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Abstract
In social insect colonies, individuals need to communicate to coordinate cooperative tasks and protect the colony and its 
resources against intruders. To maintain colony integrity, it can be particularly important to recognize nestmates and dis-
criminate against non-nestmate conspecifics and heterospecific predators and parasites. As typical intruders are either con- or 
heterospecific adults, the mechanisms underlying recognition and discrimination processes in interactions among adults have 
been well described. Ant brood (eggs, larvae, and pupae) can also play a key role in social interactions, and brood is of spe-
cial importance when it comes to the priorities of worker ants. However, whether ants can, or even need to, recognize brood 
of different origins, is not always clear. In this review, we integrate the results of 100 years of study on brood recognition 
and discrimination in ants into a general framework. We begin with an overview of the proximate mechanisms involved in 
brood recognition and discrimination. We then discuss why brood recognition and discrimination should evolve and review 
the evidence for brood recognition on three organizational levels: within nests, between conspecifics and between species. 
We conclude by examining the constraints acting on accurate recognition and/or discrimination. With this review, we hope 
to inspire future research on the fascinating life of ant brood.
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Introduction

Ants need to assess their social environment and communi-
cate with nestmates to coordinate cooperative processes such 
as reproductive division of labor, foraging, and brood care. 
Communication is also crucial for protecting the colony and 
its resources from exploitation by unrelated conspecific and 
heterospecific predators and parasites. Mechanisms of task-
related communication and nestmate and intruder recogni-
tion and discrimination have been well reviewed in adult 
ants (d’Ettorre and Lenoir 2010; van Zweden and d’Ettorre 
2010; Sturgis and Gordon 2012; Tsutsui 2013; Czaczkes 
et al. 2014; Leonhardt et al. 2016), and mainly rely on two 
kinds of chemical signals: glandular secretions and mixtures 
of hydrocarbons on the body surface (Vander Meer et al. 

1998; Martin and Drijfhout 2009a; Blomquist and Bagnères 
2010; van Wilgenburg et al. 2011). Hydrocarbons are pro-
duced in specialized cells (oenocytes) and then transported 
to the cuticle, where they form a waxy layer that prevents 
desiccation (Gibbs 1998; Gibbs and Rajpurohit 2010). In 
many insects, including ants, hydrocarbons have secondarily 
evolved a function in communication (Blomquist and Bag-
nères 2010; Chung and Carroll 2015).

Adult ants from the same nest share a hydrocarbon 
profile, which is partly inherited (Drescher et al. 2010; 
van Zweden et al. 2010; Nehring et al. 2011; Helanterä 
and d’Ettorre 2014) and partly shaped by an individual’s 
nutritional and social environment (Soroker et al. 1995; 
Dahbi et al. 1999; Lenoir et al. 2001a; Foitzik et al. 2007; 
van Zweden et al. 2009a; Bos et al. 2011). In addition 
to their species and colony specificity (e.g., Martin et al. 
2008a, b), adult hydrocarbon profiles can change with 
age (Cuvillier-Hot et al. 2001; Teseo et al. 2014), reflect 
fecundity (Peeters et al. 1999; Liebig et al. 2000; Cuvillier-
Hot et al. 2001, 2004; Dietemann et al. 2003, 2005; Hol-
man et al. 2010; Will et al. 2012), and differ among body 
parts (Wang et al. 2016), task groups (Wagner et al. 1998, 
2001; Martin and Drijfhout 2009b; Larsen et al. 2016), 
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sexes (Cuvillier-Hot et al. 2001; Kleeberg et al. 2017), and 
castes (Monnin 1999; Kleeberg et al. 2017). In addition 
to chemical cues, adult ants can also communicate using 
acoustic (reviewed in Schönrogge et al. 2017) and visual 
cues (Hölldobler and Wilson 2009).

Although often overlooked, ant brood (i.e., eggs, larvae, 
and pupae) play a key role in social interactions (Schultner 
et al. 2017) and are of special importance when it comes to 
the decisions and motivation of workers. Ant workers show 
directed behavior towards brood (Wilson 1971) and retriev-
ing and tending brood is the main priority of a worker ant; 
even tending to the queen is secondary (Lenoir 1981). This is 
exemplified by the fact that after disturbance to a colony, the 
first thing workers do is secure brood (Haskins and Haskins 
1950; Lenoir 1981; Muscedere et al. 2009; Römer and Roces 
2014). The adaptive advantages of recognizing brood as such 
are obvious: worker responsiveness to brood is necessary 
for efficient brood care, which is in the interest of all colony 
members, because brood represents a colony’s combined 
reproductive investment. As growth and development of ant 
brood are tightly linked to brood care behavior by workers 
(Linksvayer 2007, 2008), recognizing and discriminating 
brood according to traits such as developmental stage, sex, 
caste, maternity, kinship, colony, population, and species 
may be selected if it allows colonies to optimize fitness-
related processes such as the production of sexual offspring.

In this review, we integrate the results of 100 years of 
study on brood recognition and discrimination in ants into a 
general framework. The first review on this topic by Carlin 
(1988) referenced about 30 empirical studies. Since then, 
83 studies have examined worker (and sometimes queen or 
larva) discriminatory behavior towards brood of different 
developmental stages, sexes, castes, maternities, kinships, 
colonies, populations, and species. Some of these studies 
also investigated the underlying cues used for discrimina-
tion. We include, to the best of our knowledge, all refer-
ences published on this topic, irrespective of publication 
year (see Tables 1, 2, 3 and references therein). We loosely 
structure our review along the four principles for the study 
of behavior: causation, ontogeny, adaptive value and phy-
logeny (Tinbergen 1963). In the section “Brood recognition: 
how?”, we treat the questions of causation and ontogeny by 
giving an overview of the proximate mechanisms involved in 
brood recognition and discrimination. In the section “Brood 
recognition: why?”, we discuss the adaptive value of accu-
rate brood recognition and discrimination and review the 
evidence for discrimination on three organizational levels 
(within nests, between conspecifics, and between species). 
We conclude by examining the ecological and experimental 
constraints that influence accurate recognition and discrimi-
nation, or detection thereof. In each section, we present ave-
nues of future research that will help resolve open questions 
about brood discrimination in ants.  

Brood recognition: how?

Recognition systems typically have three components. 
The sender produces or bears a stimulus that relates to a 
relevant trait (expression component). The receiver per-
ceives this stimulus and integrates the information (per-
ception component). The receiver then responds to the 
sender according to the information gathered from the 
stimulus (action component). Thus, recognition does not 
always imply action, but action requires recognition. Rec-
ognition is used to describe the neural process associated 
with assessing the phenotypes of social partners (Wald-
man 1987), for instance, by reacting to stimuli encoded by 
genotype or based on context (e.g., shared nest) or prior 
association. Discrimination is used to describe the dif-
ferential treatment of social partners following phenotype 
perception. The majority of studies focus on discrimina-
tion, since this is more easily measured than recognition. 
Here, we use “recognition” when we address the stimuli 
associated with different phenotypes and “discrimination” 
when we discuss differential behavior towards individuals 
of different phenotypes.

