity studies. The high HI recorded for 307 HPF, on the other hand, suggests increased health risks for consumers of this product. We advise, therefore, that the use of these polyherbal products, especially HPF, should be done with much 308 309 caution. We also recommend that all relevant national and international agencies should be alive to 310 the responsibility of promoting public safety and global health by periodically reviewing and 311 enforcing existing policies regulating the herbal medicine industry.

312

313

314 Note (N.B).:

315	The manufacturers of the herbal products including HPF have been briefed with the findings from
316	this study. Recommendations were also made to the manufacturers to take steps in preventing metal
317	contamination and ensure good manufacturing practices.
318	
319	Acknowledgements
320	The authors acknowledge Mr Isaac Tabiri Henneh and Joseph Acqua-Mills of the Department of
321	Pharmacology, School of Medical Sciences, and University of Cape Coast, Ghana for their enormous
322	and selfless contributions towards this project.
323	
324	Conflict of interest
325	The authors declare that they have no conflict of interest in carrying out any part of this work
326 327	Funding
328	This research received no specific grant from any funding agency in the public, commercial, or not-
329	for-profit sectors.
330	
331	References
332 333	1. Kosalec I, Cvek J, Tomić S. Contaminants of medicinal herbs and herbal products. Arh Hig Rada Toksikol. 2009;60:485–501.
334 335 336	 Adusei-Mensah F, Inkum EI. Has The Recent Upsurge in Traditional Herbal Medicine in Ghanaian Market Been Translated Into the Health of the Ghanaian Public: A Retrospective Cohort Study? Int J. Nov Res Healthc Nurs. 2015;2:98-106.
337 338 339	 WHO WHO traditional medicine strategy: 2014-2023 [Internet]. WHO. [cited 2017 Aug 13]. Available from: http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/
340 341	4. Aziato L, Antwi HO. Facilitators and barriers of herbal medicine use in Accra, Ghana: an inductive exploratory study. BMC Complement Altern Med. 2016;16:142.

342 343	5.	Shaban NS, Abdou KA, Hassan NE-HY. Impact of toxic heavy metals and pesticide residues in herbal products. Beni-Suef Univ J Basic Appl Sci. 2016;5:102–6.
344 345	6.	Gasser U, Klier B, Kühn AV, Steinhoff B. Current findings on the heavy metal content in herbal drugs. Pharmeuropa Sci Notes. 2009;2009:37–50.
346 347	7.	Bempah CK, Ewusi A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ Monit Assess. 2016;188:261.
348 349	8.	Street RA. Heavy metals in medicinal plant products — An African perspective. South Afr J Bot. 2012;82:67–74.
350 351 352	9.	Bortey-Sam N, Nakayama SMM, Ikenaka Y, Akoto O, Baidoo E, Mizukawa H, et al. Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana. Environ Monit Assess. 2015;187:397.
353 354 355 356	10.	Bortey-Sam N, Nakayama SMM, Akoto O, Ikenaka Y, Fobil JN, Baidoo E, et al. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks. Int J Environ Res Public Health. 2015;12:8811–27.
357 358	11.	Nkansah MA, Opoku F, Ackumey AA. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. Environ Monit Assess. 2016;188:332.
359 360 361	12.	Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach. Mol Cell Biochem. 2004;255:47–55.
362 363	13.	Matta G, Gjyli L. Mercury, lead and arsenic: Impact on environment and human health. J Chem Pharm Sci. 2016;9:718–25.
364 365 366	14.	Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, et al. Arsenic and Environmental Health: State of the Science and Future Research Opportunities. Environ Health Perspect. 2016;124:890–9.
367 368 369	15.	Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem. Environ Health Perspect. 2013;121:295–302.
370 371	16.	Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. Int J Environ Res Public Health. 2017;14.
372 373 374	17.	McElroy JA, Kruse RL, Guthrie J, Gangnon RE, Robertson JD. Cadmium exposure and endometrial cancer risk: A large midwestern U.S. population-based case-control study. PloS One. 2017;12:e0179360.
375 376	18.	Garner R, Levallois P. Cadmium levels and sources of exposure among Canadian adults. Health Rep. 2016;27:11.
377 378 379	19.	Dhanavathy G, Jayakumar S. Acute and Subchronic Toxicity Studies of Swertiamarin A lead Compound Isolated from Enicostemma Littorale .blume in wistar rats. Biosci Biotechnol Res Asia. 2017;14:381–90.

