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Summary (80/80 words) 16 

We studied the times of day at which cryptochromes and phototropins participate in stomatal 17 

responses to light, by subjecting Arabidopsis mutants in these two photoreceptors to 11-hour 18 

exposure to blue-, red- or green-light. Under blue light, phototropins had relatively greater 19 

importance at the start of the photoperiod, whereas cryptochromes were important for stomatal 20 

opening throughout the photoperiod. This different timing of contributions by two families of 21 

photoreceptors to stomatal opening indicates that the mechanism is more complicated than usually 22 

assumed. 23 

Abstract (196/200 words) 24 

The UV-A/blue photoreceptors phototropins and cryptochromes are both known to contribute to 25 

stomatal opening (∆gs) in blue light. However, their relative contributions to maintenance of gs in 26 

blue light through the whole photoperiod remains unknown. To elucidate this question, 27 

Arabidopsis phot1 phot2 and cry1 cry2 mutants (MTs) and their respective wild types (WTs) were 28 

irradiated with 200 μmol m-2 s-1 of blue-, green- or red-light (BL, GL or RL) throughout a 11-hour 29 

photoperiod. Stomatal conductance (gs) was higher under BL, than under RL or GL. Under RL, gs 30 

was not affected by either of the photoreceptor mutations, but under GL gs was slightly lower in 31 

cry1 cry2 than its WT. Under BL, the presence of phototropins was essential for rapid stomatal 32 

opening at the beginning of the photoperiod, while maximal stomatal opening beyond 3 h of 33 

irradiation required both phototropins and cryptochromes. Time courses of whole-plant net carbon 34 

assimilation rate (Anet) and the effective quantum yield of photosystem II photochemistry (ΦPSII) 35 

were consistent with an Anet-independent contribution of BL on gs both in phot1 phot2 and cry1 36 

cry2 mutants. The changing roles of phototropins and cryptochromes through the day may allow 37 

more flexible coordination between gs and Anet. 38 

Keywords (max 10) 39 

Arabidopsis thaliana; blue light; diurnal pattern; gas exchange; green light; photosynthesis; red 40 

light; stomata;   41 
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Introduction 42 

The major function of leaf stomata is to open for photosynthetic carbon fixation and to close for 43 

the avoidance of dehydration. This function is a compromise, determined by internal as well as 44 

environmental factors and tightly related to the photosynthetic carbon metabolism (Cowan and 45 

Farquhar 1977). Light is the ultimate energy source for plant growth, and one of the most important 46 

environmental cues for stomatal opening. Indoor experiments have verified that different light 47 

qualities stimulate stomatal opening (Sharkey and Raschke 1981; Shimazaki et al. 2007). Blue 48 

light (BL) is the most effective band of the visible spectrum inducing stomatal opening even at 49 

irradiances as low as 1 μmol m-2 s-1 and this BL-specific stomatal opening is considered as 50 

independent on photosynthesis (Anet) (Shimazaki et al. 2007), whereas stomatal opening driven by 51 

red light (RL) is thought to depend on photosynthetic metabolism (e.g. Sharkey and Raschke 1981; 52 

Wang et al. 2011). A well-documented link exists between net carbon assimilation rate in the 53 

mesophyll Anet and stomatal conductance (gs) through depletion of CO2 concentration in the leaf 54 

intercellular air spaces (Ci) by Anet and the opening response of stomata to a decrease in Ci (e.g. 55 

Aphalo and Jarvis 1993; Roelfsema et al. 2002). However, it has also been shown that Ci does not 56 

always fully explain stomatal opening under RL and the involvement of signals different from Ci 57 

has been suggested to also link gs and Anet (reviewed by Lawson et al. 2010; Matthews et al. 2017). 58 

In addition, as stomata in epidermal peels open under RL in the absence of mesophyll, guard cell 59 

Anet may also contribute to stomatal opening (Matthews et al. 2017; Shimazaki et al. 2007). Like 60 

RL, BL also penetrates the epidermis and drives photosynthesis in the mesophyll. Thus, direct 61 

stomatal opening in response to BL perceived through photoreceptors and indirect 62 

photosynthetically driven opening are both involved in BL-induced stomatal opening when 63 

irradiance is not weak (Sharkey and Ogawa 1987). Compared with BL- and RL-induced responses, 64 

stomatal opening induced by green light (GL) has been studied less frequently, and findings have 65 

been inconsistent among studies. GL is generally considered to be less effective in opening stomata 66 

than RL, and much less effective than BL (Sharkey and Raschke 1981; Folta and Maruhnich 2007), 67 

and also able to reverse stomatal opening induced by BL under a background of RL (Frechilla et 68 

al. 2000; Talbott et al. 2002). 69 

Cryptochromes (crys) and phototropins (phots) are both flavoprotein photoreceptors with different 70 

protein structures activated by radiation spanning the ultraviolet-A (UVA) and BL (Banerjee and 71 
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Batschauer 2005; Christie et al. 2015). Both of crys and phots absorb in vitro mainly UV and BL 72 

when dark adapted, while, when light-adapted, crys but not phots strongly absorb GL in addition 73 

to UV and BL (Banerjee et al. 2007; Christie et al. 2015). Crys are known to be involved in the 74 

inhibition of hypocotyl elongation, entrainment of the circadian rhythm, stomatal opening and 75 

shade avoidance (Sellaro et al. 2010; Chen et al. 2012; Sellaro et al. 2012), while phots are 76 

implicated in the control of phototropism, chloroplast movement, leaf expansion and movement 77 

(Briggs and Huala 1999; Christie 2007). Certain roles in photomorphogenic processes have been 78 

attributed to crys and phots based on the comparison of gene expression, molecular pathways and 79 

biochemical functions that they promote (Briggs and Huala 1999; Liscum et al. 2003; Ohgishi et 80 

al. 2004). In the regulation of stomatal responses, phots seem to be dominant in rapid stomatal 81 

response to BL at a low fluence rate (Shimazaki et al. 2007; Chen et al. 2012), while crys regulate 82 

stomatal opening at relatively high irradiances of BL and also could affect gs under background 83 

RL (Talbott et al. 2003; Boccalandro et al. 2012). Phots are reported to ultimately activate the 84 

plasma membrane H+-ATPase that drives K+ uptake leading to increased turgor pressure and 85 

stomatal opening (Inoue et al. 2010). Crys have been shown to interact with CONSTITUTIVE 86 

PHOTOMORPHOGENIC1 (COP1) (Shimazaki et al. 2007) in circadian-rhythm regulation 87 

(Briggs and Huala 1999). Kinoshita et al. (2011) found a possible link between phot-mediated 88 

stomatal responses to BL and the circadian clock through FLOWERING LOCUS T (FT), whereas 89 