Both senders and receivers are critical actors in recogni-
tion systems (Fig. 1). In the context of brood recognition and 
discrimination, brood typically act as senders, while work-
ers act as receivers (although some studies have also tested 
the recognition and discrimination abilities of queens and 
larvae, see Tables 1, 2, 3). We begin the first section of this 
review by examining how brood can transmit information. 
We then review the current state of knowledge concerning 
the ontogeny of this behavior in workers.

Brood recognition cues

Recognition and discrimination are based on the assessment 
of stimuli in the form of cues or signals. The term “sig-
nal” is used for stimuli which have specifically evolved to 
convey information from sender to receiver, while the term 
“cue” denotes any stimulus used by the receiver, even if 
this stimulus did not evolve to function in a communication 
context (Maynard Smith and Harper 2003). Defining a given 
stimulus as a signal rather than a cue requires careful testing 
of the action and function of said stimulus and, in the case 
of chemical stimuli, a synthetic version, using appropriate 
behavioral experiments. As such comprehensive studies of 
brood recognition are rare, we refer to brood recognition 
stimuli as cues throughout this review, with the exception of 
queen-borne odors on eggs (i.e., queen pheromones), which 
have been identified as species-specific signals that have 
evolved to convey information about queen fertility (Hol-
man et al. 2010; Van Oystaeyen et al. 2014).
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Table 1   Overview of studies conducted on ant brood recognition and discrimination in the context of within-nest interactions

Discrimination 
context

Development stage Species Evidence for discrimi-
nation

Recognition cues used References

Worker-laid vs. 
queen/gamergate-
laid

Egg Aphaenogaster 
smythiesi japonica

Yes Iwanishi et al. 2003

Camponutus flori-
danus

Yes Egg odor Endler et al. 2004

Dinoponera quadri-
ceps

Yes Egg odor Monnin and Peeters 
1997

Formica selysi Yes Meunier et al. 2010
Myrmecia gulosa 

(queen)
Yes Egg odor Dietemann 2002; Diete-

mann et al. 2005
Leptothorax acervo-

rum (queen)
No Bourke 1991

Novomessor cock-
erelli

No Smith et al. 2008a

Temnothorax unifas-
ciatus

No Stroeymeyt et al. 2007

Neoponera inversa Depends on queen 
presence, brood 
origin

Egg odor d’Ettorre et al. 2004, 
2006; van Zweden 
et al. 2007, 2009b

Formica fusca Depends on queen 
presence

Helanterä and Sund-
ström 2005, 2007; 
Helanterä and Rat-
nieks 2009a

Diacamma sp. 
(gamergate)

Depends on caste of 
discriminator

Egg odor Nakata and Tsuji 1996; 
Kikuta and Tsuji 
1999; Shimoji et al. 
2012

Queen fertility Egg Camponutus flori-
danus

Yes Egg odor Endler et al. 2006

Male vs. female Egg, larva, pupa Formica selysi(?) Yes Rosset and Chapuisat 
2006

Lasius niger(L) Yes Jemielity and Keller 
2003

Myrmica rubra(L) Yes Brian and Carr 1960; 
Brian 1981

Myrmica tahoensis(L) Yes Evans 1995
Pheidole pallidula(?) Yes Keller et al. 1996
Plagiolepis 

pygmaea(L)
Yes Aron et al. 2004

Solenopsis invicta(?) Yes Aron et al. 1995
Leptothorax 

acervorum(E)
No Hammond et al. 2002

Camponutus 
floridanus(P)

Depends on brood 
development stage

Nonacs and Carlin 
1990

Formica exsecta(L) Depends on queen 
number

Sundström et al. 1996

Linepithema humile(L) Depends on queen 
presence, brood 
development stage

Aron et al. 1994; Pas-
sera et al. 1995; Pas-
sera and Aron 1996

Monomorium 
pharaonis(L)

Depends on brood 
development stage

Peacock et al. 1954; 
Warner et al. 2016
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Wheeler (1910, 1918) first proposed that ant larvae emit 
chemical attractants. Worker attraction towards conspe-
cific brood odors was then demonstrated in the army ants 
Neivamyrmex opacithorax and Eciton spp. (Watkins and 
Cole 1966; Schneirla 1971) and shortly after confirmed in 
Atta cephalotes (Robinson and Cherrett 1974), Myrmica 
rubra (Brian 1975a), and Solenopsis invicta (Glancey et al. 

1970, but see Walsh and Tschinkel 1974). These findings, 
together with the fact that ant workers are known to readily 
accept and rear conspecific non-nestmate brood (Table 2) 
inspired researchers to search for ant brood pheromones, 
i.e., chemical substances emitted by immature individuals 
that elicit a specific response in conspecific adults (Morel 
and Vander Meer 1988; Vander Meer and Alonso 1998). 

Discrimination abilities of workers were tested unless otherwise noted in parentheses behind the species name. For discrimination contexts in 
which more than one development stage was tested, details on the tested stage are given in superscript behind the species name (E egg, L larva, 
P pupa, ? unknown). Where available, information on the cues used for recognition is given

Table 1   (continued)

Discrimination 
context

Development stage Species Evidence for discrimi-
nation

Recognition cues used References

Trophic vs. viable Egg Lasius niger (larva) Yes Baroni Urbani 1991
Novomessor cock-

erelli
Yes Hölldobler and Carlin 

1989
Rhytidoponera sp.12 Yes Tay and Crozier 2000
Messor semirufus 

(larva)
No Baroni Urbani 1991

Myrmecia gulosa Depends on worker 
size

Egg odor Dietemann 2002; Diete-
mann et al. 2005

Worker-destined vs. 
queen-destined

Larva, pupa Harpegnathos 
saltator(L)

Yes Larva odor Penick and Liebig 2017

Aphaenogaster 
senilis(L)

Depends on queen 
presence

Villalta et al. 2016

Linepithema humile(L) Depends on queen 
presence

Passera et al. 1995; 
Klobuchar and 
Deslippe 2002

Monomorium 
pharaonis(L)

Depends on queen 
presence, brood 
development stage

Larval pilosity Edwards 1991; Warner 
et al. 2016

Myrmica rubra(L,P) Depends on queen 
presence

Larval secretions Brian 1973c, b, 1975a

Solenopsis invicta(L) Depends on queen 
presence, brood 
development stage

Glancey et al. 1970; 
Vargo and Fletcher 
1986; Klobuchar and 
Deslippe 2002

Size, age Young vs. old larva Monomorium 
pharaonis

Yes Walsh et al. 2018b

Larva vs. pupa; small 
larva vs. large larva, 
egg vs. larva

Lasius niger Yes Lenoir 1981

4th instar larva vs. 
other larval instars

Solenopsis invicta Yes Petralia and Vinson 
1979b

Larva vs. pupa Acromyrmex echina-
tor

Yes Fouks et al. 2011

Myrmica rubra Yes Brian 1975a
Myrmica sabuleti Yes Thomas et al. 2013
Myrmica scabrinodis Yes Casacci et al. 2013
Myrmica schenki Yes Thomas et al. 1998
Solenopsis invicta Yes Larva odor, pupa odor Glancey et al. 1970

Larva vs. pupa, small 
vs. large larva

Linepithema humile Depends on queen 
presence

Passera et al. 1995
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Table 2   Overview of studies conducted on ant brood recognition and discrimination in the context of conspecific interactions

Discrimination context Development stage Species Evidence for discrimi-
nation

Recognition cues used References

Nestmate vs. non-
nestmate

Egg, larva, pupa Acromyrmex 
subterraneus 
subterraneus(L,P)