380 381	20. Tracqui A, Tayot J, Kintz P, Alves G, Bosque MA, Mangin P. Determination of manganese in human brain samples. Forensic Sci Int. 1995;76:199–203.
382	21. Busheina IS, Abobaker MM, Aljurmi ES and Etorki AM. Determination of Selenium in
383	Environmental Samples Using Hydride Generation Coupled to Atomic Absorption
384	Spectroscopy. J Environ Anal Chem. 2016 3:180
385 386 387	22. Kamunda C, Mathuthu M, Madhuku M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int J Environ Res Public Health 2016.13(7): 663.
388	 United States Environmental Protection Agency SOP 1811 (EPA/SW-846 Methods
389	3015/3050B/6010B). Determination of Metals by Inductively Coupled Plasma (ICP)
390	Methods.2006. 1811;40.
391	 Kokot ZJ, Matysiak J. Inductively coupled plasma mass spectrometry determination of
392	metals in honeybee venom. J Pharm Biomed Anal. 2008;48:955–9.
393	25. Ekhator OC, Udowelle NA, Igbiri S, Asomugha RN, Igweze ZN, Orisakwe OE. Safety
394	Evaluation of Potential Toxic Metals Exposure from Street Foods Consumed in Mid-West
395	Nigeria. J Environ Public Health [online article]. 2017. doi: <u>10.1155/2017/8458057</u> .
396 397 398 399	26. Mohammed E., Mohammed T., Mohammed A. Optimization of instrument conditions for the analysis for mercury, arsenic, antimony and selenium by atomic absorption spectroscopy, <i>MethodsX</i> , 2018. 5, Pp 824-833. ISSN 2215-0161
400 401 402	27. Dominski P., Shrader DE., Automated Cold Vapor Determination of Mercury: EPA Stannous Chloride Methodology. Agilent Technology incorporation, 2010, AA051
403	 Cui J., Using cold vapor generation atomic absorption to determine mercury impurities in
404	pharmaceutical products. Thermo Fisher Scientific, Bremen, Germany, 2016.
405 406 407	29. Singh, R. K. Sharma, M. Agrawal, and F. M. Marshall, "Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India," Tropical Ecology, vol. 51, no. 2, pp. 375–387, 2010.
408	30. Ou X, Wang L, Guo L, Cui X, Liu D, Yang Y. Soil-Plant Metal Relations in Panax
409	notoginseng: An Ecosystem Health Risk Assessment. Int J Environ Res Public Health.
410	2016;13.
411	 Biritwum R, Gyapong J, Mensah G. The Epidemiology of Obesity in Ghana. Ghana Med J.
412	2005;39:82–5.
413	32. FAO/WHO (Codex Alimentarious Commission, 2013 CAC/GL 80-2013). Guidelines on the
414	Application of Risk Assessment for Feed.
415	33. US EPA O. Risk Assessment Guidance for Superfund (RAGS): Part A [Internet]. US EPA.
416	2015 [cited 2018 May 16]. Available from: https://www.epa.gov/risk/risk-assessment-
417	guidance-superfund-rags-part

