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1 Introduction

The first two operational runs of proton-proton collisions at the LHC have produced a large

amount of high-precision data on hard-scattering final states. Similar data are expected

in the next phases of the LHC. The high-precision LHC data demand for a corresponding

accuracy in theoretical predictions. Such theoretical accuracy is required both to test our

present understanding of the Standard Model and to discover and investigate (probably

tiny) signals of new physics phenomena.

In the context of QCD, one way to increase the theoretical accuracy consists in perform-

ing calculations at higher perturbative orders in the QCD coupling αS. The LHC physics

program has moved the present frontier of perturbative calculations to the next-to-next-to-

next-to-leading order (N3LO). During the last few years, much effort has been devoted to

high-order perturbative computations and much progress has been already achieved at the

N3LO frontier. We limit ourselves to explicitly mentioning few examples among very many

others. The total (partonic) cross section for Higgs boson production in hadron-hadron

collisions is known up to N3LO [1–3]. Substantial advances have been achieved toward the

complete N3LO calculation [4, 5] of the evolution kernels of the parton distribution func-

tions. The structure of the infrared (IR) divergences of multileg QCD scattering amplitudes

has been explicitly computed at the three-loop level [6].

A relevant feature of QCD scattering amplitudes is the presence of singularities in soft

and collinear regions of the phase space, and the corresponding presence of IR divergences

in virtual radiative corrections at the loop level. The theoretical study of these aspects of

the scattering amplitudes is relevant ‘per se’ in QCD and, more generally, in perturbative

gauge field theories. We know that soft/collinear singularities and IR divergences have a

process-independent structure, and they are controlled by universal factorization formulae.

In the computation of physical observables, phase space and loop singularities can-

cel between themselves, but much technical effort is required to achieve the cancellations,

and the effort highly increases at higher perturbative orders. The explicit knowledge of

soft/collinear factorization of scattering amplitudes at O(αS) has been essential to de-

vise fully general (observable-independent and process-independent) methods to carry out

next-to-leading order (NLO) QCD calculations (see, e.g., refs. [7–10]). Analogously, the

knowledge of soft/collinear factorization at O(α2
S) [11–21] is exploited to develop methods

(see, e.g., a list of references in section 1.2.4 of ref. [22]) at the next-to-next-to-leading

order (NNLO). Soft/collinear factorization formulae at O(α3
S) can be used in the context

of N3LO calculations.

The perturbative radiative corrections to hard-scattering observables in kinematical

regions close to the exclusive boundary of the phase space are affected by large logarithmic

contributions. These large contributions have to be computed at sufficiently-high per-

turbative orders and, possibly, resummed to all orders (see, e.g., the list of references in

refs. [23, 24]). The large logarithms arise from the unbalance between loop and real radia-

tive corrections in the soft and collinear regions of the phase space. The explicit knowledge

of soft/collinear factorization at O(α3
S) gives information that is necessary in resummed

calculations at the next-to-next-to-next-to-leading logarithmic accuracy. Independently of
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resummation, the explicit calculation of large logarithmic terms can be used to obtain ap-

proximated fixed-order results. Indeed, we note that the first approximated N3LO result

for Higgs boson production [1] was obtained by computing soft (and virtual) contributions

at relative order α3
S. We also recall that soft/collinear factorization of scattering ampli-

tudes provides the theoretical basis of parton shower algorithms for Monte Carlo event

generators (see, e.g., ref. [25]) for high-energy particle collisions.

This paper is devoted to soft emission in QCD scattering amplitudes at O(α3
S). More

specifically, we consider triple soft-gluon radiation at the tree level in QCD hard scattering.

Partial results on triple soft-gluon radiation are available in the literature [26–32] and we

comment on them throughout the paper. These results are limited to specific processes

and to energy ordering approximations.

In this paper we use soft factorization of QCD scattering amplitudes and we explicitly

compute the singular factor due to radiation of three soft gluons. The three soft gluons

have ‘arbitrary’ energies (i.e., there are no restrictions on their relative energies) and they

are radiated in a generic multiparton hard-scattering process with massless and massive

partons. We discuss several features of triple soft-gluon radiation at the level of both

scattering amplitudes and squared amplitudes. Single and double soft-gluon radiation leads

to colour dipole correlations between the hard partons in the squared amplitude. We find

that triple soft-gluon radiation also produces non-abelian colour quadrupole correlations

between the hard partons in generic processes with three or more hard partons. We apply

in details our results to processes with two and three hard partons, and we also highlight

some all-order features of soft-gluon radiation in these processes.

Exploiting our analysis of triple soft-gluon radiation, we also present some results on

the tree-level radiation of four soft gluons in scattering processes with two hard partons. In

particular, we discuss the violation (and generalization) of Casimir scaling between quark

and gluon hard scattering at O(α4
S).

The outline of the paper is as follows. In section 2 we introduce our notation, and

we recall the soft-gluon factorization formula for scattering amplitudes and the known

results on the tree-level currents for single and double soft-gluon emission. In section 3 we

derive the tree-level current for triple soft-gluon radiation, and we present its expression

in colour space in terms of irreducible correlations that are maximally non-abelian. We

also compute the corresponding colour stripped current [30] for colour-ordered multigluon

amplitudes. In section 4 we consider squared amplitudes, and we recall the known results

for the one-gluon and two-gluon squared currents. The tree-level squared current for triple

soft-gluon radiation is presented in section 5. We express the result in terms of irreducible

correlations that are controlled by colour dipole and colour quadrupole interactions. We

derive some simplified expressions that are valid within energy ordering approximations.

In section 5.4 we discuss the collinear singularities of the three-gluon squared current. Soft-

gluon radiation in the specific processes with three and two hard partons is considered in

section 6 and 7, respectively. In section 6.1 we consider soft-gluon emission at arbitrary

loop orders and we discuss the simplified colour structure for processes with three hard

partons. Section 6.2 is devoted to soft radiation at the tree level, and we present the

explicit results of the squared currents for emission of one, two and three soft gluons. We
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also derive a results that is valid for emission of an arbitrary number of soft gluons with

strong ordering in energy. In section 7.1 we discuss some all-order features of soft-gluon

radiation from two hard partons. The squared currents for tree-level emission of one,

two and three soft gluons are presented in section 7.2. Section 7.3 is devoted to present

some results on tree-level radiation of four soft gluons from two hard partons. We obtain

the general colour structure of the squared current, and we explicitly compute the four-

gluon irreducible correlation by using some energy ordering approximations. We discuss

the colour monster contribution [31], which is suppressed by a relative factor of O(1/N2
c )

in the limit of a large number Nc of colours, and its relation with the violation (and

generalization) of quadratic Casimir scaling at O(α4
S). We also explicitly compute the first

correction to the multi-eikonal formula [26] for multiple soft-gluon radiation from two hard

gluons. In section 8 we present the exponentiation structure of the generating functional

for tree-level soft-gluon radiation in generic hard-scattering processes. A brief summary of

our results is presented in section 9. In appendix A we present a formal proof of current

conservation for the emission of an arbitrary number of soft gluons. In appendix B we

discuss the properties of the colour quadrupole operators and their colour algebra. The

appendix C includes the large explicit expressions of the dipole and quadrupole correlation

functions for triple soft-gluon radiation.

2 Soft factorization and soft-gluon currents

In this section we introduce our notation. Then we briefly recall the factorization properties

of scattering amplitudes in the soft limit and the known results for the emission of one and

two soft gluons at the tree level. The new results on the soft current for triple gluon

emission at the tree level are presented and discussed in section 3.

2.1 Soft factorization of scattering amplitudes

We consider the amplitudeM of a generic scattering process whose external particles (the

external legs of M) are QCD partons (quarks, antiquarks and gluons) and, possibly, addi-

tional non-QCD particles (i.e. partons with no colour such as leptons, photons, electroweak

vector bosons, Higgs bosons and so forth). As is well known, the non-QCD particles in

M play no relevant active role in the context of soft-gluon factorization. Throughout the

paper we make no distinctions between massless and massive quarks and antiquarks, and

we treat them on equal footing. Soft-gluon factorization can also be extended in a straight-

forward way to scattering amplitudes with other types of particles that carry QCD colour

charge (such as, for instance, squarks and gluinos in supersymmetric theories).

The external QCD partons are on-shell with physical spin polarizations (thus, M in-

cludes the corresponding spin wave functions). All external particles of M are treated as

‘outgoing’ particles, with corresponding outgoing momenta and quantum numbers (e.g.,

colour and spin). Note, however, that we do no restrict our treatment to scattering pro-

cesses with physical partons in the final state. In particular, the time component p0 (i.e.,

the ‘energy’ E = p0) of the outgoing momentum pµ (µ = 0, 1, . . . , d − 1 in d space-time

dimensions) of an external particle is not (necessarily) positive definite. Different types of

– 4 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
8

physical processes with initial- and final-state particles are described by considering differ-

ent kinematical regions of the parton momenta and by simply applying crossing symmetry

relations to the spin wave functions and quantum numbers of the same scattering ampli-

tude M. According to our definition, an outgoing particle A in M describes two different

physical processes: the production of particle A in the final state if its momentum has pos-

itive ‘energy’, and the collision of the antiparticle A in the initial state if the momentum

has negative ‘energy’.

The scattering amplitudeM can be evaluated perturbatively as a power series expan-

sion (i.e., loop expansion) in the QCD coupling gS, with αS = g2
S/(4π) (and other couplings,

such as electroweak couplings, of the theory). The loop expansion produces IR and ultra-

violet (UV) divergences in the physical four-dimensional Minkowsky space. We regularize

the divergences by applying dimensional regularization through analytic continuation in

d = 4 − 2ε space-time dimensions. Throughout the paper we always use (unless other-

wise explicitly stated) the customary procedure of conventional dimensional regularization

(CDR) [33–36] with d− 2 physical spin polarization states for on-shell gluons.

Soft-gluon radiation produces colour correlations. To take into account the colour

structure we use the colour (+ spin) space formalism of refs. [9, 10]. The scattering ampli-

tude Mc1c2...
σ1σ2... depends on the colour (ci) and spin (σi) indices of its external-leg partons.

This dependence is embodied in a vector |M〉 in colour+spin space through the definition

(notation)

Mc1c2...
σ1σ2... ≡

(
〈c1, c2, · · · | ⊗ 〈σ1, σ2, · · · |

)
|M〉 , (2.1)

where { |c1, c2, · · ·〉⊗|σ1, σ2, · · ·〉} = { |c1, σ1; c2, σ2, · · ·〉} is an orthonormal basis of abstract

vectors in colour+spin space.

In colour space the colour correlations produced by soft-gluon emission are represented

by associating a colour charge operator T i to the emission of a gluon from each parton i. If

the emitted gluon has colour index a (a = 1, . . . , N2
c −1, for SU(Nc) QCD with Nc colours)

in the adjoint representation, the colour charge operator is T i ≡ 〈a|T ai and its action onto

the colour space is defined by

〈a, c1, · · · , ci, · · · , cm|T i |b1, · · · , bi, · · · , bm〉 ≡ δc1b1 · · · (T a)cibi · · · δcmbm , (2.2)

where the explicit form of the colour matrices T acibi depends on the colour representation

of the parton i, and we have

(T a)bc = if bac (adjoint representation) if i is a gluon,

(T a)αβ = taαβ (fundamental representation with α, β = 1, . . . , Nc) if i is a quark,

(T a)αβ = −taβα if i is an antiquark.

We also use the notation T ai T
a
k ≡ T i · T k and T 2

i = Ci, where Ci is the quadratic Casimir

coefficient of the colour representation, with the normalization Ci = CA = Nc if i is a gluon

and Ci = CF = (N2
c − 1)/(2Nc) if i is a quark or antiquark.

Note that each ‘amplitude vector’ |M〉 is an overall colour-singlet state. Therefore,

colour conservation is simply expressed by the relation∑
i

T i |M〉 = 0 , (2.3)
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where the sum extends over all the external-leg partons i of the amplitude M. For subse-

quent use, we also introduce the shorthand notation∑
i

T i cs
= 0 , (2.4)

where the subscript CS in the symbol
cs
= means that the equality between the terms in the

left-hand and right-hand sides of the equation is valid if these (colour operator) terms act

(either on the left or on the right) onto colour-singlet states.

We are interested in the behaviour of the scattering amplitude M in the kinematical

configuration where one or more of the momenta of the external-leg gluons become soft

(formally vanish). To make the notation more explicit, the soft-gluon momenta are denoted

by qµ` (` = 1, . . . , N , and N is the total number of soft gluons), while the momenta of the

hard partons in M are denoted by pµi . In this kinematical configuration, M({q`}, {pi})
becomes singular. The dominant singular behaviour is given by the following soft-gluon

factorization formula in colour space:

|M({q`}, {pi})〉 ' (gS µ
ε
0)NJ(q1, · · · , qN ) |M({pi})〉 , (2.5)

where µ0 is the dimensional regularization scale. HereM({pi}) is the scattering amplitude

that is obtained from the original amplitude M({q`}, {pi}) by simply removing the soft-

gluon external legs. The factor J is the soft current for multigluon radiation from the

scattering amplitude.

