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a b s t r a c t 

The spherical wavelet based on the lifting scheme is introduced for adaptive discrete-ordinate sampling 

of the radiation fields, particularly, in the radiative transfer computation using iterative schemes. The 

lifting scheme for wavelet transform is described from an implementation point of view, including the 

construction of hierarchical geodesic grids on the sphere and wavelet constructions. In addition, we com- 

pare the method with the conventional spherical harmonics, numerically investigating the transformation 

error and efficiency. The transformation matrices are built in the least-squares sense. The results demon- 

strate the feasibility of using spherical wavelets as an adaptive discrete-ordinate sampling method at the 

cost of O ( N ), where N is the number of significant coefficients. 
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. Introduction 

Radiative transfer problems are often solved by introducing a

irectional numerical representation of the radiation fields [1–3] .

here are a few commonly applied strategies for modeling the ra-

iation fields, notably, the Monte Carlo [4,5] , spherical-harmonics

6,7] , and discrete-ordinate methods [8–11] . These methods all

ome with their shortcomings and advantages. The Monte Carlo

ethods are often regarded as the most accurate methods for 3-

 radiative transfer simulations. But they have the drawback of

roducing statistical noise due to the stochastic nature of model-

ng the radiation field. To reduce the noise, one has to increase

he number of samples, which makes the simulation computation-

lly expensive. The spherical-harmonics methods represent the ra-

iance by a weighted sum of spherical harmonics basis functions

p to a truncation order [12,13] . The transfer equation can then

e transformed into equations for the expansion coefficients of the

armonics. Because its solution is obtained in the spectral domain,

t suffers from non-physical oscillations in non-smooth regimes,

otentially giving negative values of the radiances. Perhaps the

ost commonly applied methods for solving the radiative trans-

er equation are the discrete-ordinate methods, thanks to their ef-

ciency. With the discrete-ordinate representation, one can replace

he integro-differential equation with a system of linear equa-

ions describing the discrete-streams approximation [14] . Although
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he discrete-ordinate methods can be implemented efficiently, they

uffer from the so-called ”ray effect” in multi-dimentional cases

15] . The ray effect is a consequence of approximating the contin-

ously varying angular nature of radiation with a specific set of

iscrete directions, and is independent of the spatial discretization.

An example of using two of the aforementioned representations

s the spherical-harmonics discrete-ordinate method (SHDOM), a

idely used deterministic method for 3-D radiative transfer [16–

0] . SHDOM solves 3-D radiative transfer equation based on an

teration scheme, i.e., updating the source term and radiance it-

ratively until all quantities satisfy the transfer equation every-

here. The source term is updated in the spherical-harmonics do-

ain, while the radiance is updated in the discrete-ordinate do-

ain. Therefore, a transformation needs to be made between the

wo representations. 

Without considering the time-dependency and polarization, the

olution phase space in radiative transfer problems for a single

avelength is generally 5-D, i.e., three for the spatial XYZ -domain

nd two being associated with the radiation propagation direction.

daptivity in 3-D spatial grids has been implemented in meth-

ds such as SHDOM, which means that higher spatial resolution

s provided wherever the source term is changing more rapidly.

t improves the accuracy of the solution and the computation re-

ources are distributed in a more reasonable way. On the other

and, the adaptivity on the angular domain has not yet been ex-

loited and one often resorts to the Gaussian quadrature rules on

he zenith angle. The Gaussian quadrature rules provide a fixed

et of discrete-ordinates, in other words, no adaptivity for repre-

enting the varying radiation fields during the iteration process. In
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. The geodesic grids of three different levels. 
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Fig. 2. Local naming scheme for wavelet transform. 
particular, the quadrature rules have difficulties when they are

used to evaluate regions with sharp gradients or discontinuities.

Although the convergence may be achieved without any compli-

cations, the unseen spikes in an otherwise smooth function max
produce different answers as the number, and so, the position of

the quadrature angles is changed. Note that the abrupt changes in

the angular distribution become especially large if the problem in-

volves a small amount of diffuse scattering, because by scattering

the radiation is redirected to new directions. In addition, SHDOM

truncates the spherical harmonics series in accordance with the

number of discrete ordinates, which may introduce oscillations

(known as Gibb’s errors) in the solution near the sharp features

in the angular distribution. Clearly, the root of the difficulty is that

a non-smooth radiance distribution is not well approximated by

smooth functions that are chosen in advance. In principle, such dif-

ficulties may exist in any discrete ordinate methods with a fixed

set of discrete ordinates. 

In this paper, we introduce another discrete-ordinate sampling

technique called spherical wavelets. The spherical wavelets are

commonly used as a tool for data compression on the sphere

[21–23] , particularly in the computer graphics area. They provide

adaptive representations of spherical functions in a discretized set-

ting. The goals of the paper are twofold. First, we introduce the

technique of spherical wavelets, particularly focusing on its im-

plementation for adaptive discrete-ordinate sampling. Secondly, we

numerically investigate the transformation between the spherical-

harmonics and spherical-wavelets representations of the radia-

tion fields, providing an essential basis for application in radiative

transfer simulations. 