- 418 34. Chauhan G. Chauhan U.K., Human health risk assessment of heavy metals via dietary intake
 419 of vegetables grown in wastewater irrigated area of Rewa, India. *IJSRP*, 2014, Volume 4,
 420 Issue 9, ISSN 2250-3153
- 35. Koram K, Barcus MJ, Binka FN, Owusu Agyei S, Hoffman SL, Utz GC, et al. Seasonal
 malaria attack rates in infants and young children in northern Ghana. Am J Trop Med Hyg.
 2002;66:280–6
- 424 36. Harrison RM, Chirgawi MB. The assessment of air and soil as contributors of some trace
 425 metals to vegetable plants. I. Use of a filtered air growth cabinet. Sci Total Environ.
 426 1989;83:13–34.
- 37. US EPA opens inorganic arsenic cancer assessment for public review | EVISA's News
 [Internet]. [cited 2018 May 16]. Available from: http://www.speciation.net/News/US-EPAopens-inorganic-arsenic-cancer-assessment-for-public-review-;~/2010/02/23/4877.html
- 38. Ullah AKMA, Maksud MA, Khan SR, Lutfa LN, Quraishi SB. Dietary intake of heavy
 metals from eight highly consumed species of cultured fish and possible human health risk
 implications in Bangladesh. Toxicol Rep. 2017;4:574–9.
- 433 39. California Environmental Protection Agency CalEPA (OEHHA agency). Lead and lead
 434 compounds. 2019. Available at https//oehha.ca.gov/chemicals/lead-and-lead-compounds.
 435 Visited 19.02.2019
- 436 40. Slope Factors (SF) for Carcinogens from US EPA. US EPA region III (2007). Available at http://www.epa.gov/reg3hwmd/risk/human/index.htm. Visited 19.02.2019.
- 438
- 41. Hajra B, Qayum I, Orakzai S, Hussain F, Faryal U, Aurangzeb null. Evaluation of Toxic
 Heavy Metals In Ayurvedic Syrups Sold In Local Markets Of Hazara, Pakistan. J Ayub Med
 Coll Abbottabad JAMC. 2015;27:183–6.
- 42. Shaban NS, Abdou KA, Hassan NE-HY. Impact of toxic heavy metals and pesticide
 residues in herbal products. Beni-Suef Univ J Basic Appl Sci. 2016;5:102–6.
- 444 43. Yunus M, Sohel N, Hore SK, Rahman M. Arsenic exposure and adverse health effects: a
 445 review of recent findings from arsenicand health studies in Matlab, Bangladesh. *Kaohsiung*446 *J Med Sci.*, 2011;27;9:371-376.
- 44. Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, Nayak B. et al., Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts:
 Magnitude, health, socio-economic effects and mitigation approaches. J Trace Elem Med Biol. 2016;38:33-45.
- 45. Water NRC (US) C on C in D. Health Effects of Excess Copper [Internet]. National
 452 Academies Press (US); 2000 [cited 2018 Apr 9]. Available from: 453 https://www.ncbi.nlm.nih.gov/books/NBK225400/
- 46. Shakir SK, Azizullah A, Murad W, Daud MK, Nabeela F, Rahman H, et al. Toxic Metal
 Pollution in Pakistan and Its Possible Risks to Public Health. Rev Environ Contam Toxicol.
 2017;242:1–60.

- 457 47. Wang X, Sato T, Xing B, Tao S. Health risks of heavy metals to the general public in
 458 Tianjin, China via consumption of vegetables and fish. Sci Total Environ. 2005;350:28–37.
- 48. Sekwati-Monang B, Gaboutloeloe KG, Likuku SA. Investigation of Heavy Metal Hazards
 Status and Their Potential Health Risks in Vegetables Irrigated with Treated Wastewater in
 Oodi Gardens. Emerg Trends Chem Sci [online article]. Springer, Cham; 2016 [cited 2018
 Apr 16]. p. 57–67. Available from: https://link.springer.com/chapter/10.1007/978-3-31960408-4_5

FIGURES AND TABLES

471 Table 1: Maximum heavy metal content (mg/kg) of the herbal medicinal products

Sample	Cr	Mn	Ni	Cu	As	Cd	Pb	Hg
HPA	1.34427	3.34838	0.89544	8.32478	1.28474	0.0083	0.11961	ND
HPB	1.35674	3.33046	0.94961	8.13625	1.02657	0.00832	0.13969	0.00005
HPC	1.23508	3.92038	1.21877	8.78602	1.14446	0.00866	0.08068	ND
HPD	1.24268	2.28998	0.93383	8.57095	1.01004	0.00834	0.11712	0.002739
HPE	0.29191	0.84375	0.17287	1.75486	0.25989	0.00181	0.02338	ND
HPF	1.67602	2.82811	1.20886	9.171	1.35453	0.0083	0.0733	ND
MRLs	0.05	0.26	0.6	0.1	0.02	0.06	0.1	0.01