At the formal level the soft behaviour of M({q`}, {pi}) is specified by performing an

overall rescaling of all soft-gluon momenta as q` → ξql (the rescaling parameter ξ is the same

for each soft momentum q`) and by considering the limit ξ → 0. In this limit, the amplitude

is singular and it behaves as (1/ξ)N (modulo powers of ln ξ from loop corrections). This

dominant singular behaviour is embodied in the soft current J on the right-hand side

of eq. (2.5). In this equation the symbol ' means that on the right-hand side we have

neglected contributions that are less singular than (1/ξ)N in the limit ξ → 0.

The soft current J(q1, · · · , qN ) in eq. (2.5) depends on the momenta, colours and spins

of both the soft and hard partons in the scattering amplitude (although, the hard-parton

dependence is not explicitly denoted in the argument of J). However this dependence

entirely follows from the external-leg content of M, and the soft current is completely

independent of the internal structure of the scattering amplitude. In particular, we remark

that the factorization in eq. (2.5) is valid [11, 12, 37] at arbitrary orders in the loop expan-

sion of the scattering amplitude. Correspondingly, we have J = J (0) + J (1) + . . . , where

J (n) is the contribution to J at the n-th loop accuracy. In most of the following sections

of this paper we limit ourselves to considering only the soft current J (0) at the tree level1

and, for the sake of simplicity, we simply denotes it by J (removing the explicit superscript

(0)). Owing to the all-order validity of eq. (2.5), the tree-level soft current is universal,

since it equally contributes to soft-gluon factorization of scattering amplitudes M(0) at the

tree level and M(n) at the n-th loop order.

1Throughout the paper we explicitly remark on features and results (such as eq. (2.5)) that are valid at

arbitrary orders in the loop expansion for both the soft current and the scattering amplitudes.
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The all-loop soft current J in eq. (2.5) is an operator that acts from the colour+spin

space of M({pi}) to the enlarged space of M({q`}, {pi}). Owing to Bose symmetry, the

multi-gluon current J(q1, · · · , qN ) has a fully symmetric dependence on the N soft gluons.

The dependence on the colour (a`) and spin (σ`) indices of the soft gluons can be made

explicit by projecting J onto a basis vector:

Ja1...aNσ1...σN
(q1, · · · , qN ) = 〈a1, σ1; · · · ; aN , σN | J(q1, · · · , qN )

≡ εµ1(σ1) · · · ε
µN
(σN ) J

a1...aN
µ1...µN

(q1, · · · , qN ) , (2.6)

where εµ`(σ`)
= εµ`(σ`)

(q`) is the physical polarization vector of the gluon with momentum

q` and spin component σ`. The current Ja1...aNµ1...µN
is still an operator in the space of the

hard partons. Since soft-gluon radiation does not change the spin polarization state of the

radiating parton, the current is simply proportional to the unit matrix in the spin space

of the hard partons. QCD radiation, no matter how soft it is, always carries away colour,

and the soft current produces correlations in the colour space of the hard partons. These

colour correlations are embodies in the dependence of Ja1...aNµ1...µN
on the colour charges T i of

the hard partons.

Owing to gauge invariance of the amplitude M({q`}, {pi}), the soft-gluon current J

fulfils the following relation:

qµ``

∏
`′ 6=`

ε
µ`′
(σ`′ )

(q`′)

 Ja1...a`...aNµ1...µ`...µN
(q1, · · · , qN )

cs
= 0 , (2.7)

which can be regarded as an on-shell non-abelian Ward identity. We can also consider

current conservation in the following abelian-like form:

qµ`` Ja1...a`...aNµ1...µ`...µN
(q1, · · · , qN )

cs
= 0 (` = 1, . . . , N) . (2.8)

In the left-hand side of eq. (2.8), the current is not multiplied by the physical polarization

vectors of the N−1 gluons with `′ 6= ` and, therefore, eq. (2.8) represents a stronger version

of gauge invariance in the multigluon case with N ≥ 2 gluons (eq. (2.8) implies eq. (2.7),

whereas the opposite is not true). Owing to the arbitrariness of the physical polarization

vectors and to colour conservation, the multigluon current J of eq. (2.5) con be expressed

in different forms. We state that it is possible to find an explicit expression of J that fulfils

current conservation as in eq. (2.8). This statement is confirmed by the results of ref. [13]

for N = 2 soft gluons and by the current that we present in section 3 for N = 3 soft

gluons. A general (e.g., to all orders in the loop expansion) and formal proof of eq. (2.8)

is presented in appendix A.

2.2 Tree-level current: single and double gluon emission

The well-known [26] tree-level current J(q) for emission of a single soft gluon with momen-

tum q is

Ja,µ(q) =
∑
i

T ai
pµi
pi · q

. (2.9)
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This expression can be simply obtained by inserting the soft gluon onto the external lines

of M({pi}) and by using vertices and propagators in the eikonal approximation.

From the expression in eq. (2.9) we have

qµ J
a,µ(q) =

∑
i

T ai , (2.10)

and, therefore, by using colour conservation as in eq. (2.3), the current conservation relation

in eq. (2.8) (or eq. (2.7)) is directly fulfilled.

The general expression of the current for double soft-gluon radiation at the tree level

was presented in ref. [13]. The current can be expressed in various (though equivalent)

forms. We use the form in eq. (102) of ref. [13] and we write the current as follows:

Ja1a2µ1µ2(q1, q2) =
1

2

{
Ja1µ1 (q1) , Ja2µ2 (q2)

}
+ Γ(2)a1a2

µ1µ2 (q1, q2) , (2.11)

where the first contribution on the right-hand side is the colour commutator of the single-

gluon currents of eq. (2.9). The second contribution is

Γ(2)a1a2
µ1µ2 (q1, q2) = ifa1a2 b

∑
i

T bi γi,µ1µ2(q1, q2) , (2.12)

where

γµ1µ2i (q1, q2) =
1

pi · (q1 + q2)

{
pµ1i p

µ2
i

2 pi · q1
+

1

q1 · q2

(
pµ1i q

µ2
1 +

1

2
gµ1µ2pi · q2

)}
−
(
1↔ 2

)
,

(2.13)

and the notation (1↔ 2) denotes the exchange of the two gluons. Therefore, the kinemat-

ical function γµ1µ2i (q1, q2) = −γµ2µ1i (q2, q1) is antisymmetric with respect to the exchange

of the two gluons, whereas Γ
(2)a1a2
µ1µ2 (q1, q2) turns out to be symmetric because of the anti-

symmetry of its colour coefficient (fa1a2 b = −fa2a1 b).
The two-gluon current in eqs. (2.11)–(2.13) fulfils the current conservation relation in

eq. (2.8) (see eqs. (104) and (105) in ref. [13]).

The first term on the right-hand side of eq. (2.11) is the only contribution that survives

in the abelian case (double soft-photon emission), where it reduces itself to the product of

two independent single-emission currents. In the two-gluon case, the current embodies the

intrinsically non-abelian term Γ(2), which produces two-gluon correlations. Therefore, the

form of the two-gluon current in the right-hand side of eq. (2.11) can formally be regarded

as an expression in terms of an independent-emission contribution and an irreducible-

correlation contribution. We note, however, that the term {Ja1(q1), Ja1(q2)} does not lead

to independent emission from a physical viewpoint. Indeed, the colour charges in the single-

gluon currents Ja`(q`) produce colour-correlations with the hard partons in the scattering

amplitude M({pi} and, moreover, the currents do not commute ([Ja1(q1), Ja1(q2)] 6= 0).

As described in ref. [13], the result in eqs. (2.11)–(2.13) can be obtained by inserting

the two gluons with momenta q1 and q2 onto the external legs of M({pi}). The relevant

Feynman diagrams are presented in figure 1. Here the coupling of the soft gluons to the

hard partons i and k is treated by using the eikonal approximation, whereas the soft-gluon

propagator and vertex (figure 1C) are treated without introducing any soft approximation.
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Figure 1. Diagrams contributing to the two-gluon soft current.

3 Tree-level soft current for triple gluon emission

We compute the tree-level current J(q1, q2, q3) for triple gluon emission by using the same

method as used in ref. [13] to obtain J(q1, q2). The three gluons are inserted onto the

external legs of M({pi}), and the relevant Feynman diagrams are shown in figure 2. Each

of the soft gluons is coupled to hard-parton external lines (i, k, l) by using the eikonal ap-

proximation. The soft-gluon propagators and the triple and quadruple soft-gluon vertices

(figures 2C, 2E, 2F, 2G, 2H) have to be treated exactly, without introducing any soft ap-

proximation. The computation of each contributing diagram in figure 2 is straightforward,

although the complete contribution of all the diagrams is algebraically cumbersome. The

results of our computation (which were first illustrated in ref. [38]) are presented below in

eqs. (3.1), (3.4) and (3.7). We note that the propagators of off-shell (internal-line) gluons

are gauge dependent and, therefore, a gauge choice is required to evaluate the diagrams

in figure 2. We have computed the current by using both axial and covariant gauges and

we have explicitly checked that the final result for the current J(q1, q2, q3) is gauge in-

dependent. More precisely, by using colour conservation as in eq. (2.3) (i.e., neglecting

contributions that vanish because of colour conservation) we are able (independently of

the gauge choice) to express the current J(q1, q2, q3) in the explicit form of eqs. (3.1), (3.4)

and (3.7).

The tree-level current J(q1, q2, q3) can be expressed in different (though equivalent)

forms. We write our result as follows:

Ja1a2a3µ1µ2µ3(q1, q2, q3) =
(
Ja1µ1 (q1) Ja2µ2 (q2) Ja3µ3 (q3)

)
sym

+
[(
Ja1µ1 (q1) Γ(2) a2a3

µ2µ3 (q2, q3)
)

sym
+ (1↔ 2) + (1↔ 3)

]
(3.1)

+Γ(3) a1a2a3
µ1µ2µ3 (q1, q2, q3) ,

where we have introduced the symbol (. . . )sym to denote symmetrized products. The

symmetrized products of two and three generic colour operators OI are defined as(
O1O2

)
sym
≡ 1

2

(
O1O2 +O2O1

)
=

1

2
{O1, O2} , (3.2)(

O1O2O3

)
sym
≡ 1

3!

(
O1O2O3 + perms. {1, 2, 3}

)
, (3.3)

where the right-hand side of eq. (3.3) includes the sum over the 3! = 6 permutations of

O1, O2 and O3.
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Figure 2. Diagrams contributing to the three-gluon soft current.

The right-hand side of eq. (3.1) has the structure of an expansion in multigluon ir-

reducible correlations. This structure generalizes eq. (2.11) to the case of N = 3 soft

gluons.

The term in the first line on the right-hand side of eq. (3.1) represents the ‘independent’

(though colour-correlated) emission of three soft gluons, and each gluon contributes through

the single-emission current Jaµ(q) in eq. (2.9). This term contains products of three colour

charges (T a1i T a2k T a3l ) of the hard partons inM({pi}) and a related kinematical dependence

on the three hard-parton momenta (pi, pk, pl). Since multiple soft-photon radiation is com-

pletely uncorrelated, this is the only term that contributes to the current in the abelian case

(i.e., the current for triple soft-photon radiation is simply J(q1, q2, q3) = J(q1)J(q2)J(q3)).

The other terms in the right-hand side of eq. (3.1) are strictly non-abelian.

The contribution in the second line on the right-hand side of eq. (3.1) is given in terms

of the ‘independent’ emission of a single gluon (e.g., the current Ja1µ1 (q1)) and the irreducible

correlated emission of the other two gluons (e.g., the factor Γ
(2) a2a3
µ2µ3 (q2, q3)). This correlated

emission is expressed through the correlation term Γ(2) in eqs. (2.11) and (2.12). By

inspection of the expression in eq. (2.12), we see that the second line of eq. (3.1) involves

non-abelian correlations with two hard partons, with ensuing colour charge structures of

the type fa2a3c T ck T
a1
i and a related kinematical dependence on the momenta pk and pi

of the two hard partons. Note that the contribution in the second line on the right-hand

side of eq. (3.1) is completely symmetric with respect to any permutations of the three soft

gluons. This follows from the symmetry of Γ(2)(q2, q3) with respect to the exchange of the

two gluons with momenta q2 and q3 and from the addition of the two permutations with

the exchange (1↔ 2) and (1↔ 3) in the square-bracket term.
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The contribution in the third line on the right-hand side of eq. (3.1) defines the ‘irre-

ducible’ three-gluon correlation Γ(3)(q1, q2, q3). We find the following result:

Γ(3) a1a2a3
µ1µ2µ3 =

∑
i

T bi f
a1a2,a3b γi, µ1µ2µ3(q1, q2; q3) + (3↔ 1) + (3↔ 2) , (3.4)

where the kinematical function γi(q1, q2; q3) is given in eq. (3.7) and we have defined the

product (contraction) of two structure constant as

fab,cd ≡ fabsf scd . (3.5)

The kinematical function γi(q1, q2; q3) is antisymmetric under the exchange of the two

gluons with momenta q1 and q2, and the colour coefficient fa1a2,a3b is also antisymmetric

under the exchange of the colour indices a1 and a2 of these two gluons. Therefore, the

first contribution on the right-hand side of eq. (3.4) is symmetric with respect to the

exchange (1↔ 2), and the addition of the two permutations with (3 ↔ 1) and (3↔ 2)

makes Γ(3)(q1, q2, q3) completely symmetric with respect to any permutations of the three

soft gluons.