Ando et al. (2013) using epidermal peels provide evidence for cry affecting stomatal opening 90 

through FT and the circadian clock. 91 

Tenhunen et al. (1987) studied stomatal function by following daily patterns of gas exchange in 92 

various natural environments, concluding that the coupled relationship between gs and Anet is 93 

important in leaf function over a diurnal period. Various studies have attempted to identify the 94 

underlying mechanism behind these diurnal patterns. Talbott and Zeiger (1996) explored a model 95 

of osmoregulation driving stomatal diurnal movements under white light (WL), since potassium 96 

ions (K+) were found to be the predominant guard-cell osmoticum during the first half of the day 97 

and sugars (sucrose and malate) in the second half of the day. This model was extended by Tallman 98 

(2004) to incorporate regulation of diurnal stomatal movements by dual-source-controlled 99 

fluctuations in ABA metabolism. The dynamics of stomatal regulation in whole plants are poorly 100 

understood and Matthews et al. (2017) recommend that future research takes them into 101 

consideration. While crys and phots are known to induce stomatal opening (Chen et al. 2012), their 102 
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contribution towards the regulation of diurnal patterns of stomatal opening themselves, and 103 

through interaction with other established mechanisms of stomatal control, have not been 104 

elucidated.  Here we aim to answer the following two questions: 105 

a) Are diurnal patterns in gs correlated with diurnal patterns in Anet under blue, green and red 106 

monochromatic light? Lack of correlation would imply that mechanisms independent of 107 

Anet, likely attributable to photoreceptors, make an important contribution to light-induced 108 

gs through the photoperiod. 109 

b) Are the roles of the BL photoreceptors crys and phots in stomatal opening different and do 110 

they vary during the photoperiod? Such differences would imply that these photoreceptors 111 

contribute to determining the shape of diurnal patterns of gs. 112 

To answer these questions, we concurrently measured the diurnal time courses of gs, Anet and Ci in 113 

Arabidopsis thaliana double mutant types (MTs) phot1 phot2 and cry1 cry2 and their wild types 114 

(WTs) under constant irradiance of RL, GL or BL, or in darkness. 115 

Material and Methods 116 

Plant materials and growth conditions 117 

Arabidopsis thaliana double MT phot1-5 phot2-1 and its WT Columbia-5 (alias Col-0 gl1-1, 118 

glabrous derivative of Col-0, shortened to Col-5), and double MT cry1-1 cry2-1 and its WT 119 

Landsberg erecta (Ler) were employed in the experiments. For a given replicate, seeds of all 120 

genotypes were produced at the same time, by plants grown side-by-side. Seeds were sown in 121 

square plastic 70-×-70-mm pots filled with a substrate composed of 50% pre-fertilised-and-limed 122 

peat and 50% vermiculite. The sown pots were kept at 4 °C in darkness for two days and three 123 

nights, and then moved to a controlled-environment walk-in growth room.  124 

After one week’s growth, each single plant was transplanted into a pot (60 mm in diameter and 47 125 

mm in height) into the same substrate as used for germination and continued to grow in a walk-in 126 

growth room for three weeks. Gas exchange measurements were made on these single seedlings. 127 

Given that only one plant could be measured per day, a cohort of plants was grown each week to 128 

produce a continuous supply of equivalent plants. For chlorophyll fluorescence measurements, 129 

seedlings were transplanted into trays of 3-×-2 cells. Each cell was 45-×-55 mm across and 60 mm 130 
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deep. A balanced design was used to arrange the genotypes in the trays, with different genotypes 131 

spatially interspersed and their positions randomised. 132 

In the growth room, fluorescent tubes (L 58W/865 LUMILUX, OSRAM, Germany) supplied a 133 

constant photon irradiance of 205 ± 15 μmol m-2 s-1 PAR (mean ± s.e., see Fig. SI1 for spectra), 134 

with a 12 h photoperiod from 7.00 a.m. (ZT = 00:00, expressed in hours and minutes) to 7.00 p.m. 135 

Air relative humidity and air temperature, next to the growing plants, were recorded by three 136 

DS1923 Hygrochron temperature/humidity data loggers (iButtons, Maxim Integrated, San Jose, 137 

CA, U.S.A). Relative humidity (RH) was 67 ± 0.4% / 74 ± 0.5% (mean ± SE) day / night and 138 

temperature (T) was 22 ± 0.03 °C / 20 ± 0.05 °C (mean ± SE) day / night. 139 

Gas exchange measurements 140 

Light treatments 141 

A custom-built light source based on three-colour LED arrays was used. The light source consisted 142 

of two RGB LED arrays (Red-Green-Blue 90 Die Hex type NHXRGB090S00S, Norlux, Chicago, 143 

USA) assembled on a 120×100×35 (L×W×H) mm passive heat sink. The spectral photon 144 

irradiance for the three channels is given in Fig. SI2A and the actual light-source is shown in Fig. 145 

SI2B. The gap between the top of the chamber and the light source 30-mm above was sealed with 146 

high-density black foam to block room-light from entering the chamber. The foam was covered 147 

on the inside by a high-reflectance-plastic white-reflection standard card (Zebra check card, 148 

Novoflex, Memmingen, Germany) to improve light-field evenness. The light source was powered 149 

by three programmable power supplies (GW INSTEK PSP-2010, New Taipei City, Taiwan China) 150 

in constant current mode. The current setting was adjusted to achieve an irradiance of 200 μmol m-151 

2 s-1 measured with the built-in sensor of the gas-exchange chamber at the time when each plant 152 

was enclosed; irradiance remaining in all cases within ± 10% of the set value for the whole day. 153 

One power source was used to control each colour channel in both arrays. Each power supply was 154 

switched on at ZT = 00:00 (7 a.m.) and off at ZT = 11:30 (6.30 p.m.) by a program running on a 155 

computer. For the experiments reported here, only one single-colour channel was used at a time. 156 

The cuvette was darkened for the whole day in the darkness treatments by covering its top with 157 

the darkening plate provided as part of the gas-exchange system.  158 
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A portable gas exchange system GFS-3000 with Arabidopsis whole-plant Chamber 3010-A (GFS, 159 

Walz, Effeltrich, Germany) was used to measure transpiration, Anet, Ci and gs. Settings were 750 160 

μmol s-1 air flow rate, level 5 impeller speed, 390 ppm ambient CO2 (Ca), 22 °C cuvette air 161 

temperature and 67% relative humidity. The average leaf temperature was stable before and during 162 

the light treatments at 21.69 °C – 21.86 °C (SI Script). The actual values of Ca accounting for any 163 

deviation from the set value are given in Table SI1. Plants were enclosed in the Arabidopsis cuvette 164 

for 22 to 23 h. Drift in ambient conditions and bias in measurements were avoided by regular 165 

