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Abstract

The study examined the construction of the fundamental solution for the equations of statics {1,2}-approximation for trans-
versely isotropic plates under bending with the action of concentrated force. Equations {1,2}-approximation were obtained by the
decomposition method in the thickness coordinate using the Legendre polynomials. These equations take into account all the com-
ponents of the stress tensor, including the transverse shear and normal stresses. Since the classical theory of Kirchhoff-Love doesn’t
take account of these stresses, the study on the basis of refined theories of stress-strain state of transversely isotropic plates under the
action of concentrated force effects is an important scientific and technical problem.

The fundamental solution of obtained equations results using a two-dimensional Fourier integral transform and inverse
treatment techniques, built with the help of a special G-function. This method allows reducing the system of resolving differential
equations for statics of flat plates and shells to a system of algebraic equations. After that, the inverse Fourier transform restores
the fundamental solution. The work was carried out numerical studies that demonstrate patterns of behavior of components of the
stress-strain state, depending on the elastic constants of transversely isotropic material. The results play a decisive role in the study
of boundary value problems in the mechanics of thin-walled elements of constructions, including under the influence of concentrated
and local diverse forces.
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1. Introduction

In modern technology, engineering structures with thin-walled structural elements are
widely used. There are design of aircraft, such as a solid-fuel rocket engine (SFRE), and liquid-fuel
rocket engine (LFRE) [1] under considerable force effects. In modern engineering new composite
materials are intensively used for creating protective coatings on the friction surfaces and for the
manufacture of various items of equipment [2]. The use of such materials makes it necessary to
build a refined theory of plates and shells, taking into account the phenomena associated with the
transverse shear and compression.

To reducing the three-dimensional problem for transversely isotropic plates to the two-
dimensional problem, generalized theory of {m, n}-approximation is used in the article. The se-
lected method is the most appropriate for this task, because it is not based on any hypotheses, and
uses the method of Vekua decomposition of unknown functions in Fourier series using Legendre
polynomials [3]. This approach allows considering not only the thin plate, but the plate of medium
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and high thickness. The accuracy of these solutions depends on the number of retained items in the
expansions of the given and unknown functions.

Generalized theory of plates and shells in the variant of {1,2}-approximation is used in the
article for derivation of static equations for transversely isotropic plates under bending with action of
concentrated force. In this paper, a fundamental solution to the equations of statics {1,2}-approxima-
tion is obtained.

This problem must be solved as fundamental solutions play a decisive role in the study of
boundary problems in the mechanics of thin-walled elements of constructions, including under the
influence of a variety of local and concentrated forces such as local force impact.

Among recent publications that use the generalized theory of {m, n} -approximation, it
should be noted the articles on problems of statics [4, 5], as well as publications that addressed the
problem of thermoelasticity [6—9].

Bending problem for transversely isotropic plates using the equations of statics {1,2}-
approximation is solved below.

2. Materials and methods

Approximation method of the displacement, stress and strain of the Fourier series using Leg-
endre polynomials on the transverse coordinate to derivation of two-dimensional equations of statics
for transversely isotropic plates is used. This method is the most preferred, as it allows obtaining
two-dimensional equations of statics is not based on any hypotheses, and by expanding the unknown
functions. The fundamental solution of the obtained equations of statics {1,2}-approximation found
with the help of a two-dimensional Fourier integral transform.

3. Experimental investigations

3. 1. Basic relations and mathematical formulation of the static problem, describing
the state of bending transversely isotropic plates based on {1,2}-approximation

Let’s consider a transversely isotropic plate with 2h thickness in a rectangular Cartesian co-
ordinate system x, y, z. Concentrated force F applied at the origin (singular point) acts on the plate.

As part of {1,2}-approximation there are representations for components of the displacement
vector and the stress tensor under bending [3]

u =vhP, u, = YyhPI su, =w,P +w,P,,

3H

3M
o,=—2P (x—>vy), IXY=FP1,

Y2k’

Q, 5Q, 3R
T, = 2h° (P,-P,)+ 2h2 (P,-P,) (x>y), o, =—2hI (P -P,),
3m, q, 5q,
F, = P(x—>vy), F= 2};’ P, + th P,

where w,(j=0,2), v; (i=x,y) — generalized displacement of the plate; y; (i=x,y) are analo-
gous to the normal rotation angles; M, (i =X, y), H, Q; (i=x,y; j=0,2), R, —generalized mo-
ments and forces; F= (FX, F, FZ) — vector of volume force; m =m,Eh, m, =m,Eh, q,, =q,E,
q,, = q;E — decomposition components of the vector of volume force. Among them, M, M are
analogues of bending and torque moments; M, M — Legendre polynomials.

