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Abstract
Currently, developers of modern refrigeration equipment, in accordance with the plans of the UN, are moving to natural 

refrigerants (hydrocarbons, carbon dioxide and ammonia) that do not have an adverse technological impact on the ecosystem of the 
planet. In domestic refrigeration technology, one of the options is absorption refrigeration units, the working body of which is an 
aqueous ammonia mixture with the hydrogen addition. Having a number of unique advantages over compression analogs, absorption 
systems are characterized by lower energy characteristics.

As the analysis shows, the maximum thermodynamic losses in the absorption aggregates are concentrated in the generat-
ing unit when the ammonia is evaporated, it is purified from water vapor and transported to the evaporator. In this connection, the 
mathematical modeling of the thermal regimes of the reflux condenser is performed, which is responsible for purification and trans-
portation of ammonia vapor.

Modeling is carried out on standard designs of absorption refrigeration units taking into account reasonable assumptions and 
results of own experimental researches. A cellular model is used. Stationary operating modes are modeled due to the high thermal 
inertia of the processes in the reflux condenser.

As a result, the perspective of the thermal insulation installation throughout the reflux section is shown, which makes it pos-
sible to increase the energy efficiency by 17...22 %.

Keywords: thermal modes; energy efficiency; absorption refrigerator; reflux condenser; thermal insulation.

DOI: 10.21303/2461-4262.2017.00358	 © Andrey Kholodkov, Aleksandr Titlov

1. Introduction
Household absorption refrigerators (AR) based on absorption refrigeration units (ARU) are 

popular with consumers due to a wide range of operating temperatures – from –24...–18 °С to 
12 °С, which allows long-term storage of various food products [1].

The ARU working fluid is a water-ammonia solution with the addition of an inert gas (hy-
drogen, helium or their mixture) that is environmentally safe, i. e. has zero values of the ozone-de-
pleting potential and potential of the “greenhouse” effect [2].

ARUs have a number of unique qualities [2–4]:
a) Noiselessness, high reliability and long service life, absence of vibration, magnetic and 

electric fields during operation; 
b) the possibility of using several different energy sources in one device, both electric and 

non-electric; 
c) the ability to work with low-quality sources of electrical energy with a voltage in the 

network of up to 160 V.
Their advantages are also the minimal cost in comparison with existing types of household 

refrigeration equipment [5].
At the same time, ARUs have increased power consumption in comparison with similar 

compression models [6–10]. In our opinion, this situation is due not only to the imperfection of their 
refrigerating cycle, but also to the lack of appropriate scientific and engineering developments.
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The relatively low ARUs energy efficiency causes a narrow area of their use, mainly as 
mini-refrigerators, and a small share in the domestic refrigeration market.

When searching for energy-saving ARU regimes, special attention must be paid to the effi-
ciency of ammonia transport to the evaporator, especially under operating conditions at low outside 
air temperatures. At present, there is a paradoxical situation – at low temperatures in the room, 
ARU energy consumption increases. This position is determined by the modes of cleaning and 
transportation of ammonia in the elevating part of the reflux condenser. In the well-known ARUs 
designs [11–13], which are designed for operation in the positional control mode, the lifting section 
of the reflux condenser performs the function of final purification of the ammonia vapor from the 
water vapor. The geometric dimensions of the reflux section are determined not by calculation, 
but from the experience of practical development and the layout of the working elements in the 
concrete ARU. For example, in all modern ARU designs, the inner diameter of the lifting section 
does not exceed 18 mm. This limitation is associated with the problems of completely removing of 
the vapor-gas mixture from the reflux condenser and condenser into the absorber and evaporator 
during the starting period. With a larger pipe diameter, the front of the gas-vapor mixture is degrad-
ed, some of the inert gas remains in the reflux and condensation zones and significantly reduces the 
intensity of these processes [5, 11].

The length of the reflux section is determined by the location of the condenser and the 
ARU rectifier. In single-chamber absorption refrigerators this is approximately 0.8 m, in double 
chamber – about 1.25 m.