The product of two structure constants fulfils the customary Jacobi identity:

f ba1,a2a3 + f ba3,a1a2 + f ba2,a3a1 = 0 . (3.6)

Therefore, the contributions in the three permutations on the right-hand side of eq. (3.4)

are not linearly independent. This implies that Γ(3)(q1, q2, q3) can be rewritten in different

ways. In particular, one can choose two structure constant coefficients (e.g., fa1a2,a3b

and fa3a1,a2b) and express the right-hand side of eq. (3.4) as sum of only two linearly

independent terms.

We note that the expression of Γ(3)(q1, q2, q3) in eq. (3.4) is given as a sum (
∑

i)

of contributions which involve colour and kinematical correlations with only one hard

parton at a time. The colour correlations are due to factors (e.g., fa1a2,a3b T bi ) that have

a linear dependence on the colour charge T i of the hard parton. Notably, the three-gluon

correlation Γ(3) is maximally non-abelian, since it is proportional to the product of two

structure constants.

The kinematical function γi(q1, q2; q3) of eq. (3.4) is definitely more complex than the

corresponding function γi(q1, q2) of eq. (2.13) for the two-gluon correlation Γ(2)(q1, q2).

We find

γµ1µ2µ3i (q1, q2; q3) =
1

pi · q123

{
1

12

pµ1i p
µ2
i p

µ3
i pi · (3q3 − q12)

pi · q2 pi · q3 pi · q12

+
pµ3i pi · (q3 − q12)

pi · q3 pi · q12 q2
12

(
1

2
gµ1µ2 pi · q1 + pµ2i qµ12

)
+

1

q2
123 q

2
12

[
q2

12 p
µ1
i gµ2µ3 + 2qµ12 gµ2µ3 pi · (q3 − q12) + 4 qµ13 qµ21 pµ3i

+ 4 qµ12 pµ2i qµ312 + gµ1µ2
(
q2

23 p
µ3
i + qµ31 pi · (q13 − 3q2)

)]}
− (1↔ 2) , (3.7)
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where we have defined the soft momenta

qµ``′ ≡ q
µ
` + qµ`′ , qµ123 ≡ q

µ
1 + qµ2 + qµ3 . (3.8)

We note that the three-gluon current J(q1, q2, q3) in eqs. (3.1), (3.4) and (3.7) ful-

fils the current conservation relation of eq. (2.8). This can be checked by performing a

straightforward algebraic calculation [38].

Multiple soft-gluon radiation in tree-level scattering amplitudes was studied by Berends

and Giele in ref. [30]. The authors of ref. [30] consider scattering amplitudes whose external

legs are gluons and, possibly, a quark-antiquark pair with or without an additional vector

boson. The colour structure of this class of tree-level amplitudes can be properly expressed

in terms of colourless (though colour-ordered) subamplitudes. In the soft limit, the colour-

ordered subamplitudes fulfil a factorization formula that involves an N -gluon soft factor

si 12···N k (see, e.g., eq. (3.18) in ref. [30]). The subscripts in the soft factor si 1···N k refer

to the momenta q1, · · · , qN of the colour-ordered soft gluons {1 · · ·N} and the momenta

pi and pk of the their colour-connected hard partons i and j. The single-gluon (si 1 k) and

double-gluon (si 12 k) soft factors were explicitly computed in ref. [30]. In the case of N ≥ 3

soft gluons, Berends and Giele derived [30] a detailed iterative procedure to compute the

soft factor si 1···N k. We have applied the method of ref. [30] to explicitly compute the

triple-gluon soft factor si 123 k, and the result of our computation is presented below in

eq. (3.10).

The soft-gluon factorization formula in eq. (2.5) is valid to arbitrary loop accuracy and

it is also valid for arbitrary scattering amplitudes, since the colour space formulation does

not require the ‘a priori’ specification of the colour structure of the amplitude. In particu-

lar, eq. (2.5) can be applied to the tree-level scattering amplitudes that are considered in

ref. [30], upon implementation of the corresponding decomposition in colour-ordered sub-

amplitudes. This procedure can be used to obtain relations between the soft-gluon current

J(q1, · · · , qN ) and the soft factors si 1···N k of ref. [30]. The relation for N = 1 and N = 2

soft gluons was discussed in ref. [13]. We have applied the procedure to triple soft-gluon

radiation, and we obtain an expression for si 123 k that exactly agrees with the result that

we have independently derived by using the iterative procedure of ref. [30].

To present the explicit result for the soft factor si 123 k, we express it in terms of the

kinematical functions γµ1µ2i (q1, q2) and γµ1µ2µ3i (q1, q2; q3) (see eqs. (2.13) and (3.7)) and of

the single-particle eikonal factor jµ`i (q`),

jµ`i (q`) ≡
pµ`i
pi · q`

. (3.9)

We find

si 123 k = ε(σ1)(1) ε(σ2)(2) ε(σ3)(3)

{
γi(1, 2; 3) + γi(3, 2; 1)− 1

2
[ γi(1, 2) ji(3) + ji(1) γi(2, 3) ]

+ γi(1, 2) jk(3) +
1

2
ji(1) ji(2) jk(3)− 1

6
ji(1) ji(2) ji(3)

}
−
(

1↔ 3

i↔ k

)
, (3.10)
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where we have used a shorthand notation to denote the dependence on the soft mo-

menta (q`) and contractions of the corresponding Lorentz indices (µ`). For any functions

fµ1µ2µ3(q1, q2; q3) and gµ1µ2µ3(q1, q2; q3) we have defined

fµ1µ2µ3(q1, q2, q3) gµ1µ2µ3(q1, q2, q3) ≡ f(1, 2, 3) g(1, 2, 3) . (3.11)

Thus, for instance, we have

ε(1) ε(2) ε(3) γi(1, 2) jk(3) = εµ1(q1) εµ2(q2) εµ3(q3) γµ1µ2i (q1, q2) jµ3k (q3) . (3.12)

For the sake of completeness, we also report the expressions of the single-gluon and

double-gluon soft factors si 1 k and si 12 k. They are [30]

si 1 k = ε(σ1)(1) ( jk(1)− ji(2)) , (3.13)

si 12 k = ε(σ1)(1) ε(σ2)(2)

{
γi(1, 2) +

1

2
[ji(1) ji(2)− ji(1) jk(2)]

}
+

(
1↔ 2

i↔ k

)
. (3.14)

where we have used the same shorthand notation as in eq. (3.10).

We note that ref. [30] considers scattering amplitudes with massless hard partons in

the external legs (specifically, a massless quark and antiquark). The results for the soft

function si 12···N k that we have derived and reported in eqs. (3.10), (3.13) and (3.14) are

nonetheless valid for both massless and massive hard momenta pi and pk.

As specified in section 2.1, throughout the paper we consider scattering amplitudes

that are computed within dimensional regularization in d = 4− 2ε space-time dimensions,

and we use the customary CDR procedure [33–36] with d − 2 spin polarization states

for on-shell gluons. Dimensional regularization leads to the overall factor (gS µ
ε
0)N in the

soft-gluon factorization formula (2.5), and it also leads to a regularization dependence of

the soft current J(q1, · · · , qN ) through the soft-gluon spin vectors εµ`(σ`)
(q`) in eq. (2.6).

We note, however, that the expressions of the tree-level currents Ja1...aNµ1...µN
(q1, · · · , qN ) in

section 2.2 (N = 1, 2) and section 3 (N = 3) do not have any explicit dependence on

ε. In particular, these tree-level expressions of the soft currents Ja1...aNµ1...µN
(q1, · · · , qN ) are

valid within CDR, and they are equally valid in versions of dimensional regularizations

(see, e.g., ref. [39]) that use 2 spin polarization states for on-shell gluons (and, possibly,

four-dimensional hard-parton momenta).

4 Squared amplitudes and currents

The structure of this section parallels that of section 2. We first present a brief general

discussion on soft-gluon factorization for squared amplitudes. Then we recall the known

results [13] on the squared currents for single and double gluon emission at the tree level.

Our results on the squared current for triple gluon emission are presented in section 5 .

Using the notation in colour+spin space, the squared amplitude |M|2 (summed over

the colours and spins of its external legs) is written as follows

|M|2 = 〈M|M〉 . (4.1)
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Accordingly, the square of the soft-gluon factorization formula in eq. (2.5) gives

|M({q`}, {pi})|2 ' (gS µ
ε
0)2N 〈M({pi})| |J(q1, · · · , qN )|2 |M({pi})〉 , (4.2)

where, analogously to eq. (2.5), the symbol ' means that we have neglected contributions

that are subdominant in the soft multigluon limit. The squared current |J(q1, · · · , qN )|2

(summed over the colours and spins of the soft gluons) is still a colour operator that depends

on the colour charges of the hard partons inM({pi}). These colour charges produce colour

correlations and, therefore, the right-hand side of eq. (4.2) is not proportional to |M({pi})|2

in the case of a generic scattering amplitude.2

The squared current |J |2 of eq. (4.2) can be explicitly expressed as sum over colour

and spin (or Lorentz) indices of the soft gluons. Using eq. (2.6) we have

|J(q1, · · · , qN )|2 =
[
Ja1...aNσ1...σN

(q1, · · · , qN )
]†
Ja1...aNσ1...σN

(q1, · · · , qN ) (4.3)

=

[
N∏
`=1

dµ`ν`(q`)

] [
Ja1...aNµ1...µN

(q1, · · · , qN )
]†
Ja1...aNν1...νN

(q1, · · · , qN ) , (4.4)

where we have introduced the polarization tensor dµν(q`) of the external soft gluons:

dµν(q`) ≡ ε∗µ(σ)(q`) ε
ν
(σ)(q`) = −gµν + gauge terms . (4.5)

In the right-hand side of eq. (4.5) we have not written the explicit expression of the

gauge dependent terms, which follows from the specific choice of the physical polarization

vectors εµ(σ). Independently of their explicit form, these gauge dependent terms are propor-

tional to longitudinal polarizations, namely, proportional to either qµ` or qν` in the right-hand

side of eq. (4.5). As a consequence of the current conservation relation in eq. (2.8), the

action of longitudinal polarizations on the soft current leads to vanishing contributions

onto colour-singlet states. Therefore, inserting eq. (4.4) in the right-hand side of eq. (4.2),

the gauge dependent terms in eq. (4.5) do not contribute. It follows that, to the purpose of

evaluating the soft-gluon factorization formula (4.2), we can simply consider the following

form of the squared current:

|J(q1, · · · , qN )|2
cs
= (−1)N

[
N∏
`=1

g µ`ν`

] [
Ja1...aNµ1...µN

(q1, · · · , qN )
]†
Ja1...aNν1...νN

(q1, · · · , qN ) , (4.6)

which is explicitly gauge invariant.

4.1 Tree-level squared current: single and double gluon emission

The square of the soft current J(q) in eq. (2.9) for single gluon emission is

|J(q)|2
cs
= −

∑
i,k

T i · T k Sik(q) , (4.7)

Sik(q) =
pi · pk

pi · q pk · q
. (4.8)

2Colour correlations can be simplified in the case of scattering amplitudes with two and three hard

partons (see section 6 and 7).
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The colour charge dependence in eq. (4.7) is entirely given in terms of dipole operators

T i · T k = T ai T
a
k . The insertion of the dipole operators in the factorization formula (4.2)

leads to the factor 〈M({pi})| T j ·T k |M({pi})〉, which produces colour correlations between

two hard partons (j and k) in M({pi}). Some properties of the colour algebra of these

dipole correlations are discussed in appendix A of ref. [10].

The square of the soft current J(q1, q2) in eq. (2.11) for double gluon emission was

computed in ref. [13], and the result is

|J(q1, q2)|2
cs
=
(
W (1)(q1)W (1)(q2)

)
sym

+W (2)(q1, q2) , (4.9)

W (2)(q1, q2) = −CA
∑
i,k

T i · T k Sik(q1, q2) , (4.10)

where
(
W (1)(q1)W (1)(q2)

)
sym

denotes the symmetrized product of two operators (see

eq. (3.2)), and we have introduced the operator W (1)(q`) to denote the square of the

single-gluon current in eq. (4.7):

|J(q)|2
cs
= W (1)(q) . (4.11)

The form of eq. (4.9) has the structure of an expansion in multigluon irreducible

correlations (analogously to the structure of eq. (2.11)). The first term on the right-hand

side corresponds to the ‘independent’ (though colour correlated) emission of the two soft

gluons. This term leads to colour correlations due to the iterated action of two dipole

factors (e.g., T i ·Tm T k ·T l). The term W (2)(q1, q2) is definitely an irreducible-correlation

contribution for double gluon emission. From eq. (4.10) we see that W (2)(q1, q2) is non-

abelian (it is proportional to CA) and it is expressed in terms of colour dipole operators

(analogously to the single-gluon emission contribution in eq. (4.7)).