472 HPA-F: herbal product A-F; MRL: maximum residual limits; ND means not detected

474

475 **Table 2: Estimated daily intakes (EDI) of the heavy metals**

Sample	Cr	Mn	Ni	Cu	As	Cd	Pb	Hg
HPA	4.77*10 ⁻⁰⁵	1.19*10 ⁻⁰⁴	3.18*10 ⁻⁰⁵	2.96*10 ⁻⁰⁴	4.56*10 ⁻⁰⁵	2.95*10 ⁻⁰⁷	4.25*10 ⁻⁰⁶	0
HPB	8.35*10 ⁻⁰⁶	2.05*10 ⁻⁰⁵	5.84*10 ⁻⁰⁶	5.01*10 ⁻⁰⁵	6.32*10 ⁻⁰⁶	5.12*10 ⁻⁰⁸	8.60*10 ⁻⁰⁷	3.08*10 ⁻¹⁰
HPC	1.47*10 ⁻⁰⁵	4.67*10 ⁻⁰⁵	1.45*10 ⁻⁰⁵	1.05*10 ⁻⁰⁴	1.36*10 ⁻⁰⁵	1.03*10 ⁻⁰⁷	9.61*10 ⁻⁰⁷	0
HPD	8.99*10 ⁻⁰⁶	1.66*10 ⁻⁰⁵	6.75*10 ⁻⁰⁶	6.20*10 ⁻⁰⁵	7.30*10 ⁻⁰⁶	6.03*10 ⁻⁰⁸	8.47*10 ⁻⁰⁷	1.98*10 ⁻⁰⁸
HPE	2.26*10-06	6.54*10 ⁻⁰⁶	1.34*10 ⁻⁰⁶	1.36*10 ⁻⁰⁵	2.02*10 ⁻⁰⁶	1.40*10 ⁻⁰⁸	1.81*10 ⁻⁰⁷	0
HPF	3.07*10 ⁻⁰⁴	5.19*10 ⁻⁰⁴	2.22*10 ⁻⁰⁴	1.68*10 ⁻⁰³	2.48*10 ⁻⁰⁴	1.52*10 ⁻⁰⁶	1.34*10 ⁻⁰⁵	0
				Uppe	er tolerable da	ily intake Refe	rence limits	
CA HP (mg/kg/day)	3.33*10 ⁻⁰⁴	NA	NA	NA	1.67*10 ⁻⁰⁴	1.00*10 ⁻⁰⁴	3.33*10 ⁻⁰⁴	3.33*10 ⁻⁰⁴
WA (mg/kg/day)	8.33*10 ⁻⁰⁴	4.33*10 ⁻⁰³	2.33*10 ⁻⁰²	5.00*10 ⁻⁰²	3.33*10 ⁻⁰⁴	1.00*10 ⁻⁰³	1.67*10 ⁻⁰³	1.67*10 ⁻⁰⁴

476 CA is for Canadian upper tolerable daily intake reference limits for finish herbal products (HP) in mg/kg

477 (bw/day),¹ and 'WA' is for WHO/FAO (mg/kg bw/day)⁴².

478 HPA-F: herbal product A-F. NA means the upper tolerable daily intake reference limit for that particular

479 metal is not available from that authority/ body.