The lower part of the lift section of the reflux condenser in the generator zone is closed by a 
common heat-insulating jacket. The thickness of the heat-insulating jacket on the lift section of the 
reflux condenser is not calculated, but is actually determined by the arrangement of the elements of 
the generator assembly having a complex spatial configuration. The upper part of the lift section of 
the reflux condenser remains free (not closed with thermal insulation).

Thus, ammonia vapor purification after the rectifier occurs both in the zone of installation 
of the thermal insulation (partially) and in the open sections of the lifting reflux condenser. In the 
ideal mode, at the end of the lifting section of reflux condenser, the ammonia purification process 
ends, the reflux flows into the rectifier, and the pure ammonia vapor enters the condenser.

At the same time, with the existing approach to the design of the reflux section, ideal modes 
of its operation are practically unrealizable. This is due to a non-optimal choice of the dimensions 
of the open and heat-insulated zone and thickness of the heat-insulating jacket in the lower part of 
the reflux condenser.

As a result of this approach, either the crude ammonia vapor enters the condenser, or the con-
densation of ammonia begins already at the top of the lift section of the reflux condenser. Both these 
factors adversely affect the refrigerating capacity of the evaporator and ARU energy efficiency.

The first factor is easily eliminated by increasing the surface of the heat exchanger, for ex-
ample, by installing ribs [13] or by increasing the length of the tube due to the zigzag bending of 
the pipe in the vertical plane [13].

The second factor can be eliminated by increasing the thickness of the thermal insulation 
coating of the lower part of the reflux condenser, but it will have an adverse effect on ARU 
operation in a wide range of ambient temperatures – to cause condensation of ammonia vapors.

In such situation, development of a mathematical model for the operating conditions of the 
lifting section of the ARU reflux condenser is becoming topical.

2. Mathematical model of thermal regimes of the ARU reflux condenser 
The functional diagram of the lift section operation of the ARU reflux condenser is shown in 

Fig. 1. In general, based on general physical concepts, two modes of the reflux condenser operation 
can be distinguished:

a) the mode of cleaning the vapor mixture, when the wall temperature (tS) exceeds the con-
densation temperature of ammonia (

3

S
NHϑ );

b) partial condensation of pure ammonia vapors ( )3

S
S NHt ≤ ϑ .
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With the ideal operating mode of the reflux condenser, the “a” mode is realized.
The initial data for modeling are:
a) the dimensions of the lifting section of the reflux condenser (length LD, inner ind  and 

outer outd  diameters of the pipe);
b) the coefficients of thermal conductivity of the wall material of the reflux condenser pipe 

( Sλ ) and the warm insulation material ( tiλ );
c) the mass flow rate of ammonia vapor at the outlet of the lifting section of the reflux con-

denser exG ′′ ;
d) the parameters of the vapor mixture flow at the inlet of the lifting section of the reflux 

condenser (temperature, mass concentration).

Fig. 1. Diagram of heat and mass flows in the reflux condenser

At the inlet of the lifting section of the reflux condenser comes a vapor water-ammonia 
mixture with the parameters entϑ , entξ′′ , entG ′′ .

At a partial reflux at the initial (lower) section due to the difference in wall and flow tem-
peratures, ammonia concentration in it increases. The equilibrium temperature of the vapor mix-
ture flow (ϑ) decreases, and at the next higher section of the reflux condenser, the wall temperature 
will be lower than at the initial stage.

By changing the wall temperature along the height of the reflux condenser, there will be 
axial heat transfers along the pipe section (Qax).

Chilled reflux countercurrent flows of the vapor mixture along the inner wall of the 
reflux condenser. The heat of reflux (QD) after reflux heating (QF) is discharged to the envi-
ronment (Qenv) both in the installation area of the thermal insulation jacket and from the free 
surface of the pipe.

The mathematical model is based on the equations of heat and mass conservation, which for 
the part of the reflux condenser of height Δx have the form

		    	           D(dx) env (dx) F axQ Q Q Q∆ = ∆ + ∆ + ∆ , 	 (1)

 	                                        ent dx dxG G G= +′′ ′′ ′ ,  	 (2)
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where dxG ′′  and dõG ′  are the mass flow rate of the vapor mixture at the outlet of the Δx section and 
the reflux produced in this section, respectively, kg/s.