The function Sij(q1, q2) of the two-gluon correlation W (2)(q1, q2) in eq. (4.10) can be

written [13, 16] as follows

Sij(q1, q2) = Sm=0
ij (q1, q2) +

[
m2
i S

m 6=0
ij (q1, q2) +m2

j S
m 6=0
ji (q1, q2)

]
, (4.12)

where mi is the mass of the hard parton with momentum pi (p2
i = m2

i ). The ‘massless’

contribution Sm=0
ij is [13]

Sm=0
ij (q1, q2) =

(1− ε)
(q1 · q2)2

pi · q1 pj · q2 + pi · q2 pj · q1

pi · (q1 + q2) pj · (q1 + q2)

− (pi · pj)2

2 pi · q1 pj · q2 pi · q2 pj · q1

[
2− pi · q1 pj · q2 + pi · q2 pj · q1

pi · (q1 + q2) pj · (q1 + q2)

]
+

pi · pj
2 q1 · q2

[
2

pi · q1 pj · q2
+

2

pj · q1 pi · q2
− 1

pi · (q1 + q2) pj · (q1 + q2)

×
(

4 +
(pi · q1 pj · q2 + pi · q2 pj · q1)2

pi · q1 pj · q2 pi · q2 pj · q1

)]
, (4.13)
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and the ‘mass-correction’ contribution Sm 6=0
ij is [16]

Sm 6=0
ij (q1, q2) =

pi · pj pj · (q1 + q2)

2 pi · q1 pj · q2 pi · q2 pj · q1 pi · (q1 + q2)

− 1

2 q1 · q2 pi · (q1 + q2) pj · (q1 + q2)

(
(pj · q1)2

pi · q1 pj · q2
+

(pj · q2)2

pi · q2 pj · q1

)
.

(4.14)

The term in the square bracket on the right-hand side of eq. (4.12) vanishes in the

case of massless hard partons, whereas Sm=0
ij contributes in the cases of both massless and

massive hard partons. We note however that the complete result in eq. (4.12) entirely comes

from squaring the current J(q1, q2) in eqs. (2.11)–(2.13), since that expression of the current

is equally valid for both massless and massive hard partons. The result in eq. (4.13) was

obtained in ref. [13] by squaring J(q1, q2) in the case of massless hard partons. The result in

eq. (4.14) was obtained in ref. [16] by squaring the same current, without neglecting terms

with explicit dependence on m2
i . We also note that the expression of Sm 6=0

ij in eq. (B.9)

of ref. [16] differs from our explicit expression in eq. (4.14). The difference is due to the

first term in the right-hand side of eq. (B.9) in ref. [16]. Owing to colour conservation (see

eq. (2.3)), this term gives a vanishing total contribution to the action of the squared current

|J(q1, q2)|2 in eqs. (4.9) and (4.10) onto the (colour singlet) scattering amplitudeM({pi}).
Therefore we have not included this harmless term in the right-hand side of eq. (4.14).

We note that the squared current |J(q1, q2)|2 at the tree level has an explicit depen-

dence on dimensional regularization through the ε-dependent part of the first term in the

right-hand side of eq. (4.13). This result is valid in the context of CDR, which we use

throughout the paper.

As noticed at the end of section 3, the tree-level current Ja1a2µ1µ2(q1, q2) has no explicit

dependence on ε, whereas the soft-gluon polarization vectors εµ`(σ`)
(q`) in eq. (2.6) do depend

on the specific dimensional regularization prescription that is actually used. It turns out [13]

that the ε dependence in eq. (4.13) derives from the fact that CDR uses hg = d−2 = 2(1−ε)
spin polarization states hg for the on-shell soft gluons. Other versions of dimensional

regularizations [39], such as dimensional reduction (DR) [40] and the four-dimensional

helicity (4DH) scheme [41], use hg = 2 spin polarization states. The result for |J(q1, q2)|2

in the DR and 4DH schemes is obtained by simply setting ε = 0 in the right-hand side

of eq. (4.13).

Owing to colour conservation of the scattering amplitudes, the single-gluon and double-

gluon contributions W (1)(q1) and W (2)(q1, q2) to the squared current can be expressed in

various equivalent forms. We find it convenient to rewrite them as follows

W (1)(q1)
cs
= −

∑
i,k

T i · T k
1

2
w

(1)
ik (q1) , (4.15)

W (2)(q1, q2)
cs
= − CA

∑
i,k

T i · T k
1

2
w

(2)
ik (q1, q2) , (4.16)
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where

w
(N)
ik (q1, · · · , qN ) ≡ Sik(q1, · · · , qN ) + Ski(q1, · · · , qN )− Sii(q1, · · · , qN )− Skk(q1, · · · , qN ) ,

(4.17)

with N = 1, 2. Note, in particular, that from eq. (4.8) we have

w
(1)
ik (q) = −j2

ik(q) , (4.18)

where jµik(q`) is the conserved eikonal current (qµj
µ
ik(q`) = 0) for radiation of the soft-gluon

momentum q from the harder partons i and k:

jµik(q`) ≡ j
µ
i (q`)− jµk (q`) =

pµi
pi · q`

−
pµk

pk · q`
. (4.19)

The equivalence between eqs. (4.7)–(4.11) and eqs. (4.15) and (4.16) simply follows from

using colour conservation (see eq. (2.4)) and the definition of w
(N)
ik in eq. (4.17). The

expressions in eqs. (4.15) and (4.16) have a more direct physical interpretation since the

momentum-dependent functions w
(N)
ik are straightforwardly related (see eqs. (7.8) and (7.9)

in section 7) to soft-gluon emission from two hard partons, i and k, in a colour singlet

configuration.

The most singular contributions due to double-soft gluon radiation originate from the

region where the energies E1 and E2 of the two soft gluons are strongly ordered (E1 � E2

or E2 � E1). The energy strong-ordering limit of W (2)(q1, q2) can be straightforwardly

evaluated from the explicit expressions in eqs. (4.12)–(4.14), and we present the ensuing

result for the function w
(2)
ik (q1, q2) in eqs. (4.16) and (4.17). Considering the region where

E1 � E2, we obtain the following compact form:

w
(2)
ik (q1, q2) = j2

ik(q2) ji2(q1) · jk2(q1) , (E1 � E2) , (4.20)

where the conserved current ji`′(q`) is obtained from jik(q`) in eq. (4.19) through the

replacement pk → q`′ (i.e., ji`′(q`) generalizes the hard-parton current jik(q`) to the emission

of the soft gluon q` from the ‘harder’ soft gluon q`′). Although w
(2)
ik (q1, q2) is symmetric

with respect to the exchange q1 ↔ q2, we note that the right-hand side of eq. (4.20) is not

symmetric (the original symmetry is broken by the asymmetric constraint E1 � E2). The

expression in eq. (4.20) is valid for both massive and massless hard partons. In the case of

massless hard partons (p2
i = p2

k = 0), the symmetry with respect to q1 ↔ q2 is remarkably

recovered (as also noticed in ref. [13]), and from eq. (4.20) we obtain (see also eq. (111) in

ref. [13])

w
(2)s.o.
ik (q1, q2) =

(
2pi·pk

q1·q2 pi·q1 pk·q2
+
(
1↔ 2

))
− 2(pi·pk)2

pi·q1 pk·q1 pi·q2 pk·q2
, (p2

i = p2
k = 0),

(4.21)

where we have introduced the superscript s.o. to explicitly denote the energy strong-

ordering limit (either E1 � E2 or E2 � E1) of w
(2)
ik for the case of massless hard partons.
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5 Tree-level squared current for triple gluon emission

5.1 General structure

We have computed the square of the three-gluon current J(q1, q2, q3) in eq. (3.1). Per-

forming straightforward (though quite cumbersome) algebraic manipulations, we are able

to express the result in the following form:

|J(q1, q2, q3)|2
cs
=
(
W (1)(q1)W (1)(q2)W (1)(q3)

)
sym

+
[(
W (1)(q1)W (2)(q2, q3)

)
sym

+ (1↔ 2) + (1↔ 3)
]

+ W (3)(q1, q2, q3) , (5.1)

where we have used the symmetrized products of two and three colour operators (see

eqs. (3.2) and (3.3)). The factor W (1)(q`) is the square of the single-gluon current in

eq. (4.11), and the factor W (2)(q`, q`′) is the two-gluon irreducible correlation that con-

tributes to the square of the double-gluon current in eq. (4.9). The form of eq. (5.1)

generalizes the correlation structure of eq. (4.9) to the case of triple soft-gluon emission.

The symmetrized products in the first two lines in the right-hand side of eq. (5.1) cor-

respond to the iteration of single-emission and double-correlation contributions, and the

term W (3)(q1, q2, q3) in the third line is an irreducible-correlation contribution for triple

gluon emission.

The squared current |J(q1, q2, q3)|2 and the terms W (1)(q`) and W (2)(q`, q`′) are sepa-

rately gauge invariant when acting onto colour-singlet states (scattering amplitudes) and,

therefore, the correlation W (3)(q1, q2, q3) in eq. (5.1) is also gauge invariant.

The single-emission and double-correlation terms W (1) and W (2) embody colour cor-

relations with the hard partons in the scattering amplitude M({pi}). These colour cor-

relations are given in terms of colour dipole operators (see eqs. (4.7) and (4.10)). The

three-gluon correlation in eq. (5.1) also involves colour correlations. A new distinctive fea-

ture of triple-gluon radiation is that W (3)(q1, q2, q3) cannot simply be expressed in terms

of colour dipole operators. We find that W (3) receives contributions from both dipole and

quadrupole operators.3

Non-abelian colour quadrupole operators have the following typical structure:

Q′imkl = 2fab,cd T ci T
d
m T

a
k T

b
l = 2fab,cd T ak T

b
l T

c
i T

d
m . (5.2)

They are obtained by the colour contraction (with respect to the colour indices of the

soft gluons) of two structure constants f (as defined in eq. (3.5)) with four colour charges

T i of the hard partons. In the notation of eq. (5.2) the superscript ‘prime’ in Q′imkl
means that we are considering the case with four distinct hard partons {i,m, k, l} (we

are dealing with ‘true’ quadrupoles). In the case of four distinct hard partons the colour

charges {T i Tm T k T l} commute among themselves and their ordering in the right-hand

side of eq. (5.2) can be varied. If the four hard partons are not distinct (we are dealing

3Colour quadrupole correlations explicitly appear also in the IR divergent virtual contribution to mul-

tiparton scattering amplitudes at three-loop order [6].
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with ‘pseudo’ quadrupoles) the ordering of the four colour charges does matter, and the

difference between various orderings can be related (by using colour algebra commutation

relations) through colour dipole operators. Moreover, due to colour charge conservation

(see eq. (2.4)), ‘true’ and ‘pseudo’ quadrupoles are linearly-dependent related through

their action onto the hard-parton scattering amplitude M({pi}) and, therefore, any a

priori distinctions between ‘true’ and ‘pseudo’ quadrupoles require to break the manifest

symmetry between the hard partons.

In view of these features of colour quadrupole operators, a proper separation of dipole

and quadrupole contributions to the irreducible three-gluon correlation W (3)(q1, q2, q3) in

eq. (5.1) requires a careful definition of quadrupole operators. We introduce the following

quadrupole operator:

Qimkl ≡
1

2
fab,cd

(
T ak {T ci , T dm}T bl + h.c.

)
, (5.3)

where the text ‘h.c.’ means hermitian conjugate. Note that the definition in eq. (5.3) applies

to an arbitrary set {i,m, k, l} of hard-parton indices, with no distinction between ‘true’

and ‘pseudo’ quadrupoles. If the four indices are distinct, the two operators in eqs. (5.2)

and (5.3) are equal. As discussed in appendix B, the hermitian conjugate operators in

eq. (5.3) are ‘irreducible’ quadrupole operators, in the sense that their action onto colour-

singlet states (scattering amplitudes) do not produce colour dipole contributions of the

type C2
AT i · T k if two or more of the indices {i,m, k, l} are equal.

Using the quadrupole operator of eq. (5.3), the three-gluon correlation term W (3) in

eq. (5.1) can be written as

W (3)(q1, q2, q3) = W (3)dip.(q1, q2, q3) +W (3)quad.(q1, q2, q3) , (5.4)

where the dipole (W (3)dip.) and quadrupole (W (3)quad.) components are

W (3)dip.(q1, q2, q3) = − C2
A

∑
i,k

T i · T k Sik(q1, q2, q3) , (5.5)

W (3)quad.(q1, q2, q3) =
∑
i,m,k,l

Qimkl Simkl(q1, q2, q3) . (5.6)

The kinematical functions Sik(q1, q2, q3) and Simkl(q1, q2, q3) depend on the momenta of the

soft and hard partons, and their expressions are presented below (see eqs. (5.7) and (5.20)).

Note that the dipole contribution W (3)dip. in eq. (5.5) is maximally non-abelian (at this

perturbative order), since it is proportional to C2
A. The three-gluon correlation W (3) is

gauge invariant, and we have explicitly checked that its components W (3)dip. and W (3)quad.

are separately gauge invariant. This property is expected since the quadrupole operators

in eq. (5.3) are ‘irreducible’ to dipole operators of the type C2
A T i · T k.

5.2 Dipole correlation

The dependence of the dipole correlation W (3)dip. on the momenta of the soft and hard

partons is given by the function Sik(q1, q2, q3) through eq. (5.5). This function has a very

cumbersome algebraic form. We can present a shortened form by using the current ji(q`)
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in eq. (3.9) and the momentum functions γi(q1, q2) and γi(q1, q2, q3) in eqs. (2.13) and (3.7).