IRGA re-zeroing. The chamber was under excess pressure, adjusted by means of its vent valve at 166 

the bottom of the pot compartment. This coupled with a collar of white polyethylene film covering 167 

the surface of the soil prevented soil respiration and evaporation from interfering with the 168 

measurement of shoot gas exchange. 169 

The order in which treatments and genotypes were measured was fully randomized to avoid bias, 170 

including bias caused by the age differences between plants within the weekly cohorts. So as to 171 

ensure consistency, settings and the measurement protocol were stored as a program and ran 172 

uninterrupted for 22-23 h during each measurement session using the GFS-Win (Walz) program 173 

on a computer (different from the one for the light power supply). Each measurement cycle started 174 

with one IRGA re-zeroing, followed by acquisition of 4 data records and ended with another IRGA 175 

re-zeroing followed by an interval until the start of the next cycle, on a 33-36 min loop (SI Script). 176 

The measuring protocol consisted of enclosing a plant in the cuvette the previous evening at 177 

approximately 6:30 p.m. (ZT = -12:30), immediately after transfer from the growth room to an 178 

adjacent laboratory. The enclosed plant remained in darkness, under the conditions indicated above, 179 

until the next morning, when at 7 a.m. (ZT = 00:00) one of the colour channels of the light source 180 

was switched on (except in the darkness treatment). The data collected per plant at 147 or more 181 

time points between midnight (ZT = -07:00) and 6.30 p.m. (ZT = 11:30) were checked for any 182 

anomalies. 183 

Delta stomatal conductance (∆gs) was calculated as the difference between each gs value measured 184 

during the photoperiod and gs measured in darkness on the same plant at the last time-point before 185 

the start of the photoperiod. This calculated ∆gs allowed for more precise analysis of the 186 

differences between genotypes because it enabled a correction to be made for differences in 187 

baseline values of gs in darkness among individual plants. The Ci was expressed as a fraction of 188 
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Ca. to minimize any effect of slight fluctuations in Ca (Table SI1). Raw gs data are presented in Fig. 189 

SI3, Anet in Fig. SI4 and Ci/Ca in Fig. SI5. 190 

Leaf area calculation 191 

As whole plants were measured, calculation of gas-exchange rates expressed per unit area required 192 

the estimation of the enclosed illuminated leaf area. The projected rosette area was used as a proxy 193 

for the illuminated leaf area. The plant was taken from the growth room before the end of the 194 

photoperiod (ca. 6.30 p.m.) when leaves were horizontal in all genotypes. Next, as mentioned 195 

above, a collar of white polyethylene film was placed below the rosette covering the soil, providing 196 

a contrasting background for the photographs and subsequently photographed on a copy stand 197 

alongside an identical empty pot covered with a black square pattern drawn on a white background 198 

used as a reference (NIKON D100, AF NIKKOR 50MM f/1.8D, Japan). ImageJ (Schneider et al. 199 

2012) was employed to estimate the whole rosette projected area (Wang 2017). The average 200 

projected rosette area of individual plants used for gas exchange measurements was 457 ± 2 mm2 201 

in WT Col-5, 413 ± 2 mm2 in its MT phot1 phot2, 511 ± 3 mm2 in WT Ler, and 518 ± 2 mm2 in 202 

its MT cry1 cry2 (mean ± s.e.).  203 

In a subset of plants of each genotype, the total area of all the leaves was measured in addition to 204 

the rosette area to assess overlap among leaves, given that the leaves were nearly horizontal when 205 

sampled during the photoperiod. All leaves were excised at the base of the petiole, leaf blades held 206 

flat to avoid curling, photographed and quantified in the same way as rosette projected area. The 207 

relationships between rosette projected area and the total leaf area estimates were: 88 ± 6 % in WT 208 

Col-5 and 62 ± 3 % in its MT phot1 phot2, 94 ± 2 % in WT Ler and 90 ± 4 % in its MT cry1 cry2 209 

(mean ± s.e.).  210 

Chlorophyll fluorescence measurements 211 

IMAGING-PAM M-Series (Walz, Effeltrich, Germany) was employed to make chlorophyll 212 

fluorescence measurements. These were performed in a darkened purpose-built cubicle located 213 

within a large well-ventilated hall, with c 500 ppm Ca and c 30 % RH. Four plants of each of the 214 

four genotypes were measured simultaneously in one tray, each tray being a true replicate or block. 215 

The blue LED (450 nm, 230 μmol m-2 s-1) built-into the IMAGING-PAM was kept on from 7.00 216 

a.m. (ZT = 00:00) until 5.00 p.m. (ZT = 10:00). Irradiance was measured at the level of the 217 



 

 9 

seedlings at the centre of the tray. The following protocol was used to obtain a diurnal time course 218 

of the effective quantum yield of photosystem II photochemistry (ΦPSII). Against the background 219 

of continuous actinic light (230 μmol m-2 s-1 above the rosette, measured with a LI-250A light 220 

meter – LI-COR, Lincoln, Nebraska, USA), the low-intensity measuring light was triggered once 221 

every two minutes throughout the experiment to probe steady-state fluorescence under 222 

illumination (Fs). Saturating light pulses (5000 μmol m-2 s-1, duration of 1 s from an LED-Array 223 

Illumination Unit IMAG-MAX/L) were triggered once every 10 min to measure maximal 224 

fluorescence under illumination (Fm'). ΦPSII was calculated as (Fm'-Fs)/Fm' (Genty et al., 1989). 225 

The measuring light was of intensity 2 and frequency 1 set in Walz Imaging Win Software. The 226 

programmed protocol can be checked in SI Script. 227 

Stomatal density and size 228 

Two young fully-expanded leaves were collected from each of 10 plants per genotype grown under 229 

the same conditions as the plants used for gas exchange for the purpose of making comparisons of 230 

stomatal density and size. These two leaves were painted with clear nail varnish, one on the adaxial 231 

side and the other on the abaxial side. When almost dry, the nail-varnish imprints were peeled off 232 

the leaf with the aid of a piece of transparent sticky tape. The tape was cut so as to keep the peeled 233 

imprint and discard the rest. The imprint was transferred to a microscope slide and photographed 234 

under a microscope (LEICA DMLB 2500, Germany). Two fields of view were selected from each 235 

slide. There were no statistically significant differences among genotypes in the density of stomata 236 

(Table SI2: abaxial, p = 0.54; adaxial, p = 0.83) were counted on images taken at 10 × 237 

magnification (the image size was 879 m  659 m), or stomatal sizes (Table SI2: abaxial, p = 238 

0.95, adaxial, p = 0.60) measured in ImageJ on images at 20× magnification (the image size was 239 

442 m  331 m).  240 

Optical properties of leaves 241 

Leaf transmittance and absorptance was measured with a Jaz spectrometer from Ocean Optics 242 

(Dunedin, USA) with four modules, DPU module, PX Pulsed Xenon Light source module and two 243 