For the initial section, the axial heat transfers will enter the left side of equation (1) with a 
plus sign, and for the final section with a minus sign. In the intermediate sections, the contribution 
of the axial flows represents the difference between the inflow of heat from the lower section and 
the outflow of heat to the upper section.

When writing the components of equation (1), the following assumptions are applied:
a) thermal resistance of the reflux film is insignificant and can be neglected when modeling 

the thermal regimes of a reflux condenser [14];
b) temperatures of the reflux and the walls of the reflux condenser are equal and are constant 

at the portion Δx;
c) the wall temperature of the reflux condenser at the section Δx is constant in the axial and 

radial directions.
Taking these assumptions into account, equation (1) takes the form:
a) the inlet (initial) section 1:

( ) ( ) ( )ent 1 in l 1 envD 1 t F K t t xα ϑ − ⋅ ∆ = − ⋅ ∆ +

	                                     ( ) ( ) ( ) ( )1 2 1 2 secF 1 F 1G C t t t t F
x

λ
+ ⋅ − + − ⋅

∆
; 	 (3)

b) outlet (final) section K:

	                     ( ) ( ) ( ) ( )K K in l K env K 1 K secD K t F K t t x t t F
x −

λ
α ϑ − ⋅ ∆ = − ⋅ ∆ + − ⋅

∆
;	 (4)

c) intermediate section i (i=2...K−1):

( ) ( ) ( )i i in l i envD i t F K t t xα ϑ − ⋅ ∆ = − ⋅ ∆ +

	                              ( ) ( ) ( ) ( )i i 1 i 1 i i 1 secF i F iG C t t t 2t t F
x+ − +

λ
+ ⋅ − + − + ⋅

∆
; 	 (5)

where D(i)α  – coefficient of heat exchange during condensation of water-ammonia vapor flow,  
W/(m2×K);

, tϑ   – temperatures in the section Δx of the vapor flow and the wall (reflux), respectively, °С;
lK  – linear coefficient of heat transfer between the condensing vapor flow and the environ-

ment in the area, W/(m×K);
inF∆ and secF  – the area of the inner wall of the section Δx and the axial section of the reflux 

tube, respectively, m2;
FG , FC  – mass flow rate and mass heat capacity of incoming reflux, respectively, kg/s and 

J (kg×K).
To find the unknown parameters of the vapor flow at the exit of the section x∆  ( (x dx)+ϑ , 

(x dx)G +  and (x dx)+ξ′′ ) to equations (3)–(5), the equations of material balance along the lifting section 
of the reflux condenser are added.

In view of the fact that the pure ammonia stream G ′′  must leave the reflux condenser and 
reflux containing both water D

wG  and ammonia D
aG  must return to a rectifier, the expressions for 

the equilibrium mass concentration can be represented as:
a) for a vapor mixture

                                                    
D
a

D D
a w

G G
G G G

+′′
ξ =′′

+ +′′
;  	 (6)

b) for a liquid mixture (reflux)

                                                        
D
a

D D
a w

G
G G

ξ =′
+

. 	 (7)



Reports on research
projects

(2017), «EUREKA: Physics and Engineering»
Number 3

35

Energy Science

The equilibrium concentrations are determined by the temperature Jin and the total pres-
sure in the system.

Solving the system (6), (7) with respect to D
aG  and D

wG , let’s find

                                           

D
a

1G G
11

− ξ′′= ⋅′′
 − ξ′ξ − + ξ′ ′′  ξ′ 

,	 (8)

	                                                      D D
w a

1G G − ξ′= ⋅
ξ′

.	 (9)

From equations (8) and (9), one can determine the total flow of reflux flowing into  
the rectifier

                                                       D D
F a wG G G= + .	 (10)

Thus, at a given input flow concentration of the vapor mixture and the flow rate of purified 
ammonia at the outlet, it is possible to unambiguously determine the flow rate of the vapor mixture 
at the inlet to the lifting section of the reflux condenser

	                                                       in FG G G= +′′ ′′ .	 (11)

At Δx, reflux heat can also be expressed in terms of the heat of the phase transition, r:

	                                                    D ( x) F( x)Q G r∆ ∆∆ = ⋅ .	 (12)

The mass concentration of reflux is determined from the wall temperature of the reflux 
condenser, which can be taken as equal to the flow temperature in the first approximation.