We have

Sik(q1, q2, q3) =

{
1

2
γk(1, 2; 3)

[
γi(1, 2; 3) + γi(1, 3; 2) + γi(1, 2)jk(3)− γk(1, 2)ji(3)

+γi(1, 3)jk(2)− γk(1, 3)ji(2) +
1

2
jk(1)ji(2) (ji(3) + jk(3))

]
+

1

2
γi(1, 2)

{
γk(1, 2)

[
3

4
ji(3)jk(3)− 1

2
ji(3)ji(3)

]
− 1

2
γi(1, 2)ji(3)jk(3)

+
1

4
γk(1, 3) [ jk(2)ji(3) + 2ji(2)jk(3)− 2ji(2)ji(3) ]− 1

2
γi(1, 3)jk(2)ji(3)

+ji(1)jk(2)

[
7

4
ji(3)jk(3)− 3

4
ji(3)ji(3)− 1

2
jk(3)jk(3)

]}
+

1

2
ji(1)ji(2)ji(3)jk(3)

[
1

3
ji(1)ji(2)− 5

6
ji(1)jk(2) +

31

72
jk(1)jk(2)

]
+

1

16
j2
i (1)ji(2)jk(2)j2

k(3)

}
+ perms. {1, 2, 3} , (5.7)

where in the right-hand side the products of ji and γi functions are denoted by using the

shorthand notation of eq. (3.11).

The explicit form of the dipole correlation W (3)dip. in terms of scalar products be-

tween the momenta of the hard partons and soft gluons can be obtained by inserting

eqs. (2.13), (3.7) and (3.9) in eq. (5.7). The ensuing algebraic expression is very long, and

it is reported in appendix C.

As noticed at the end of section 3, the current J(q1, q2, q3) has no explicit dependence

on the dimensional regularization procedure and on d = 4 − 2ε. Nonetheless, analogously

to |J(q1, q2)|2 (see the comments in the paragraph above eq. (4.15))), the squared cur-

rent |J(q1, q2, q3)|2 does depend on the regularization procedure and, in particular, the

correlation W (3)dip. (and the right-hand side of eq. (5.7)) turns out to depend on ε. Such

dependence is explicitly shown in appendix C, where we also comment on the result of

|J(q1, q2, q3)|2 in various dimensional regularization schemes.

As in the case of the single and double gluon correlations W (1)(q1 and W (2)(q1, q2) (see

eqs. (4.15) and (4.16)), we can exploit colour conservation to rewrite the dipole contribution

W (3)dip. of eq. (5.5) in the following equivalent form:

W (3)dip.(q1, q2, q3)
cs
= − C2

A

∑
i,k

T i · T k
1

2
w

(3)
ik (q1, q2, q3) , (5.8)

where the momentum dependent function w
(3)
ik is defined in terms of Sik(q1, q2, q3) through

eq. (4.17) with N = 3 :

w
(3)
ik (q1, q2, q3) ≡ Sik(q1, q2, q3) + Ski(q1, q2, q3)− Sii(q1, q2, q3)− Skk(q1, q2, q3) . (5.9)

It is of interest to examine the momentum dependence of W (3)dip.(q1, q2, q3) in various

energy ordered regions, since these regions contribute to enhanced singular contributions

from triple soft-gluon emission.
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In the energy ordered region where both q1 and q2 are much softer than q3, the explicit

expression of w
(3)
ik (or, equivalently, Sik(q1, q2, q3)) is much simplified, since we obtain

w
(3)
ik (q1, q2, q3) = −j2

ik(q3)

[
1

2

(
w

(2)
3i (q1, q2) + w

(2)
3k (q1, q2)− w(2)

ik (q1, q2)
)

+ ji3(q1) · jk3(q1) ji3(q2) · jk3(q2)

]
, (E1 � E3, E2 � E3) , (5.10)

where the conserved currents jik(ql) and ji3(ql) are defined in eq. (4.19) (see also eq. (4.20)).

The function w
(2)
ik (q1, q2) on the right-hand side is the exact (i.e., without any energy or-

dering approximation) double-gluon correlation in eq. (4.17), while w
(2)
3k is simply obtained

from w
(2)
ik through the momentum replacement pi → q3. Note that the right-hand side of

eq. (5.10) is obviously symmetric with respect to q1 ↔ q2, whereas the symmetry q1 ↔ q3

(or q2 ↔ q3) is broken by the energy ordering constraint.

The function w
(3)
ik (q1, q2, q3) in the region of energy strong ordering (E1 � E2 � E3)

can be directly obtained by using eq. (5.10) and the known behaviour of w(2)(q1, q2) for

E1 � E2 (see eq. (4.20)). For comparison with the expressions derived long ago in ref. [27]

(see eq. (7.10) and related comments in section 7.2), we write the energy strong-ordering

limit of w
(3)
ik in the following form:

w
(3)
ik (q1, q2, q3) = −j2

ik(q3)

[
ji3(q2) · jk3(q2) (ji3(q1) · jk3(q1) + ji2(q1) · jk2(q1))

−1

2
j2
k3(q2) ji3(q1) · jk2(q1)− 1

2
j2
i3(q2) jk3(q1) · ji2(q1)

]
, (E1 � E2 � E3) . (5.11)

This expression, which is not symmetric under the exchange of the soft-gluon momenta,

is valid for both massive and massless hard partons. In the case of massless hard partons

(p2
i = p2

k = 0) the right-hand side of eq. (5.11) remarkably turns out to be symmetric, and

we obtain

w
(3)s.o.
ik (q1, q2, q3) =

[
2(pi · pk)3

3(pi · q1)(pk · q1)(pi · q2)(pk · q2)(pi · q3)(pk · q3)

− 2(pi · pk)2

(q1 · q2)(pi · q1)(pk · q2)(pi · q3)(pk · q3)

+
2pi · pk

(q1 · q3)(q2 · q3)(pi · q1)(pk · q2)

]
+ perms. {1, 2, 3} , (p2

i = p2
k = 0) , (5.12)

where, analogously to eq. (4.21), the superscript s.o. explicitly denotes the energy strong-

ordering limit (i.e., E1 � E2 � E3 or any other permutations of the three soft-gluon

energies) of w
(3)
ik for massless hard partons.
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We note that eqs. (4.21) and (5.12) can be rewritten in the following form:

w
(2)s.o.
ik (q1, q2)+w

(1)
ik (q1)w

(1)
ik (q2)

= 2(pi·pk)2

[
1

(pi·q1)(q1·q2)(q2·pk)(pk·pi)
+ineq. perms. {pi, pk, q1, q2}

]
, (5.13)

w
(3)s.o.
ik (q1, q2, q3)+

[
w

(1)
ik (q1) w

(2)s.o.
ik (q2, q3)+(1↔ 2)+(1↔ 3)

]
+w

(1)
ik (q1)w

(1)
ik (q2)w

(1)
ik (q3)

= 2(pi·pk)2

[
1

(pi·q1)(q1·q2)(q2·q3)(q3·pk)(pk·pi)
+ineq. perms. {pi, pk, q1, q2, q3}

]
.

(5.14)

The relations in eq. (5.13) and (5.14) have an analogous structure. In both equations

the left-hand side has the structure of an expansion in irreducible soft-gluon correla-

tions. In both equations the right-hand side includes a closed chain of eikonal propagators

[(pi · q1)(q1 · q2) . . . (qN · pk)(pk · pi)]−1 and a sum over all the permutations of the hard and

soft momenta that lead to inequivalent chains (the total number of inequivalent permu-

tations is 3 and 12 in eq. (5.13) and (5.14), respectively). The structure of eqs. (5.13)

and (5.14) can eventually be related (see eq. (7.11) and accompanying comments in sec-

tion 7.2) to a result obtained by Bassetto, Ciafaloni and Marchesini (BCM) [26] for multiple

soft-gluon radiation in scattering amplitudes with two hard gluons. Since the soft func-

tions w
(1)
ik , w

(2)
ik and w

(3)
ik control the colour dipole correlations of the squared soft current

for arbitrary scattering amplitudes, the relations in eq. (5.13) and (5.14) can be regarded

as generalized BCM formulae.

5.3 Quadrupole correlation

The quadrupole component, W (3)quad., of the three-gluon irreducible correlation W (3) (see

eqs. (5.4) and (5.6)) is expressed in terms of the quadrupole operators Qimkl in eq. (5.3).

These colour operators fulfil some relevant properties (see appendix B) with respect to the

dependence on the hard-parton indices {i,m, k, l}. Some properties regards symmetries.

The operator Qimkl is

• antisymmetric with respect to the exchange of the two adjacent indices in the first

(i↔ m) or second (k ↔ l) pair of indices:

Qimkl = −Qmikl , Qimkl = −Qimlk , (5.15)

• symmetric with respect to the exchange of the first and second pair (im ↔ kl) of

indices:

Qimkl = Qklim , (5.16)

and, moreover, it fulfils the following Jacobi identity:

Qik1k2k3 +Qik3k1k2 +Qik2k3k1 = 0 . (5.17)
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Note that the symmetry properties in eqs. (5.15)–(5.17) are exactly analogous to those of

the structure constant term fab,cd in eq. (3.5) (through the replacement abcd↔ imkl). Ow-

ing to eq. (2.4), the quadrupole operators also fulfil the following colour charge conservation

relation: ∑
i

Qimkl cs
= 0 . (5.18)

As a consequence of eqs. (5.15) and (5.16), eq. (5.18) is valid also by replacing the sum

over the first quadrupole index i with the sum over any other of the indices m, k and l of

the quadrupole.

A specific, though relevant, feature of the quadrupole operators in eq. (5.3) is that

they vanish in the cases of colour singlet states of only two hard partons:

Qimkl cs
= 0 (2 hard partons) . (5.19)

This implies that the quadrupole correlation W (3)quad. does not contribute to the soft limit

of scattering amplitudes M({q`}, {pi}) with three soft gluons and two hard partons. The

result in eq. (5.19) is a straightforward consequence of eq. (5.15)–(5.18). In particular,

if i and m are the two hard partons (i 6= m), eq. (5.15) implies that all non-vanishing

quadrupole operators are simply proportional (through an overall sign) to Qimim. Then,

eq. (5.18) gives Qimim cs
= −Qmmim and, therefore, Qimim cs

= 0 since Qmmim = 0 (because of

the antisymmetry in eq. (5.15)).

We note (see also appendix B) that the symmetry properties in eqs. (5.15) and (5.16)

imply that the non-vanishing quadrupole operators Qimkl can only have two pairs of distinct

indices, three distinct indices or four distinct indices. Moreover, the colour conservation

relation in eq. (5.18) implies that quadrupoles with two pairs of distinct indices can be

replaced by a linear combination of quadrupoles with three distinct indices when acting

onto a colour singlet state (see eq. (B.19) in appendix B). As a consequence, the action

of the correlation W (3)quad. in eq. (5.6) onto a scattering amplitude |M({pi})〉 can also be

expressed in terms of an equivalent sum4 of colour quadrupole contributions with three or

four distinct indices.

The dependence of the quadrupole correlation W (3)quad. on the momenta of the soft

and hard partons is given by the function Simkl(q1, q2, q3) through eq. (5.6). This function

is slightly less cumbersome than the three-gluon dipole correlation function Sik(q1, q2, q3).

Expressing the result in terms of the current ji(q`) (see eq. (3.9)) and the functions γi(q1, q2)

and γi(q1, q2, q3) (see eqs. (2.13) and (3.7)), we find

Simkl(q1, q2, q3) =

{[
1

2
γi(1, 2; 3)jk(1)− 7

24
ji(1)jk(2)jm(1)jl(3)

]
jl(2)jm(3)

−γi(1, 2)

[
1

2
jm(1)jk(2)jk(3)jl(3) +

1

4
jl(1)jk(2)ji(3)jm(3)

+
1

2
γk(1, 3)jm(2)jl(3)

]}
+ perms. {1, 2, 3} , (5.20)

4Note that this equivalent sum is not equal to the restriction of the sum
∑

i,m,k,l in eq. (5.6) to the case

of three and four distinct indices. Indeed, the correct restricted sum involves kinematical functions that are

linear combinations of the functions Simkl in eq. (5.6).
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where in the right-hand side the products of ji and γi functions are denoted by using the

shorthand notation of eq. (3.11).

We note that the function Simkl(q1, q2, q3) is fully symmetric with respect to the ex-

change of soft-gluon momenta. This symmetry directly follows from the sum over the six

permutations in the right-hand side of eq. (5.20). We also note that the expression of

Simkl in eq. (5.20) does not have the same symmetry properties as those of the quadrupole

Qimkl with respect to the hard-parton indices {i,m, k, l}. However, the correct hard-parton

symmetries of W (3)quad. are automatically obtained by simply inserting eq. (5.20) in the

right-hand side of eq. (5.6). For instance, the symmetric part of Simkl with respect to

the exchange i ↔ m gives a vanishing contribution to W (3)quad. because of eq. (5.15).

We have not ‘properly’ symmetrized the expression of Simkl with respect to the indices

{i,m, k, l} since this produces many more terms that are actually harmless to the purpose

of evaluating the relevant correlation term W (3)quad..

