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ABSTRACT
Scientific literature search engines typically index abstracts instead
of the full-text of publications. The expectation is that the abstract
provides a comprehensive summary of the article, enumerating key
points for the reader to assess whether their information needs
could be satisfied by reading the full-text. Furthermore, from a
practical standpoint, obtaining the full-text is more complicated
due to licensing issues, in the case of commercial publishers, and
resource limitations of public repositories and pre-print servers.

In this article, we use topic modelling to represent content in ab-
stracts and full-text articles. Using Computer Science as a case study,
we demonstrate that how well the abstract summarises the full-text
is subfield-dependent. Indeed, we show that abstract representa-
tiveness has a direct impact on retrieval performance, with poorer
abstracts leading to degraded performance. Finally, we present evi-
dence that how well an abstract represents the full-text of an article
is not random, but is a consequence of style andwriting conventions
in different subdisciplines and can be used to infer an “evolutionary”
tree of subfields within Computer Science.
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1 INTRODUCTION
In scientific literature search abstracts are frequently used as the
primary source for indexing and as snippet text that is displayed
with search results. The reasons for this are twofold. First, readers
assume that abstracts convey sufficient information about the paper
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to decide whether or not to read the full article. Second, abstracts
often form part of a document’s metadata (along with article title
and author names), which is more readily accessible to search en-
gines and researchers. Full-text documents are hard to obtain due
to the need for commercial licenses and, in the case of public repos-
itories such as arXiv, due to resource limitations (e.g. bandwidth
costs). Given that the use of abstracts is common in Information
Retrieval (IR), the idea that an abstract could have limitations in
terms of representing the content of the full-text has implications
for experimental results and scientific literature search engine de-
sign. Retrievability bias is known to be impacted by factors such
as document representations [28]. Differences between abstracts
and full-texts could therefore erroneously rank inferior documents
higher in search results than more relevant ones. From the perspec-
tive of user experience, such ranking issues could undermine users’
opinion of the search system if the top ranked search results are
not the most relevant documents. Additionally, if the abstract is in-
accurate, then this can mislead users into making incorrect choices
when considering the relevance of items in the search listing [27].

Our research seeks to understand to what extent the abstract
represents the full-text of Computer Science (CS) papers and to
investigate the impact abstract representativeness has on retrieval
performance. We used topic modelling to represent content in ar-
ticles and individual sections within each article, allowing us to
quantify any discrepancies between the two. We show that how
well an abstract represents the full-text is subfield-dependent, with
abstracts from theoretical CS subfields being the least representa-
tive of the full-text. We further demonstrate that rankings based
on abstracts are a poor substitute for rankings of full-texts, with
retrieval performance degrading with less representative abstracts.
Finally, we present evidence suggesting that the degree to which an
abstract represents the full-text is not random and can be used to
infer an “evolutionary” tree of subfields within Computer Science.

2 BACKGROUND
Using Topic Models to Represent Content Topic modelling is an
unsupervised learning method for understanding the content in
collections of documents. It models text collections as a mixture
of topics, with each topic corresponding to a distribution over the
vocabulary [2]. Probabilistic topic models are generative processes
that specify how documents are created and are typically based on
Latent Dirichlet Allocation (LDA) [3].

There are numerous applications of topic models in scientific
literature analysis and representation, such as exploring how ideas
develop over time [5, 20] and mapping publications of authors of a
specific nationality [24]. Topic models have also been used exten-
sively in IR, for example, in exploratory search to assess relevance
[18] and to derive search queries [19]. These works differ from our
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research as they look to classify topics between documents, not
differences within documents. Syed et al. [26] suggest that the se-
mantics used in condensing information into an abstract may lead
to topics in the abstract not present in the full-text. However, others
have argued that topic models are an appropriate representation of
content even considering this issue [8].
Article Section Content There are many studies comparing bibli-
ographic records and article sections with full-text documents. In
IR, for example, while naïve full-text search can improve recall, it
tends to do so at the expense of precision [7, 17, 21]. This result,
however, can be improved upon by augmenting abstract search with
partial information from the full-text (section or paragraph-level)
to achieve both high precision and recall [12, 14]. Complementary
to these findings, in the biosciences it has been shown that different
article sections besides the abstract can provide better representa-
tions of certain biological concepts [23]. Indeed, clinical decisions
based solely on abstracts have worse patient outcomes than when
doctors have access to complete articles [15], which might be due
to information content being highest in results sections [22].

