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Abstract
Purpose Methotrexate polyglutamates (MTXpg) facilitate incorporation of thioguanine nucleotides into DNA (DNA-TG, 
the primary cytotoxic thiopurine metabolite and outcome determinant in MTX/6-mercaptopurine treatment of childhood 
ALL). We hypothesized that mapping erythrocyte levels of MTXpg with 1–6 glutamates and their associations with DNA-
TG formation would facilitate future guidelines for maintenance therapy dosing.
Methods and results Summed MTX with 1–6 glutamates resolved by LCMS [median (interquartile): 5.47 (3.58–7.69) nmol/
mmol hemoglobin] was in agreement with total MTX by radio ligand assay. In 16,389 blood samples from 1426 ALL mainte-
nance therapy patients, MTXpg3 21.0 (15.2–27.4)% was the predominant metabolite, and MTXpg1 (the maternal drug) con-
stituted 38.6 (27.2–50.2)% of MTXpg1–6. All subsets correlated; the strongest associations were between metabolites with 
similar polyglutamate lengths. Correlations of MTXpg1 with MTXpg2 and MTXpg3,4,5,6 were rs = 0.68 and rs = 0.25–0.42, 
respectively. Intercorrelations of MTXpg3,4,5,6 were all rs ≥ 0.51. MTXpg4 accounted for 29.8 (24.7–33.3)% of MTXpg3–6, 
yet explained 96% of the summed MTXpg3–6 variation. MTXpg1–4, MTXpg1–6, MTXpg2–6 and MTXpg3 were all associ-
ated with DNA-TG levels (p < 0.00001), but collinearity precluded identification of the most informative subset.
Conclusions Measuring erythrocyte MTXpg4 simplifies and can replace longer chain MTXpg monitoring. Resolving indi-
vidual MTXpg identifies samples that are unsuitable for dose guidance due to high levels of MTXpg1 remaining in the 
plasma fraction because of recent MTX intake. All tested MTXpg subsets correlated with DNA-TG and may be used for 
ALL maintenance therapy dose adjustments, but the most informative subset remains to be identified.

Keywords Acute lymphoblastic leukemia maintenance therapy · Methotrexate polyglutamates · Thiopurine · Therapeutic 
drug monitoring · Personalized/individualized therapy
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HR  High-risk
IR  Intermediate-risk
LCMS  Liquid chromatography tandem mass 

spectrometry
MP  Mercaptopurine
MT1/2  Early and late maintenance therapy phases
MTX  Methotrexate
MTXpgX  Polyglytamated MTX with X γ-linked 

glutamates
SR  Standard-risk
MTXtot  Total MTX determined by radio ligand assay
RLA  Radio ligand assay
TG  Thioguanine
TGN  Thioguanine nucleotides
WBC  White blood cell count

Introduction

The antifolate methotrexate (MTX) is widely used in child-
hood ALL as high-dose MTX (HD-MTX) and in oral main-
tenance therapy in combination with mercaptopurine (MP) 
[1]. The direct anticancer effect of MTX involves depletion 
of reduced folates, which in turn reduces de novo synthe-
sis of thymidine and purine nucleotides. Further, the effect 
of MP is dependent on the formation and subsequent DNA 
incorporation of thioguanine nucleotides (TGN), and since 
endogenous purine nucleotides compete with TGN in the 
latter step, MTX augments the DNA incorporation and the 
anticancer effect of co-administered thiopurines [2, 3].

The low therapeutic index and high inter-patient variation 
in drug disposition challenge MTX dosing [1, 4]. During 
therapy, blood cell counts are related to thiopurine metabo-
lite levels, and in most contemporary childhood ALL treat-
ment protocols MTX/MP is adjusted according to a fixed 
white blood cell (WBC) count. However, since the patients’ 
natural WBC deviate from this common target by an amount 
unknown to the physicians until therapy cessation, this does 
not correspond to identical degrees of bone marrow sup-
pression [5], and therapeutic drug monitoring (TDM) may 
improve therapy adjustment.