Yes Pupa odor Viana et al. 2001

Atta sexdens 
rubropilosa(E,L,P)

Yes Araujo et al. 1996

Leptothorax acervo-
rum (queen)(E)

Yes Bourke 1994

Leptothorax 
longispinosus(L)

Yes Larva odor Hare 1996; Swan and 
Hare 2012

Myrmica schencki(L) Yes Larva odor Akino et al. 1999
Temnothorax 

nylanderi(L)
Yes Swan and Hare 2012

Temnothorax 
parvulus(L)

Yes Swan and Hare 2012

Acromyrmex laticeps 
nigrosetosus(L,P)

No Souza et al. 2006

Formica aquilonia 
(larva)(E)

No Schultner et al. 2013

Formica gnava(P) No Goodloe and Topoff 
1987

Formica 
paralugubris(P)

No Maeder et al. 2005

Formica pratensis(P) No Rosengren and Cherix 
1981

Formica sanguinea(P) No Mori et al. 1992
Formica schaufussi(P) No Goodloe and Topoff 

1987
Messor semirufus 

(larva)(E)
No Baroni Urbani 1991

Myrmecia sp.(E,L,P) No Haskins and Haskins 
1950

Oecophylla 
smaragdina(L)

No Krag et al. 2010

Rhytidoponera 
confusa(L)

No Crosland 1988

Promyrmecia sp.(E,L,P) No Haskins and Haskins 
1950

Tapinoma erraticum(P) No Meudec 1978
Acromyrmex 

echinator(L,P)
Depends on worker 

caste
Fouks et al. 2011; 

Larsen et al. 2014
Atta cephalotes(L,P) Depends on brood 

development stage
Robinson and Cherrett 

1974
Camponotus 

floridanus(P)
Depends on brood sex Carlin and Schwartz 

1989; Nonacs and 
Carlin 1990

Cataglyphis cursor(L) Depends on worker 
pre-eclosion experi-
ence

Lenoir 1984; Isingrini 
et al. 1985; Isingrini 
1987; Isingrini and 
Lenoir 1988

Dinoponera 
quadriceps(E)

Depends on worker 
age

Tannure-Nascimento 
et al. 2009

Ectatomma 
tuberculatum(L)

Depends on worker 
age

Fénéron and Jaisson 
1995
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Such brood pheromones exist in the honey bee Apis mel-
lifera (Le Conte et al. 1990), where they are produced in 
larval salivary glands (Le Conte et al. 2006) and have a 
distinct role in modulating worker behavior and physiol-
ogy (Mohammedi et al. 1996; Le Conte et al. 2001).

A first attempt at characterizing ant brood pheromones 
was conducted by Bigley and Vinson (1975), who identi-
fied the pupal pheromone of Solenopsis invicta as triolein. 
Similarly, Glancey and Dickens (1988) claimed to have 
isolated a larval brood pheromone from the same species. 
However, these identifications were later claimed to be 
inaccurate (Vander Meer 1983), and the overall existence 
of ant brood pheromones argued against, with particular 
focus on the unreliability of the performed assays and the 
lack of species specificity in the action of the identified 
compounds (Morel and Vander Meer 1988; Vander Meer 
and Morel 1988; Vander Meer and Alonso 1998). Indeed, 
interspecific brood adoption by worker ants has been widely 
reported (Table 3), lending support to the notion that ant 

brood pheromones—by definition, substances that elicit 
reactions from conspecifics—do not exist. Careful work on 
brood odors in the fire ant S. invicta (reviewed in Tschinkel 
2006), as well as recent studies on a number of different spe-
cies spanning the ant phylogeny have demonstrated that the 
presence of brood influences adult behavior and reproductive 
physiology (Heinze et al. 1996; Endler et al. 2004; Teseo 
et al. 2013; Ebie et al. 2015; Ulrich et al. 2016; Chandra 
et al. 2018), and that this inhibition can be caused by larval 
contact odors alone (Villalta et al. 2015). While these results 
seemingly provide support for the idea that ant brood phero-
mones exist, studies testing whether such brood odors act 
in a species-specific manner are still lacking. One can hope 
that a species-comparative approach using modern methods 
of chemical analysis and carefully designed bioassays will 
help elucidate the chemical nature of these compounds in 
the future.

Beyond this burst of interest in brood pheromones, indi-
vidual brood items, in particular larvae, were often regarded 

Table 2   (continued)

Discrimination context Development stage Species Evidence for discrimi-
nation

Recognition cues used References

Formica fusca  
(+ larva)(E,P)

Depends on queen 
presence, worker 
post-eclosion experi-
ence

Jaisson 1975; Helanterä 
and Sundström 2007; 
Helanterä et al. 2007, 
2014; Helanterä and 
Ratnieks 2009a; Pul-
liainen et al. 2019

Formica exsecta(P) Depends on brood 
caste

Pulliainen et al. 2018

Formica lugubris(P) Depends on brood 
origin

Rosengren and Cherix 
1981; Rosengren et al. 
1994; Maeder et al. 
2005

Formica rufa(P) Depends on worker 
post-eclosion experi-
ence, brood origin

Le Moli and Passetti 
1977, 1978; Rosen-
gren and Cherix 1981

Formica selysi(E) Depends on worker 
origin

Meunier et al. 2010

Lasius niger 
(larva)(E,L,P)

Depends on identity of 
discriminator

Lenoir 1981; Baroni 
Urbani 1991

Myrmica rubra(L) Depends on experi-
mental setup

Elmes and Wardlaw 
1983; Solazzo et al. 
2013

Temnothorax 
ambiguus(L)

Depends on brood 
origin

Swan and Hare 2012

Temnothorax 
unifasciatus(P)

Depends on enslave-
ment status of colony

Delattre et al. 2012

Monogyne colony vs. 
polygyne colony

Egg Formica selysi Yes Egg odor Meunier et al. 2011

Discrimination abilities of workers were tested unless otherwise noted in parentheses behind the species name. For discrimination contexts in 
which more than one development stage was tested, details on the tested stage are given in superscript behind the species name (E egg, L larva,  
P pupa, ? unknown). Where available, information on the cues used for recognition is given
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as chemically insignificant. Brood hydrocarbon profiles have 
indeed been shown to be less complex than adult cuticular 
profiles in some species (Viana et al. 2001; Richard et al. 
2007; Fouks et al. 2011). However, the complexity of egg, 
larval and pupal profiles can also mirror that of adult profiles 
(Bagnères and Morgan 1991; Akino et al. 1999; Elmes et al. 
2002; Souza et al. 2006; Tannure-Nascimento et al. 2009; 
Helanterä and d’Ettorre 2014). We now know that brood 
surface chemistry can be species, population, and colony-
specific (Brian 1975a; Le Moli and Passetti 1978; Mori and 
Le Moli 1988; Hare 1996; Akino et al. 1999; Viana et al. 
2001; Johnson et al. 2005; Souza et al. 2006; Richard et al. 
2007; Achenbach and Foitzik 2009; Achenbach et al. 2010; 
Schultner et al. 2013; Helanterä and d’Ettorre 2014; Pul-
liainen et al. 2018, Peignier et al. 2019), and contain infor-
mation about traits like viability (Dietemann et al. 2005), 
maternity (Monnin and Peeters 1997; Endler et al. 2004, 
2006; d’Ettorre et al. 2004, 2006; Dietemann et al. 2005; 
Meunier et al. 2010; Shimoji et al. 2012; Helanterä and 
d’Ettorre 2014), development stage (Johnson et al. 2005; 
Richard et al. 2007), sex (Achenbach et al. 2010), caste 
(Brian 1975a; Achenbach et al. 2010; Penick and Liebig 
2017), and colony social structure (Meunier et al. 2011).