In this study, we show that different subfields of CS vary in
the degree to which abstracts and other sections represent the
full-text of the article. Furthermore, the patterns of section-wise
representativeness capture the domain structure of the field. Our
findings are supported by studies of language and conventions for
academic writing. Several studies have highlighted that style and
expectations of content differ across disciplines [9, 25]. Harmon and
Gross [6] suggest how article content type may influence abstracts,
comparing an article from an established theoretical field with
one describing a new approach. In the former, “how it was done”
would not be included in the abstract. Recent research has shown
that article content is influenced by the maturity of the academic
field [11], which may explain why we find differences between
theoretical and (more modern) applied subfields.

3 METHODS
To perform our study, we used topic modelling to summarise the
content of full-text articles and individual sections. We used the
Kullback-Leibler (KL) divergence of topic distributions to quantify
how well each article section represents the full-text.

3.1 Data Preprocessing
Our data set was composed of Computer Science papers down-
loaded from arXiv (http://www.arxiv.org) that included LaTeX
source files. The data set contained 35,137 articles covering a 9
year period from 2007 to mid-2015. We used arXiv instead of a pre-
existing test collection because we needed access to the full-text
from a comprehensive number of CS subfields. We removed papers
from the categories General Literature and Other Computer Science.
These two categories were vague and contained few articles (46 and
214, respectively). Articles can be associated with multiple arXiv
categories, although a majority (67%) are only associated with one.

Articles were split into sections by parsing the source files for sec-
tion commands and abstract environments.We extracted on average
6.7 sections per article (SD = 2.7). We wanted to categorise sections
into abstract, introduction, background, related work, methods, re-
sults, discussion, conclusions and back matter. Back matter includes

acknowledgements and funding information, that were categorised
to allow for an accurate count of uncategorised sections, but was
otherwise excluded from further analysis. We ordered all section
headings by decreasing frequency and manually categorised all
unambiguous headings with a frequency greater than 1. This pro-
cedure categorised 53% of section headings. While the proportion
of classified headings appears quite low, 35% of headings only oc-
curred once. Each article had on average 3.3 categorised sections
(SD = 1.2). Articles can contain an arbitrary number of sections
associated with the same category. Some articles, for example, had
multiple results sections.

We performed some limited preprocessing of full-text articles
and separate sections for topic modelling: LaTeX markup was re-
moved using the detex program, all punctuation and numbers were
removed, and characters were made lower case.

3.2 Topic Models
We used the MALLET toolkit [16] to generate probabilistic topic
models. We inferred 100 topics for the corpus of full-text documents.
Then, we reused this model to predict the topic distributions for
each separate section. As stated previously, some articles contained
multiple sections devoted to the same category, e.g. results split into
multiple sections. In these cases, we created a composite results
section by performing an element-wise summation of the topic
distributions and normalising the resultant vector.

3.3 Measuring Representativeness
Each full-text article is associated with 1 – 8 separate sections. We
wanted to estimate the extent to which each section represented
the complete article. For this purpose we used the KL divergence
[13], which for discrete probability distributions is:

DKL (P ∥Q) =
∑
i
P(i) log2

(
P(i)

Q(i)

)
(1)

where, in our case, P and Q are the topic distributions for the
full-text and a given article section, respectively. KL divergence is
usually defined with the natural logarithm, however, here we use
base 2 for ease of interpretation. KL divergence is a measure of the
difference between two probability distributions, where DKL (P ∥Q)
is the amount of information lost when Q is used to approximate
P . In this instance, the higher the KL divergence, the worse the
abstract represents the full-text.