UV/VIS spectrometer modules, using a Spectroclip-TR probe consisting of two integrating spheres 244 

facing each other on opposite sides of the leaf. A white/black reflectance target was used to obtain 245 

a reference spectrum (Ocean Optics). The spectral reflectance and transmittance were both 246 
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measured at the same position on each of two leaves per plant, and used to estimate the spectral 247 

absorptance (fraction of radiation absorbed expressed per nanometre was calculated as 1.0 minus 248 

the sum of spectral reflectance and spectral transmittance). For each genotype, five replicates were 249 

measured. We calculated the fraction of light absorbed by each genotype under RL, GL and BL 250 

by multiplying the fractional spectral absorptance of the leaves by the light spectrum measured for 251 

each LED channel (Aphalo 2015). The mean leaf absorptance was computed for each combination 252 

of light channel and genotype based on the replicate estimates. 253 

Data Analyses 254 

Statistical analyses were done with R 3.2.0 (R Core Team 2016) within RStudio. Package mgcv 255 

(Wood 2006) was used for fitting additive mixed models (AMM) and package nlme (Pinheiro and 256 

Bates 2000) for fitting linear mixed effects (LME) models. The output of the R scripts used in the 257 

analysis and both final and intermediate results are contained in a script (SI Script). 258 

Because of the complex shape of the daily course of Δgs we chose an additive model to test for 259 

differences in the shape of the daily course among genotypes (Wood 2006). Additive models are 260 

routinely used in various fields of research when data along the x-axis are densely spaced and 261 

response-curve shapes are complex (e.g. de Dios et al. 2016 and Saw et al. 2017). An AMM was 262 

fitted to Δgs values with time-of-day as a continuous explanatory variable and genotype as a factor. 263 

Each MT was compared with its corresponding WT. The AMM we fitted uses splines to describe 264 

the change with time: it is a mixed model because it includes random terms and grouping factors 265 

to describe the variability among plants. The model avoids pseudo-replication, as it takes each 266 

plant as a replicate, even though 68 measured values were acquired from each plant. When 267 

considering the shape of diurnal patterns of Δgs in detail, our interpretation was based on 268 

differences between the fitted curves and the overlap (or not) of the p = 0.95 confidence bands, 269 

shown in the figures. Within each light treatment, overall differences between each MT and the 270 

corresponding WT were assessed by formal, ANOVA-like tests of significance.  A critical p value 271 

of 0.05 for significance was used in these tests. We also used a more traditional approach fitting a 272 

third-order polynomial (with an intercept forced to zero at ZT = 00:00 because of the use of Δgs 273 

values), in a linear mixed effects (LME) model, to analyse the time course during the first hour of 274 

the photoperiod and confirm the validity of the AMM analysis.  275 
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A second-order polynomial was fitted to Ci/Ca and first-order polynomials to Anet and ΦPSII, using 276 

LME models accounting for the repeated measures, as described above. Because of the steep 277 

increase in Anet and ΦPSII and decrease in Ci/Ca immediately after the light was turned on at ZT = 278 

00:00, which cannot be fitted to our LME models, data from the first cycle of measurements (ZT 279 

= 00:00 to ZT = 00:30) were not included (SI Script). 280 

Results 281 

Diurnal patterns of ∆gs and respiration in darkness 282 

Prior to the light treatments (ZT = 00:00), stomata were not completely closed in any genotype (gs 283 

159 ± 13 mmol m-2 s-1, mean ± s.e. at ZT = 00:00). Nevertheless, during the last hour in the dark 284 

(ZT = -01:00 to ZT = 00:00), ∆gs remained almost constant, increasing by less than 5 % in all 285 

genotypes (SI Script). 286 

In darkness, during what would otherwise be the normal photoperiod from ZT = 00:00 to ZT = 287 

11:00, ∆gs in all genotypes slowly decreased as stomata continued to close from ZT = 00:00 288 

onwards (Fig. 1a, b). The ∆gs of phot1 phot2 was similar to its WT but in cry1 cry2 ∆gs differed 289 

from its WT by the end of the day. In Ler WT, ∆gs decreased by about 100 mmol m-2 s-1 during 290 

the photoperiod but in cry1 cry2 it only decreased approximately 60 mmol m-2 s-1 over the same 291 

period (Fig. 1b).  292 

In darkness, Anet, was negative as a result of respiration, and was small in MTs and their respective 293 

WTs (Fig. 1c, d). The slopes, describing the change in Anet with time, did not differ between cry1 294 

cry2 and its WT (p = 0.90; Fig. 1d), but did between phot1 phot2 and its WT (p < 0.0001, Fig. 295 

1c).The respiration rate in phot1 phot2 decreased from the beginning to the end of the photoperiod 296 

by 0.38 μmol m-2 s-1 (respiration rate range: 1.63 - 1.25 μmol m-2 s-1), whereas in its WT, this 297 

decrease was only about 0.05 μmol m-2 s-1 (1.30 - 1.25 μmol m-2 s-1) (Fig. 1c). 298 

Diurnal patterns of ∆gs under BL, GL and RL  299 

Fig. 2a shows the diurnal patterns of ∆gs under BL, GL and RL, as curves fitted using AMM and 300 

their 95% confidence bands. In WTs, RL, GL and BL all induced stomatal opening at equal photon 301 

irradiance of 200 µmol m-2 s-1, but of these, BL was the most effective. Spectral measurements of 302 

leaves and LEDs and calculations based on them showed that in-spite of differences in leaf 303 
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absorptance in the green-red region (516 - 643 nm) the estimated total absorbed flux of BL photons 304 

was approximately 8% and 10% more than under RL or GL, respectively (Fig. SI6). Even though 305 

the absorptance of leaves of cry1 cry2 was slightly lower in the green-red region than that of the 306 

other genotypes, the differences in absorbed photons between it and its Ler WT was 3% or less 307 

under all light treatments (Fig. SI6a). 308 

The maximum fitted ∆gs under BL was over 300 mmol m-2 s-1, approximately three times that 309 

under GL or RL (Fig. 2). In Ler WT, ∆gs was higher in GL than in RL from ZT = 01:30 to ZT = 310 

06:00. In addition to the differences in maximal ∆gs, the shape of the time course was different 311 

under BL compared with GL or RL, in both Ler WT and Col-5 WT (Fig. 2a, b). The time courses 312 

of gs were consistent among replicate plants within treatments (Fig. SI3).   313 

Under BL, the shapes of whole-day ∆gs time courses were strikingly different in the MTs compared 314 

to their corresponding WTs (Fig. 2a, b). In the WTs, ∆gs increased rapidly upon illumination at 315 