Let’s find the fraction of ammonia and water in the reflux stream on the section Δx

	                                                  D
a ( x) F( x) ( x)G G∆ ∆ ∆= ⋅ξ′ ,	 (13)

	                                              ( )D
w ( x) F( x) ( x)G G 1∆ ∆ ∆= ⋅ − ξ′ .	 (14)

Taking into account the liquefied reflux, let’s write the equation for the mass concentration 
of the flow at the outlet of the section Δx

                                   
D D
a a ( x)

ex ( x) D D D D
w w ( x) w w ( x)

G G G
G G G G G

∆
∆

∆ ∆

+ −′′
ξ =′′

+ − + −′′
.	 (15)

The equilibrium temperature of the flow of the vapor mixture at the outlet of the section Δx 
is determined from the concentration value ex ( x)∆ξ′′ .

The presented model allows to carry out both design and verification calculation of the lift-
ing section of the ARU reflux condenser.

Minimization of the inevitable losses of ammonia when it is transported to the condenser 
when operating in conditions of low and comfortable air temperatures in the room is proposed to 
be carried out on the basis of the following considerations.

In temperate latitudes ARUs in “hard” mode are operated 2−3 months in the year. The rest 
of its time passes at room air temperatures from 18 to 25 °C [15].

It is assumed that the optimal approach will be to calculate the heat-insulating jacket of the 
lifting section of the reflux condenser from the condition of complete purification of ammonia va-
por at room temperature of 32 °C. Such approach to design will allow ARUs operation under severe 
conditions and minimize inevitable losses during transportation in conditions of moderate and low 
air temperatures in the room.
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As a result of the design calculation of the lifting section of the reflux condenser, taking 
into account the initial data, it is necessary to determine the diameter (dti) and height (hti) of the 
heat-insulating jacket, at which the complete cleaning of ammonia vapor (ζ′′=1) is ensured at room 
temperature of 32 °C.

At the first stage of the design calculation, let’s determine the diameter of the heat-insulating 
jacket on the basis of the approximate relationship

                                             env
ent ent

ti

t
G i G i

R
ϑ −

⋅ − ⋅ =′′ ′′ ′′ ′′ ,	 (16)

where enti′′  and i′′  – the specific enthalpy of the vapor water-ammonia mixture at the inlet of the lift 
section of the reflux condenser and the ammonia vapor at the outlet, respectively, J/kg;

ϑ  – average temperature of the vapor mixture in the lifting part of the reflux condenser, °С;

3

S
ent NH

2
ϑ + ϑ

ϑ = ;

envt  – air temperature in the room (assume 25 °С);
tiR  – total thermal resistance of thermal insulation, K/W.

As a result of the calculation, let’s obtain the distribution of temperatures and concentra-
tions along the height of the lift section of the reflux condenser and perform an evaluation of the 
parameters of the vapor flow at the outlet. In the case that a complete purification of ammonia is 
not achieved, let’s reduce the thickness of the thermal insulation, and in the case that the cleaning 
occurs at some distance to the outlet – let’s increase. Calculation is finished when within the spec-
ified accuracy, a complete purification of the ammonia vapor is achieved at the outlet of the lifting 
section of the reflux condenser. Let’s fix the thickness of the heat-insulating jacket.

At the second stage, at a comfortable room temperature of 22 °С, let’s perform a verification 
calculation of the heat-insulating jacket. Let’s determine the inevitable losses of ammonia during 
transportation in two cases − with the traditional design with a partial installation of thermal insu-
lation in the lifting section of the reflux condenser and with its complete thermal insulation.