3.4 Generating Search Queries
We needed to generate search queries to examine how retrieval is
impacted as a result of using abstracts in place of full-text docu-
ments. Our goal was to generate queries such that each one dispro-
portionately favoured documents in one arXiv category over all the
others. To do this, we extracted abstracts from our arXiv corpus and
used collocation detection to identify n-grams of length 2, 3 and 4.
Each abstract was labelled with an arXiv category. In cases where an
abstract was associated with more than one category, we randomly
selected one. We converted each document into a bag-of-words and
trained a multi-class support vector machine (SVM) to predict the
arXiv category based on the article title and abstract text [4]. The
SVM was not used to make predictions, but instead used to identify
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Figure 1: Mean KL divergence between topic distributions
from abstract and full-text document. Error bars show 95%
confidence interval. arXiv categories are ordered by mean
KL divergence.

the top 100 discriminatory features for each arXiv category, i.e.
those with the highest coefficients. These top ranked features were
used as search queries. We stemmed all search queries and filtered
out those that appeared in multiple categories. If, after stemming, a
single arXiv category contained duplicate queries, all but one were
removed. Finally, poor queries were manually removed, e.g. “paper
considers” is not specific to any particular subject, but happens to
be strongly associated with the Information Theory category in our
corpus. This procedure produced a total of 1,257 search queries, an
average of 33.1 search queries per arXiv category (SD = 14.5).

4 RESULTS
In this study, we were concerned with whether abstract represen-
tativeness, as measured by the KL divergence between abstract
and full-text topic distributions (from now on simply KL diver-
gence), varies across subjects and to what degree it affects retrieval
performance.

4.1 Abstract Representativeness is
Subfield-dependent

How well an article’s abstract represents the full-text in terms of its
topic content is subfield-dependent. Furthermore, similar subfields
appear to exhibit similar levels of average KL divergence.

Figure 1 shows the mean KL divergence per arXiv category with
error bars showing the 95% confidence interval. Categories are
ordered by mean KL divergence. Categories at the top of the plot
with higher average KL divergence are generally mathematical sub-
jects (e.g. Programming Languages, Logic and Discrete Mathematics),
whereas categories at the bottom with lower KL divergence are
more likely to be social science-influenced subjects (Computers and

Society, Digital Libraries, Human-Computer Interaction). For some
categories, the 95% confidence interval appears quite wide with
respect to the range of KL divergences. Higher variances are gen-
erally due to lower article counts. The smallest arXiv categories,
Operating Systems, Sound and Emerging technologies, had among
the widest confidence intervals and contained the fewest articles
(106, 116 and 141 articles, respectively).

One possible alternative explanation for the differences between
arXiv categories could be the abstract length. If, for example, arti-
cles in a given category tend to have shorter abstracts due to aca-
demic convention, then this could lead to greater KL divergences.
However, this is not the case: abstract length is uncorrelated with
KL divergence between abstract and full-text topic distributions
(R2 = 0.003,p < 2.2 × 10−16).

4.2 Abstract Representativeness is Correlated
with Retrieval Performance

Representativeness, measured using KL divergence, is negatively
correlated with retrieval performance. We retrieved documents
with our generated search queries (see Section 3.4) from a full-text
database and an abstract database (containing abstracts and article
titles) using the Okapi BM25 algorithm [10]. The top 100 search
results from the full-text database was used as the ground truth to
calculate precision@100 for the abstract database. Figure 2 shows
how mean precision@100 varies with the mean KL divergences for
each arXiv category.

In general, abstracts have higher precision than full-texts when
using an external (i.e. expert-derived) definition of relevance (see
Section 2 for references). Here, however, we are concernedwith how
well abstracts represent the content of the full-text and are less inter-
ested in the absolute precision scores, than the relative differences
in precision between subfields. Indeed, the average precision is neg-
atively correlated with KL divergence (R2 = 0.3811,p = 3.65×10−5).
This suggests that users running queries in different subfields could
have considerably different experiences of the search process with
different levels of incongruence between abstract and full-text rank-
ings.