ZT = 00:00 and continued increasing, reaching 375 mmol m-2 s-1 (Col-5 WT) and 300 mmol m-2 316 

s-1 (Ler WT) at its maximum at ZT = 06:00 after which it started to decline. In the phot1 phot2 317 

mutant (Col-5 background), ∆gs initially increased more gradually, reaching a maximum that was 318 

only two thirds that of its WT, and later ∆gs decreased like in its WT (Fig. 2a, BL). In the cry1 cry2 319 

mutant (Ler background), ∆gs was similar to that of its WT during the first 2 hours after the start 320 

of illumination, but later in the day the maximum ∆gs in cry1 cry2 was only approximately half 321 

that of its WT, and likewise the decrease in ∆gs after ZT = 06:00 was smaller than in its WT (Fig. 322 

2b, BL). 323 

Under GL, the shape of the time course of ∆gs differed only between cry1 cry2 and its WT and not 324 

between phot1 phot2 and its WT (Fig. 2a, b). During the first hour of illumination (ZT = 00:00 to 325 

ZT = 01:00), ∆gs increased at a similar slow rate in all four genotypes (Fig. 5). From ZT = 02:00 326 

to ZT = 06:00 ∆gs was 33% lower in cry1 cry2 than in its WT (Fig. 2b). 327 

Under RL, there were no significant differences in ∆gs between the MTs and their WTs and their 328 

time courses had almost identical shapes (Fig. 2a, b). Plants of all four genotypes opened their 329 

stomata slowly under RL, with ∆gs reaching approximately 90 mmol m-2 s-1 after one hour of 330 

illumination (ZT = 01:00) and remaining at this relatively low value until ZT = 06:00, slowly 331 

decreasing thereafter.  332 
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Diurnal patterns of Anet under BL, GL and RL  333 

The diurnal time-courses of Anet, under BL, GL and RL are given in Fig. 2c and d, as curves fitted 334 

using linear mixed effect models with 95% confidence bands. The first half hour of data (ZT = 335 

00:00 to 00:30) were culled as the fast increase in Anet on illumination could not be adequately 336 

captured by recordings at 20 min intervals. After the first half hour of the photoperiod in all light 337 

treatments, Anet remained stable and no interaction between the three light treatments and 338 

genotypes was detected (p = 0.40). Anet was highest under RL, lower under BL and lowest under 339 

GL. The three-way interaction between time (change of Anet in time), light treatments and 340 

genotypes was significant (p < 0.0001). Under BL, GL and RL, Anet was no higher in Ler WT than 341 

in Col-5 WT. In both WTs, Anet increased slowly during the photoperiod in all light treatments, 342 

except under RL where in Col-5 WT Anet remained almost constant (p < 0.0001). Under BL, Anet 343 

in phot1 phot2 tended to be lower than in its WT (p = 0.074), while the difference between cry1 344 

cry2 and its WT was not significant (p = 0.63). Under GL, over the day as a whole the MTs did 345 

not differ from their respective WTs (p ≥ 0.10). The slopes over the day of Anet differed statistically 346 

between MTs and their respective WTs under BL, to a lesser extent GL (both p < 0.001), while 347 

under RL their slopes were parallel (p > 0.20). In spite of their statistical significance relative rates 348 

of change in Anet were small, ranging between ˗1.5 % h-1 and +2 % h-1 over treatments and 349 

genotypes (Fig. 2c, d). 350 

Diurnal patterns of Ci/Ca under BL, GL, RL and in darkness  351 

The diurnal patterns of the ratio of intercellular carbon dioxide concentration to ambient carbon 352 

dioxide concentration (Ci/Ca) as fitted second degree polynomials and 95% confidence bands are 353 

given in Fig. 3. Data from ZT = 00:00 to 00:30 were not included for the same reason as for Anet. 354 

There were no significant differences in Ci/Ca between genotypes under BL, GL, or RL (p = 0.54, 355 

SI Script). However, for the photoperiod as a whole, the three-way interaction between light, 356 

genotypes and time was significant (p < 0.0001, SI Script). The Ci/Ca ratio was lowest under RL, 357 

highest in darkness, and similar in BL and GL. Under BL, the ratio initially increased and then 358 

decreased from ZT = 06:00 onwards, in all genotypes except in cry1 cry2 where it remained nearly 359 

constant. The ratio of Ci/Ca under RL and GL was similar and slowly decreased towards the end 360 

of the photoperiod. In darkness, the ratio was similar between MTs and their WT, slightly above 361 

1. 362 
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Diurnal patterns of ΦPSII under BL 363 

We investigated the diurnal patterns of ΦPSII under BL (Fig. 4a, b). ΦPSII in phot1 phot2 was 364 

lower than in its Col-5 WT (p = 0.008), decreasing from 16% lower at ZT = 00:30 to a maximum 365 

difference of 22% at ZT = 10:00 (Fig 4a). In contrast, the ΦPSII in cry1 cry2 was similar to its Ler 366 

WT at ZT = 00:30, and differed by a maximum of only 13 % from Ler at ZT = 10:00 (p = 0.016, 367 

Fig. 4b). 368 

Rate of increase in ∆gs at the start of illumination under BL, GL and RL  369 

Figure 5 shows fitted third order polynomials for ∆gs with 95% confidence bands for the first hour 370 

(ZT = 00:00 to ZT = 01:00) under the light treatments. The model fitted to all the ∆gs data for this 371 

period gave significant (p < 0.001, SI) two-way and three-way interactions between light colour, 372 

genotype and time-of-day. This indicates that the differences between genotypes in the rate of 373 

stomatal opening (slope of ∆gs against time) depended on the colour of the light to which the plants 374 

were exposed. To identify these patterns, separate statistical analyses were done for each of the 375 

light conditions: BL, GL and RL.  376 

Under BL, ∆gs increased at a similar rate in both WTs (p = 0.072). While the rate of increase in 377 

∆gs did not differ between cry1 cry2 and its WT (p = 0.73); in phot1 phot2, it was less than half 378 

that of its WT (p = 0.002: Fig. 5). Under GL, there were no differences in Δ𝑔s among the four 379 

genotypes during the first hour of illumination (p = 0.53).  However, under RL, ∆gs differed among 380 

genotypes as the result of a slight difference in the shape of the time course during the first hour 381 

of illumination in phot1 phot2 compared to its WT (p = 0.043).  Furthermore, under RL, the time 382 

course of ∆gs was similar in both, cry1 cry2 compared to its WT (p = 0.15), and between the two 383 

WTs (p = 0.15). 384 

In contrast to the illuminated plants, ∆gs of plants kept in darkness barely changed during the first 385 

hour of what would have been the normal photoperiod. They followed the same time-course as 386 

during the last hour before ZT = 00:00 with no clear differences between genotypes in the slope 387 

of ∆gs against time (p = 0.03). 388 
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Stomatal density and size 389 

Table 1 presents stomatal density and stomatal size for genotype cry1 cry2, its WT Ler, phot1 390 

phot2 and its WT Col-5. The slight differences observed between mutants and WTs were not 391 

statistically significant (density: abaxial, p = 0.54; adaxial, p = 0.83; size: abaxial, p = 0.95, adaxial, 392 

p = 0.60, Tab. 1). 393 

Discussion 394 

For half a century, diurnal patterns in gs have been described using gas-exchange methods (e.g. 395 