483 Table 3: Hazard risk index (HRI) for HRI for non-carcinogenic effects

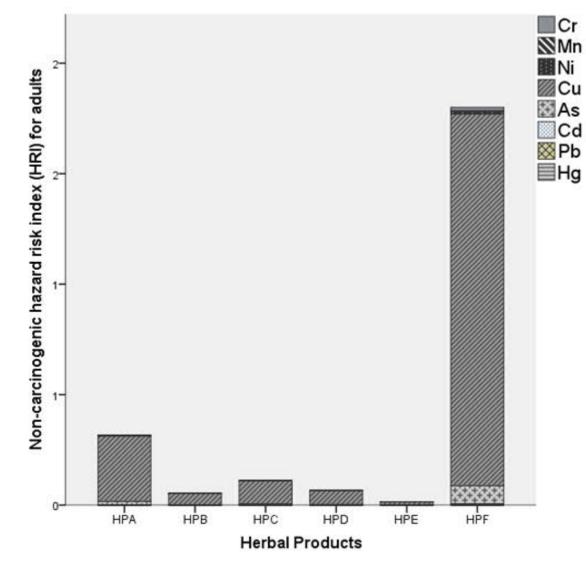
Sample	Cr	Mn	Ni	Cu	As	Cd	Pb	Hg
HPA	2.39*10 ⁻⁰³	8.49*10 ⁻⁰⁴	1.59*10 ⁻⁰³	2.96*1 ⁰⁻⁰¹	$1.52*1^{0-02}$	2.95*10 ⁻⁰⁴	1.06*10 ⁻⁰³	0
HPB	4.17*10 ⁻⁰⁴	1.46*10 ⁻⁰⁴	2.92*10 ⁻⁰⁴	5.01*10 ⁻⁰²	2.11*10 ⁻⁰³	5.12*10 ⁻⁰⁵	2.15*10 ⁻⁰⁴	3.08*10 ⁻⁰⁶
HPC	7.35*10- ⁰⁴	3.33*10-04	7.26*10 ⁻⁰⁴	$1.05*1^{0-01}$	4.54*10 ⁻⁰³	1.03*10 ⁻⁰⁴	2.40*10 ⁻⁰⁴	0
HPD	4.49*10 ⁻⁰⁴	1.18*10 ⁻⁰⁴	3.38*10 ⁻⁰⁴	6.20*10 ⁻⁰²	2.43*10 ⁻⁰³	6.03*10 ⁻⁰⁵	2.12*10 ⁻⁰⁴	1.98*10 ⁻⁰⁴
HPE	1.130*10-04	4.670*10 ⁻⁰⁵	6.70*10 ⁻⁰⁵	1.36*10 ⁻⁰²	6.72*10 ⁻⁰⁴	1.40*10 ⁻⁰⁵	4.53*10 ⁻⁰⁵	0
HPF	1.54*10 ⁻⁰²	3.71*10 ⁻⁰³	$1.11*10^{-02}$	1.682	8.28*10-02	1.52*10 ⁻⁰³	3.36*10 ⁻⁰³	0

484 HPA-F: herbal product A-F. The bolded value represents HRI value above the reference limit.

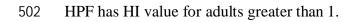
488 Table 4: THQ for adults using a body mass of 65 kg

Sample	Cr	Mn	Ni	Cu	As	Cd	Pb	Hg
HPA	2.39*10 ⁻⁰³	8.49*10 ⁻⁰⁴	1.59*10 ⁻⁰³	2.96*10 ⁻⁰¹	1.52*10 ⁻⁰²	2.95*10 ⁻⁰⁴	1.06*10 ⁻⁰³	0
HPB	4.00*10 ⁻⁰⁵	$1.40*10^{-05}$	2.80*10-05	4.80*10 ⁻⁰³	2.02*10 ⁻⁰⁴	4.91*10 ⁻⁰⁶	2.06*10 ⁻⁰⁵	2.95*10 ⁻⁰⁷
HPC	2.12*10 ⁻⁰⁴	9.61*10 ⁻⁰⁵	2.09*10 ⁻⁰⁴	3.02*10 ⁻⁰²	1.31*10 ⁻⁰³	2.97*10 ⁻⁰⁵	6.92*10 ⁻⁰⁵	0
HPD	2.46*10 ⁻⁰⁴	6.48*10 ⁻⁰⁵	1.85*10 ⁻⁰⁴	3.41*10 ⁻⁰²	1.33*10 ⁻⁰³	3.30*10 ⁻⁰⁵	1.16*10 ⁻⁰⁴	1.09*10 ⁻⁰⁴
HPE	1.13*10 ⁻⁰⁴	4.67*10 ⁻⁰⁵	6.70*10 ⁻⁰⁵	1.36*10 ⁻⁰²	6.72*10 ⁻⁰⁴	1.40*10 ⁻⁰⁵	4.53*10 ⁻⁰⁵	0
HPF	1.54*10 ⁻⁰²	3.71*10 ⁻⁰³	1.11*10 ⁻⁰²	1.68	8.28*10 ⁻⁰²	1.52*10 ⁻⁰³	3.36*10 ⁻⁰³	0