Brood recognition can also be based on non-chemical 
cues such as morphology, behavior, and acoustic signals. 
Ant larvae show striking diversity in body size and shape, 
overall mobility, and morphology of body hairs (Wheeler 
1918; Wheeler and Wheeler 1953, 1976, 1986). In particu-
lar the size, shape, distribution and density (= pilosity) of 
larval hairs can differ between species, as well as between 
developmental stages, sexes and castes within single spe-
cies (Petralia and Vinson 1978, 1979a; Solis et al. 2010b, a, 
2011, 2012b, a; Fox et al. 2011; Penick et al. 2012; Wang 
et al. 2017). In Monomorium and Solenopsis ants, differ-
ences in the pilosity of worker- and queen-destined larvae 
may help workers recognize the two castes (Edwards 1991; 
Fox et al. 2011). In Myrmica ants, the increasing pilosity of 
larvae over the course of development has been suggested to 
be crucial for recognition, together with brood chemistry and 
tactile cues such as turgidity, size, shape, and cuticle surface 
properties (Brian 1975a). Formica cunicularia workers also 
seem to use a combination of cues to recognize brood as 
only heterospecific brood that resembles conspecific brood 
in both size and odor are accepted (Mori and Le Moli 1988). 
Larval behavior can also transmit information to work-
ers, for instance in the context of nutritional provisioning. 
This is exemplified by the correlation between larval head 
movements and worker feeding behavior in Myrmica rubra 
(Creemers et al. 2003). The pupae of the closely related spe-
cies Myrmica scabrinodis communicate acoustically with 
workers using stridulatory organs (Casacci et al. 2013). 
Judging from the sheer diversity of ant brood morphology, 
there are many more such fascinating traits to be discovered.Ta
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Ontogeny of brood recognition and discrimination 
behavior

Ant workers develop from female eggs, which hatch into lar-
vae that pass through 3–5 instars (depending on the species) 
and a short pre-pupal phase, before undergoing complete 
metamorphosis and remaining in a pupal stage until eclos-
ing as adults. Adult ants detect chemical compounds with a 
chemosensory system, including a range of proteins in the 
antennal sensilla that detect, bind and carry odorant mol-
ecules (Ozaki et al. 2005; Kulmuni and Havukainen 2013; 
McKenzie et al. 2014; Pask et al. 2017; Slone et al. 2017; 
McKenzie and Kronauer 2018). The olfactory stimuli are 
then perceived in the antennal lobes and the higher integra-
tion centres in the brain, and ultimately lead to behavioral 
responses (Ozaki and Wada-Katsumata 2010; Trible et al. 
2017; Yan et al. 2017). Social interactions play a key role in 
modulating neurophysiological processes, and lack thereof 
can inhibit growth and development of important learning 
and memory centers in the brain, in addition to other nega-
tive neurochemical effects (Boulay et al. 2000; Wada-Kat-
sumata et al. 2011; Seid and Junge 2016).

Although the neurophysiology of brood recognition has 
not been studied, current data suggest that odor-based recog-
nition abilities of worker ants are shaped by the integration 
of multiple chemical templates during both larval and adult 
life. For example, Cataglyphis cursor workers are able to 
discriminate larvae according to colony origin within 24 h 
of eclosion (Isingrini and Lenoir 1988), indicating that pre-
imaginal learning shapes recognition abilities (Isingrini et al. 
1985). Similarly, pre-imaginal learning appears to affect rec-
ognition abilities in Camponotus spp., Aphaenogaster senilis 

and Leptothorax spp. workers (Hare and Alloway 1987; Car-
lin and Schwartz 1989; Signorotti et al. 2014). While this 
suggests that this phenomenon is universal in ants, there are 
also examples, where pre-eclosion experience does not affect 
discriminatory behavior, e.g., in Temnothorax parvulus (Bla-
trix and Sermage 2005).

After eclosing as adults, young workers typically act as 
nurses within the nest, before transitioning to become forag-
ers when they are older (but see Muscedere et al. 2009). This 
age-based division of labor can be reflected in both recog-
nition abilities and discriminatory behavior. In Ectatomma 
tubercalutum, only 2–10 week old workers (the age that 
corresponds to the nursing period in this species) discrimi-
nate between nestmate and non-nestmate larvae and pupae, 
whereas older workers lose the preference for nestmate brood 
(Fénéron and Jaisson 1992, 1995). Similarly, in Dinoponera 
quadriceps only 1–6 week old workers (i.e., nurses) were 
able to discriminate between nestmate and non-nestmate 
eggs, whereas younger (callows) or older (foragers) work-
ers were not (Tannure-Nascimento et al. 2009). The change 
in recognition capacity seems to be related to the current 
task of the worker, rather than to age per se (Fénéron and 
Jaisson 1992), and the loss of preference for nestmate eggs 
in foragers might result from a lack of continuous updating 
of the chemical template (Fénéron and Jaisson 1995). This is 
supported by studies showing that workers adopt unfamiliar 
brood more readily if they do not have access to a chemical 
template of familiar brood or if they have been previously 
exposed to unfamiliar con- or heterospecific brood (Jais-
son 1975; Le Moli and Passetti 1977; Jaisson and Fresneau 
1978; Le Moli and Passetti 1978; Lenoir 1981; Le Moli and 
Mori 1982; Isingrini et al. 1985; Carlin et al. 1987; Hare and 

Fig. 1   Overview of factors 
influencing brood recognition 
and discrimination in ants
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Alloway 1987; Helanterä et al. 2007; Helanterä and Ratnieks 
2009a; Swan and Hare 2012). For example, F. fusca workers 
taken from a colony enslaved by Formica sanguinea accept 
foreign brood, while workers taken from unparasitized nests 
do not (Jaisson 1975).

Some ant species have morphological worker castes that 
are specialized for discrete tasks; such morphological spe-
cialization may also influence recognition and discrimina-
tion abilities. In Acromyrmex echinator, different morpho-
logical castes differ in their aggression towards conspecifics 
(Larsen et al. 2014). Compared to minor workers, major 
workers are more aggressive towards adult conspecifics and 
discriminate against non-nestmate brood. This is thought 
to be the result of lower sensitivity to nestmate odors in 
minor workers, which usually do not defend the nest against 
intruders. Even in species without morphological worker 
castes, workers can vary in size, and this may affect task 
partitioning and consequently, brood-discrimination behav-
ior. In colonies of Myrmecia gulosa ants, small workers kill 
viable eggs while large workers do not (Dietemann 2002). 
Whether this is due to differences in recognition abilities or 
experience, or because large workers simply refrain from 
egg killing, is not known.