Thus, the developed mathematical model allows not only to determine the optimal design 
dimensions of the heat-insulating jacket in the lifting of the reflux condenser, but also to determine 
the inevitable losses of ammonia during transportation at moderate and low temperatures, includ-
ing under different heat loads on the boiler-generator.

The system of equations (3)–(5)–(12)–(15) is solved using an iterative method based on the direct 
determination of the temperature at each node from the difference equation of energy balances [13].

For a section of a cylindrical pipe with a length x∆ , taking into account the assumptions, 
three types of equations can be written – for the inlet and outlet sections and for the intermediate 
sections (Fig. 2).

For the case “a”, the energy balance equation

( ) ( )D in ent 0 F(1) F(1) 1 0d T x G C T Tα π ⋅ ϑ − ∆ + ⋅ ⋅ − +

	                                   ( ) ( )sec 1 0 k out env 0F T T d T T x 0
x

λ
+ − + α π − ∆ =

∆
. 	 (17)

After the designation:

D inA d x= α π ⋅ ∆ ; F(1) F(1)B G C ,= ⋅  secC F
x

λ
=

∆
; k outD d x= α π ⋅ ∆ ,

equation (17) takes the form

	                ( ) ( ) ( )
ent

1 env 0
A B C DT T T

A B C D A B C D A B C D
ϑ +

+ ⋅ + ⋅ =
+ + + + + + + + +

. 	 (18)
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c
Fig. 2. Thermal diagrams of typical units of the lifting section of the ARU reflux condenser 
without heat-insulating jacket: a – inlet section; b – intermediate section; c – outlet section

Denoting the constants in Eq. (18) in an appropriate manner, let’s obtain the ratio for the 
temperature of the node “0”

	                                   0 0 1 1 2 envT a a T a T= + + . 	 (19)

For the case «b», the energy balance equation

( ) ( )D in 0 F(2) F(2) 2 0d T x G C T Tα π ⋅ ϑ − ∆ + ⋅ ⋅ − +

                 
( ) ( ) ( )sec 1 0 sec 2 0 k in env 0F T T F T T d T T x 0

x x
λ λ

+ − + − + α π − ∆ =
∆ ∆

. 	 (20)

After the designation:

D inA d x= α π ⋅ ∆ ; F(2) F(2)B G C= ⋅ ; secC F
x

λ
=

∆
; k inD d x= α π ⋅ ∆ ,

equation (20) takes the form

( ) ( ) ( )1 2

A C B C
T T

A B 2C D A B 2C D A B 2C D
+

⋅ ϑ + ⋅ + ⋅ +
+ + + + + + + + +

                                            ( ) env 0
D T T

A B 2C D
+ ⋅ =

+ + +
.	 (21)
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Applying similar designation, let’s obtain the relation for the temperature of the node “0”

                                           0 0 1 2 1 3 2T b b b T b T .= + ϑ + + 	 (22)

For the case “c”, the energy balance equation

             ( )D in 0d T xα π ⋅ ϑ − ∆ + ( ) ( )sec 1 0 k in env 0F T T d T T x 0
x

λ
− + α π − ∆ =

∆
. 	 (23)

After the designation:

D inA d x;= α π ⋅ ∆  secB F ;
dx
λ

=  k inC d x,= α π ⋅ ∆

equation (20) takes the form

                       ( ) ( ) ( )env 1 0
A B CT T T

A B C A B C A B C
⋅ ϑ + ⋅ + ⋅ =

+ + + + + +
.  	 (24)

Simplifying (24), let’s obtain the ratio for the temperature of the node “0”

	                                                   0 0 1 2 1T c c c T= + ϑ + . 	 (25)

The calculation by equations of the type (19), (22) and (25) is carried out by the Gauss-Se-
idel method [14], which allows to significantly reduce the time of convergence due to the constant 
updating of the current design temperatures.

Calculation of thermal conditions in the installation area of the thermal insulation jacket is 
carried out in a similar way, taking into account the thermal resistance of the cylindrical layer of 
thermal insulation.