2. Introduction to spherical wavelets 

In wavelet analysis, there are a large number of wavelet func-

tions and methods of transform suitable for different applications.

Classically, wavelets on a real line ( R ) or plane ( R 2 ) are constructed

by dilating and translating a mother wavelet. However, extending

this method of construction to the spherical surface( S 2 ) is quite

difficult and not suited for discrete-ordinate sampling [24,25] . The

lifting scheme, proposed by Shröder and Sweldens [21] , is an ef-

ficient way to construct series of wavelets on the sphere. Particu-

larly, it maintains many desirable properties of classical wavelets,

such as localization, vanishing moments, and fast transform. The

main purpose of the section is to explain the lifting scheme for

constructing the spherical wavelet. For the readers who would like

to know more about the implementation details and develop their

own wavelets code for radiative transfer, a Matlab wavelet tool box

developed by G. Peyre is recommended [26] . For more detailed ex-

planation on the principle of the lifting scheme, see Daubechies

et al. [27] . The notation used in paper is partly motivated by Hu

et al. [28] . 

2.1. The construction of hierarchical geodesic grids on the sphere 

The spherical wavelets are constructed on hierarchical geodesic

grids on the sphere. These grids can be obtained by a recursive

subdivision of the zero-level grid, the icosahedron. Fig. 1 shows the

example of three different levels of geodesic grids on the sphere.
he algorithm of subdivision can be described as follows: (1) start-

ng from Level-0, obtain the vertex coordinates and facet informa-

ion, i.e., which three vertices make up a triangle; (2) find the edge

nformation from the facet information; (3) take the midpoints of

he edges as the new vertices for the next level of grids; (4) find

he facet information of the next level of grids. As such, we can

nd the vertex and facet information for arbitrarily high levels of

rids. It turns out that the number of grid points of a particular

evel J is N J = 4 J N 0 − 2(4 J − 1) , where N 0 ( = 12 ) is the number of

ero-level grid points. In the appendix, we provide a detailed de-

cription on how to obtain the hierarchical geodesic grids. 

.2. The global and local naming scheme 

Before we introduce the lifting scheme, it is important to clarify

he notations with respect to the grid points. Since each grid point

n the sphere is associated with a particular direction, we can use

 set of unit vectors to denote the grid points, i.e., 

 

j = { ̂ k j 
i 
} , i = 1 , 2 , . . . , N j . (1)

By subdivision (see the Appendix), we obtain the new grid

oints by taking the midpoints of the edges in level j . These new

rid points, together with the grid points of level j , make up the

et of grid points of level ( j + 1) . We denote the new grid points

btained in level j by, 

 

j = { ̂  m 

j 
i 
} , i = 1 , 2 , . . . , M j . (2)

For obvious reasons, we have 

 

j+1 = K 

j ∪ M 

j . (3)

The notations described above constitute the global naming

cheme for the grid points on the sphere. Because a wavelet func-

ion is localized, it is also helpful to introduce the local naming

cheme associated with the local grid points for wavelet transform.

Fig. 2 illustrates a local naming scheme of the grid points,

hich will be used to describe the wavelet transform. The figure
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Fig. 3. The lifting scheme for forward wavelet transform. 
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isplays a particular point ˆ m 

j in the middle, and some of its neigh-

orhood { ̂ k 
j 
i 
} , i = 1 , 2 , . . . , 8 . The dashed lines connect the mid-

oints of the vertices of level- j . We denote the set of local neigh-

orhood of point ˆ m 

j by, 

 ( ̂  m 

j ) = { ̂ k j 
i 
} , i = 1 , 2 , . . . , 8 . (4)

For obvious reasons, we have 

 ( ̂  m 

j ) ⊂ K 

j , ˆ m 

j ∈ M 

j . (5)

.3. The lifting scheme 

A recursive partition of the sphere provides different levels of

rid points, on which a function can be evaluated. Intuitively, the

valuation of a function using different levels of grid points can

e seen as the multi-scale representation of the function, or sig-

al. The basic idea of wavelet transform is to exploit the correla-

ion structure within the signal with multi-scale representations.

he correlation structure is often local, both spatially and spec-

rally. The lifting scheme is an effective method for constructing

avelets on the sphere, relying on pure spatial manipulation. To

ome extent, it is more intuitive than classical wavelet analysis, as

here is no Fourier transform involved. 

Let us begin with introducing the forward transform, as the in-

erse transform is exactly the reverse process. The forward wavelet

ransform starts from the finest level of grid, J , to the coarsest level

f grid, J 0 , whereas the inverse transform goes backward. There are

hree basic steps in the lifting scheme, namely the split, predict

nd update. Let a spherical function be evaluated on the grid of

evel ( j + 1) , denoted as C(K 

j+1 ) . Using the relation of Eq. (3) , we

an represent the function as the union of two functions, namely,

(K 

j+1 ) = C(K 

j ) ∪ C(M 

j ) . (6)

This is the split process. The split step has done nothing to

unction F , simply identifying the samples on K 

j and M 

j . It is ex-

ected that C ( K 

j ) and C ( M 

j ) will have some correlations because M 

j 

s generated by selecting the midpoints of edges of K 

j . To quantify

he correlations, we try to predict C ( M 

j ) from C ( K 

j ), i.e., 

 (M 

j ) = C(M 

j ) − P (C(K 

j )) . (7)