Overall, although recognition mechanisms in ants 
have not been studied exhaustively, it is known that they 
are highly flexible, context-dependent and modulated by 
dynamic thresholds and integration of multiple templates 
(Gamboa et  al. 1991; van Zweden and d’Ettorre 2010; 
Newey 2011; Sturgis and Gordon 2012). While we are 
beginning to understand how adult ants perceive social 
information (Ozaki et al. 2005; Brandstaetter et al. 2011; 
Pask et al. 2017; Trible et al. 2017; Yan et al. 2017; Neupert 
et al. 2018), comparative analyses across species and genera 
are needed to draw general conclusions about the ability of 
workers to recognize brood, and how such abilities may be 
ontogenetically constrained.

Brood recognition: why?

Given that brood from conspecific and even heterospe-
cific nests are often readily accepted (Tables 2, 3), it may 
appear as if brood discrimination has no selective advantage. 
Indeed, as the immature stages of ants are largely immo-
bile, they are not potential intruders of colonies. Compared 
to discrimination of adult individuals, the ability to recog-
nize and discriminate brood may thus be under less strin-
gent selection, and general cues identifying brood as brood 
may override more specific information on individual traits 
(Carlin 1988). Nonetheless, there are several scenarios in 
which precise brood recognition and discrimination are pre-
dicted to evolve. First, the identity of brood (e.g., develop-
mental stage, sex, caste, maternity) can be a key modulator 

of within-colony interactions, particularly in the case of 
colony-level conflicts over resource allocation (Schultner 
et al. 2017). Second, recognition of, and discrimination 
against, foreign brood may be crucial in maintaining colony 
integrity, especially in species which are targeted by social 
parasites that exploit the brood care behavior of the host 
(Schmid-Hempel 1995). In the second section of this review, 
we discuss the adaptive value of accurate brood recognition 
and discrimination and review the evidence for discrimina-
tion on three organizational levels (within nests, between 
conspecifics, and between species) across the ant phylogeny.

Within‑nest interactions

Within ant nests, the needs of brood play a major role in 
dictating the behavior and physiology of adult nestmates 
(Schultner et al. 2017). For example, since ant brood are not 
restricted to individual cells but instead reared in piles, nurse 
workers continually adjust the location of brood within nests 
to ensure optimal microclimatic conditions for growth and 
development (Brian 1973a; Hölldobler and Wilson 1990; 
Penick and Tschinkel 2008; Römer and Roces 2014). As 
the needs of brood can vary depending on traits like devel-
opmental stage, sex and caste, workers are under selection 
to recognize brood precisely to adjust rearing conditions 
on an individual basis. Some ants are known to sort brood 
according to developmental stage or size (Le Masne 1953; 
Sendova-Franks et al. 2004), which can help increase effi-
ciency of brood care (Franks and Sendova-Franks 1992) and 
prevent within-brood cannibalism (Rüger et al. 2007). From 
an inclusive fitness-centered point of view, discriminating 
developing individuals according to traits like maternity, 
sex, and caste can play a key role in within-colony conflicts 
over reproductive dominance, sex allocation and caste allo-
cation (Schultner et al. 2017).

Feeding interactions

A colony’s feeding interactions are centered around larvae, 
which are both the major consumers of worker provisions 
and providers of the fundamental service of protein process-
ing to the colony (Hölldobler and Wilson 1990). Access to 
information about brood traits such as developmental stage, 
size, sex, maternity, caste and hunger level can help workers 
optimize their feeding behavior, for example in cases, where 
brood of different ages, sexes, or castes have different nutri-
tional requirements (Brian 1981; Boomsma and Isaaks 1985; 
Cassill and Tschinkel 1996; Smith et al. 2008b; Smith and 
Suarez 2010). Recognizing hungry larvae can help work-
ers optimally allocate food (Brian and Abbott 1977; Cassill 
and Tschinkel 1999; Lopes et al. 2005) and both behavio-
ral and chemical cues have been implicated in larval beg-
ging (Le Masne 1953; Vowles 1955; Cassill and Tschinkel 
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1995; Creemers et al. 2003; Kaptein et al. 2005; Pegnier 
et al. 2019). Importantly, since it is commonly assumed that 
queen-worker caste differentiation is modulated by differ-
ences in individual nutritional provisioning, workers should 
be able to adjust their feeding behavior according to larval 
caste to produce the polymodal size distribution of female 
castes observed in many species (Trible and Kronauer 2017).

Information about brood traits may also be useful in the 
context of brood cannibalism, i.e., when adult colony mem-
bers consume brood, feed brood to larvae during periods of 
resource shortage (Crespi 1992), or when larvae selfishly 
consume other brood (Baroni Urbani 1991; Rüger et al. 
2007; Schultner et al. 2013, 2014). According to inclusive 
fitness theory, least related brood should be consumed first, 
along with early brood stages that have not yet consumed 
large amounts of colony resources (Elgar and Crespi 1992). 
Prerequisites for such discriminatory behavior are the ability 
to assess the relatedness or developmental stage of brood. 
This appears to be the case in Formica wood ants, in which 
larvae preferentially cannibalize unrelated eggs (Schultner 
et al. 2013, 2014). Furthermore, it may be important to dis-
criminate between viable and unviable eggs, particularly in 
species that produce trophic eggs that are meant to be con-
sumed (e.g., Dietemann and Peeters 2000). This is the case 
in Myrmecia gulosa, where workers destroy unviable but not 
viable worker-laid eggs (Dietemann et al. 2005). In the ant 
Lasius niger, larvae discriminate between viable and trophic 
eggs and consume the latter preferentially (Baroni Urbani 
1991). In contrast, Leptothorax acervorum queens do not 
discriminate between viable and trophic eggs and consume 
both at similar rates (Bourke 1991).

Maternity and kinship

In many species, workers are able to lay unfertilized, male-
destined eggs (Hölldobler and Wilson 1990; Bourke and 
Franks 1995a). Worker reproduction decreases colony pro-
ductivity and efficiency (e.g., Hartmann et al. 2003). As a 
result, reproducing workers are often punished by nestmate 
queens or workers, either via direct aggression or destruction 
of worker-laid eggs (policing: Ratnieks 1988). This is most 
likely mediated by queen-borne fertility signals on the egg 
surface (Holman et al. 2010), which appear to be conserved 
across social Hymenoptera (Van Oystaeyen et al. 2014). 
Indeed, discrimination between queen and worker-laid eggs 
has been demonstrated in a number of species and is often 
linked to differences in the odor profiles of eggs (Table 1). 
In the carpenter ant Camponotus floridanus, chemical cues 
can even distinguish eggs laid by highly fertile queens from 
those laid by queens of low fertility (Endler et al. 2006).
Whether workers act on the information provided by egg 
odor profiles can depend on the presence of the queen 

(d’Ettorre et al. 2004; Helanterä and Sundström 2007) and 
colony origin (van Zweden et al. 2009b).

In colonies with more than one reproductive individual 
(i.e., multiple queen colonies, colonies with totipotent work-
ers), brood cues can help signal reproductive dominance. 
For example, in queenless Dinoponera and Diacamma ants, 
societies consist of morphologically similar, totipotent indi-
viduals that can produce both male and female eggs. Here, 
reproductive dominance is established via behavioral inter-
actions, and eggs laid by subordinate individuals are prefer-
entially destroyed; this behavior is most likely mediated by 
differences in the proportions of certain hydrocarbons on the 
egg surface (Monnin and Peeters 1997; Shimoji et al. 2012).