Intracellular enzymatic glutamyl synthetase and -hydro-
lase activities, respectively, add and remove γ-linked glu-
tamic acid residues to MTX and its metabolites. This bal-
ance determines the polyglutamate status of intracellular 
MTX, which ranges from MTXpg1 (the mother pro-drug) 
to MTXpg7 with a total of 7 γ-linked glutamic acid residues. 
Longer chain variants are retained longer within cells and 
have higher affinities to folate metabolism target enzymes 
(e.g. dihydrofolate reductase, DHFR). Thus, the molar anti-
folate activity for longer chain (pg ≥ 3) MTX metabolites is 
higher [6]. Moreover, since MTX half-life in blood plasma is 
4–6 h, TDM has used erythrocyte (Ery-) levels as a surrogate 

marker for MTX treatment intensity as this is an easily 
accessible cell population, where MTXpg can be measured 
weeks after MTX administration [4]. During erythropoiesis, 
accumulation of MTX ceases at the erythroblast stage. Thus, 
MTXpg in mature erythrocytes reflect exposure at the bone 
marrow precursor stage, and MTX accumulation is delayed 
approximately 2 weeks corresponding to their maturation 
and migration into peripheral blood [7]. We have recently 
shown that cytosolic thiopurine and total MTXpg2–6 syner-
gize in DNA-TG formation and that DNA-TG is associated 
with relapse risk independent of on-therapy WBC [8].

In 2015, a liquid chromatography tandem mass spec-
trometry (LCMS) assay for erythrocyte MTX metabolites 
resolved into polyglutamate variants was introduced in our 
laboratory to replace our radio ligand assay (RLA) that does 
not distinguish between polyglutamate chain lengths [9]. In 
the transition period, 3134 samples were measured with 
both methods. Since in this multicenter study, we did only 
have dosing information from our local ward, and since the 
plasma fraction of blood drawn shortly after MTX admin-
istration contains interfering MTXpg1, a major limitation 
with RLA method was to exclude these samples from being 
used in TDM [9]. For the most extreme samples this problem 
persisted even with the technical precautions implemented 
with LCMS analysis as outlined in the section “Erythrocyte 
methotrexate assays”. With the samples analyzed with both 
LCMS and RLA, we developed an algorithm to exclude 
those with interfering plasma MTXpg1. With this we here 
report MTXpg metabolite levels and co-distributions in 
16,389 blood samples from 1426 Nordic/Baltic patients. 
In a patient subpopulation with close MTX and thiopurine 
metabolite monitoring we investigated the effect of selected 
MTXpg subsets on DNA-TG formation to explore the TDM 
potential of MTXpg.

Materials and methods

Therapy and patients

The NOPHO ALL2008 treatment protocol has been 
described [8, 10]. Briefly, maintenance therapy comprises 
oral MP at starting doses dependent on thiopurine methyl-
transferase status (deficient: 10; heterozygous: 50; wild-type 
75 mg/m2/day) and MTX 20 mg/m2/week. Doses are sub-
sequently adjusted to achieve a WBC target of 1.53 109/L. 
The patient risk group allocation [11] dictates onset and 
duration of maintenance therapy, which for standard- and 
intermediate-risk (SR, IR) patients during the first year is 
supplemented with alternate courses at 4-week intervals of 
vincristine/dexamethasone or HD-MTX (5 g/m2/24 h) with 
intrathecal (it) until five HD-MTX have been given (MT1). 
In addition, pegylated E. coli asparaginase is given at 2- or 
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6-week intervals (NOPHO 2008 randomized clinical trial) 
during the first months of MT1 [10]. The subsequent MT2 
until treatment week 130 consists of oral 6MP/MTX, supple-
mented in IR patients only with intrathecal MTX at 8-week 
intervals. In high-risk (HR) patients the multidrug MT1 and 
delayed intensification phases (weeks 36–104) are followed 
by a short MT2 phase (weeks 105–130) with oral 6MP and 
oral/it MTX.