This is the predict process. P is called a predictor, and D ( M 

j )

re the differences between C ( M 

j ) and its prediction from C ( K 

j ).

he predictor is local, making use of the neighbours of each point

n M 

j . If the prediction is good, then D ( M 

j ) is sparse. D ( M 

j ) are

hen called the wavelet coefficients corresponding to grid points in

 

j , and C ( K 

j ) are the scaling function coefficients corresponding to

rid points in K 

j . Upon prediction, the wavelet coefficients are ob-

ained by taking advantage of local correlations in space domain.

et, other properties of the wavelet functions, such as localised

n frequency domain (vanishing moments, smoothness), have not

een taken into account. To ensure that the wavelets have some
anishing moments, we can adjust the scaling function coefficients

n accordance with the wavelet coefficients, i.e., 

(K 

j ) = C(K 

j ) + U (D (M 

j )) . (8)

This is the update process. U is the update operator. The update

perator is also local, making use of two endpoints on the parent

dge of every point in M 

j . The lifting steps result in an approxima-

ion of C(K 

j+1 ) using C ( K 

j ), together with its details represented

s D ( M 

j ). Fig. 3 shows the float chart of the three basic steps for

orward wavelet transform. 

To be more specific, particularly on the predict and update

teps, we make use of the point-wise notation. 

1. Split. 
• ∀ 

ˆ k 
j 
i 

∈ K 

j : c( ̂ k 
j 
i 
) ← c( ̂ k 

j+1 
i 

) . 

2. Predict. 
• ∀ ˆ m 

j 

l 
∈ M 

j : d( ̂  m 

j 

l 
) = c( ̂ k 

j+1 

l 
) − ∑ 

ˆ k 
j 
i 
∈ B ( ̂ m 

j 
l 
) 

p 
j 

i,l 
c( ̂ k 

j 
i 
) , i =

1 , 2 , . . . , 8 . 

3. Update 
• ∀ ˆ m 

j 

l 
∈ M 

j : c( ̂ k 
j 

l1 
) = c( ̂ k 

j 

l1 
) + u 

j 

l, 1 
d( ̂  m 

j 

l 
) ; c( ̂ k 

j 

l2 
) = c( ̂ k 

j 

l2 
) +

u 
j 

l, 2 
d( ̂  m 

j 

l 
) . 

The first step indicates a subsampling of c( ̂ k 
j+1 
i 

) . In the second

tep, we make use of the local naming scheme to explain what

p 
j 

i,l 
is referred to. Because ˆ k 

j 
i 

∈ B ( ̂  m 

j 

l 
) , we are using the neigh-

ors of ˆ m 

j 

l 
, as illustrated in Fig. 2 , to predict the value at ˆ m 

j 

l 
, and

p 
j 

i,l 
, i = 1 , 2 , . . . , 8 are the coefficients assigned for those neighbor-

ng points. We select the butterfly predictor, i.e., p 
j 

1 ,l 
= p 

j 

2 ,l 
= 

1 
2 ,

p 
j 

3 ,l 
= p 

j 

4 ,l 
= 

1 
8 , p 

j 

5 ,l 
= p 

j 

6 ,l 
= p 

j 

7 ,l 
= p 

j 

8 ,l 
= − 1 

16 . In the third step, ˆ k 
j 

l1 

nd 

ˆ k 
j 

l1 
are two endpoints of the parent edge of ˆ m 

j 

l 
. The coeffi-

ients u 
j 

l, 1 
and u 

j 

l, 2 
are chosen such that the wavelet has a vanish-

ng integral on the sphere: 
 

�
ψ 

j 

l 
(�) d� = 0 , (9) 

here ψ 

j 

l 
is the wavelet function at ˆ m 

j 

l 
. We construct the wavelet

unction using the scaling functions as follows: 

 

j 

l 
= φ j+1 

l 
− u 

j 

l, 1 
φ j 

l1 
− u 

j 

l, 2 
φ j 

l2 
, (10)

here φ j+1 

l 
is the scaling function at ˆ k 

j+1 

l 
, and φ j 

l1 
, φ j 

l2 
corre-

ponds to the scaling functions at ˆ k 
j 

l1 
and 

ˆ k 
j 

l1 
, respectively. A van-

shing integral of wavelet means u 
j 

l,i 
= I 

j+1 

l 
/ 2 I 

j 

li 
, i = 1 , 2 , where I 

j+1 

l 

enotes the integral of the scaling function φ j+1 

l 
, and I 

j 

li 
denotes

he integral of the scaling function φ j 

li 
, for i = 1 , 2 . 

Split, predict, and update are the three basic steps for forward

avelet transform. The inverse wavelet transform simply reverses

hese three steps: 

1. Reverse Update 
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• ∀ ˆ m 

j 

l 
∈ M 

j : c( ̂ k 
j 

l1 
) = c( ̂ k 

j 

l1 
) − u 

j 

l, 1 
d( ̂  m 

j 

l 
) ; c( ̂ k 

j 

l2 
) = c( ̂ k 

j 

l2 
) −

u 
j 

l, 2 
d( ̂  m 

j 

l 
) . 