The equations of statics in the form {1,2} -approximation for transversely isotropic plates, de-
scribing the bending state, written in the dimensionless coordinate system (x, =x/h, x, =y/h,
X, = z/h) and contain [3]:

— Equations of Hooke’s law:

M, =D, (%waﬁ]mole, M, =D, (%* V%]+7\.0R1,

X, X, X, X,
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A 0 A, 0
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ay ay
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1 0[W2 (ax aXZJ] ()
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2 1 Voo 28 1 7 (1-v)/E . E
Dy=Z—= M=—"E, Ay= =, Q=C——F—— . E=—.
3 1-v I15E/G 51-v—2(V)E E

E, E’ — Young’s modulus for directions in the plane of isotropy and perpendicular to it;
v, V', G, G” —Poisson’s ratio and shear modulus corresponding to these directions;
— Equilibrium equations

oM, E) BM oH
o =0
8x1 BXZ —Qpt ax2+ax1 Qo+ 10, =0,
9Qy , 9y | =o,aQ_‘2+aQ—22—3R1+q5=o, #)

axl axz A aXl aXZ

where m, =m;3(x,,x,), m, =m;8(x,,x,), q, = 4;8(x,,x,), 45 = q:8(x,.%,), 8(x,,%,) — two-
dimensional Dirac delta function [10].
Moments in (1) are defined up to a value of Eh’, and generalized forces —up to Eh.

3. 2. Construction of the fundamental solution for equations of statics in the {1,2}-ap-
proximation

Substituting the equations of Hooke’s law (1) in the equilibrium equations (2) and applying
the Fourier transform to the resulting system, we obtain a system of linear algebraic equations in
the space of transformants (E_,l ,&2)

- _ o o m
(A & + N 0&2 +A )'Yl +A,8.E,7, — A& W, +ALIEW, = 2_71t’

s

y : ~ . ~ m
ALET + ( 5 D&/ +A,E +A )Yz — A&, W, +ALIE,W, = 2—;,

. - - B 1 B q
AOI(E"yl +§2’Y2)+Aopzwo _ﬁAopzwz = ﬁa
~Asi(&7 +8:.12) - IAPW+3Q+lAp2v~v:q_; )
TR A 212 14 0T Mo 2=

where

A, =D, += XZQ A, A+21D A, XQ+114A

Solving this system, we can find generalized displacements in the space of transformants:
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where aj =——0 bl =——2— p’ =& +&]; (§,§,) — coordinates of the point in the

9A,A, D,(1-v)

space of transformants.

Applying the Fourier transform to equations (1) and substituting transformants of gen-
eralized displacements (4) in these relations, we can find the expression for the generalized
moments and forces. Then, for these expressions in the space of transformants using the inver-

sion formula for the two-dimensional Fourier integral transform [11], we get the originals of
internal force factors
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where G, , (rz) — special G-function [12].
When the cyclic change of variables in (6) (x, on x, and x, on X,), we obtain relevant
@, (x,.x,) (i= 1,103/.

4. Investigation results for behavior of the stress-strain state components depending on
the elastic constants of transversely isotropic material and their discussion

To investigation of the effect of the elastic constants on the stress-strain state components of
transversely isotropic plates under concentrated force effects we set m; =m, =q, =q; =1.
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The results of calculations are presented in the dimensionless Cartesian coordinate system
X,, X,. Graphs are built along the x-axis (x, =0).

Numerical calculations are performed for two kinds of plate material: isotropic (E™ =1;
E/G’=2,6; v=Vv'=0,3) and transversely isotropic (E" =5; v=0,3; v/ =0,07). Values for the
shear compliance of this material E/G’ are consistent with such values: 40, 80, 120. These values
are given for a transversely isotropic material in the paper [3].

Fig. 1-3 demonstrate dependence of Q,,, Q,,, R, on the parameter of the shear compliance
E/G’. The green curve corresponds to a value of 2.6, and the red, blue and black curves — values
of 40, 80 and 120, respectively.

On these graphs (Fig. 1-3) it can be seen that with increasing shear compliance param-
eter E/G’, considered Q,,, Q,,, R, are increasing in magnitude.

Xu
Qi 02 04 0.6 0.8 1
10° °

1,51

Fig. 1. The shear force Q,,: green curve — the parameter of shear compliance corresponds to a
value of 2.6; red, blue and black curves — the values of 40, 80 and 120, respectively; x, — the x axis
Qo Qo
10° Eh
where E — Young’s modulus, h — the half thickness of the plate, 10° — the scaling factor)

(x, =x/h, where h — the half thickness of the plate); — Y-axis (Q,, =

E

Q12

10 6> X1

0

0,5

Fig. 2. The shear force Q,,: green curve — the parameter of shear compliance corresponds to a
value of 2.6; red, blue and black curves — the values of 40, 80 and 120, respectively; x, — the x axis

(x, =x/h, where h — the half thickness of the plate); Q—l — Y-axis (Q,, = %

0
10°
where E — Young’s modulus, h — the half thickness of the plate, 10° — the scaling factor)

b
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Fig. 3. The generalized force R;: green curve — the parameter of shear compliance corresponds to
a value of 2.6; red, blue and black curves — the values of 40, 80 and 120, respectively;

R
x, —the x axis (x, = x/h, where h — the half thickness of the plate); IRT; —Y-axis (R, = E_lll’

where E — Young’s modulus, h — the half thickness of the plate, 10° — the scaling factor)

Estimates allow investigating the behavior of the generalized forces, depending on the value
of the shear compliance.

5. Conclusions

Thus, our studies suggest that in the calculation of thin-walled elements of constructions
made of advanced composite materials on concentrated forces it is necessary to use the refined
theory of plates and shells. These theories allow estimating the phenomena associated with taking
into account the transverse shear and compression.

The practical significance of the results is the ability to use them in calculations related
to the design and definition of the operating parameters of thin-walled elements of constructions
containing the stress concentrator. The results can be used in scientific research institutes, design
organizations and other research institutions involved in the calculations of thin-walled elements
of constructions.
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