For the method comparison and MTXpg co-distribution 
parts of this study, we retrieved from our database 1432 
Nordic/Baltic NOPHO-2008 ALL patients 045 years of age 
who had MTXpg analyzed with LC–MSMS median (inter-
quartile) 9 (4–16) times, corresponding to a total of 16,795 
samples collected during MT1 or MT2. Among these, 3134 
samples from 462 patients were also analyzed for total MTX 
 (MTXtot) using RLA with median 4 (2–10) determinations. 
In the patient subset with the most intensive metabolite 
monitoring we assessed the association of DNA-TG levels 
with free thiopurine and MTXpg metabolites during MT2. 
Briefly, 338 SR- and IR-patients 1–18 years of age, who did 
not experience an event (relapse, death, second tumor), and 
with at least five metabolite determinations were included 
as described in [5, 8].

Erythrocyte methotrexate assays

Blood samples were to be taken 2 and 14 days after oral and 
HD-MTX, respectively, to avoid contribution from plasma 
MTXpg1 even in the event of delayed elimination; with the 
RLA assay, violation of these guideline was suspected in 
samples with high  MTXtot levels. To alleviate this, washing 
the erythrocytes prior to analysis was implemented as part 
of the LCMS analysis.

For Ery-MTX measurements we used RLA based on 
displacement by sample MTX of radio-labelled MTX bind-
ing to DHFR [9]. This assay does not discriminate between 
MTXpg variants, thus total MTX  (MTXtot) is assayed. 
Moreover, due to the competitive nature of RLA, the stand-
ard curve plateaus, which compromise detection accuracy 
at high levels. Briefly, whole blood was diluted with PBS 
and incubated at 100  °C for 10  min to release cellular 
MTX. After centrifugation the clear supernatant was stored 
at − 20 °C until analysis. Competitive binding of MTX-
metabolites and 3H-MTX to DHFR [partially purified from 
chicken liver by sequential  (NH4)2SO4 precipitations] was 
performed in parallel with standards with known MTXpg1 
concentrations. After precipitation of free 3H-MTX with 
a charcoal/dextran mixture, radioactivity remaining in 
the supernatant was determined with liquid scintillation. 
Increasing unlabeled MTX beyond “complete” 3H-MTX 
displacement from DHFR has no further effect on 3H-MTX 
precipitation leading to the plateau described above. In repli-
cate determinations RSD < 5% was obtained with  MTXtot up 

to ~ 50 nmol/L in working dilutions. Samples exceeding this 
level were designated “MTXhigh” to indicate unknown but 
high  MTXtot concentrations, and suspected contribution by 
extracellular MTXpg1. MTX levels were normalized by the 
sample hemoglobin (Hgb, Abacus hematology analyzer) to 
produce the  MTXtot reporting unit nmol/mmol Hgb. Hence, 
with normal hematocrit values the assay range is approxi-
mately 0.6–45 nmol/mmol. Samples with lower levels were 
registered as 0 nmol/mmol.

With the recently published LCMS method individual 
erythrocyte MTXpg variants are quantified [12]. While 
being as sensitive as the RLA, the detection response with 
this technology does not plateau at high analyte concentra-
tions. We adapted this analysis to run on an Acquity UPLC 
system coupled with a triple quadropole mass spectrom-
etry detector (TQD) (Waters, Milford, MA, USA). Briefly, 
EDTA blood (0.5 ml/sample) was washed with (~ 5 ml) Dul-
becco’s PBS before freezing. Using stable-isotope-labelled 
IS (13C,  D3) MTX-pg1 (Alsachim, Illkirch-Graffenstaden, 
France) and (13C5,15N) MTXpg2–6 (Pepscan, Lelystad, 
The Netherlands) the analyte range was extended to include 
MTXpg6. At the time of analysis 400 µl water was added to 
the erythrocyte pellet, and 550 µl of the lysate was mixed 
with 100 µl internal standard (IS) solution in a separate 
tube before protein precipitation with 75 µl 70% perchloric 
acid. Chromatography was as described [12]. In line with 
the report of van Haandel et al. [13] we observed double 
charged (M + 2) parent ions of longer chain MTXpg and for 
MTXpg4–6 we used these in the multiple reaction monitor-
ing transitions. Thus, transitions for MTXpg1,2,3,4,5 and 6 
were 455.2/308.2, 584.3/308.2, 713.4/308.2, 421.8/175.2, 
486.4/175.2, 550.9/175.2, and for the corresponding IS 
459.2/312.2, 590.2/308.2, 719.4/308.2, 424.8/175.2, 
489.3/175.2, 553.9/175.2, respectively. To enhance elec-
trospray + ionization a post-column 0.3 ml/min methanol 
flow was introduced throughout the elution period using a 
Reagent Manager pump (Waters). The mass spectrometer 
was tuned by infusing MTXpg1–6 and was comparable with 
reported settings [12]. Calibrators were blank matrix with 
known amounts of MTXpg1–6. For all analytes, the RSDs of 
the low and high controls were between 10.0 and 17.0% and 
9.3 and 10.9%, respectively. Hemoglobin concentration in 
the lysate tube was determined at  A541 using the short light 
path of a NanoDrop 1000 spectrophotometer to normalize 
MTXpg levels as described for the RLA method.