2. Reverse Predict. 
• ∀ ˆ m 

j 

l 
∈ M 

j : c( ̂ k 
j+1 

l 
) = d( ̂  m 

j 

l 
) + 

∑ 

ˆ k 
j 
i 
∈ B ( ̂ m 

j 
l 
) 

p 
j 

i,l 
c( ̂ k 

j 
i 
) , i =

1 , 2 , . . . , 8 . 

3. Reverse Split. 
• ∀ 

ˆ k 
j 
i 

∈ K 

j : c( ̂ k 
j+1 
i 

) ← c( ̂ k 
j 
i 
) . 

In describing the lifting scheme, we have chosen a simple scal-

ing function, the interpolating scaling function: 

φ j 

l 
( ̂ k j 

l ′ ) = δl ,l ′ , (11)

meaning that the scaling function is one at the evaluating grid

point, and zero elsewhere. As a result, the lifting scheme manip-

ulates the data, and so the coefficients of the wavelets and scaling

functions by imposing the properties of these functions. In other

words, the lifting scheme does not construct the wavelets directly,

instead, their coefficients are generated directly. This makes the

lifting scheme faster than other wavelet transform, even though

the complexity of the transforms may be equal to O ( N ), where N is

the number of significant coefficients. 

3. Representing the radiation field using spherical wavelets and

spherical harmonics 

The radiative transfer equation reads 

dI( � r , ̂  k ) 

ds 
= −σext ( � r )(I( � r , ̂  k ) − J( � r , ̂  k )) , (12)

where I( � r , ̂  k ) is the radiance measured at � r and propagating along
ˆ k , σext ( � r ) is the extinction coefficient, J( � r , ̂  k ) is the source function,

and s is the distance along a propagation direction 

ˆ k . Neglecting

the emission source, we may write the source function J as a scat-

tering integral, i.e., 

J( � r , ̂  k ) = 

ω( � r ) 

4 π

∫ 
�

P ( � r , ̂  k , ̂  k 
′ 
) I( � r , ̂  k 

′ 
) d�( ̂ k 

′ 
) , (13)

where P ( � r , ̂  k , ̂  k 
′ 
) is the scattering phase function for the media

with scattering albedo ω( � r ) . Assuming that the scattering phase

function only depends on the scattering angle 	, formed by the di-

rections ˆ k and 

ˆ k 
′ 
, according to spherical convolution theorem [29] ,

we have 

 J lm 

( � r ) = ω( � r ) ̂  C l ( � r ) ̂  I lm 

( � r ) , (14)

where ̂ J lm 

( � r ) , ̂ C l ( � r ) , and ̂

 I lm 

( � r ) are the spherical harmonics expan-

sion coefficients with degree l and order m for the source function

J , scattering phase function P , and radiance I , respectively. In the

iteration scheme of SHDOM, the convolution theorem is applied to

compute the source function at different locations using the radi-

ance in the form of spherical harmonics. Next, the source func-

tion can be converted to the discrete-ordinates domain. Using the

source function in the discrete-ordinates domain, one can compute

the radiance along a particular direction 

ˆ k through the following

integration formula, i.e., 

I(s ) = e −
∫ s 

0 σext (s 
′ 
) ds 

′ 
I(0) + 

∫ s 

0 

e −
∫ s 

s 
′ σext (t) dt J(s 

′ 
) σext (s 

′ 
) ds 

′ 
. (15)

The radiance field can then be transformed into the spherical

harmonics domain to obtain the new source functions, and so, it-

eratively obtain the convergence of the radiance field [16] . Thus,

the discrete-ordinates sampling and the transformation between

the two representations play an important role in the iteration pro-

cess. 
.1. Sampling the discrete-ordinates with spherical wavelets 

We use the spherical wavelets as a tool for discrete-ordinate

ampling. The angular dependence of the radiation can be decom-

osed into a series of wavelets at different scales and positions on

he sphere. 

(ϑ, ϕ) = 

∑ 

ˆ k 
J 0 
i 

∈ K J 0 
c( ̂ k J 0 

i 
) φJ 0 

i 
(ϑ, ϕ) + 

J−1 ∑ 

j= J 0 

∑ 

ˆ m 

j 

l 
∈ M 

j 

d( ̂  m 

j 

l 
) ψ 

j 

l 
(ϑ, ϕ) , (16)

here φ
J 0 
i 

(ϑ, ϕ) is the scaling function corresponding to the lo-

ation 

ˆ k 
J 0 
i 

at the coarsest scale, ψ 

j 

l 
(ϑ, ϕ) is the wavelet function

orresponding to ˆ m 

j 

l 
at scale j , c( ̂ k 

J 0 
i 
) is the scaling function coeffi-

ient, and d( ̂  m 

j 

l 
) is the wavelet coefficient. For two spherical func-

ions a ( �) and b ( �), we define their inner product as 

 

a (�) , b(�) 〉 = 

∫ 
�

a (�) b(�) d�. (17)

s such, the coefficients can be represented by the following inner

roducts: 