Tenhunen et al. 1987). More recently the use of photoreceptor mutants has improved our 396 

understanding of the mechanisms behind stomatal responses to light (e.g. Boccalandro et al. 2012). 397 

Here, we combined these two approaches to investigate the roles of crys and phots in stomatal 398 

opening throughout the day. 399 

The control of diurnal patterns in gs and Anet under BL, GL and RL 400 

Parallel changes in gs and Anet over the diurnal period are ubiquitous because Anet depends on CO2 401 

entering the leaf through stomata. Cowan and Farquhar (1977) were first to consider the theoretical 402 

question of what would be the day course of gs that minimises daily water loss relative to a given 403 

level of whole-day carbon assimilation, proposing a model based on an optimization criterion. 404 

However, actual measurements of gs through the day frequently deviate from the predictions of 405 

Cowan and Farquhar’s (1977) model (Matthews et al. 2017).  406 

Regulation of fluxes of CO2 and water vapour by stomata depends both on functional coupling 407 

between gs and Anet and on independent regulation of gs and Anet through parallel responses to the 408 

same, or correlated, stimuli (Zeiger et al. 1982; Aphalo and Sánchez 1986; Aphalo and Jarvis 409 

1993).  Under all three of our11-h constant irradiance treatments (BL, GL, RL), we observed clear 410 

diurnal changes in gs (Figs. 2a, b), while ΦPSII and Anet concurrently varied much less (Fig. 2c, d; 411 

Fig. 4), which indicates that functional dependence of gs on Anet is unable to fully explain our 412 

results. Differences in responses to light of different colours can inform us about the relative 413 

importance of functional coupling between gs and Anet vs. direct stomatal responses to light 414 

(Mansfield and Meidner 1966; Aphalo and Sánchez 1986). 415 
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Faster stomatal opening at the beginning of the photoperiod under BL than under RL (Fig. 5) is 416 

consistent with the rapid stomatal opening commonly seen in response to acute BL treatments 417 

(reviewed by Shimazaki et al. 2007).  Such direct induction of BL-specific stomatal opening can 418 

happen almost immediately, often within seconds of illumination (Zeiger et al. 1987; Lawson et 419 

al. 2010).  420 

The larger ∆gs under BL than under RL throughout the diurnal time-course irrespective of the 421 

lower Anet and higher Ci (Fig. 2), which might otherwise be expected to negatively regulate ∆gs, 422 

indicates that BL-specific maintenance of stomatal opening was active during the whole 423 

photoperiod. These results are similar to the gas-exchange time-courses observed in Xanthium 424 

strumarium by Sharley and Raschke (1981) under BL (peak λ = 455 nm) and RL (λ = 681 nm, 425 

applied for 4 h). In this earlier experiment combined RL and BL at 650 µmol m-2 s-1 photon 426 

irradiance gave gs of 300 mmol m-2 s-1 after 1 h; gs remained high at 250 mmol m-2 s-1 under BL 427 

alone, while just RL gave a gs of only 60 mmol m-2 s-1.  Given the lower Ci under RL than under 428 

BL, the moderately larger ∆gs under RL compared to darkness over the photoperiod could be 429 

explained, at least in part, by feedback control on stomatal opening through coupling mediated by 430 

Ci depletion.  431 

To a lesser extent than under BL, under GL higher gs and Ci and lower Anet than under RL were 432 

maintained throughout the diurnal period, suggesting a contribution from photoreceptors to 433 

stomatal opening in GL. Such a role for photoreceptors in GL is consistent with Wang et al.’s 434 

(2011) observation of Anet-independent components in stomatal responses under both BL and GL 435 

in sunflower treated with DCMU. Taken together, the different responses we observed under BL, 436 

GL and RL indicate that the increase in ∆gs on illumination, and its maintenance throughout the 437 

diurnal period, under both BL and GL may partly depend on the BL photoreceptors (discussed 438 

next).  439 

The roles of crys and phots in stomatal opening at the start of the day and throughout the 440 

photoperiod 441 

The leaf traits of photoreceptor-mutant plants can differ from those of their WT, irrespective of 442 

light treatments (Labuz et al. 2012; Yu et al. 2010). Differences in leaf anatomy, such as in 443 

stomatal size and density, can result from the participation of crys in stomatal development (Li 444 
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and Yang 2007; Boccalandro et al. 2012). However, we found no significant differences between 445 

cry1 cry2 and its Ler WT in stomatal size or density (Table SI2), which might otherwise have 446 

confounded the response of gs attributable to crys. Differences in light absorptance are dependent 447 

on concentration per unit area of chlorophyll and other pigments in leaves which might be 448 

modulated through the action of photoreceptors (Hogewoning et al. 2010; Thum et al. 2001), but 449 

these differences were small compared to the responses of ∆gs and Anet. in our experiment. Likewise, 450 

recordings of gs before the light treatments and in the darkness treatment (Fig. 1a, b) detected no 451 

constitutive differences between the MTs and their respective WTs. Nevertheless, different 452 

interactions among photoreceptors are likely to affect responses to full-spectrum solar radiation 453 

compared to the monochromatic BL-, RL- and GL treatments employed in our experiments. 454 

The most striking feature differentiating the response of the genotypes under BL was the difference 455 

in rate of stomatal opening on illumination (Fig. 5). The rapid stomatal response upon BL 456 

illumination we observed in WTs concurs with the findings of Kinoshita et al. (2001) that rapid 457 

membrane depolarization follows BL illumination (within 30s), which implies that communication 458 

between nucleus and plasma membrane is too rapid to implicate changes in gene expression in this 459 

response (Shimazaki et al. 2007). The lack of a rapid response to BL in the phot1 phot2 MT agrees 460 

with the accepted view for the key role of phots in stomatal opening from experiments of shorter 461 

duration than ours (Shimazaki et al. 2007). After 2 h 30 min under BL, gs of phot1 phot2 was about 462 