DNA‑TG analysis

DNA-TG in 1–2 µg whole blood DNA was measured essen-
tially as described by Jacobsen et al. [14], except that stable 
isotope internal standards (8-13C-7,9-15N2 guanine (G, Cam-
bridge Isotope Laboratories) and 4,5-13C2-7-15N thioguanine 
(TG, Sigma-Aldrich, custom synthesis)) were included 
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during the ethno (ε)-derivatization step with chloroacetal-
dehyde. After solid phase extraction and hydrophilic inter-
action liquid chromatography tandem mass spectrometry, 
the response (peak areas normalized with their respective 
internal standard) ratios, εTG/εG were used to calculate 
levels (unit: fmol TGN/µg DNA) using calibrators with 
known amounts of TG spiked into blank DNA. The RSDs 
of low, medium and high controls were lower than 7.0, 5.4 
and 3.3%, respectively.

Erythrocyte TGN and ‑methylated MP analysis

Erythrocyte levels of free thioguanine nucleotides (Ery-
TGN) and methylated MP metabolites (Ery-MMP) were 
analyzed in EDTA-anticoagulated whole blood essentially 
as described by Shipkova et al. [15]. Briefly, proteins were 
precipitated with perchloric acid and the glycosidic bonds 
were hydrolyzed by incubation of the supernatants at 100 °C. 
Subsequently the released thioguanine bases and a methyl-
ated mercaptopurine derivative were quantified using reverse 
phase ultra-performance liquid chromatography (UPLC) 
with diode array detector. Metabolite levels were normal-
ized to the sample’s hemoglobin content as for the MTX 
RLA analysis to produce the nmol/mmol Hgb reporting unit.

Software and statistics

Unless otherwise specified, the levels of individual MTX 
metabolite were calculated as medians with interquartile 
ranges in parentheses, and their associations were evaluated 
with Spearman’s rank correlation coefficient rs or with Pear-
son’s coefficient of determination r2

p
.

We used “R” (R version 3.4.3: a language and environ-
ment for statistical computing, R Core Team) and multiple 
linear mixed effect model for analysis of change in DNA-TG 
per increase in Ery-TGN, Ery-methylated mercaptopurine 
metabolites, Ery-MTXpg2–6, sex, age, and number of days 
in MT2 as fixed effects and with an individual (random) 
patient intercept. The analyses included 3853 measurements 
during MT2 in 338 patients with five or more simultaneous 
determinations of MTXpg, Ery-TGN, and Ery-methylated 
mercaptopurine metabolites (Ery-MMP) as described [5, 8].

Ethics

The study was approved by the Regional Ethical Commit-
tee of the Region of Copenhagen (H-2-2010-002). Written 
consent was obtained from all participants or their legal 
guardians.

Results

In the 3134 patient samples with Ery-MTX concentrations 
determined with both the RLA and LCMS, three subsets were 
defined: samples with  MTXtot above highest standard in the 
RLA assay [n = 81 (2.58%)] were designated “RLAhigh”. Fur-
ther, by visual inspection (Fig. 1a) of MTXpg1–6 vs  MTXtot 
co-distributions a line was defined that divided the remain-
ing samples into another two subsets: valid sample drawing 
in accordance with our guidelines was expected for 2894 
(92.3%) “RLAval” samples above the division line, but for 
the remaining 159 (5.07%) “RLAinv” samples, contribution 
of plasma MTXpg1 was suspected (as was also the case for 
“RLAhigh” samples). In support of this, the relative contribution 
of MTXpg1 to MTXpg1–6 was higher among  RLAinv and in 
particular in  RLAhigh samples (Fig. 1b). In contrast, the abso-
lute level of MTXpg2–6 was comparable for all three subsets 
(Fig. 1b).

