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Abstract  

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common 

genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable 

effect sizes. However, it is currently well established that a substantial portion of the genetic 

heritable component of complex traits is not captured by genome-wide significant SNPs. To 

overcome this issue, we have estimated the proportion of phenotypic variance explained by 

genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency 

or linkage disequilibrium properties of the underlying variants. This shows that the heritability of 

DLB is nearly twice as high as previous estimates based on common variants only (31% vs 

59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by 

recent polygenic risk scores from either Parkinson’s disease (PD) or Alzheimer's disease (AD), 

and show that, despite being highly significant, they explain a low amount of variance. 

Additionally, to identify pleiotropic events that might improve our understanding of the disease, 

we performed genetic correlation analyses of DLB with over 200 diseases and biomedically 

relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, 

which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors 

for DLB should be identified by larger GWAS and these are likely to be independent from known 

AD and PD risk variants. 
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Introduction 

Recent studies have highlighted the role of genetics in the common, but often underappreciated, 

form of dementia that is dementia with Lewy bodies (DLB). Associations with GBA, APOE and 

SNCA have all been reproducibly reported by independent groups (Bras et al., 2014; Hardy et 

al., 1994; Nalls et al., 2013), and a recent genome-wide association study (GWAS) identified 

several risk and candidate variants associated with the disease (Guerreiro et al., 2018). 

However, GWAS significant single nucleotide polymorphisms (SNPs) often explain only a small 

proportion of the total heritability estimated (usually from family-based studies) for a given trait, 

which results in the ‘missing heritability’ issue (Manolio et al., 2009). One of the possible 

explanations for this issue is that, for complex diseases, SNPs with small effect sizes and well 

below genome-wide statistical significance account for most of the heritability of those traits 

(Boyle et al., 2017; Lee et al., 2011; Yang et al., 2013). However, given that each individual 

associated marker explains only a small proportion of the genetic variation with little predictive 

power, methods have been developed to test disorder prediction by summarizing variation 

across many loci (regardless of association p-values) into quantitative scores. One such 

approach is the generation of polygenic risk scores (PRSs). PRSs have been successfully 

applied to Parkinson’s (PD) (Escott-Price et al., 2015a) and Alzheimer’s diseases (AD) (Escott-

Price et al., 2015b) and their usefulness will continue to increase as discovery datasets are 

augmented.  

A separate, but related, concept is that of genetic correlation of traits. Here, what is estimated is 

the genetic covariance between traits that is tagged by common genome-wide SNPs (Lee et al., 

2012). This allows us to identify pleiotropic effects between traits that might be unrelated by any 

other measurement. We have performed a preliminary study of genetic correlation between DLB 

and both PD and AD (Guerreiro et al., 2016), however performing similar analyses with other 

(even apparently unrelated) traits might provide novel insights for the underlying pathobiology of 

disease and perhaps for treatments across diseases. 

The phenotypic variance of most complex human traits combines the genetic with the 

environmental variance (Mackay, 2001). While the effects of the environment are difficult to 

ascertain given their complexity and lack of adequate measurements, we are able to determine 

the genetic variance more accurately. Classically, genetic variance has been partitioned into 

sources of variation due to additive, dominance and epistatic effects. Additive genetic variance 

(h2
SNP) relates to an allele’s independent effect on a phenotype; dominance variance (δ2

SNP) 
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refers to the effect on a phenotype caused by interactions between alternative alleles at a 

specific locus; epistatic variance refers to the interaction between different alleles in different 

loci. Most available cohorts for studies of human biology and disease are still underpowered to 

identify epistatic events, however, additive and dominance variance can be estimated from 

standard genome-wide genotyping data (Zhu et al., 2015).  

Here, using data from the first GWAS in DLB that included haplotype reference consortium 

(HRC)-imputed genotypes (McCarthy et al., 2016), we have estimated the total heritability of this 

disease. We used a method (GCTA-LDMS) that is unbiased regardless of the minor allele 

frequency (MAF) and linkage disequilibrium (LD) properties of variants and thus greatly 

improves on previous estimates (Yang et al., 2015). Since it has been suggested that heritability 

estimates may be inflated by non-additive variation (Eichler et al., 2010), we have also 

estimated the dominance genetic variation in DLB. Additionally, to measure the proportion of 

variance explained by PRSs from PD and AD in a large DLB cohort, we measured the ability of 