( ̂ k J 0 
i 
) = 

〈
I(ϑ, ϕ) , ˜ φJ 0 

i 
(ϑ, ϕ) 

〉
, d( ̂  m 

j 

l 
) = 

〈
I(ϑ , ϕ) , ˜ ψ 

j 

l 
(ϑ , ϕ) 

〉
, (18)

here ˜ φ
J 0 
i 

(ϑ, ϕ) and 

˜ ψ 

j 

l 
(ϑ, ϕ) are the corresponding dual scal-

ng function and dual wavelet function. Eq. (16) and Eq. (18) are

he general expressions for the wavelet transform. The forward

avelet transform ( Eq. (18) ) computes the coefficients, and the in-

erse wavelet transform ( Eq. (16) ) reconstructs the signal from the

btained coefficients. The lifting scheme, as explained in Section 2 ,

s an efficient way of performing the wavelet transform on the

phere [30–32] . 

Note that, if the coefficient of a wavelet is very small, it can be

et to zero without introducing much difference to the original sig-

al. In signal processing, such an operation is called thresholding,

hich leads to data compression. Notice that, as coefficients are

efined on particular grid points, they also represent the weights

f these grid points. Therefore, the absolute values of these co-

fficients can be used as a criterion for selecting important grid

oints. This is the reason why we can use the spherical wavelet as

n adaptive discrete sampling tool. 

.2. Spherical harmonics expansion 

The directional dependence of radiance can be also represented

sing spherical harmonics up to a particular degree : 

(ϑ, ϕ) = 

L ∑ 

l=1 

l ∑ 

m = −l ̂

 I lm 

Y lm 

(ϑ, ϕ) . (19)

In this study, we apply the real-valued form of the orthonormal

pherical-harmonics basis functions, i.e., 

 lm 

(ϑ, ϕ) = 

√ 

2 l + 1 

4 π

(l − | m | )! 

(l + | m | )! 
P l| m | ( cos ϑ) N m 

(ϕ) , (20)

here N m 

( ϕ) is 

 m 

(ϕ) = 

{ 

√ 

2 cos (mϕ) , if m > 0 , 

1 , if m = 0 , √ 

2 sin (| m | ϕ) , if m < 0 . 

(21)

The P l | m | ( cos ϑ) functions are the associated Legendre functions:

 (x ) = 

1 

(1 − x 2 ) m/ 2 d l+ m 

(x 2 − 1) l . (22)

2 

l l! dx l+ m 
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Fig. 4. Band-limited radiation fields with different parameters. 

Table 1 

The number of grid points for different levels J . 

J 0 1 2 3 4 5 6 7 8 

N J 12 42 162 642 2562 10,242 40,962 163,842 655,362 
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.3. Band-limited radiation fields 

In order to investigate the representation of the radiation fields,

e shall construct a formula for numerical analysis purposes.

e apply the testing radiation fields in terms of the spherical-

armonics coefficients: 

 

 lm 

= 

{
g 0 . 5 l , if m = 0 , 
1 
2 

g nl x, if m � = 0 , 
(23) 

here x is a Gaussian random variable with zero mean and unit

tandard deviation, n is set to be a number larger than 0.5, so that

he coefficients for m � = 0 decrease faster towards higher degree l .

nd g is the asymmetry factor of the Henyey–Greenstein scattering

hase functions: 

 HG (	) = 

(1 − g 2 ) 

( 1 − 2 g cos (	) + g 2 ) 3 / 2 
= 

∞ ∑ 

l=0 

( 2 l + 1) g l P l ( 	) . (24)

The formula is motivated by the spherical convolution theo-

em for the iterative computation of source function [16,29] . The

haracteristics of this function are determined by three parame-

ers, i.e., the highest degree L , asymmetry factor g , and number

 for the case m � = 0. It mimics the forward peak of the radia-

ion fields and the randomness induced by the scattering media.

ig. 2 displays some examples of fields generated with selected g,

 , and a fixed degree L = 20 . These fields can be seen as the direc-

ional distribution of radiance within a cloud of particles with the

ollimated source illuminating from the bottom. The values of the

unctions are normalised to their corresponding maximum values.

s the number n becomes larger, the smoothness of field increases,

hich also mimics the iterative process towards the convergence

n the simulation. It should be noted that, in contrast to the Gaus-

ian random sphere construction [33] , this function is not every-
Table 2 

The number of spherical-harmonics coefficients for a se

L 0 10 20 30 40 50 

(L + 1) 2 1 121 441 961 1681 2601
here positive-definite (although, it is almost everywhere positive-

efinite). Its construction is mathematically-driven and does not

orrespond to any particular physical field ( Fig. 4 ). 

.4. The transformation between two representations 

In this section, we present a method for evaluating the differ-

nces between the spherical wavelet and spherical harmonics rep-

esentations of the radiation field. With the two transforms, the di-

ectional dependence of radiance is encoded in wavelet coefficients

nd harmonics coefficients, respectively. Since the wavelet coeffi-

ients are defined at particular grid points, the number of wavelet

oefficients is equal to the number of grid points N J (the scaling

unction is also called the unlifted wavelet, see [21] ). Table 1 lists

ome values of N J . 