4.3 Section-wise Representativeness Captures
Domain Structure

While we have shown that the average representativeness of an ab-
stract is subfield-dependent (Section 4.1) and that this is important
from an IR perspective (Section 4.2), we also wanted to investi-
gate whether these differences were random or indicative of the
underlying structure of the field.

For each arXiv category, we calculated the average KL diver-
gence for all 8 article sections and normalised the resulting vector.
Next, we performed hierarchical clustering using complete linkage
clustering with Euclidean distance as the distance metric. Figure 3
shows a heatmap and dendrogram of the results. Lighter colours
indicate higher average KL divergence between article sections and
full-text documents (we additionally clustered article sections, but
omitted the dendrogram from the figure for clarity).

The dendrogram in Figure 3 appears to reflect the structure of
Computer Science, dividing it into two main subtrees containing ap-
plied (top) and theoretical (bottom) subfields. Theoretical subfields
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Figure 2: There is a negative correlation between mean pre-
cision@100 and mean KL divergence between abstract and
full-text topic distributions for queries derived from arXiv
categories (R2 = 0.38).

are distinguished by having higher KL divergences in their abstract,
conclusion, background and related work sections (lighter colours).
In contrast, the methods and results sections in applied subfields are
closer in topic content to the complete document (darker colours).

The groupings identified in Figure 3 are generally reasonable and
errors either reflect biases in the data set or appear concordant with
wider confidence intervals from Figure 1. In the theoretical subtree,
there are groupings for programming languages, mathematics and
theoretical topics with direct applications (e.g. Machine Learning,
Information Theory, etc.). In the applied subtree, there are group-
ings for social sciences (e.g. Human-Computer Interaction), applied
Machine Learning (e.g. Information Retreival), multiagent systems
and hardware. Networking and Internet seems to have been placed
incorrectly in the same subtree as Machine Learning, however, this
reflects bias in the arXiv data set as ∼23% of networking articles are
co-associated with Information Theory. Finally, Operating Systems
and Graphics appear to be placed erroneously, but this is probably
due to having very few articles associated with them and therefore
higher uncertainty with respect to the KL divergence.

5 DISCUSSION AND CONCLUSIONS
Our study shows that how well an abstract represents the full-text
of an article is subfield-dependant. We used Computer Science as
a case study to show that this subfield-dependence is not random,
but reflects the structure of computing as a discipline. Given that
different fields are known to follow their own idiosyncrasies in
terms of style and writing conventions, it seems plausible that
content placement would evolve in a similarmanner. Understanding
differences in content placement and knowing when to read beyond
the abstract is useful knowledge for academics undertaking search
in unfamiliar subject domains, which is known to be challenging [1].
IR systems that selectively index article sections exist (e.g. [12]), but,
to the best of our knowledge, do not account for subfield differences.

More importantly, we showed that for subfields with less repre-
sentative abstracts, the differences between search rankings from
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Figure 3: A heatmap and dendrogram showing the related-
ness of subfields in Computer Science from the perspective
of section-article representativeness. Lighter colours corre-
spond to higher KL divergence between topic distributions
from a given section and the full-text.

abstracts and full-texts can be significant. From the perspective
of scientific literature search, this suggests that users searching in
theoretical subfields would see a greater disconnect between their
expectations of results (based on reading abstracts) and their actual
experience (reading the full-text) compared to applied subfields.
For more complex searches involving both applied and theoretical
aspects, search quality could be biased towards the papers from
applied subfields. This is particularly worrying as theoretical topics
are harder to understand and searching for unfamiliar topics is
already challenging.

One limitation of our work may be in using papers from arXiv,
as quality can vary widely on pre-print servers, and how well
they are written could be an influencing factor. In future work
we want to understand whether other variables influence section
representativeness and design a user study to understand its impact
in real-world information retrieval settings.
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