Finally, in colonies that contain more than one reproduc-
ing queen, workers can increase their inclusive fitness by 
selectively directing their altruistic actions towards their 
closest relatives (so-called nepotism). Overall, nepotism in 
social insects is rare (Boomsma and d’Ettorre 2013), but 
Hannonen and Sundström (2003) found that Formica fusca 
workers were able to assess the kinship of eggs in their care 
and act on this information by favouring eggs of a more 
closely related queen. Holzer et al. (2006) attempted to con-
firm these results by presenting Formica exsecta workers 
with a choice between sisters and unrelated eggs but failed 
to find signs of nepotism. Instead, they concluded that the 
distinctive pattern of brood composition was caused by dif-
ferential egg viability, casting doubt on the earlier study. 
Nevertheless, a study on egg signature mixtures in Formica 
ants showed that egg chemical profiles are highly variable 
and potentially provide sufficient information for discrimi-
nation between matrilines within nests (Helanterä and 
d’Ettorre 2014). Whether or not this information is used 
likely depends on species-specific biology: in contrast to 
F. exsecta, F. fusca is a common host to ant social parasites 
and displays excellent discrimination abilities (Helanterä and 
Sundström 2007; Helanterä and Ratnieks 2009a; Chernenko 
et al. 2011, 2013; Helanterä et al. 2011; Martin et al. 2011; 
Pulliainen et al. 2019). Contrasting patterns of brood dis-
crimination in different species may thus be linked to dif-
ferential selection pressures.

Sex allocation

Ants, like all Hymenoptera, are haplodiploid, meaning 
that unfertilized, haploid eggs give rise to males, whereas 
fertilized, diploid eggs give rise to females. This mode 
of sex determination results in relatedness asymmetries 
between a singly mated mother queen and her male and 
female offspring: while the queen is equally related to 
offspring of both sexes (relatedness coefficient r = 0.5), 
female offspring are, on average, more closely related 
to each other (r = 0.75) than they are to their broth-
ers (r = 0.25). Relatedness asymmetries resulting from 
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haplodiploidy can cause conflict to arise between queens 
and workers over the sex of brood. In colonies with a 
single, singly inseminated queen, workers prefer invest-
ing more in female production (specifically production 
of new queens, so-called gynes), while the queen prefers 
equal investment in both sexes (Trivers and Hare 1976). 
Whether an egg is fertilized is thought to be under the 
direct control of the queen herself (Ratnieks and Keller 
1998), allowing her to modulate the primary sex ratio of 
brood (Passera et al. 2001; Rosset and Chapuisat 2006). 
However, workers can attempt to bias secondary sex 
ratios, i.e., investment towards gynes, by destroying male 
brood or biasing caste fate of diploid brood (Helanterä 
and Ratnieks 2009b). In species where workers have 
retained the ability to produce haploid eggs, they may 
also attempt to replace the queen’s sons with their own 
(Wenseleers and Ratnieks 2006).

For adults to be able to selectively destroy male brood 
or preferentially rear gynes, they must be able to discrimi-
nate between male and female brood (Nonacs and Carlin 
1990). A number of studies have approached this question 
by comparing the primary and secondary sex ratios pro-
duced by natural colonies and inferring selective removal 
of males (Brian 1981; Nonacs and Carlin 1990; Edwards 
1991; Passera et al. 1995; Aron et al. 1995; Jemielity and 
Keller 2003; Rosset and Chapuisat 2006; Warner et al. 
2016). However, although it is clear that workers can dis-
criminate between sexes, and that this behavior depends 
on factors such as brood developmental stage, queen 
presence and queen number (Table 1), next to nothing is 
known about the cues involved. Sex-specific recognition 
cues are probably not directly linked to the ploidy state 
of eggs, since queen-laid male eggs would otherwise be 
destroyed in the process. In line with this, F. selysi work-
ers are able to discriminate haploid worker-laid eggs from 
haploid queen-laid eggs, probably with the help of queen-
derived odors on the egg surface (Meunier et al. 2010). As 
the sex allocation preferences of queens and workers vary 
with colony kin structure (Bourke and Franks 1995b), this 
should also influence whether brood are under selection 
to mask or signal sex (Nonacs and Carlin 1990; Schult-
ner et al. 2017). In the past, comparisons of sex-specific 
brood traits, and in particular brood odor profiles, were 
hindered by the lack of appropriate methods with which 
researchers themselves could differentiate between the 
sexes. Fortunately, a recent study describing differences 
in male and female genital disc morphology in larvae has 
taken a first step towards overcoming this hurdle (Pen-
ick et al. 2014). In the future, systematic studies of sex-
specific brood traits across different kin structures will 
help us understand the causes and constraints of brood 
discrimination according to sex.

Caste allocation

Adult queens and workers differ in their relatedness to 
developing females because of haplodiploidy; this relat-
edness asymmetry can cause them to exhibit differing 
fitness interests regarding allocation of resources toward 
new queens (Beekman and Ratnieks 2003; Ratnieks et al. 
2006). In addition, female larvae are predicted to be 
under selection to increase their chances of developing 
into a queen rather than a worker, since a female is more 
closely related to her own offspring than to offspring of 
other developing individuals (Bourke and Ratnieks 1999; 
Dobata 2012). In ants, caste determination factors are 
manifold and range from intrinsic traits such as genotype 
(Helms Cahan and Keller 2003) to social environmen-
tal factors such as worker behavior (Penick and Liebig 
2012). In species with genetic caste determination, caste 
differences should manifest early on in development and 
information on caste should, in principle, be available to 
rearing workers throughout the course of development. 
In species with environmental caste determination, dif-
ferences are predicted to manifest sometime during larval 
development or during pupation. As queens are larger than 
workers in most species, the trait most commonly associ-
ated with queen caste during development is body size 
(Trible and Kronauer 2017). Accordingly, in the fire ant 
Solenopsis invicta larval body size correlates with the rate, 
but not duration, of trophallaxis between workers and lar-
vae (Cassill and Tschinkel 1995, 1999). In contrast, larval 
size had no effect on worker brood care behavior in the ant 
Myrmica rubra (Brian 1975b). Because of limited knowl-
edge on the timing of caste determination across the ant 
phylogeny, only a handful of studies have attempted to find 
morphological, physiological or chemical traits associated 
with female caste. Nevertheless, there is sufficient evi-
dence showing that workers adjust their behavior accord-
ing to the caste of female brood (Table 1). Brian (1975a) 
for example found that queen-potential Myrmica larvae 
secrete oily droplets, and that workers preferentially fed 
secreting larvae; as a result, secreting larvae more often 
developed into queens. In the presence of an adult queen; 
however, queen-potential larvae were repeatedly attacked 
and bitten, causing them to develop into workers (Brian 
1970, 1973b). A similar phenomenon was observed in the 
ant Harpegnathos saltator, in which queen and worker-
destined larvae differ in their hydrocarbon profiles and 
workers preferentially bite queen-destined larvae in the 
presence of an adult queen (Penick and Liebig 2017). In 
queen-right Linepithema humile colonies, queen-destined 
larvae are also killed selectively, while queen-destined 
pupae, worker brood and male brood are spared (Pas-
sera et al. 1995). Worker behavior towards worker- and 
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queen-destined larvae also differs in Aphaenogaster graci-
lis, even though the hydrocarbon profiles of the two castes 
are highly similar (Villalta et al. 2016). Thus, while there 
is little doubt that workers can differentiate brood accord-
ing to caste, and that this ability is not phylogenetically 
constrained, more studies are needed to draw conclusions 
about the cues involved.