50% less than that of its WT Col-5 (ZT > 02:30, Fig. 2a, b), indicating that phots continue to 463 

contribute to maintaining gs after the rapid initial opening. This result concurs with the role of 464 

phots in the promotion of continuous stomatal opening through the diurnal period under full 465 

sunlight (Boccalandro et al. 2012).  466 

Previous studies report that crys can contribute to blue-light-induced stomatal opening under low 467 

irradiances (< 100 μmol s-1 m-2, Mao et al. 2005). However, Boccalandro et al. (2012) found crys 468 

not to be directly involved in the perception of those signals that promote BL-specific stomatal 469 

opening in an experiment under solar radiation (full spectrum). They found that under full sunlight 470 

the diurnal patterns of gs in cry1 cry2 and phot1 phot2 had similar shapes to those of their WT, but 471 

that phot1 phot2 had much lower gs, though both photoreceptors enhanced Anet. Our results showed 472 

a specific role for crys under BL in the promotion of stomatal opening: following rapid stomatal 473 

opening induced by phots, crys were needed for the maintenance of high ∆gs from 2 h 30 min 474 
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through the remainder of the photoperiod (ZT > 02:30, Fig. 2a, b). In contrast, Anet was comparable 475 

in cry1 cry2 and its WT but Ci was lower in the MT (Figs. 2 and 3), indicating a contribution of 476 

crys to stomatal opening mainly independent of Anet. It can be speculated that stomatal responses 477 

mediated by crys are slower than those mediated by phots because crys’ action usually depends on 478 

regulation of gene expression (Ohgishi et al. 2004). 479 

Interestingly, adding together ∆g for the two MTs at each time point throughout the diurnal cycles 480 

under BL yields a similar pattern of ∆g to that observed in the WTs. This might be interpreted as 481 

evidence for an additive effect of phot and cry after 2 h 30 min. This is consistent with Mao et al.’s 482 

(2005) finding that stomatal aperture in a quadruple MT cry1 cry2 phot1 phot2 measured on 483 

epidermal strips was reduced under 20 μmol s-1 m-2 BL, compared to that in either of the double 484 

MTs cry1 cry2 or phot1 phot2. Further research is needed to better explain how these 485 

photoreceptors interact and function together in the control of stomatal opening through the whole 486 

diurnal period. 487 

In our experiment, ∆gs was larger under GL than under RL, agreeing with a few reports of stomatal 488 

opening driven by GL (Smith et al. 2017). Earlier studies did not investigate the involvement of 489 

specific photoreceptors in opening of stomata in GL. Consistently with the weak absorption of GL 490 

by phots (Christie et al. 2015), we found no evidence for a role of phots in stomatal opening in GL. 491 

In contrast, ∆gs under GL was smaller in cry1 cry2 than in its WT (Fig. 2b),  with crys accounting 492 

for up to 35% of ∆gs 3 h into the photoperiod, indicating a role for them in stomatal opening under 493 

GL. This role is consistent with other cry-dependent GL responses and the absorption of GL by 494 

light-adapted crys (Folta and Maruhnich 2007; Banerjee et al. 2007).  495 

Evidence for crys’ involvement in responses of stomata to BL (such as Mao et al 2005 and the 496 

present study), and in other responses to GL such as shade avoidance (Sellaro et al. 2010), de-497 

etiolation (Lin et al. 1995) and inhibition of hypocotyl elongation (Ahmad et al. 2002), are also 498 

consistent with a role for crys in stomatal opening in monochromatic GL. While it has been also 499 

observed that GL (540 nm) can antagonise BL-induced stomatal opening (Talbott et al. 2002), 500 

which is an effect that has been attributed to NPQ1 instead of phots or crys (Talbott et al. 2003), 501 

our results suggest a positive effect of GL at 516 nm on stomatal opening mediated by crys.  502 

The diurnal course of gas-exchange differs among species (Matthews et al. 2017). The differences 503 
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are in the speed of stomatal opening at the start of photoperiod and in the later slower increase or 504 

decrease in gs through the rest of the day. Fast opening is important for timely increase in gs in the 505 

morning and in sun flecks (Zeiger et al. 1981), improving light utilization for carbon assimilation 506 

(Way and Pearcy 2012). Within species, acclimation to different light environments can result in 507 

different stomatal opening speeds on exposure to light (Aasamaa and Aphalo 2017; Way and 508 

Pearcy 2012). This suggests that separate regulation of opening speed and gs steady state is possible. 509 

The fast phot-dependent response together with the slower cry-dependent BL-specific response 510 

could allow such separate regulation of the opening speed and gs steady-state, providing additional 511 

flexibility in the coordination of gs and Anet. As the combined roles of phots and crys in stomatal 512 

opening are likely to depend on plants’ native habitat and growing conditions, their study will 513 

require measurements of whole-day time courses under realistic manipulations and/or simulations 514 

of the natural light environment. 515 

Conclusions 516 

We conclude that under an 11 h photoperiod with constant irradiance of 200 μmol m-2 s-1: (1) 517 

monochromatic BL induces a diurnal pattern of gs with a broad maximum near ZT = 6:00 to ZT = 518 

7:00 that is different to that under RL or GL; (2) the normal diurnal pattern of gs in BL requires 519 

phots for rapid stomatal opening at the beginning of the photoperiod and both phots and crys 520 

afterwards; (3) stomatal opening in GL at 516 nm does not require phots but is likely to partly 521 

depend on crys. 522 
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Figure legends 666 

Fig. 1. Time courses of gas-exchange between ZT = 00:00 and ZT = 11:30 in darkness in phot1 667 

phot2 (---), its WT Col-5 (—), cry1 cry2 (---) and its WT Ler (—). (a, b) Change in stomatal 668 

conductance (∆gs) from ZT = 00:00; (c, d) Net carbon assimilation rate (Anet). Negative net 669 

carbon assimilation rate in darkness is respiration. Lines depict prediction by a fitted additive 670 

mixed models (AMM) (a, b) and mixed-effect linear models (c, d); grey bands depict 95% 671 

confidence limits; n = 3 – 4 plants per genotype, N = 14 plants, 1040 observations in total. The 672 

vertical dashed lines highlight ZT = 00:00, the time when LEDs were switched on during gas-673 

exchange measurements for treatments not remaining in darkness. 674 

Fig. 2 Time courses of gas-exchange between ZT = 00:00 and ZT = 11:30 under constant 675 

irradiance of BL, GL, or RL in phot1 phot2 (---), its WT Col-5 (—), cry1 cry2 (---) and its WT 676 

Ler (—). (a, b) Change in stomatal conductance (∆gs) from ZT = 00:00; (c, d) Net carbon 677 

assimilation rate (Anet). Lines depict prediction by a fitted additive mixed models (AMM) (a, b) 678 

and mixed effects model based on mixed-effect linear models (c, d) ; grey bands depict 95% 679 

confidence limits; n = 3 – 4 plants per light colour and genotype, N = 44 plants, 3371 680 

observations in total. The vertical dashed lines highlight ZT = 00:00, the time when LEDs were 681 

switched on during gas-exchange measurements, except for plants remaining in darkness. 682 

Equivalent figures showing raw gs and Anet data are presented in Figs. SI 4 and 5 respectively. 683 

Fig. 3 Ratio of intercellular and ambient carbon dioxide (Ci/Ca) in phot1 phot2 (---) and its WT 684 

Col-5 (—) under constant irradiance of BL (a), GL (b), RL (c) and in darkness (d), and in cry1 685 

cry2 (---) and its WT Ler (—) under BL (e), GL (f), RL (g) and in darkness (h) between ZT = 686 