PRS to discriminate case from control subjects. Lastly, to attempt to derive novel biological 

insights from unrelated traits, we have performed pairwise genetic correlation analysis of DLB 

with 235 phenotypes, including cognitive, anthropometric and education traits. 
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Materials and Methods 

Sample description 

The DLB dataset was previously published (Guerreiro et al., 2018) and is comprised of 1,216 

cases and 3,791 controls matched for ancestry, imputed with HRC v1.1 and includes variants 

with minor allele frequency >= 0.001 and R2>=0.3, for a total number of 18.4 million variants 

(median R2=0.92). We used AD summary statistics from the International Genomics of 

Alzheimer's Project (IGAP) (Lambert et al., 2013), which is a large two-stage study based upon 

genome-wide association studies (GWAS) on individuals of European ancestry. In stage 1, 

IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) 

to meta-analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer's 

disease cases and 37,154 controls (the European Alzheimer's disease Initiative – EADI the 

Alzheimer Disease Genetics Consortium – ADGC, the Cohorts for Heart and Aging Research in 

Genomic Epidemiology consortium – CHARGE, the Genetic and Environmental Risk in AD 

consortium – GERAD). PD summary statistics were derived from the International Parkinson’s 

Disease Genomics Consortium (IPDGC) previously published data and included 13,708 cases 

and 95,282 controls (Nalls et al., 2014).  

 

DLB heritability estimates 

We used the GCTA-LDMS method to estimate heritability based on imputed data (Yang et al., 

2015, 2011) using an imputation quality above 0.3 and a disease prevalence of 0.1%. This 

method considers the LD-bias that occurs in the SNP-based estimates and is unbiased 

regardless of the properties of the underlying variants. We calculated segment-based LD scores 

using a segment length of 200kb (with 100kb overlap between two adjacent segments), which 

were used to stratify the SNPs into quartiles. We then estimated the genetic relationship matrix 

(GRM) for each sample using the SNPs in each quartile separately and further stratified by 

minor allele frequency bins (0.001-0.01, 0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5). Lastly, we 

performed restricted maximum likelihood (REML) analysis using the multiple GRMs. 
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DLB dominance variance estimates 

To estimate the dominance GRM between pairs of individuals, we used genome-wide imputed 

SNPs as implemented in GCTA-GREMLd (Zhu et al., 2015). This method calculates the additive 

and dominance GRMs and fits both GRMs in a mixed linear model to estimate additive and 

dominance variance simultaneously. 

 

PRS analyses 

Determining the polygenic risk of a given phenotype and applying it to another trait is an 

approach that allows to determine shared genetic aetiology between traits. We calculated PRSs 

on the base phenotypes (PD and AD), using GWAS summary statistics, and used these as 

predictors of the target phenotype (DLB) in a regression test. To construct and apply the PRSs 

we used PRSice v2.1 (Euesden et al., 2015). We performed clumping on the target data by 

retaining the SNP with the smallest p-value from each LD block (excluding SNPs with r2 > 0.1 in 

250kb windows). Each allele was weighted by its effect-size as estimated in the respective 

study (for PD and AD). Association of PRSs with case-control status was performed with logistic 

regression, and Nagelkerke’s pseudo-R2 was calculated to measure the proportion of variance 

explained. 

 

Genetic correlation analysis 

To estimate the genetic correlation between DLB and other complex traits and diseases, we 

used a method based on LD score regression and implemented in the online web utility LDHub 

v1.9.0 (Bulik-Sullivan et al., 2015; Zheng et al., 2017). The LD score regression method uses 

summary statistics from the DLB GWAS and the other available traits, calculates the cross-

product of test statistics at each SNP, and then regresses the cross-product on the LD score. 

After identifying the most significant correlations for DLB (p<0.01), we estimated the correlation 

of those traits with PD and AD. 
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Results 

Quantifying the genetic heritability of DLB 

We applied the GREML-LDMS approach to estimate the proportion of phenotypic variance 

explained by the HRC-imputed variants for DLB. Results from this approach showed that 

imputed variants with R2 greater than or equal to 0.3 and frequency above 0.1% explained 

59.9% (s.e.= 2.1%; p=6.8x10-6) of phenotypic variance for DLB. Lower frequency variants 

explained a large proportion of the phenotypic variance in DLB. This pattern was maintained for 

the higher quality imputed variants as well (Figure 1, Supplementary Table 1). 