Interactions with conspecifics

In the context of conspecific interactions, accepting non-
nestmate worker brood can be beneficial, since workers can 
successfully integrate into an adoptive colony, without the 
resources needed to rear them. In fact, in some species con-
specific brood theft is a common strategy to increase growth 
and ensure survival of incipient colonies (Pollock and Riss-
ing 1989; Paul et al. 2016). In contrast, non-nestmate sexual 
brood should not be accepted indiscriminately, since male- 
and queen-destined individuals may use colony resources 
without contributing to colony fitness. Concordantly, in 
the ant Formica exsecta, workers retrieve both nestmate 
and non-nestmate worker pupae at similar rates but prefer 
nestmate sexual pupae to non-nestmates (Pulliainen et al. 
2018). These results highlight why discrimination against 
non-nestmate brood can be beneficial in some contexts but 
not in others and may help explain the broad range of results 
reported by studies on conspecific brood discrimination. 
For example, workers of the ant Formica fusca discriminate 
between nestmate and non-nestmate eggs only when an adult 
queen is present in the colony (Helanterä and Sundström 
2007) and when they have been exposed to nestmate eggs 
during the first few days of adult life (Helanterä et al. 2007; 
Helanterä and Ratnieks 2009a). Removal of the queen and 
exposure to alien eggs during the sensitive period strongly 
reduce discrimination between nestmate and non-nestmate 
brood. In contrast, workers of the closely related species 
Formica gnava do not seem to discriminate between nest-
mate and non-nestmate pupae, even when the queen is pre-
sent (Goodloe and Topoff 1987). Such differential responses 
may be explained by development stage-specific responses 
or species-specific ecologies. One explanation for precise 
discrimination between nestmate and non-nestmate eggs 
in F. fusca is the potential threat of intraspecific parasit-
ism, which occurs when a founding queen takes over an 
established conspecific colony and hijacks its workforce. 
Low relatedness among F. fusca nestmate queens (Han-
nonen et al. 2004; Bargum et al. 2007) and the fact that 
even larvae seem to discriminate between nestmate and non-
nestmate eggs (Pulliainen et al. 2019) support the idea that 
intraspecific parasitism shapes discrimination abilities in this 
species. Together, these results underline that phylogeny, 
ecology and within-colony social context are major factors 
mediating conspecific brood discrimination.

Interactions with heterospecifics

Ants are known to accept and rear heterospecific brood 
(Table 3). At the same time, the preference for familiar 
brood, especially when given a choice between con- and 
heterospecifics, is generally high, and pupa-carrying assays 
have been used as a taxonomic tool (Rosengren and Cherix 
1981; Rosengren et al. 1994; Maeder et al. 2005). In addi-
tion, patterns of discrimination against heterospecific brood 
mirror phylogeny to a certain extent, so that more closely 
related species are more likely to rear each other’s brood 
(Carlin 1988). Clearly, ant workers are capable of recogniz-
ing and discriminating against heterospecific brood. How-
ever, if they do so, depends on ecological context and the 
biology of the species.

The ability to discriminate against foreign brood is espe-
cially important in species that are targeted by heterospecific 
ant social parasites. These are numerous in ants and fall into 
three groups: permanent inquilines, slave-makers, and tem-
porary social parasites (Hölldobler and Wilson 1990; Busch-
inger 2009). While permanent inquilines coexist with the 
host species, slave-making ants raid other colonies to cap-
ture and enslave their brood (Hölldobler and Wilson 1990; 
d’Ettorre and Heinze 2001). Queens of temporary social 
parasite species invade host colonies, kill the host queen(s), 
and take advantage of the brood care behavior of host work-
ers to rear their eggs (Buschinger 2009). In all three cases, 
hosts may benefit from the ability to discriminate against 
parasite brood. However, this ability appears to vary among 
potential host species, and discriminatory behavior can be 
influenced by social context, e.g., the presence of conspe-
cific brood. In addition, the identity of the intruder plays 
an important role in determining whether discrimination 
occurs. For instance, some hosts of slave-making species 
do not discriminate against brood of the slave-maker but 
do discriminate against other heterospecific brood (Allo-
way and Hare 1989; Zimmerli and Mori 1993; Mori et al. 
1996). Failure to discriminate against parasite brood may 
be linked to chemical similarity between host and parasite 
brood (Lenoir et al. 2001b; Johnson et al. 2005). Such chem-
ical deception is also employed by non-ant parasites such as 
Maculinae butterfly larvae, whose odors closely resemble 
those of the larvae of its ant host (Akino et al. 1999). How-
ever, not all parasite brood mimics host odors. For example, 
the pupal profiles of the slave-making ant Protomognathus 
americanus and its hosts (Temnothorax longispinosus, T. 
curvispinosus, T. ambiguous) are highly divergent (Achen-
bach et al. 2010), and hosts may use this information to dis-
criminate against slave-maker brood (Achenbach and Foitzik 
2009). Hosts and their parasites are typically locked in an 
evolutionary arms race, with hosts under selection to detect 
and remove parasites, and parasites under selection to avoid 
detection (Davies et al. 1989). The dynamics of such systems 
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may explain differences in brood discrimination behavior 
between species.

The complexity of host–parasite interactions and how 
they influence discrimination is perhaps best exemplified by 
studies of the ant Formica fusca. This species is a common 
host to temporary social parasites, whose queens found their 
colonies in the host nest (Punttila 1996). In populations with 
high parasite pressure, F. fusca exhibits excellent discrimi-
nation abilities, and both adult workers and larvae can dis-
criminate against non-nestmate conspecific and heterospe-
cific eggs (Helanterä and Sundström 2007; Helanterä et al. 
2007, 2014; Helanterä and Ratnieks 2009a; Chernenko et al. 
2011, 2013; Martin et al. 2011; Pulliainen et al. 2019), most 
likely with the help of colony-specific egg odors (Helanterä 
and d’Ettorre 2014). Whether discrimination actually occurs 
depends on factors such as queen presence and exposure of 
young workers to foreign odors (Helanterä and Sundström 
2007; Helanterä et al. 2007; Helanterä and Ratnieks 2009a; 
Chernenko et al. 2013). In contrast, in populations without 
parasites, worker discrimination abilities as well as chemical 
diversity of egg surface cues are strongly reduced (Martin 
et al. 2011). Thus, in this species, discrimination against 
social parasites is mediated by the interaction of colony phe-
notype, worker ontogeny and species community ecology. 
Population-specific patterns of parasite brood discrimination 
have been demonstrated in other species (Achenbach et al. 
2010; Solazzo et al. 2013), indicating that local adaptation 
plays an important role in shaping discrimination behavior.

Brood recognition: the importance 
of context

Recognition and discrimination in ants are highly context-
dependent (Fig. 1). As it stands, it is sometimes difficult 
to disentangle whether the species-specific differences in 
brood discrimination reviewed here are phylogenetically 
determined or rather due to differences in ontogeny, ecol-
ogy, or experimental design. For example, the references 
outlined in Tables 1, 2 and 3 illustrate that phylogeny is not 
a clear-cut determinant of brood recognition and discrimina-
tion abilities, as species belonging to the same genera (e.g., 
Myrmica, Formica) can differ immensely in their behavioral 
responses, even when they occupy similar ecological niches. 
In the final section of our review, we highlight ecological 
and experimental factors that have been shown to influence 
discrimination processes, and which may explain some of 
the contrasting patterns observed in previous studies.