It can be seen that N J increases quite fast with J . On the other

and, the number of coefficients used in the spherical-harmonics

epresentations increase with L in the form of (L + 1) 2 . For com-

arison, Table 2 lists the number of coefficients for a selection of

egrees. 

Consider the following system of equations, relating the

iscrete-ordinate representation of level- J with the spherical-

armonics representation of degree- L . 

 

 

 

 

 

I( ̂ k 1 ) 

I( ̂ k 2 ) 
. . . 

I( ̂ k N J ) 

⎤ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎣ 

Y 1 ( ̂ k 1 ) Y 2 ( ̂ k 1 ) . . . Y (L +1) 2 ( ̂ k 1 ) 

Y 1 ( ̂ k 2 ) Y 2 ( ̂ k 2 ) . . . Y (L +1) 2 ( ̂ k 2 ) 
. . . 

. . . 
. . . 

. . . 

Y 1 ( ̂ k N J ) Y 2 ( ̂ k N J ) . . . Y (L +1) 2 ( ̂ k N J ) 

⎤ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎣ 

̂ I 1 ̂ I 2 
. . . ̂ I (L +1) 2 

⎤ ⎥ ⎥ ⎦ 

(25) 

ote the indices of the spherical-harmonics basis functions have

een re-ordered. Let X L SH be the column vector of spherical har-
lection of degrees. 

60 70 80 90 100 

 3721 5041 6561 8281 10,201 
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monics coefficients, I 
J 
DO 

be the discrete-ordinate radiance vector

sampled at level-J, and A JL be the transformation matrix. Then

Eq. (25) gives the expression of the discrete-ordinate radiance, 

I J 
DO 

= A JL X 

L 
SH . (26)

The least-squares solution of this equation, i.e., ˜ X 

L 
SH = arg min 

X 

∥∥I J 
DO 

− A JL X 

∥∥, (27)

is ˜ X 

L 
SH = A 

† 
JL 

I J 
DO 

, (28)

where 

A 

† 
JL 

= (A 

T 
JL A JL ) 

−1 A 

T 
JL (29)

is the pseudoinvese computed by Singular Value Decomposition

(SVD) [34] . Note that A JL and A 

† 
JL 

are completely determined by

the chosen grid points, K J , and spherical harmonics degree L. The

spherical wavelets help us find a new set of directions, U 

J , as a

subset of K 

J : 

K 

J ⊃ U 

J = { ̂  u i } , i = 1 , 2 , . . . , N u , (30)

by performing forward wavelet transform starting from level- J . At a

result, one can construct a transformation matrix using U 

J , denoted

as U JL , and so, find the corresponding discrete-ordinate approxima-

tions and least-squares solutions: 

I U DO = U JL X 

L 
SH , (31)

˜ X 

L 
SH = U 

† 
JL 

I U DO . (32)

Eq. (26) together with Eq. (28) are called the non-adaptive

transformations under A JL and A 

† 
JL 

. Eqs. (31) and (32) are called the

adaptive transformations under U JL and U 

† 
JL 

. Obviously, U JL is a sub-

matrix of A JL by reducing some rows. 
Fig. 5. The normalized error term as a function of the highest degree. The upper one is t

g = 0 . 8 , and n = 0 . 5 . 
Note that ˜ X L 
SH 

� = X L 
SH 

. The discrete-ordinate radiance of level- J 
′ 

orresponding to ˜ X L SH is 

 

 

J 
′ 

DO 
= A J ′ L ̃

 X 

L 
SH . (33)

Let #( ̃  I 
J 
′ 

DO 
) denote the number of elements in ̃

 I 
J 
′ 

DO 
. We define the

rror in discrete-ordinate radiance space as, 

 

J 
′ 

DO 
( ̃  X 

L 
SH ) = 

1 

#( ̃  I J 
′ 

DO 
) 

∥∥∥̃  I J 
′ 

DO 
− I J 

′ 
DO 

∥∥∥ = 

1 

#(I J 
′ 

DO 
) 

∥∥A J ′ L ̃
 X 

L 
SH − A J ′ L X 

L 
SH 

∥∥. (34)

ε J 
′ 

DO 
( ̃  X L 

SH 
) evaluates the error with respect to ˜ X L 

SH 
using the grid

f level- J 
′ 
. Using J 

′ 
is because the evaluation of the error with re-

pect to ˜ X L SH is independent of computing ˜ X L SH , and so, one may use

 different level of grid. 

. Numerical results 

Given a spherical harmonics degree L , a natural question is how

o determine the number and locations of the discrete-ordinate

amples. Theoretical investigation of this question is beyond the

cope of this study. Here we focus on investigating this question

ia some numerical experiments using the non-adaptive and adap-

ive transformations. 

.1. Non-adaptive transformations 

The procedure of the numerical experiments is as follows: for

 = 4 , 5 , . . . , 40 , and J = 1 , 2 , . . . , 5 , perform the following steps to

btain the error terms, 

1. Generate the vector X L SH of length (L + 1) 2 . 

2. Construct the transformation matrix A JL , and compute the

discrete-ordinate radiance vector I 
J 
DO 

= A JL X 
L 
SH . 