Using the expressions of γi(q1, q2) and γi(q1, q2, q3) in eqs. (2.13) and (3.7), the function

Simkl(q1, q2, q3) in eq. (5.20) can be explicitly written in terms of scalar products of hard

and soft momenta. Such explicit expression is given in appendix C. Here, we limit ourselves

to presenting a much simpler approximated form that is valid in the energy strong-ordering

region where E1 � E2 � E3. We find

S(1<2<3)
imkl (q1, q2, q3) =

pi · pk
(pi · q3)(pk · q3)(pl · q1)(pm · q2)

{
(pm · pl)(pl · pi)
3(pl · q2)(pi · q1)

− pm · pi
3pi · q2

[
pl · pi
pi · q1

+
pl · pm
pm · q1

+
2pl · pk
pk · q1

]
+
pl · q3

q3 · q1

[
2pm · pi
pi · q2

− pm · q3

q3 · q2

]}
+ (1↔ 2) , (5.21)

and we observe that such expression is remarkably symmetric with respect to the exchange

q1 ↔ q2. We also specify that eq. (5.21) is not algebraically identical to the energy strong-

ordering limit of eq. (5.20), but the difference is physically harmless since it does not

contribute to W (3)quad. in eq. (5.6). In other words, we have simplified the right-hand side

of eq. (5.21) by removing some terms that give a vanishing contribution to eq. (5.6) because

of the symmetry properties in eqs. (5.15)–(5.18) of the quadrupole operators Qimkl.

5.4 Collinear singularities

The squared amplitude |M({q`}, {pi})|2 has a singular behaviour in kinematical regions

where the momenta of two or more of its external massless legs become collinear. Such

singular behaviour is not integrable over the angular region in four space-time dimensions,

and it leads to ε poles (collinear divergences) by integrating in d = 4 − 2ε space-time

dimensions. Independently of the angular integration, the size of the squared amplitude is

strongly enhanced in the vicinity of the singular collinear regions.

In our subsequent discussion about presence or absence of singular collinear behaviour

we always refer to singular terms that lead to divergences upon angular integrations in four

dimensions (for a precise formal definition of the multiparton collinear limit see refs. [13,

14]). Subdominant, though possibly singular, collinear terms (e.g., integrable singularities

in four dimensions) are not considered.
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As a consequence of the soft-gluon factorization formula (4.2), the collinear behaviour

of |M({q`}, {pi})|2 leads to collinear singularities in the squared current |J(q1, · · · , qN )|2

for multiple soft-gluon emission. In the following, as the simplest example, we discuss the

singular collinear behaviour for single gluon emission with some details. Then, we present

a brief discussion of our results on the collinear behaviour for double and triple soft-gluon

radiation at the tree level.

The single-gluon squared current |J(q)|2 in eq. (4.7) can lead to collinear singularities

if the soft-gluon momentum q is parallel to the momentum of a massless hard parton,

which we denote as parton C (with colour charge TC and momentum pC). The possible

singularities originate from the soft function Sik(q) in eq. (4.8) with i 6= k (the function

Sii(q) identically vanishes if the parton i is massless). We have

Sik(q) '
1

z pC · q
(δiC + δkC) , i 6= k (q ' zpC) , (5.22)

where we have extracted the singular collinear factor (pC · q)−1, used the collinear approxi-

mation q ' zpC in the remaining contribution, and neglected non-singular terms. Inserting

eq. (5.22) in eq. (4.7), we obtain

|J(q)|2
cs
=W (1)(q) ' −

∑
i 6=k

T i · T k
1

z pC · q
(δiC + δkC) =

1

pC · q
2CC
z

, (q ' zpC) , (5.23)

where we have used the colour conservation (see eq. (2.4)) in the form
∑

k 6=C T k cs
= − TC .

The singular collinear behaviour of W (1)(q) is fully consistent with expectations. In

particular, the explicit result in eq. (5.23) exactly agrees with the result that can be ob-

tained by first evaluating |M({q`}, {pi})|2 in the collinear limit q ' zpC and then perform-

ing the soft limit z → 0 (see, e.g., eq. (7) and eqs. (9)–(13) in ref. [13]). This agreement is

a consequence of the commutativity between the soft and collinear limits.

The squared current |J(q)|2 embodies colour correlations between the hard partons.

Nonetheless, its singular collinear behaviour in eq. (5.23) is proportional to the Casimir

coefficient CC of the hard collinear parton, with no accompanying colour correlation effects.

This absence of colour correlations is a manifestation of colour coherence.

One way to notice the colour coherence effect is to observe that the Casimir coefficient

CC in eq. (5.23) is obtained by using TC ·
∑

k 6=C T k cs
= − TC · TC = −CC . Although

the soft-gluon emission from the collinear hard parton C leads to dipole correlations of

the type T c · T k with each of the non-collinear partons, the collinear soft gluon feels the

coherent action of the non-collinear partons. The coherent action is proportional to their

total colour charge
∑

k 6=C T k or, equivalently (because of colour conservation) to the colour

charge TC cs
= −

∑
k 6=C T k of the collinear hard parton. This coherent action leads to the

colour coefficient TC · TC = CC in eq. (5.23).

The tree-level squared currents |J(q1, q2)|2 and |J(q1, q2, q3)|2 are expressed (see

eqs. (4.9) and (5.1)) in terms of the single-emission factor W (1) and the irreducible cor-

relation terms W (2) and W (3). Therefore, the knowledge of W (1),W (2) and W (3) in the

various collinear regions gives the full information on the singular collinear behaviour for

double and triple soft-gluon emission. The singular collinear behaviour of W (1) is given in
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eq. (5.23). The same steps and approximations that we have used to obtain eq. (5.23) can

be applied to analyze the singular collinear behaviour of W (2) and W (3) from the results in

eqs. (4.10), (4.12)–(4.14), (5.4)–(5.6), (5.7) and (5.20). We have explicitly carried out this

analysis by considering all possible collinear configurations of soft and hard partons. The

results of this analysis are summarized below.

We find that W (2)(q1, q2) has singular collinear behaviour in the following configura-

tions:

(c1) double-collinear limit of the two soft gluons,

(c2) triple-collinear limit of the two soft gluons and a massless hard parton.

The dipole component W (3)dip. of W (3)(q1, q2, q3) has singular collinear behaviour in the

following configurations:

(c3) double-collinear limit of two soft gluons,

(c4) triple-collinear limit of the three soft gluons,

(c5) quadruple-collinear limit of the three soft gluons and a massless hard parton.

The quadrupole component W (3)quad. is ‘collinear safe’: it has no singular behaviour in

any collinear limits. In particular, W (3)quad. can be integrated over the soft-gluon angles

in d = 4 space-time dimensions without encountering any collinear divergences.

We note that the list of collinear configurations at the points (c1)–(c5) does not in-

clude all possible collinear configurations. The kinematical configurations that are not

explicitly listed do not produce a singular collinear behaviour in W (2) and W (3). For in-

stance, in the double-collinear limit of a hard parton and a single soft gluon both W (2) and

W (3) have no collinear singularity. The absence of such collinear singularity is basically

a consequence of colour coherence (and colour conservation). The momentum dependent

soft functions Sik(q1, q2), Sik(q1, q2, q3) and Simkl(q1, q2, q3) in eqs. (4.10), (5.5) and (5.6)

are separately singular in very many collinear configurations, but there are cancellations

(due to colour coherence) between the separately-singular terms and, eventually, their total

contribution to W (2) and W (3) produces collinear singularities only in the configurations

that are listed at the points (c1)–(c5). In particular, there are remarkable cancellations

between the quadrupole contributions QimklSimkl in eq. (5.6) that make W (3)quad. collinear

safe (at the algebraic level, these cancellations take place by using the colour conservation

relation (5.18) and also the Jacobi identity in eq. (5.17)).

We also note two key points in our discussion on the collinear behaviour, which are

related to the expansion in irreducible correlations and the use of irreducible quadrupole

operators. The squared current |J(q1, · · · , qN )|2 has collinear singularities in all possi-

ble multiparton collinear configurations. Its expansion in irreducible correlations W (N)

is essential to single out the restricted and definite pattern of collinear configurations at

the points (c1)–(c5). In the case of the three-gluon correlation W (3), the introduction of

quadrupole operators Qimkl that are irreducible to colour dipole operators is essential to

make the quadrupole component W (3)quad. collinear safe.
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We remark on the fact that our results for the singular collinear behaviour of W (2)

and W (3) are fully consistent with the expectations and results from collinear factoriza-

tion formulae [13, 14] for the squared amplitude |M({q`}, {pi})|2. In particular, in the

singular collinear configurations at the points (c1)–(c5) we explicitly obtain the singular

collinear factors denoted as P̂ ss
′

a1...am in the collinear factorization formula (25) of ref. [13].

We also note that, in some collinear configurations, we obtain the exact result (rather than

a corresponding soft approximation) for P̂ ss
′

a1...am from the collinear limit of |J(q1, · · · , qN )|2.

For instance, in the triple-collinear limit at point (c4) we find that |J(q1, q2, q3)|2 is pro-

portional to the exact expression of the factor P̂µνg1g2g3 (see eq. (66) in ref. [13]) for the

collinear splitting process of three gluons. This is a consequence of the fact that our re-

sult for |J(q1, q2, q3)|2 is valid for arbitrary relative energies of the three (soft) gluons. In

contrast, in other collinear configurations that involve soft and hard partons (e.g., those at

the points (c2) and (c5)), we can only obtain the soft limit of the corresponding collinear

factor P̂ ss
′

a1...am (analogously to what happens in eq. (5.23)).

In the case of the collinear limit of four partons, no explicit expressions for the cor-

responding collinear factor P̂ ss
′

a1a2a3a4 at the squared amplitude level are available in the

literature (the collinear factors at the amplitude level are explicitly known in d = 4 space-

time dimensions [42–44]). Using our result for |J(q1, q2, q3)|2 we can compute the quadruple

collinear factor P̂ ss
′

g1g2g3C
in the soft limit, and we obtain the following result (we recall that

P̂ ss
′

g1g2g3C
is defined as in eq. (25) of ref. [13]):

P̂ ss
′

g1g2g3C ' δ
ss′ [ pC · (q1 + q2 + q3) ]3CC

{
C2
C w

(1)
nC(q1) w

(1)
nC(q2) w

(1)
nC(q3)

+ CCCA

[
w

(1)
nC(q1) w

(2)
nC(q2, q3) + (1↔ 2) + (1↔ 3)

]
+ C2

A w
(3)
nC(q1, q2, q3)

}
.

(5.24)

Here the subscript C denotes the hard collinear parton with momentum pC (CC = CF if

the hard parton is a quark or antiquark, and CC = CA if the hard parton is a gluon) and

{s, s′} are the spins of the parent collinear parton. The momentum dependent functions

w
(N)
nC (N = 1, 2, 3) are obtained by the soft functions w

(N)
ik in eqs. (4.15), (4.16) and (5.8)

through the momentum assignement pµk → pµC and pµi → nµ, where nµ is an arbitrary

light-like (n2 = 0) vector such that n · pC 6= 0. The auxiliary vector nµ [13] is needed

simply to specify the longitudinal-momentum fraction z` ≡ (n · q`)/n · (pC + q1 + q2 + q3) of

the collinear partons (i.e., q` ' z`(pC + q1 + q2 + q3) in the collinear limit). The collinear

splitting function in eq. (5.24) depends on the subenergies q` · pC and q` · q`′ and on the

momentum fractions z`, and it is valid in the soft approximation z` � 1 with ` = 1, 2, 3

(the symbol ‘'’ in eq. (5.24) refers to the soft approximation). Note that the spin of the

parent collinear parton is unchanged within the soft approximation (see the factor δss
′

in

the right-hand side of eq. (5.24)).

We conclude our comments on the singular collinear behaviour of the squared currents

|J(q1, · · · , qN )|2 by observing that such behaviour is consistent with the known angular-

ordered (colour coherence) features [45–47] of multiple soft-gluon radiation. The hier-

archical structure of the singular collinear configurations at the points (c1)–(c5) directly

corresponds to the angular-ordered pattern of soft-gluon cascades [26, 28, 45–49]. Such
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angular pattern was examined in detail in section 6.3 of ref. [31] by considering the dom-

inant soft contributions for gluon radiation, namely, by computing the squared current

|J(q1, · · · , qN )|2 in the energy strong-ordering region where E1 � E2 · · · � EN . Our re-

sult for |J(q1, q2, q3)|2 is valid for arbitrary soft-gluon energies, and it can be used to get

an improved understanding of angular-ordering features beyond the dominant soft contri-

butions.

6 Processes with soft gluons and three hard partons

The soft-gluon factorization formula (4.2) leads to colour correlations between the squared

current |J(q1, · · · , qN )|2 and the hard-parton scattering amplitude M({pi}). In the cases

of scattering amplitudes with two or three hard partons, the colour correlation structure

can be completely (for two hard partons) or partly (for three hard partons) worked out

in factorized c-number form. These features are discussed in this section for the three

hard-parton case and in section 7 for the two hard-parton case.

6.1 All-order features

We consider a generic scattering amplitudeMABC({q`}, {pi}) whose external legs are three

hard partons (denoted as A,B,C), soft gluons and additional colourless particles. Ow-

ing to flavour conservation, the three hard partons can be either a gluon and a qq̄ pair

({ABC} = {gqq̄}) or three gluons ({ABC} = {ggg}). The corresponding scattering am-

plitudeMABC({pi}) without soft gluons is a colour singlet state formed by the three hard

partons A,B and C.

We first consider the case {ABC} = {gqq̄}. Here there is only one possible colour

singlet configuration of the three hard partons, which is generated by the colour vector

|ABC〉. Modulo overall normalization, we can set 〈 aβγ̄ |ABC 〉 = taβγ̄ , where taβγ̄ is the

colour matrix in the fundamental representation and a, β and γ̄ are the colour indices of

the gluon (A), quark (B) and antiquark (C). Therefore, we straightforwardly have

|J(q1, · · · , qN )|2 |ABC〉 = |ABC〉 |J(q1, · · · , qN )|2ABC , ({ABC} = {gqq̄}) , (6.1)

and the soft-gluon factorization formula in eq. (4.2) becomes

|MABC({q`}, {pi})|2 ' (gS µ
ε
0)2N |MABC({pi})|2 |J(q1, · · · , qN )|2ABC , ({ABC} = {gqq̄}) .