Queen presence and number

The presence of the queen(s) has an important impact on 
key aspects of colony life such as worker reproduction and 

female caste determination. Queen presence can also influ-
ence the brood recognition and discrimination behavior of 
workers (Brian 1973b, c; Vargo and Fletcher 1986; Edwards 
1991; Passera et al. 1995; Klobuchar and Deslippe 2002; 
d’Ettorre et al. 2004; Helanterä and Sundström 2007; Vienne 
et al. 2010; Villalta et al. 2016). Compared to queen-right 
colonies, orphaned Formica fusca colonies for instance dis-
criminate less against conspecific non-nestmate (Helanterä 
and Sundström 2007) and heterospecific eggs (Chernenko 
et al. 2013).

Monogynous (one reproductive queen) and monodomous 
(one nest) colonies may exhibit better nestmate discrimi-
nation abilities compared to polygynous and polydomous 
colonies (Sundström 1997; Martin et al. 2009). In the con-
text of brood discrimination, experiments with the socially 
polymorphic ant F. selysi indicate that this is linked to differ-
ences in brood odor profiles from monogynous and polygy-
nous nests, and not to differential discrimination abilities of 
monogyne and polygyne workers. In this species, workers 
from both monogyne and polygyne colonies were able to dis-
criminate against foreign monogyne eggs, whereas neither 
was were able to discriminate against foreign polygyne eggs 
(Meunier et al. 2010, 2011), suggesting that queen number 
influences signalers more than receivers. Concordantly, the 
hydrocarbon profiles of eggs are specific to social origin, so 
that polygyne eggs, more often than monogyne eggs, lack 
reliable colony-specific cues. Similarly, Formica lugubris 
workers from monogyne but not polygyne colonies show a 
slight preference for nestmate eggs (Maeder et al. 2005), but 
whether this is linked to egg surface chemistry is not known. 
Overall, cue scrambling in polygyne eggs may have evolved 
to prevent workers from discriminating between eggs from 
different matrilines in polygyne colonies (but see Helanterä 
and d’Ettorre 2014). This is in line with evolutionary predic-
tions that kin-informative cues should be selected against 
to avoid colony-level costs associated with kin-preferential 
treatment (Ratnieks 1991; Keller 1997; Ratnieks et al. 2006).

Experimental constraints

There are several constraints that need to be considered when 
interpreting the results of discrimination studies. First, fail-
ure to detect discrimination does not necessarily translate into 
lack of recognition. Thus, even in studies that do not detect 
discrimination, workers may recognize brood of different ori-
gins but refrain from differential treatment (Pulliainen et al. 
2018). Second, discrimination against brood is usually not an 
all-or-none process. Thus, the insight we gain from experi-
ments testing only one type of brood (e.g., only heterospe-
cific brood) are limited, since worker preferences may change 
when they are given a choice, for instance between con- and 
heterospecific brood. For example, Leptothorax nylanderi 
and Tapinoma erraticum workers fail to discriminate against 
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heterospecific brood when no other brood is present but show 
a clear preference for conspecific brood when con- and hetero-
specific brood are presented simultaneously (Plateaux 1960a; 
Meudec 1978). Furthermore, even though alien brood may at 
first be accepted, discrimination can still occur, for instance in 
the form of later neglect or consumption (Jaisson 1975; Jaisson 
and Fresneau 1978; Le Moli and Passetti 1978; Johnson et al. 
2005; Chernenko et al. 2011, 2013). The conditions under 
which brood are obtained for experiments may also affect 
experimental outcomes: in Neoponera inversa, eggs from 
lab and field colonies differ in their cuticular profiles. When 
worker-laid eggs sampled from lab colonies were treated with 
a synthetic queen-derived compound, they elicited aggressive 
treatment by workers. In contrast, worker-laid eggs from field 
colonies treated with the same compound did not elicit worker 
aggression (van Zweden et al. 2009b).

Third, discrimination tests in the past have often used 
frozen rather than fresh brood. This can have a strong effect 
on the way workers treat brood. Atta cephalotes workers for 
instance retrieve living larvae significantly more often than 
dead larvae but do not seem to distinguish between dead 
and living pupae (Robinson and Cherrett 1974). Using dead 
brood may affect worker behavior if discrimination is based 
on acoustic signals (as appears to be the case in Myrmica 
scabrinodis, Casacci et al. 2013), or if workers use behavio-
ral cues to recognize brood. This may be especially relevant 
in the case of discrimination of larvae, since this is the only 
mobile developmental stage. Indeed, even though A. cepha-
lotes workers differentiate between dead and live larvae, they 
do not react to odor extracts from live larvae (Robinson and 
Cherrett 1974), suggesting that larval behavior, not odor, is 
crucial for recognition in this species.

Finally, special care must be taken to avoid confusing 
brood retrieval behavior with other behaviors, in particu-
lar food foraging behavior. This may be especially relevant 
in cases, where colonies have been starved prior to experi-
ments, since brood represents an excellent food source. 
Furthermore, ant foragers can use chemical cues to identify 
suitable food items, and these cues may overlap with brood 
chemical cues (Viana et al. 2001). Specificity of brood cues 
has been a much-discussed challenge in the field (Walsh 
and Tschinkel 1974; Morel and Vander Meer 1988; Vander 
Meer and Morel 1988), and we refer the interested reader 
to Tschinkel (2006), who thoroughly reviewed the data on 
brood recognition cues in fire ants, the best studied ant spe-
cies in this (and many other) respects.

Conclusion

Our review of the literature has shown that, while brood 
discrimination is generally less stringent than discrimi-
nation against adults, it can be important in a number of 

fitness-related contexts. Carlin (1988, page 283) summarized 
four features of brood recognition in ants: “(1) potent gener-
alized brood stimuli, (2) sufficient similarity in brood stimuli 
to facilitate acceptance across kin, colony and species cat-
egories, (3) sufficient variation in brood stimuli to enable 
non-exclusive discrimination of kin, nestmates and species 
and (4) learned recognition of colony- and species-specific 
variants of the stimuli.” To these, we can now add (5) suf-
ficient variation in brood stimuli to enable discrimination 
according to viability, developmental stage, sex, and caste, 
(6) strong context dependency and influence of individual 
phenotype and social environment, and (7) wide diversity in 
brood stimuli, including brood surface chemistry, secretions, 
morphology, and behavior, that can act alone or together. In 
spite of these advances, many open questions remain about 
brood-directed behavior, and more generally, about social 
interactions involving brood in ants. As the role of develop-
ment in driving evolutionary processes receives more atten-
tion, studies focusing on brood–adult interactions are begin-
ning to provide insight into the physiological and genetic 
mechanisms underlying these complex interaction networks 
(Chandra et al. 2018; Walsh et al. 2018b; Warner et al. 2019) 
and their evolutionary basis (Walsh et al. 2018a). Hopefully, 
this review will help inspire future research on the fascinat-
ing life of ant brood.
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