00:30 and ZT = 11:30. Lines depict prediction by a fitted mixed effects model based on linear 687 

models and grey bands depict 95% confidence limits, n = 3 – 4 plants per light colour and 688 

genotype, N = 44 plants, 4262 observations in total. The vertical dashed lines highlight ZT = 689 

00:00, the time when LEDs were switched on during gas-exchange measurements, except for 690 

plants remaining in darkness. The Ca is given in Table SI1. 691 

Fig. 4 Effective photochemical quantum yield of photosystem PSII photochemistry (ΦPSII) 692 

under constant irradiance of BL between ZT = 00:30 and ZT = 11:30 in phot1 phot2 (---) and its 693 

WT Col-5 (—) (a) and in cry1 cry2 (---) and its WT Ler (—) (b). Lines depict prediction by a 694 

fitted mixed effects model based on linear models and grey bands depict 95% confidence limits, 695 
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n = 4 plants per light colour and genotype, N = 62 plants, 3828 observations in total. The vertical 696 

dashed lines highlight ZT = 00:00, the time when LEDs were switched on during gas-exchange 697 

measurements, except for plants remaining in darkness. 698 

Fig. 5 Change in stomatal conductance (∆gs) in phot1 phot2 (---) and its WT Col-5 (—) under 699 

constant irradiance of BL (a), GL (b), RL (c) and in darkness (d), and in cry1 cry2 (---) and its 700 

WT Ler (—) under BL (e), GL (f), RL (g) and in darkness (h) between ZT = 00:00 and ZT = 701 

01:00. Lines depict prediction by a fitted mixed effects model based on third-order polynomials 702 

and grey bands depict 95% confidence limits, n = 3 – 4 plants per light colour and genotype, N = 703 

58 plants, 340 observations in total. Data of gs for individual plants are given in Fig. SI4. The 704 

vertical dashed lines highlight ZT = 00:00, the time when LEDs were switched on during gas-705 

exchange measurements, except for plants remaining in darkness 706 

Legends to supplemental figures 707 

Fig. SI1 Spectral photon irradiance measured in the growth room with a cosine diffuser level 708 

with the top of the seedlings.  Spectral irradiance on the growth room shelves was measured with 709 

a Maya2000 Pro spectrometer (Ocean Optics, U.S.A) fitted with a D7-H-SMA cosine diffuser 710 

(Bentham Instruments, Reading, U.K.). 711 

Fig. SI2a Normalized spectral photon irradiance of (non-polarized) light emitted by the red, 712 

green, and blue channels of the LED-array source used for gas-exchange measurements 713 

(presented in Fig SI3, SI4 and SI5). The overlap in normalized photon irradiance between the 714 

blue and green channels is 3.9% of their combined photon irradiance, and between green and red 715 

channels the overlap is 0.4%. There is no measurable overlap (<0.05%) between red and blue 716 

channels; SI2b Photograph of the custom-built LED-array light source used for gas-exchange 717 

measurements. Each array has three independent channels, emitting BL, GL, or RL. 718 

Fig. SI3 Stomatal conductance (gs) for individual plants from 12 midnight until 6 p.m. on the 719 

next day. These data were used to calculate the ∆gs values used in the model fits presented in 720 

Figs. 2 and 3, and in statistical tests of significance. The vertical dashed lines highlight 7 a.m. 721 

local time (ZT = 00:00), the time when LEDs were switched on during gas-exchange 722 

measurements, except for plants remaining in darkness. 723 
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Fig. SI4 Net carbon assimilation rate (Anet) for individual plants from 12 midnight until 6 p.m. on 724 

the next day. These data were used to calculate Anet values used in the model fits presented in 725 

Figs. 2 and 3, and in statistical tests of significance. Negative net carbon assimilation rate in 726 

darkness is respiration. The vertical dashed lines highlight 7 a.m. local time (ZT = 00:00), the 727 

time when LEDs were switched on during gas-exchange measurements, except for plants 728 

remaining in darkness. 729 

Fig. SI5 Ratio of Ci/Ca for individual plants from 12 midnight until 6 p.m. on the next day. These 730 

data were used to calculate ratio of Ci/Ca values used in the model fits presented in Figs. 4, and in 731 

statistical tests of significance. The vertical dashed lines highlight 7 a.m. local time (ZT = 00:00), 732 

the time when LEDs were switched on during gas-exchange measurements, except for plants 733 

remaining in darkness. Concentrations of Ca are listed in Table SI1. 734 

Fig. SI6 Light absorption. Average spectral absorptance of illuminated leaves from 5 or 6 plants 735 

of each genotype. Upper panel: The colour bars show the full width at half maximum (FWHM) 736 

of the peak of photon emission spectra of the three LED channels from Fig. SI2a. Lower panel:  737 

Estimate of the photon dose rate computed as the absorbed irradiance by convolution of the 738 

absorptance spectra of the leaves (upper panel) with the emission spectra of the LEDs (Fig. SI2a) 739 

integrated over wavelengths. The dashed line indicates the photon irradiance incident on the 740 

plants. The absorbed energy irradiances averaged over genotypes were: RL 34.3 W m-2, GL 41.4 741 

W m-2, and BL 50.4 W m-2. 742 

 743 

  744 
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Tables 745 

Table 1. Stomatal size and density, mean ± SE, n = 10. Size is expressed as the maximum length 746 

of the guard cells along the length of the pore; density is expressed as number of stomata per unit 747 

leaf area. 748 

Genotype Epidermis Size (μm) Density (mm-2) 

Col-5 Adaxial 18.6 ± 0.4 163 ± 11 

 Abaxial 19.2 ± 1.4 191 ± 16 

phot1 phot2 Adaxial 18.6 ± 0.4 142 ± 32 

 Abaxial 19.2 ± 1.4 184 ± 28 

Ler Adaxial 20.3 ± 0.8 164 ± 27 

 Abaxial 19.0 ± 1.0 171 ± 17 

cry1 cry2 Adaxial 18.8 ± 0.5 150 ± 17 

 Abaxial 19.0 ± 1.0 146 ± 18 

 749 

Table SI1. Concentration of Ca maintained by gas-exchange system under each light treatment 750 

for each genotype during the period of ZT = 00:00 to ZT = 11:30. 751 

 
Red light Green light Blue light Darkness 

Col-5 387.6 ± 0.1 387.8 ± 0.1 387.6 ± 0.1 390.3 ± 0.0 

phot1 phot2 388.4 ± 0.0 388.1 ± 0.1 388.4 ± 0.1 390.3 ± 0.0 

Ler 386.9 ± 0.1 387.4 ± 0.1 386.9 ± 0.1 390.1 ± 0.0 

cry1 cry2 387.8 ± 0.1 387.9 ± 0.1 387.8 ± 0.1 390.1 ± 0.0 
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Fig. 1 754 
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Fig. 2 756 
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Fig. 3 758 
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Fig. 4 760 
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Fig. 5 762 

 763 