 

Figure 1: Estimate of the DLB variance explained by HRC-imputed variants by MAF and LD. Segmental LD 

score increases from the 1st to 4th quartiles. Negative scores are not shown for simplicity but are present in 

Supplementary Table 1. The estimates of variance explained are from the GREML-LDMS analyses of fitting all 

the 24 genetic components simultaneously. 

 

To determine if non-additive variance in DLB would explain a subset of the total disease 

heritability, we calculated the disease dominance variance as implemented in the tool GCTA-

GREMLd. This method uses genome-wide data to estimate the additive and dominance genetic 

relationship matrices (GRMs) and fits both GRMs in a mixed linear model to estimate h2
SNP and 

δ2
SNP simultaneously. Our results suggest that DLB does not show significant dominance 

variance with an overall estimate δ2
SNP=-0.05 (s.e. = 0.02). 
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Polygenic Prediction of Case-Control Status 

We applied the PRSs derived from AD and PD data to determine if these would discriminate 

between DLB and controls. The AD score explained 1.33% of the variance (Nagelkerke’s 

pseudo-R2) and was highly significant (p = 5.8x10-31). Performing the same analysis while 

excluding the APOE locus brought the estimate down to 0.14%, while reaching only nominal 

significance. Using the PD polygenic risk score, we obtained an estimate of 0.37% of the 

variance in DLB being explained by that score, a result that was also significant (p=6.4x10 -10). 

Interestingly, removing the GBA locus resulted in only a small reduction in the variance 

explained by the PD PRS (0.36%; p=1.23x10-9) at the best p-value threshold. 

 

Figure 2: Proportion of variance of DLB case-control status explained by PRSs from AD (A), AD excluding 

the APOE locus (B), PD (C) and PD excluding the GBA locus (D). The bars represent PRSs calculated for 9 

subsets of markers at different p-value thresholds in the original GWAS publications. Best scores for each 

PRS are presented in (D). R2: Nagelkerke’s pseudo-R2; Threshold: P-value threshold in original GWAS. 
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The bar plots of DLB variance explained by the AD and PD polygenic risk scores are presented 

in Figure 2.  

Unbiased genetic correlation 

To test whether DLB has a shared genetic etiology with any of 235 other diseases or biomedical 

relevant traits, we used LD score regression as implemented in LDHub 

(http://ldsc.broadinstitute.org/ldhub/). This method estimates the degree to which genetic risk 

factors are shared between pairs of diseases or traits, although it should be noted that it does 

not inform regarding how this shared genetic etiology arises. We selected the correlations with a 

p-value <0.01 in DLB and tested these in AD and PD (Figure 4). 

 

Figure 3: Correlation scores with p-value <0.01 in DLB. Shown are also the scores for those same traits in PD 

and AD. 

The most significant correlation identified, and the only surpassing Bonferroni correction, 

between DLB and each of the 235 tested traits was with “Years of schooling” (Okbay et al., 

2016) reaching a p-value of 6.32x10-5 (Bonferroni corrected p-value=0.015) and a correlation 

estimate (rg) of 0.48 (s.e. = 0.12) (Table 2). Interestingly, these scores were found to be in the 

opposite direction in AD, but in the same direction in PD (AD: rg=-0.33, p-value=8.87x10-5; PD: 

rg=0.05, p-value=0.07) (Figure 3). A positive correlation was also obtained for “Childhood IQ” 

(Benyamin et al., 2014) in DLB and PD, whereas a negative correlation was identified in AD 

(DLB: 0.68, p-value=0.0009; AD: rg=-0.36, p-value=0.0011; PD: rg=0.25, p-value=0.0013). 

Similarly, “Intracranial volume” (Hibar et al., 2015) presented a positive correlation with both 

DLB and PD, but no discernible correlation with AD (DLB: 0.69, p-value=0.0052; AD: rg=-0.003, 

p-value=0.96; PD: rg=0.34, p-value=0.0005). Conversely, “Citrate” (Kettunen et al., 2016) was 

positively correlated with both DLB and AD, but had no correlation with PD (DLB: 0.82, p-

value=0.0033; AD: rg=-0.21, p-value=0.25; PD: rg=-0.05, p-value=0.63).  
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  DLB AD PD 

Trait Category rg s.e. p-value rg s.e. p-value rg s.e. p-value 

Fathers age at death; 