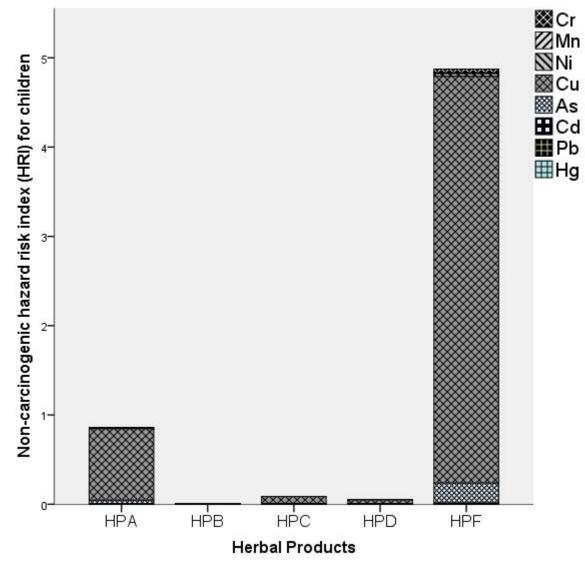
489 HPA-F: herbal product A-F; THQ: targeted hazard quotient. The bolded value represents THQ

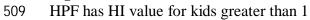

490 value above the reference limit.

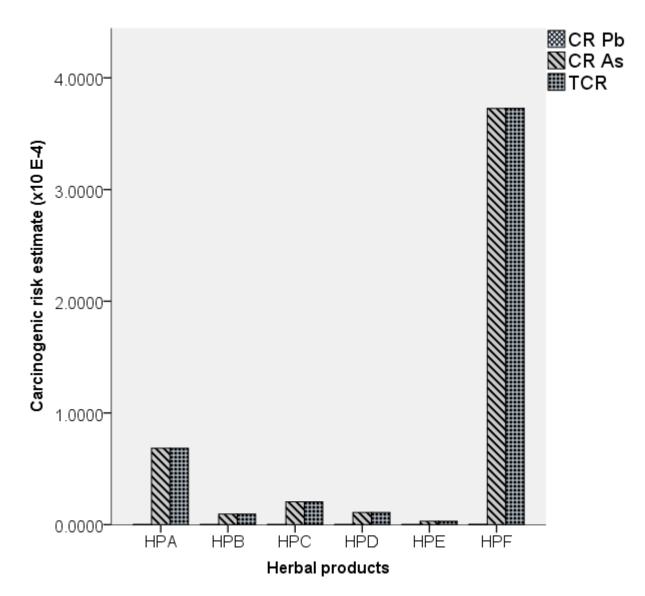
Sample Ni Cu Cr Mn As Cd Pb Hg 6.46*10⁻⁰³ 2.30*10-03 4.306*10-03 8.01*10-01 4.12*10-02 7.98*10-04 2.88*10-03 HPA 0 1.90*10⁻⁰⁵ 3.79*10-05 6.50*10⁻⁰³ 6.65*10⁻⁰⁶ HPB 5.42*10-05 2.73*10-04 $2.79*10^{-05}$ 4.00*10-07 HPC 5.73*10⁻⁰⁴ 2.60*10⁻⁰⁴ 5.65*10-04 8.15*10⁻⁰² 3.54*10⁻⁰³ 8.03*10⁻⁰⁵ 1.87*10⁻⁰⁴ 0 3.33*10⁻⁰⁴ 8.78*10⁻⁰⁵ 2.51*10⁻⁰⁴ 4.60*10⁻⁰² 1.81*10⁻⁰³ $4.47*10^{-05}$ $1.57*10^{-04}$ $1.47*10^{-04}$ HPD HPE NA NA NA NA NA NA NA NA HPF 4.16*10⁻⁰² 1.00*10⁻⁰² 3.00*10⁻⁰² 2.24*10-01 4.12*10⁻⁰³ 9.10*10⁻⁰³ 0 4.56


494 Table 5: THQ for kids using a body mass of 24 kg

495 HPA-F: herbal product A-F; THQ: targeted hazard quotient; NA: not applicable, for the product


496 'HPE' is not administered to patients below 12 years.