3. Compute ˜ X L 
SH 

= A 

† 
JL 

I 
J 
DO 

. 
he distribution with g = 0 . 5 and n = 1 . 0 , and the lower one is the distribution with 
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Fig. 6. The normalized error term as a function N u for a selection of L . The upper one is the case of g = 0 . 5 and n = 1 . 0 , and the lower one is case of g = 0 . 8 , and n = 0 . 5 . 
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4. Construct the transformation matrix A 

J 
′ 
L 

at level- J 
′ = 5 and

compute the error term ε J 
′ 

DO 
( ̃  X L SH ) using Eq. (34) . 

Fig. 5 displays the error as a function of L for the selected J . 

It can be seen that because the sampled grid points are non-

daptive, it will inevitably cause two problems: 

1. The number of grid points is too small to obtain high accuracy

(such as J = 1 ); 

2. The number of grid points is too large, and the efficiency of the

computation becomes low (such as J = 5 ). 

.2. Wavelet-based adaptive transformations 

An important difference between the spherical-harmonics and

pherical-wavelets representations is that the former is global and

he latter is local. Due to the property of localisation, the coeffi-

ient of a wavelet also suggests the weight of particular location.

oughly speaking, if a wavelet coefficient is small, the information

ontained at that particular grid point is well represented by its

eighbouring points. Thus, one can remove some of the grid points

ith small coefficients, which leads to what we called the adaptive

epresentation. The principle can be stated using the following ap-

roximation: 

(ϑ, ϕ) = 

∑ 

ˆ k 
J 0 
i 

∈ K J 0 
c( ̂ k J 0 

i 
) φJ 0 

i 
(ϑ, ϕ) + 

J−1 ∑ 

j= J 0 

∑ 

ˆ m 

j 

l 
∈ M 

j 

d( ̂  m 

j 

l 
) ψ 

j 

l 
(ϑ, ϕ) , (35)
Fig. 7. Wavelet-based adaptive grid points for selected degrees
∑ 

ˆ k 
J 0 
i 

∈ K J 0 
c( ̂ k J 0 

i 
) φJ 0 

i 
(ϑ, ϕ) + 

J−1 ∑ 

j= J 0 

∑ 

ˆ m 

j 

l 
∈ M 

j , | d( ̂ m 

j 

l 
) | >t 

d( ̂  m 

j 

l 
) ψ 

j 

l 
(ϑ, ϕ) , (36) 

here t is the ”tolerance” for this approximation. If the approxima-

ion is satisfactory, we may use a smaller amount of grid points to

epresent the original function, which is similar to the truncation

f the higher level grids. 

To examine this, we perform the following numerical experi-

ents: for L = 6 , 9 , 11 , 15 , 20 , and J = 5 , 

1. Generate the vector X L 
SH 

of length (L + 1) 2 . 

2. Construct the transformation matrix A JL , and compute the

discrete-ordinate radiance vector I 
J 
DO 

= A JL X 
L 
SH . 

3. Apply wavelet transform to I 
J 
DO 

, i.e., compute the wavelet co-

efficients, c( ̂ k 
J 0 
i 
) for all ˆ k 

J 0 
i 

∈ K 

J 0 , and d( ̂  m 

j 

l 
) all for ˆ m 

j 

l 
∈ M 

j ,

j = J 0 , 1 , . . . , J − 1 . 

4. Select N u ≈ (L + 1) 2 grid points with the largest wavelet coef-

ficients to from a set of grid points, U 

J = { ̂  u i } , i = 1 , 2 , . . . , N u .

Construct the transformation matrix U JL using U 

J . 

5. Compute the discrete-ordinate radiance using I U 
DO 

= U JL X 
L 
SH 

, and

recover the coefficients by ˜ X L 
SH 

= U 

† 
JL 

I U 
DO 

. 

6. Compute the error term ε J 
′ 

DO 
( ̃  X L SH ) using J 

′ = 5 in Eq. (34) . 

As a result, for each L , we will find approximately (L + 1) 2 

daptive grid points, which is the total number of spherical har-

onics coefficients. Fig. 6 displays the error term as a function

f N u for a selection of L . It can be seen that there is a criti-
. The radiation field parameters are g = 0 . 5 and n = 0 . 5 . 
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cal line x c = (L + 1) 2 of error transition, meaning for a number of

adaptive grid points N u > x c , the error will be reduced dramati-

cally. With wavelet transform, we can capture this critical line by

selecting the appropriate discrete ordinates based on the magni-

tudes of their corresponding coefficients. The reduced transforma-

tion matrices U JL and U 

† 
JL 

turn out to have a much smaller size

than the original transformation matrices A JL and A 

† 
JL 

. This makes

the transformation between the two representations accurate and

efficient. Fig. 7 displays an example of the wavelet-based adaptive

grid points with a size around the critical line of x c = (L + 1) 2 . 