PMID:27015805 aging 0.777 0.230 0.001       

Mothers age at death; 

PMID:27015805 aging 0.626 0.234 0.007    0.250 0.092 0.007 

Body fat; PMID:26833246 anthropometric -0.382 0.130 0.003       

Body mass index; 

PMID:20935630 anthropometric -0.287 0.093 0.002       

Height; Females at age 10 and 

males at age 12; PMID:23449627 anthropometric    -0.282 0.107 0.008    

Obesity class 1; PMID:23563607 anthropometric -0.334 0.113 0.003       

Primary biliary cirrhosis; 

PMID:26394269 autoimmune -0.501 0.159 0.002       

Rheumatoid Arthritis; 

PMID:24390342 autoimmune -0.358 0.101 0.000       

ICV; PMID:25607358 brain_volume 0.691 0.247 0.005    0.343 0.098 0.001 

Mean Accumbens; 

PMID:25607358 brain_volume       0.402 0.143 0.005 

Mean Caudate; PMID:25607358 brain_volume       0.266 0.075 0.000 
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Mean Putamen; PMID:25607358 brain_volume       0.251 0.082 0.002 

Lung cancer; PMID:27488534 cancer -0.493 0.141 0.001       

Lung cancer (all); 

PMID:24880342 cancer -0.579 0.193 0.003       

Lung cancer (squamous cell); 

PMID:24880342 cancer -0.878 0.313 0.005       

Squamous cell lung cancer; 

PMID:27488534 cancer -0.739 0.224 0.001       

Coronary artery disease; 

PMID:26343387 cardiometabolic -0.442 0.128 0.001       

Intelligence; PMID:28530673 cognitive 0.281 0.102 0.006 -0.357 0.104 0.001    

Childhood IQ; PMID:23358156 education 0.675 0.204 0.001 -0.362 0.111 0.001 0.256 0.080 0.001 

College completion; 

PMID:23722424 education    -0.364 0.100 0.000    

Years of schooling (proxy 

cognitive performance); 

PMID:25201988 education    -0.300 0.081 0.000 0.138 0.048 0.004 

Years of schooling 2013; 

PMID:23722424 education    -0.290 0.092 0.002 0.137 0.048 0.005 

Years of schooling 2016; 

PMID:27225129 education 0.481 0.120 0.000 -0.330 0.084 0.000    
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Citrate; PMID:27005778 metabolites 0.821 0.280 0.003       

Isoleucine; PMID:27005778 metabolites    -0.547 0.208 0.009    

Age of first birth; 

PMID:27798627 reproductive 0.311 0.105 0.003    0.140 0.042 0.001 
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Discussion 

With this study we provide more accurate estimates of genetic heritability for DLB, quantify the 

variance explained by AD and PD polygenic risk and estimate pleiotropy between DLB and over 

200 diseases and biomedical relevant traits. 

Previous heritability estimates for DLB were calculated based on a smaller cohort genotyped at 

a relatively smaller number of sites and using GCTA’s GREML-SC (based on a single genetic 

relationship matrix). These earlier studies provided an estimate of 31% heritability for this 

disease (Guerreiro et al., 2016). It is now recognised that GREML-SC may, under certain 

circumstances (such as causal variants being enriched in regions with higher or lower LD than 

average or if the causal variants had a different MAF spectrum than the variants sampled), be 

biased (Yang et al., 2015). Because of this, we used a recently developed approach that 

corrects for the LD bias in the estimated SNP-based heritability and that is unbiased regardless 

of the properties (e.g. MAF and LD) of the underlying causal variants (GCTA GREML-LDMS) 

(Yang et al., 2015). We applied this tool to a larger cohort, that was imputed with the most 

recent imputation panel, providing more detailed genetic information. Using this approach we 

estimated that all HRC-imputed variants with MAF >0.001 explained 59.9% (s.e= 2.1%) of 

phenotypic variance for DLB, which is nearly double the previous estimate (Guerreiro et al., 

2016). Our results also show that a large proportion of the variance is explained by variants with 

lower frequency (MAFs from 0.001 to 0.01). Given that the current version of HRC allows for 

imputation of variants with frequencies as low as 0.0005 and aggregate R2 above 0.5 (McCarthy 

et al., 2016), this indicates that performing GWAS in DLB with increased sample sizes will allow 

us to identify novel loci involved in conferring risk for disease without the need for large-scale 

whole-genome sequencing. 