Washing the blood prior to LCMS analysis removes 
approximately 98% of the sample plasma. Accordingly, 
LCMS provides valid results with most  RLAinv samples, 
and even with those (unknown)  RLAhigh samples that are 
only marginally above the highest RLA standard, because 
the contribution from remaining extracellular MTXpg1 
relative to intracellular MTXpg1–6 is small. From the RLA 
subgrouping and MTXpg2–6 vs MTXpg1–6 co-distribu-
tion (Fig. 1b) an algorithm based exclusively on LCMS 
was designed whereby samples with MTXpg1–6 more than 
2.7·MTXpg2–6 + 2.5 were considered invalid  (LCMSinv). 
Overall, 96.6% (3027/3134) of the samples below or on this 
line were scored valid  (LCMSval), and this subset contained 
98.9, 93.7 and 18.5% of the  RLAval,  RLAinv and  RLAhigh 
samples, respectively.

Expanding the dataset with 13,661 ALL patient samples 
analyzed with LCMS only, overall 97.6% (16,389/16,795) 
were scored  LCMSval. These samples were used for investi-
gating the levels and co-distributions of individual MTXpg 
fractions (Fig. 2). Median summed MTXpg1–6 was 5.472 
(3.576–5.932) nmol/mmol Hgb. Despite the omission of the 
 LCMSinv samples, MTXpg1 constituted a median of 38.6% 
of total MTXpg1–6, and median contributions of MTXpg2 
to MTXpg5 were all between 7.3 and 21.0% of MTXpg1–6. 
Details and absolute levels are shown in Fig. 2. MTXpg6 
constituted less than 1% of total MTXpg1–6 as reported 
elsewhere [16].

All MTXpg were pairwise positively correlated with the 
closest correlations between MTXpg species with similar 
polyglutamate chain lengths (closest to the diagonal in 
Fig. 2), especially between longer chain MTXpg species. 
MTXpg4 tightly correlated (rs = 0.98, r2

p
 = 0.965) with total 

MTXpg3–6. Arguably this, to some extent, reflects autocor-
relation of MTXpg4 included in both variables. However, 
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MTXpg4 contributed median 29.8 (24.7–33.3)% to total 
MTXpg3–6 only, and correlations of MTXpg4 with the 
remaining MTXpg3,5,6 were all rs = 0.74–0.92 in the 16,353 
samples with detectable MTXpg3–6 out of total 16,389 
 LCMSval samples (99.8%).

Using our recently published linear mixed model for asso-
ciations of erythrocyte MTX/6MP metabolite levels with 
DNA-TG [5, 8] we compared the effects of MTXpg1–4, 
MTXpg1–6, MTXpg2–6, and MTXpg3 (Table 1). How-
ever, since the effect estimates and p values for these subsets 
in multiple regression models were very similar, the most 
informative MTXpg subset could not be determined.

Discussion and conclusions

Resolving individual MTXpg with LCMS identifies samples 
drawn too close to MTX administration and provides valid 
data for more samples than our RLA. Indeed, the calculated 
92.2%  RLAval vs 96.6%  LCMSval underestimates the qual-
ity difference of the methods in that the distinction between 
 RLAval and  RLAinv for a substantial fraction of the samples 
requires concurrent measurement with LCMS (Fig. 1a). 
Recognizing that the measurements with RLA and LCMS 
were not comparable (due to the washing step in the latter 

method) we did not attempt a formal Bland–Altman type 
assay comparison. Nonetheless, for the  RLAval samples the 
two methods are in good agreement (Fig. 1a). Admittedly, 
the designation into  RLAval and  RLAinv samples subsets is 
subjective and somewhat arbitrary. However, it is corrobo-
rated by the higher contribution to total MTX metabolites of 
MTXpg1 among  RLAinv samples, and the inclusion or non-
inclusion of the small number of  LCMSinv samples (Fig. 1b) 
will not substantially influence the median metabolite levels 
or rs correlation estimates.