(6.2)

The result in eq. (6.1) follows from the fact that the colour operator |J(q1, · · · , qN )|2 is

colour conserving and it acts onto a one-dimensional colour space generated by |ABC〉.
Therefore, |ABC〉 is necessarily an eigenvector of |J(q1, · · · , qN )|2, with a corresponding

eigenvalue that is denoted by the c-number |J(q1, · · · , qN )|2ABC . Since |MABC({pi})〉 ∝
|ABC〉, eq. (6.2) directly follows from eqs. (4.2) and (6.1).

The right-hand side of eq. (6.2) is directly proportional to the square |MABC({pi})|2 of

the hard-parton scattering amplitude, so that colour correlations are ‘effectively’ removed

(though |J(q1, · · · , qN )|2ABC does depend on SU(Nc) colour coefficients) in c-number form,

analogously to soft-photon factorization formulae in QED. We remark on the fact that the
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soft-gluon factorization formula (6.2) is valid at arbitrary loop orders in the perturbative

expansion of both the soft current and the scattering amplitude (i.e., the validity of eq. (6.2)

is not limited to tree-level currents and scattering amplitudes).

We now consider the case {ABC} = {ggg}. Here the colour singlet space spanned by

the three hard partons is two-dimensional. It is convenient to choose the basis formed by

the orthogonal colour state vectors |(ABC)f 〉 and |(ABC)d 〉 that are defined as follows

〈 abc | (ABC)f 〉 ≡ if
abc , 〈 abc | (ABC)d 〉 ≡ d

abc , ({ABC} = {ggg}) , (6.3)

where a, b, c are the colour indices of the three gluons, fabc is the structure constant and

the fully-symmetric tensor dabc is dabc = 2Tr({ta, tb}tc). The generic scattering ampli-

tude |MABC({pi})〉 is, in general, a linear combination5 of the colour antisymmetric state

|(ABC)f 〉 and the colour symmetric state |(ABC)d 〉.
The squared current |J(q1, · · · , qN )|2 is colour conserving and, therefore, it can produce

only colour correlations between the two states |(ABC)f 〉 and |(ABC)d 〉 of the three hard-

gluon amplitude |MABC({pi})〉. However, we note that the two states in eq. (6.3) have

a different charge conjugation. Therefore, since the squared current |J(q1, · · · , qN )|2 for

multiple soft-gluon radiation is invariant under charge conjugation,6 it follows that it has

a diagonal action onto the colour state vectors of eq. (6.3). We have

|J(q1, · · · , qN )|2 |(ABC)f 〉 = |(ABC)f 〉 |J(q1, · · · , qN )|2ABC , ({ABC} = {ggg}) , (6.4)

|J(q1, · · · , qN )|2 |(ABC)d 〉 = |(ABC)d 〉 |J(q1, · · · , qN )|2(ABC)d
, (6.5)

where |J(q1, · · · , qN )|2ABC and |J(q1, · · · , qN )|2(ABC)d
are the corresponding c-number

eigenvalues (note that the eigenvalue for the symmetric state |(ABC)d 〉 is explicitly de-

noted by the subscript (ABC)d in |J(q1, · · · , qN )|2(ABC)d
, whereas for the antisymmetric

state |(ABC)f 〉 we simply use the notation |J(q1, · · · , qN )|2ABC ). Owing to the diagonal-

ization in eqs. (6.4) and (6.5), the soft-gluon factorization formula in eq. (4.2) for scattering

amplitudes with three hard gluons becomes

|MABC({q`}, {pi})|2 ' (gS µ
ε
0)2N

{
|〈 (ABC)f |MABC({pi})〉|2

〈 (ABC)f |(ABC)f 〉
|J(q1, · · · , qN )|2ABC

+
|〈 (ABC)d |MABC({pi})〉|2

〈 (ABC)d |(ABC)d〉
|J(q1, · · · , qN )|2(ABC)d

}
, ({ABC} = {ggg}) . (6.6)

In other words, using the colour state basis in eq. (6.3), the colour correlations produced by

the colour operator |J(q1, · · · , qN )|2 are effectively taken into account by a diagonal 2× 2

colour matrix (the use of a different colour basis would instead lead to a non-diagonal 2×2

matrix).

As in the case of eq. (6.2), we remark that also the soft-gluon factorization formula

in eq. (6.6) is valid at arbitrary loop orders in the perturbative expansion of both the soft

5For example, in the case of the Higgs boson (H) decay amplitude H → ggg the three gluons are in

a colour antisymmetric state. At variance, the Z boson amplitude Z → ggg has both the symmetric and

antisymmetric colour components.
6Such charge conjugation invariance would not apply to radiation of soft qq̄ pairs.
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current and the scattering amplitude. To our knowledge, this all-order feature of multiple

soft-gluon radiation from three hard gluons has not been noticed before in the literature

on soft-gluon factorization.

In the case of single and double soft-gluon radiation at the tree level, the two eigenvalues

of |J(q1, · · · , qN )|2 in eqs. (6.4) and (6.5) are equal and, therefore, the right-hand side of

eq. (6.6) is exactly factorized [13] in the same form as in eq. (6.2). As explicitly shown in the

next subsection, in the case of triple soft-gluon radiation the two eigenvalues are no longer

degenerate. The quadrupole colour correlations of eqs. (5.4) and (5.6) are responsible for

removing the degeneracy of the two eigenvalues.

6.2 Soft-gluon radiation at the tree level

We consider soft-gluon radiation at the tree level, and we present the explicit expressions

for emission of N = 1, 2 and 3 soft gluons from the scattering amplitudeMABC with three

hard partons. In the final part of this subsection we also present some results for emission

of N ≥ 4 soft gluons with energy strong ordering.

We fix our notation by always denoting A = g (so that the squared colour charge T 2
A =

CA of the parton A coincides with the customary notation for the Casimir coefficient CA =

Nc) and, thus, {BC} = {qq̄} or {BC} = {gg} (the corresponding squared colour charges

are T 2
B = CB and T 2

C = CC with CB = CC , since {BC} is a particle-antiparticle pair).

The eigenvalues of the squared current |J(q1, · · · , qN )|2 in eqs. (6.1), (6.4) and (6.5) are

computed by applying the general results in section 4.1 and section 5. In the cases of single

and double soft-gluon emission the colour dependence of the squared current is entirely

given in terms of products of dipole factors T i · T k. Using colour conservation, the action

of dipole factors onto colour singlet states of three hard partons can be evaluated in terms

of quadratic Casimir coefficients (see the appendix A of ref. [10]). In particular, we have

2TA ·TB |ABC〉 = (CC−CA−CB) |ABC〉 and related permutations of A,B,C. Note that

these colour algebra relations are valid for a generic colour singlet state |ABC〉. Therefore,

the two eigenvalues in the right-hand side of eqs. (6.4) and (6.5) are equal. Combining

colour algebra with the momentum dependence of the expressions in eqs. (4.11), (4.15), (4.9)

and (4.16), we straightforwardly obtain the following results:

|J(q)|2ABC = CB w
(1)
BC(q) + CA w

(1)
ABC(q) , (6.7)

|J(q1, q2)|2ABC = C2
B w

(1)
BC(q1) w

(1)
BC(q2)

+CBCA

[
w

(2)
BC(q1, q2) + w

(1)
BC(q1) w

(1)
ABC(q2) + w

(1)
BC(q2) w

(1)
ABC(q1)

]
+C2

A

[
w

(2)
ABC(q1, q2) + w

(1)
ABC(q1) w

(1)
ABC(q2)

]
. (6.8)

In the right-hand side of eqs. (6.7) and (6.8), the functions w
(N)
BC and w

(N)
ABC depend on

the momenta of the soft gluons and the momenta pA, pB and pC of the hard partons, but

they do not depend on colour coefficients. The two hard-parton functions w
(N)
BC (N = 1, 2)

are those in eqs. (4.15)–(4.17). Moreover, we have defined the following three hard-parton

functions w
(N)
ABC :

w
(N)
ABC(q1, · · · , qN ) ≡ 1

2

[
w

(N)
AB (q1, · · · , qN ) + w

(N)
AC (q1, · · · , qN )− w(N)

BC (q1, · · · , qN )
]
. (6.9)
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Note that w
(N)
ABC is not symmetric with respect to the dependence on the three hard-parton

momenta (it is symmetric only under the exchange B ↔ C).

The results in eqs. (6.7) and (6.8) are valid for both massless and massive hard partons.

In particular, they generalize the tree-level massless results in eq. (58) of ref. [12] and

eq. (A.4) of ref. [13] to the case of massive hard partons.

The dependence of eqs. (6.7) and (6.8) on the colour state of the hard-parton scattering

amplitudeMABC({pi}) is entirely expressed through the Casimir coefficient CB (CB = CC)

of the hard parton B. We have CB = CF if {ABC} = {gqq̄} (see eqs. (6.1) and (6.2)),

while we have CB = CA if {ABC} = {ggg} (see eqs. (6.4)–(6.6))). In particular, knowing

|J(q1, · · · , qN )|2ABC for the case {ABC} = {gqq̄}, we obtain |J(q1, · · · , qN )|2ABC for the

pure gluon case {ABC} = {ggg} through the replacement CF → CA. This replacement

can be regarded as a ‘Casimir scaling’ relation. Such a property is valid for N = 1 and

N = 2, but we anticipate that it is violated for triple soft-gluon radiation (see eqs. (6.11)

and (6.12)).

The squared current |J(q1, q2, q3)|2 for triple soft-gluon radiation is given in eqs. (5.1),

(5.4), (5.6) and (5.8), and it includes both colour dipole and colour quadrupole contribu-

tions. The colour dipole contribution for emission from the three hard partons {ABC} is

denoted by |J(q1, q2, q3)|2 (dip.)
ABC , and it can be computed analogously to eqs. (6.7) and (6.8).

We obtain the following result:

|J(q1, q2, q3)|2 (dip.)
ABC = C3

B w
(1)
BC(q1) w

(1)
BC(q2) w

(1)
BC(q3)

+ C2
BCA

[
w

(1)
BC(q1) w

(2)
BC(q2, q3) + w

(1)
ABC(q1) w

(1)
BC(q2) w

(1)
BC(q3) + (1↔ 2) + (1↔ 3)

]
+ CBC

2
A

{
w

(3)
BC(q1, q2, q3) +

[
w

(1)
BC(q1) w

(1)
ABC(q2) w

(1)
ABC(q3)

+w
(1)
BC(q1) w

(2)
ABC(q2, q3) + w

(1)
ABC(q1) w

(2)
BC(q2, q3) + (1↔ 2) + (1↔ 3)

]}
+ C3

A

{
w

(3)
ABC(q1, q2, q3) + w

(1)
ABC(q1) w

(1)
ABC(q2) w

(1)
ABC(q3)

+
[
w

(1)
ABC(q1) w

(2)
ABC(q2, q3) + (1↔ 2) + (1↔ 3)

]}
, (6.10)

where the two hard-parton function w
(3)
BC is given in eq. (5.9) and the three hard-parton

function w
(3)
ABC is obtained from eq. (6.9). We recall that the expression in eq. (6.10) is

valid for a generic colour singlet state |ABC〉, and we also note that such expression fulfils

Casimir scaling (analogously to eqs. (6.7) and (6.8)).

The colour dipole contribution in eq. (6.10) has to be supplemented by the contribu-

tion from colour quadrupole correlations. We have explicitly evaluated the action of the

quadrupole operators Qimkl of eq. (5.6) onto colour singlet states |ABC〉 (see eqs. (B.16)–

(B.18) in appendix B). In agreement with the general reasoning that leads to eqs. (6.1), (6.4)

and (6.5), we find that the three colour singlet states |gqq̄ 〉, |(ggg)f 〉 and |(ggg)d〉 are

eigenstates of the quadrupole operators. In particular, the gluon symmetric state |(ggg)d〉
is annihilated by the quadrupole operators, whereas the state |gqq̄ 〉 and the gluon anti-

symmetric state |(ggg)f 〉 correspond to different eigenvalues of the quadrupole operators.

Combining the algebra of the colour quadrupole with the momentum dependence as given
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in eq. (5.6), we obtain the quadrupole contributions for triple soft-gluon radiation from

three hard partons.

The complete (dipole and quadrupole) results for the eigenvalues in eqs. (6.1), (6.4)

and (6.5), are summarized as follows. In the case of the gluon colour symmetric state

|(ggg)d〉 (see eq. (6.1)) we find

|J(q1, q2, q3)|2(ABC)d
= |J(q1, q2, q3)|2 (dip.)