5. Concluding remarks 

Representing the radiation fields is the first step towards the

solutions of radiative transfer problems. We introduce the spherical

wavelets as a numerical tool to represent the radiation fields. We

compare the spherical-wavelets method with the commonly ap-

plied spherical-harmonics method, investigating their transforma-

tion error and efficiency using a parameterised function mimicking

the characteristics of the radiation field. The characteristics of the

method include the following: first, it can provide adaptivity in se-

lecting propagation directions; second, the number of sampled grid

points is around (L + 1) 2 , which is equal to the number of spher-

ical harmonics coefficients; third, the complexity of the wavelet

transform is O ( N ), where N is the number of significant wavelet

coefficients. 

Compared to the current popular methods, the spherical

wavelets provide a unique way of representing spherical functions.

Despite that we apply the spherical wavelets as a discrete sam-

pling tool on the sphere, and its potential is yet to be explored.

The lifting scheme is just one way to construct the wavelets on the

sphere, there are some other ways to perform wavelets transform,

particularly, in a continuous setting. Based on the lifting scheme,

we take advantages of the magnitude of the coefficients for adap-

tive representation, whereas for continuous wavelet transform, one

may also take advantage of the properties of the wavelet functions

for modeling the radiation fields. This may deserve to be studied

in the future. Our goal is to develop solution methods which can

have both the advantages of discrete-ordinate-based and spherical-

harmonics- based methods. With the spherical-harmonics repre-

sentations, we have the analyticity and fast integration; with the

discrete-ordinates representations, one can compute and update

the fields in a flexible and adaptive way, and this is often bene-

ficial for dealing with complex 3-D media. The results demonstrate

the feasibility of using the spherical wavelets to obtain adaptive

radiation propagation directions. In future work, we shall combine

the spherical harmonics and spherical wavelets to solve radiative

transfer problems in realistic 3-D media. 
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ppendix A 

In this appendix, we give a more detailed description on how

o subdivide the grids on the sphere recursively. A nice reference

or subdivision is [35] . The information that describes a particular

evel of grids include: 1. the vertex coordinates on the spherical

urface; 2. A matrix of indices that tell which three vertices make

p a triangle. The subdivision algorithm finds the next level of grid

nformation based on the previous level. Starting from the 0-level

rids, icosahedron, the vertex coordinates and facet indices can be

tored in two matrices, i.e., 

 = 

( 

x 1 , x 2 , . . . , x N v 
y 1 , y 2 , . . . , y N v 
z 1 , z 2 , . . . , z N v 

) 

= 

( 

x 

y 
z 

) 

, (37)

 = 

( 

f 1 ,a , f 2 ,a , . . . , f N f ,a 
f 1 ,b , f 2 ,b , . . . , f N f ,b 
f 1 ,c , f 2 ,c , . . . , f N f ,c 

) 

= 

( 

f a 
f b 
f c . 

) 

. (38)

By finding unique combinations of two vertices in all facets, we

an find the indices of all edges of the 0-level grids, and, store

hem in a 2 by N e matrix, i.e., 

 = 

(
e l, 1 , e l, 2 , . . . , e l,N e 
e r, 1 , e r, 2 , . . . , e r,N e 

)
= 

(
e l 
e r 

)
. (39)

Fig. A.8 illustrates the facet and edge information (index ma-

rix) stored in the matrices of F and E . Because E stores the indices

ssociated with V , there is a mapping relation between E and V .

aking use of the above notations, we can generate two matrices

imilar to V , storing the vertices coordinates associated with l and

 points respectively, i.e., 

 l = 

( 

x 

y 
z 

) 

e l 

;V r = 

( 

x 

y 
z 

) 

e r 

. (40)

The size of V l or V r is 3 by N e , because the length of the index

ector is N e . The coordinates of the new vertices can be computed

y 

 m 

= 

1 

2 

(V l + V r ) . (41)

The vertex coordinates of the next level can be stored in a new

atrix of size 3 by (N v + N e ) , i.e., 

 new 

= (V, V m 

) . (42)

The subdivision algorithm divides one triangle into four, as il-

ustrated in Fig. A.9 . 

The next aim is to construct the matrix F new 

, which stores facet

ndices of the next level grid, i.e, 

 new 

= 

( 

f a , f b , f c , f e 
f e , f f , f g , f f 
f g , f e , f f , f g 

) 

. (43)

Note that the indices of the new vertices f e , f f , f g correspond to

he edges made by 

f a 
f b 

)
, 

(
f b 
f c 

)
, 

(
f a 
f c 

)
. (44)

Because the order of the new vertices is determined by how we

rrange the edges, we may construct a N by N sparse, symmetry

atrix, storing the relation between the index of the edges and

he index of the new vertices, i.e., 

[ e l,k ; e r,k ] = S[ e r,k ; e l,k ] = N + k, k = 1 , 2 , . . . , N e . (45)

By making using of this sparse matrix, we can conveniently ob-

ain f e , f f , f g by the following equations, 

 e = S[ f a ; f ] , (46)
b 

https://doi.org/10.13039/501100002341
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Fig. A1. The facet and edge information stored in matrices F and E . 

Fig. A2. Four small triangles are generated from one by subdivision. 
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 f = S[ f b ; f c ] , (47)

 g = S[ f c ; f a ] . (48)

As such, we complete the task of obtaining the new vertex and

acet information from the previous level of information, i.e., 

(V, F ) → ( V new 

, F new 

) . (49)
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