The close association between MTXpg4 and MTXpg3–6 
(Fig. 2) in more than 1426 SR-, IR-, or HR-patients over 
time and across sex and age is noteworthy and may at least 
in part be explained by the decreasing folylpoly-gamma-glu-
tamate synthetase activity with substrates with longer poly-
glutamate chains [17]. Regardless of the cause, MTXpg4 
captured more than 96.5% (Pearson’s r2) of the variation 
in estimated total MTXpg3–6 and may therefore replace 
and simplify total longer chain MTXpg monitoring with-
out appreciable information loss. Moreover, omitting (the 
most hydrophilic) MTXpg5–6 allows steeper gradients and 
more organic solvents with shorter run times and better peak 
shape and LCMS sensitivity in the reverse phase separa-
tion, which is operated at the lower extreme with respect to 
organic eluent.
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Fig. 1  Methotrexate metabolite levels by RLA and LCMS. a Co-
distribution of MTXpg1–6 (by LCMS) vs  MTXtot (by RLA) in 3134 
samples from 462 patients analyzed median (interquatile) 4 (2–10) 
times with both RLA and LCMS. For the 92.3%  RLAval samples 
(grey crosses), above the line (y = x − 2) the coefficients in weighed 
(1/[MTXpg1–6]) linear regression were y = 1.07x + 0.16. Invalid 
results due to high contributions of extracellular MTXpg1 was sus-
pected in the 5.07%  RLAinv (black circles) and 2.58%  RLAhigh (red 

triangles) samples. b Co-distribution of MTXpg1–6 vs MTXpg2–6 
(both by LCMS). With the LCMS method more samples were consid-
ered valid (96.6%  LCMSval below the line y = 2.7x + 2.5), and the rel-
ative contribution of MTXpg1 to total MTXpg1–6 in these samples 
was lower as compared to the  RLAhigh and  RLAinv sample subsets. 
The RLA validity of the samples is indicated with the same coding 
as in the a 
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Since our linear mixed models for DNA-TG forma-
tion (Table 1) are not nested within each other, formal 
comparison to identify the most informative MTXpg 
metabolite subset could not be performed. However, all 
models produced the expected positive main effect esti-
mates for all MTX and MP metabolites, and the negative 
EryMMP:MTXpg interaction term can be explained by the 
diminishing effect of either of these purine de novo syn-
thesis inhibitors in the presence of the other. Thus, optimal 
TDM could employ the total MTXpg2–6 pool, which best 
reflects concurrent antifolate activity and exposure yet not 
too sensitive to the short-term fluctuations associated with 
MTX administration. Associations of longer chain MTXpg 
with outcomes in malignant and autoimmune disease have 
been reported [18–20], but its superiority to total MTX 

metabolite monitoring remains to be demonstrated in 
childhood ALL, as does the underlying cause of any such 
effect. Indeed, identification of samples with interfering 
plasma MTXpg1 is the only gain by resolving individual 
MTXpg that is supported by our data. Nonetheless, MTX 
monitoring may supplement maintenance therapy dosing 
by WBC, and although no direct effect of MTX on sur-
vival could be demonstrated [8], MTX monitoring may aid 
correction in patients with suboptimal levels of free and 
DNA-incorporated TGN [1]. Thus, although equipment 
and expertise for MTX monitoring are not available at 
every treating center, the dynamics and analyte stabilities 
of MTX metabolites makes monitoring feasible and pos-
sible worthwhile [8].

Fig. 2  MTX metabolite co-distributions. MTXpg levels (nmol/mmol 
Hgb) in 16,389  LCMSval samples from 1426 patients with median 
(interquartile range IQR) 8 (4–16) determinations. Distributions of 
individual MTXpg metabolites are shown in the panel diagonal. Dot 
plots with MTXpg co-distributions are shown in the lower left panels 

with Spearman’s rs in the corresponding upper right panels. Below 
the panels the median (IQR) contributions of individual subsets to 
MTXpg1–6 and MTXpg2–6 are shown in the upper and lower row, 
respectively
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