One of the explanations for the common issue of “missing heritability” is that non-additive 

heritability (such as dominance variance or epistatic variance) represents a substantial 

component of a trait’s total heritable genetic component. Our results suggest that dominance 

variance has a negligible effect on the genetic heritability of DLB, in line with findings from 79 

unrelated traits (Zhu et al., 2015). However, we cannot exclude that epistatic variance plays a 

role in DLB, given that our cohort is underpowered to detect epistatic events. 

Recently, there has been growing interest in the use of PRSs as a way to perform risk prediction 

in various diseases and these have successfully been applied to AD (Escott-Price et al., 2015b) 
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and PD (Escott-Price et al., 2015a). To determine how much of the phenotypic variance in our 

DLB cohort can be caused by AD and PD known genetic risk factors, we used PRSs from 

recent GWAS from each of these diseases. In both cases scores explained only relatively small 

proportions of variance (0.37-1.33%). In AD, excluding the APOE locus greatly reduced the 

amount of variance explained in DLB (0.14%), which is in accordance with the strong effect that 

locus has in the risk of both diseases (Guerreiro et al., 2018; Lambert et al., 2013). Conversely, 

excluding the GBA locus in PD had only a modest effect, which likely results from the lower 

frequency in the general population of the variants that comprised this signal compared to 

APOE. Since the amount of variance explained by each of the PRS is relatively small, this adds 

to the growing body of evidence that suggests that, genetically, DLB is a unique condition and 

not simply a mix of PD and AD risk factors. These data also confirm the polygenic nature of DLB 

as well as quantify the amount of variance that polygenic risk from each of those diseases 

accounts for in DLB. 

Given the large number of pleiotropic events that are being identified for a variety of diseases 

and traits (Guerreiro et al., 2014; Visscher et al., 2017), finding correlated conditions opens the 

door to a better understanding of disease pathobiology and perhaps may even suggest novel 

therapeutic targets. Assessing the genetic correlation of DLB with over 200 diseases and traits 

showed correlations that were in the same direction of those seen in PD while others were in 

the same direction as in AD. Due to the relatively small sample size in our cohort, the only 

correlation surpassing Bonferroni correction was for “Years of schooling”. It is interesting to note 

that these scores were positively correlated with DLB, while they have a well-established 

negative correlation with AD (Barnes and Yaffe, 2011; Norton et al., 2014). Similar positive 

correlations have been identified for bipolar disorder and autism spectrum disorders (Bulik-

Sullivan et al., 2015), as well as for PD in the present data. Also in PD, there is evidence for the 

presence of increased intracranial volumes when compared to controls (Krabbe et al., 2005). 

Here, supporting those findings, we identify a positive genetic correlation between both PD and 

DLB (although not statistically significant) with intracranial volume, whereas in AD no evidence 

for genetic correlation was identified. Interestingly, the anthropometric characteristics obesity, 

body mass index (BMI) and body fat were negatively correlated with all 3 diseases. For BMI and 

PD, recent Mendelian randomization results have shown a negative effect (Noyce et al., 2017) 

which our results replicate and suggest they extend to both AD and DLB. A similar finding was 

obtained for cancer traits, where lung cancer showed a general negative correlation with the 

three traits. This agrees with transcriptomic studies that showed that the cancer gene 
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expression profile is almost an opposite mirror image to that of neurodegenerative disease 

(Aramillo Irizar et al., 2018). A positive correlation between both DLB and AD with citrate 

(Kettunen et al., 2016) was identified, although this was not the case for PD, where no evidence 

of correlation was found. Increased plasma levels of citrate have been shown to be associated 

with increased levels of oxidative stress (Convertini et al., 2016), making it tempting to speculate 

that in AD and DLB oxidative stress may be involved in the neurodegenerative processes, while 

in PD it may be more akin to a consequence. 

We note several limitations in our study. First, the DLB dataset, despite being the largest to 

date, is relatively small when compared to other recently published GWAS in PD or AD. This is 

reflected in a lower statistical power to identify novel associations; while the recent PD and AD 

GWAS were sufficiently powered to detect variants with effects as low as 1.4 and frequencies of 

only 1%, at this frequency, the DLB dataset is only sufficiently powered to detect variants with 

large effects of 3 and above. The lower statistical power is also reflected in the standard errors 

of the analyses performed in this work. We are underpowered to detect rare variants and 

certainly rare variants with small effect sizes. Second, we are unable to provide definitive 

biological mechanisms underlying the genetic correlations identified. This means that it is 

possible that for some of the correlations observed, what we are seeing are proxy effects and 

not direct correlations. Lastly, this study focused on individuals of European/North American 

descent. It is likely that studies of populations of different ancestries will reveal not only novel 

loci, but perhaps also novel pleiotropic effects, which could improve our understanding of the 

pathobiology of DLB. 