3. Research results
The results of calculations of lifting reflux condensers of typical household ARU are given 

in Table 1.

Table 1
Results of calculation of the lifting reflux condensers of typical household ARU

Designation of calculation parameters

Basic Objects
Cooling capacity of the ARU evaporator, W
40 50 60

Height of the lifting section of the reflux condenser, m
0,80 1,00 1,25

Mass flow rate G×105, kg/s
– ammonia in reflux 0,198 0,248 0,297
– water in reflux 0,388 0,486 0,583
– reflux 0,586 0,733 0,878
– ammonia vapor at the outlet of the reflux condenser 3,330 4,171 5,002
– the vapor mixture at the inlet of the reflux condenser 3,916 4,905 5,882
Thermal load of the lifting section of the reflux condenser, W 20,9 26,2 31,5
Thermal resistance of thermal insulation at air temperature, K/W:
– 32 °С 2,54 2,02 1,68
– 22 °С 3,01 2,40 2,00
Thermal losses at a comfortable room temperatur (22 °С), W:
– when installing thermal insulation on the entire reflux condenser 1,8 2,2 3,3
– in basic construction 7,4 10,9 13,7
The increase in the cooling capacity of the ARU evaporator in 
comparison with the basic design, % 17 22 22
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The calculations are carried out for a reflux tube with a diameter of 16´1.5 mm. The pipe 
material is steel ( Sλ =45 W/(m×K)). The thermal insulation material of the jacket is a fiberglass cloth 
( tiλ =0.056 W/(m×K)). Water-ammonia vapor mixture with a temperature of 120 °C is fed at the inlet 
of the lifting section of the reflux condenser.

4. Discussion of research results
Calculation shows that in order to ensure a complete purification of the ammonia vapor 

stream under the severe conditions of ARU operation, the thickness of the thermal insulation of the 
refluxing section in the form of a fiberglass cloth should be 3...4 mm thick.

Analysis of the calculation results in Table 1 shows that the installation of a heat-insulating 
jacket along the entire height of the reflux section of the main basic ARU designs makes it possible 
to increase the refrigerating capacity of the evaporator in comparison with the traditional partial 
thermal insulation of the lifting section of the reflux condenser by 17...22 %.

The developed model is of particular interest when optimizing the ARU operating con-
ditions with variable thermal loads in the generator, including with afterburner. Having the de-
pendence of the flow rate of the vapor mixture at the inlet to the reflux condenser on the applied 
heat load, it is possible to control the location of the ammonia vapor purification zone at any air 
temperature in the room and to realize the energy saving modes of operation of household ARUs 
using electronic control systems.

5. Conclusions
ARs possess a number of undoubted operational advantages (reliability, long life, noiseless-

ness in operation, minimum cost) in comparison with compression analogs, as well as versatility in 
the use of energy sources, in the presence of energy-saving technologies, can expand their presence 
in the domestic refrigeration market.

One of the effective and low-budget methods for increasing the ARU energy efficiency is the 
technology to reduce losses when transporting ammonia to the artificial cold zone (evaporator). A 
key role in this process is performed by the ARU reflux condenser, which purifies ammonia vapor 
by removing the heat of a phase transition into the environment in the temperature range from  
10 to 32 °C.

To reduce the losses during the transportation of ammonia through the ARU reflux con-
denser, it is necessary to install a thermal insulation that would efficiently purify ammonia vapor 
(at high ambient temperatures) within the working temperature range and promote its minimum 
condensation of ammonia (at low ambient temperatures).

Modeling of the thermal modes of the reflux condenser that are performed within the frame-
work of this work allows to obtain such optimal parameters of heat insulation, and it is expedient to 
install thermal insulation along the entire length of the reflux condenser, which is not practiced in 
the latest developments of leading manufacturers.

As a result, it is shown the prospect of installing thermal insulation throughout the reflux 
section, which makes it possible to increase the energy efficiency by 17...22 %.

Particular importance of this study is for ARU energy-saving control systems, which use 
temperature indicators at the characteristic points of the reflux condenser to produce a control 
action [16].
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