508 **Figure 2: Chronic Hazard Index (HI) for Kids.** HPF has HI value for kids greater than 1

514

515 Figure 3: Estimated cancer risk (CR) for the herbal medicinal products HPA-F 516

517 The cancer risk (CR) values for herbal products A-F are all within the acceptable limit. The total 518 cancer risk (TCR) as a result of the sum total of the individual cancer risk present by the carcinogenic 519 metals per herbal preparation were also within the acceptable limit. It was observed that, the 520 contribution of carcinogenic risk from As was much higher than contribution of CR from Pb in all 521 the herbal products.

522

525

526

⁵²³ CR is for cancer risk. Total CR is for total cancer risk per herbal preparation which is the sum total
524 of the risk from As and Pb in the herbal product.

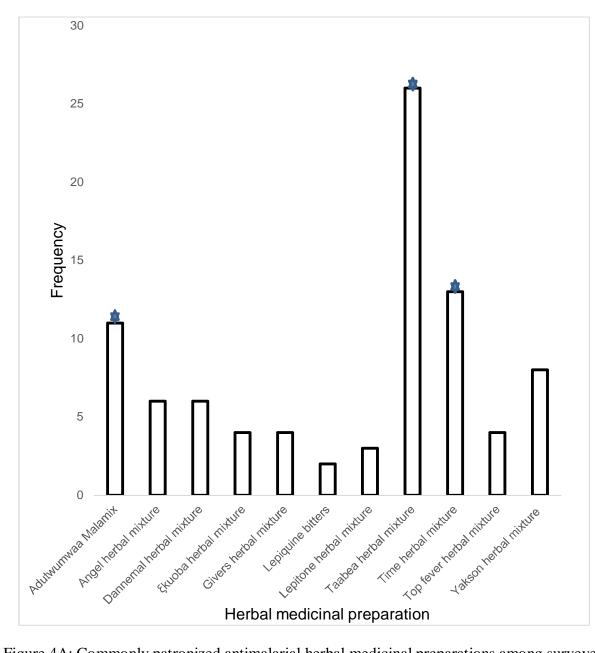
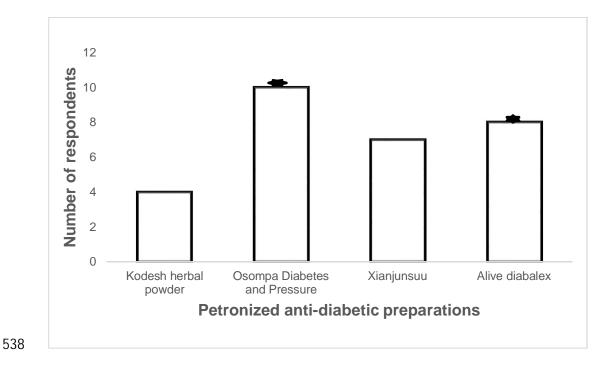



Figure 4A: Commonly patronized antimalarial herbal medicinal preparations among surveyed
participants in the Kumasi metropolis of Ghana. The bars with the star represent the top-three most
patronized antimalarial herbal medicinal products selected for the study.

539 Figure 4B: Commonly patronized antidiabetic herbal medicinal preparations among surveyed participants in

the Kumasi metropolis of Ghana. The bars with the star represent the top-two most patronized antidiabetic

herbal medicinal products selected for the study. Number of diabetic respondents was 29.

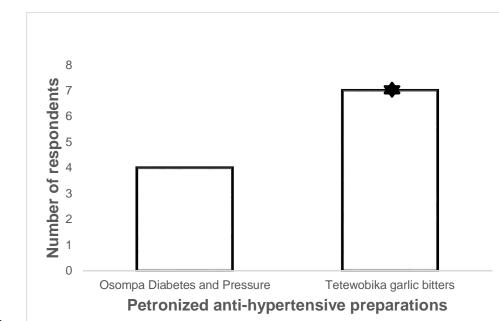


Figure 4C: Commonly patronized antihypertensive herbal medicinal preparations among surveyed participants in the Kumasi metropolis of Ghana. The number of respondents for antihypertensive herbal preparations was 11. The bar with the star represents the top-one most patronized antihypertensive herbal medicinal product selected for the study. The second most patronized product 'Osompa' diabetes and pressure' is used for the treatment of both diabetes and pressure and has already been short-listed as an anti-diabetic preparation in this study.

552