Conclusion 

In summary, we provide updated estimates of the genetic heritability of DLB and show that 

dominance variance is not a substantial part of the heritability of this disease. We quantify the 

amount of phenotypic variance in DLB that can be attributed to PD and AD polygenic risk scores 

and show that this is relatively small. Lastly, we estimate genetic correlations between DLB and 

over 200 diseases and medically relevant traits, shedding light into the complex relationship 

between DLB and both PD and AD. 
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  DLB AD PD 

TRAIT Category rg s.e. p-value rg s.e. p-value rg s.e. p-value 

FATHERS AGE AT DEATH; 
PMID:27015805 

aging 0.777 0.230 0.001       

MOTHERS AGE AT DEATH; 
PMID:27015805 

aging 0.626 0.234 0.007    0.250 0.092 0.007 

BODY FAT; PMID:26833246 anthropometric -0.382 0.130 0.003       

BODY MASS INDEX; 
PMID:20935630 

anthropometric -0.287 0.093 0.002       

HEIGHT; FEMALES AT AGE 10 AND 
MALES AT AGE 12; 
PMID:23449627 

anthropometric    -0.282 0.107 0.008    

OBESITY CLASS 1; PMID:23563607 anthropometric -0.334 0.113 0.003       

PRIMARY BILIARY CIRRHOSIS; 
PMID:26394269 

autoimmune -0.501 0.159 0.002       

RHEUMATOID ARTHRITIS; 
PMID:24390342 

autoimmune -0.358 0.101 0.000       

ICV; PMID:25607358 brain_volume 0.691 0.247 0.005    0.343 0.098 0.001 

MEAN ACCUMBENS; 
PMID:25607358 

brain_volume       0.402 0.143 0.005 

MEAN CAUDATE; PMID:25607358 brain_volume       0.266 0.075 0.000 

MEAN PUTAMEN; PMID:25607358 brain_volume       0.251 0.082 0.002 

LUNG CANCER; PMID:27488534 cancer -0.493 0.141 0.001       

LUNG CANCER (ALL); 
PMID:24880342 

cancer -0.579 0.193 0.003       

LUNG CANCER (SQUAMOUS CELL); 
PMID:24880342 

cancer -0.878 0.313 0.005       

SQUAMOUS CELL LUNG CANCER; 
PMID:27488534 

cancer -0.739 0.224 0.001       

CORONARY ARTERY DISEASE; 
PMID:26343387 

cardiometabolic -0.442 0.128 0.001       

INTELLIGENCE; PMID:28530673 cognitive 0.281 0.102 0.006 -0.357 0.104 0.001    

CHILDHOOD IQ; PMID:23358156 education 0.675 0.204 0.001 -0.362 0.111 0.001 0.256 0.080 0.001 

COLLEGE COMPLETION; 
PMID:23722424 

education    -0.364 0.100 0.000    

YEARS OF SCHOOLING (PROXY 
COGNITIVE PERFORMANCE); 
PMID:25201988 

education    -0.300 0.081 0.000 0.138 0.048 0.004 

YEARS OF SCHOOLING 2013; 
PMID:23722424 

education    -0.290 0.092 0.002 0.137 0.048 0.005 

YEARS OF SCHOOLING 2016; 
PMID:27225129 

education 0.481 0.120 0.000 -0.330 0.084 0.000    

CITRATE; PMID:27005778 metabolites 0.821 0.280 0.003       

ISOLEUCINE; PMID:27005778 metabolites    -0.547 0.208 0.009    

AGE OF FIRST BIRTH; 
PMID:27798627 

reproductive 0.311 0.105 0.003    0.140 0.042 0.001 

 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 Genetic heritability of DLB is nearly 60%, double of previous estimates. 
 Polygenic risk scores from PD and AD explain a low amount of variance in DLB. 
 DLB has a positive correlation with education phenotypes, which is contrary to AD. 
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