ABC , (6.11)

where the dipole contribution is given in eq. (6.10). In the cases of {ABC} = {gqq̄} (see

eq. (6.1)) and of the gluon colour antisymmetric state |(ggg)f 〉 (see eq. (6.4)) we find

|J(q1, q2, q3)|2ABC = |J(q1, q2, q3)|2 (dip.)
ABC + λBNc w

(3)quad.
ABC (q1, q2, q3) , (6.12)

where λB = λF if B is a quark (or antiquark) and λB = λA if B is a gluon, with

λF =
1

2
, λA = 3 . (6.13)

The quadrupole soft function w
(3)quad.
ABC (q1, q2, q3) in eq. (6.12) does not depend on colour

coefficients, and it depends on the momenta q1, q2, q3 of the soft gluons and the momenta

pA, pB, pC of the three hard partons. Its expression is

w
(3)quad.
ABC (q1, q2, q3) = [SABAB − SABBA + SABCA − SABAC + SBAAC − SBACA ]

+perms. {A,B,C} , (6.14)

where Simkl = Simkl(q1, q2, q3) is the momentum dependent function7 in eqs. (5.6)

and (5.20).

Owing to the quadrupole contribution in the right-hand side of eqs. (6.11) and (6.12),

we note that triple soft-gluon radiation in {ABC} = {gqq̄} and {ABC} = {ggg} hard-

parton processes cannot be related by using the Casimir scaling replacement CF → CA.

Note that the quadrupole coefficient λB depends on the colour state of the three hard

partons not only at the strictly-formal level but also at a sizeable quantitative level. For

instance, in the case of eq. (6.12) we have λA/λF = 6. The violation of Casimir scaling for

tree-level radiation of N = 3 soft gluons persists for larger soft-gluon multiplicities (N ≥ 4).

The expressions in eqs. (6.7), (6.8), (6.10)–(6.12) are valid for generic energies of the soft

gluons. Using the approximations in eqs. (4.20), (5.10)–(5.14) and (5.21), these expressions

can be simplified in various kinematical subregions with energy ordering of the soft gluons.

In particular, considering the energy strong-ordering region where E1 � E2 � E3 and

using eq. (5.21), we are able to express the quadrupole function in eq. (6.14) in a compact

form, which highlights some of the main features of w
(3)quad.
ABC . We find

w
(3)quad.
ABC (q1, q2, q3) =

[
1

2
w

(1)
AB(q3) G3BAC(q2) G3ABC(q1) + (1↔ 2)

]
+perms. {A,B,C} , (E1 � E2 � E3) , (6.15)

7The function Simkl can also be expressed as in eq. (C.1).
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where we have introduced the ‘quadrupole eikonal function’ Gimkl(q),

Gimkl(q) ≡ gµνjµim(q)jνkl(q) =

[
ki · kk

(ki · q)(kk · q)
− ki · kl

(ki · q)(kl · q)

]
+

(
i↔ m

k ↔ l

)
. (6.16)

Here, jµik(q) is the conserved eikonal current in eq. (4.19), and the momenta ki generically

denote momenta of hard partons or momenta of soft gluons that are harder than q (e.g.,

the subscript ‘3’ of G3BAC(q2) in eq. (6.15) refers to the soft-gluon momentum q3).

We note that the symmetry properties of Gimkl(q) with respect to its momentum

indices {i,m, k, l} are exactly the same as those of the quadrupole operators Qimkl (see

eqs. (5.15)–(5.17)). Indeed, we have

Gimkl(q) = −Gmikl(q) , Gimkl(q) = −Gimlk(q) , (6.17)

Gimkl(q) = Gklim(q) , (6.18)

Gik1k2k3(q) +Gik3k1k2(q) +Gik2k3k1(q) = 0 . (6.19)

We also remark on some distinctive features of the momentum function Gimkl(q) with

respect to its angular dependence. The various contributing terms in the right-hand side of

eq. (6.16) can separately lead to collinear singularities. However, if the four hard momenta

{ki, km, kk, kl} are distinct (more precisely, if they point towards different directions), the

collinear singularities cancel and Gimkl(q) is collinear safe (i.e., the angular integration

over the direction of the soft-gluon momentum q does not lead to collinear divergences).

At variance, if two of the hard momenta are both massless and collinear to q, Gimkl(q)

can have a singular collinear behaviour: this happens if the two collinear momenta refer

to indices in the first and second pair of indices (e.g., ki collinear to kl). In contrast, if the

two momenta in the first or second pair of indices are proportional, Gimkl(q) identically

vanishes.

As discussed in section 5.4, the quadrupole correlation W (3)quad.(q1, q2, q3) is collinear

safe with respect to the angular integration over the soft-gluon momenta. This general

property can be easily checked by considering the energy strong-ordering approximation

in eq. (6.15) and the collinear features of the quadrupole eikonal function Gimkl(q). For

instance, we can examine the behaviour of the term

w
(1)
AB(q3) G3BAC(q2) G3ABC(q1) (6.20)

of eq. (6.15) in the collinear configurations where one of the soft momenta q1, q2 or q3

is collinear to the hard-parton momentum pB: if either q1 or q2 is collinear to pB, the

functions G3ABC(q1) and G3BAC(q2) are collinear safe; is q3 is collinear to pB, the singu-

lar collinear behaviour of w
(1)
AB(q3) is cancelled by the vanishing behaviour of the factor

G3BAC(q2) (which follows from the antisymmetry property in eq. (6.17)). Exploiting the

properties of Gimkl(q), a similar reasoning can be applied to check that the expression

of w
(3)quad.
ABC (q1, q2, q3) in eq. (6.15) is collinear safe in all possible multiparton collinear

configurations of the soft-gluon momenta.

In the context of the energy strong-ordering approximation, we present a more general

result that is valid for the emission of an arbitrary number of soft gluons. We consider
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the general factorization formula in eq. (6.6) for the emission of N soft gluons from three

hard gluons. We limit ourselves to considering tree-level soft-gluon radiation in the strong

ordering region where E1 � E2 � · · · � EN . In this energy region, the factorization

formula (6.6) becomes

|MABC({q`}, {pi})|2 ' (gS µ
ε
0)2N |MABC({pi})|2 (6.21)

×
{
|J(q1, · · · , qN )|2 (s.o.)

g(A)g(B)g(C)+O((Nc)
N−2)

}
, ({ABC} = {ggg}) ,

where the squared current is

|J(q1, · · · , qN )|2 (s.o.)
g(A)g(B)g(C) = CNA (pA ·pB)(pB ·pC)(pC ·pA) F

(N+3)
eik (pA, pB, pC , q1, · · · , qN ) .

(6.22)

In eq. (6.22), pA, pB and pC are the momenta of the three hard gluons and F
(N)
eik (with

N ≥ 3) is the following ‘multi-eikonal function’ of the generic momenta ki:

F
(N)
eik (k1, · · · , kN ) ≡

[
(k1 ·k2)(k2 ·k3) . . . (kN−1 ·kN )(kN ·k1)

]−1
+ineq. perms. {k1, · · · , kN} .

(6.23)

The terms on the right-hand side are closed chains of product of eikonal propagators (ki ·
kj)
−1, and F

(N)
eik is obtained by summing over all the permutations that lead to inequivalent

chains. There are (N − 1)!/2 inequivalent permutations in eq. (6.23).

We recall that the multi-eikonal function also arises by computing the square of max-

imal helicity violating (MHV) amplitudes [50] for pure multigluon scattering. However,

the soft limit in eq. (6.21) is not directly related to MHV amplitudes. The amplitude

MABC({q`}, {pi}) in eq. (6.21) has N + 3 gluons and necessarily (because of momentum

conservation in the soft limit) additional colourless particles in its external legs. Moreover,

the squared amplitude |MABC({q`}, {pi})|2 is obtained by summing over all the helicity

configurations of his external gluons.

We note that the squared current in eq. (6.22) is proportional to CNA = (Nc)
N and,

therefore, the result in eq. (6.21) neglects corrections (denoted by the term O((Nc)
N−2))

that are formally subdominant to leading order in the large-Nc approximation. One can

explicitly check that the squared current in eq. (6.22) exactly coincides with the energy

strong ordering limit of eqs. (6.7) and (6.8). Therefore the factorization formula (6.21) is

exact (i.e., with no O((Nc)
N−2) corrections) for emission of N = 1 and 2 soft gluons. In the

case of triple soft-gluon emission, the squared current in eq. (6.22) exactly coincides with

the energy strong ordering limit of the dipole current in eq. (6.10). Therefore, if N = 3 the

terms of O((Nc)
N−2) in eq. (6.21) are those due to the quadrupole contributions that are

proportional to the function w
(3)quad.
ABC (which does not vanish in the case of energy strong

ordering) in eqs. (6.12). The comparison between eqs. (6.6) and (6.21) also implies that, in

the case of energy strong ordering, the two eigenvalues of the squared current in eqs. (6.4)

and (6.5) becomes degenerate, modulo corrections of O((Nc)
N−2).

Our derivation (which also uses the BCM formula of ref. [26]) of the results in eqs. (6.21)

and (6.22) is presented in section 7 (see eq. (7.12) and accompanying comments). To our

knowledge, these results are new and they have not appeared in the previous literature.
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7 Processes with soft gluons and two hard partons

In this section we discuss soft-gluon radiation in scattering processes with two hard partons.

In section 7.1 we consider soft-gluon factorization to arbitrary orders in the loop expansion.

We comment on the colour structure and then, considering certain kinematical regions with

energy ordering of the soft gluons, we directly relate the squared currents for emission of N

soft gluons from two and three hard partons. In section 7.2 we explicitly consider radiation

of N = 1, 2 and 3 soft gluons at the tree level. Then, in section 7.3 we present some results

on the tree-level emission of N = 4 soft gluons.

7.1 All-order features

We consider a generic scattering amplitude MBC({q`}, {pi}) whose external legs are two

hard partons (denoted as B and C), soft gluons and additional colourless particles. Owing

to flavour conservation, the two hard partons can be either a qq̄ pair ({BC} = {qq̄}) or

two gluons ({BC} = {gg}).
The corresponding scattering amplitude MBC({pi}) without soft gluons is a colour

singlet state. There is only one colour singlet configuration of the two hard partons, and

the corresponding one-dimensional colour space is generated by the colour state vector

denoted as |BC〉. Modulo overall normalization, in the case of a {BC} = {qq̄} state

we can set 〈βγ̄ |BC 〉 = δβγ̄ where β and γ̄ are the colour indices of the quark (B) and

antiquark (C), while in the case of a {BC} = {gg} state we can set 〈 bc |BC 〉 = δbc where

b and c are the colour indices of the two gluons.

The squared current |J(q1, · · · , qN )|2 in eq. (4.2) conserves the colour charge of the

hard partons and, consequently, the state |J |2 |BC〉 is also proportional to |BC〉. We write

|J(q1, · · · , qN )|2 |BC〉 = |BC〉 |J(q1, · · · , qN )|2BC , (7.1)

and it follows that the soft-gluon factorization formula (4.2) can be written as

|MBC({q`}, {pi})|2 ' (gS µ
ε
0)2N |MBC({pi})|2 |J(q1, · · · , qN )|2BC . (7.2)

Note that the squared current factor |J(q1, · · · , qN )|2BC in eq. (7.1) is the eigenvalue of

the colour operator |J |2 onto the colour state |BC〉. Therefore |J(q1, · · · , qN )|2BC is a

c-number, and the soft-gluon formula (7.2) for the squared amplitude has a factorized

c-number form, with no residual correlation effects in colour space. In this respect, the

structure of eq. (7.2) is similar to that of soft-photon factorization formulae in QED. The

non-abelian (colour correlation) effects are effectively embodied in the dependence of the c-

number factor |J(q1, · · · , qN )|2BC on SU(Nc) colour coefficients (see, e.g., eqs. (7.8)–(7.10)

and (7.16)).

We note that the factorized structure of eqs. (7.1) and (7.2) simply and directly follows

from the fact that two hard partons in a colour singlet configuration generate a one-

dimensional colour space. Therefore, eqs. (7.1) and (7.2) are valid at arbitrary loop orders

in the perturbative expansion of both the soft-gluon current and the scattering amplitude.

Combining eqs. (7.1) and (7.2) with the discussion in section 6.1, we can derive a general

result that relates multiple soft-gluon radiation from scattering amplitudes with two and
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three hard partons. Specifically, we examine the radiation of N soft gluons from two hard

partons B and C in the energy region where one soft gluon (say, the gluon with momentum

qN ) is much harder than the other N − 1 gluons. Therefore, we are considering the energy

region where EN � E` without additional constraints on the energies E` (` = 1, . . . , N−1)

of the softer gluons. In this energy region the squared current |J(q1, · · · , qN )|2BC of eq. (7.2)

fulfils the following relation:

|J(q1, · · · , qN )|2BC = |J(q1, · · · , qN−1)|2ABC |J(qN )|2BC , (pA = qN , EN � E` with ` < N) ,

(7.3)

where |J(q1, · · · , qN−1)|2ABC is the squared current for emission of the softer gluons from

three hard partons, namely, the two hard partons (B and C) and the hardest soft gluon

A with momentum pA = qN . More precisely, |J(q1, · · · , qN−1)|2ABC is the squared current

in eq. (6.1) if {BC} = {qq̄}, while it is the squared current eigenvalue in eq. (6.4) if

{BC} = {gg}. The proof of eq. (7.3), which is given below, is based on the relations in

eqs. (6.2), (6.6) and (7.2) (and also on the structure of eq. (7.6)). Since these relations are

valid to all orders, eq. (7.3) is equally valid at arbitrary perturbative orders in the loop

expansion of the squared currents.

We note that the factor |J(q1, · · · , qN−1)|2ABC in eq. (7.3) is evaluated in the energy

region where the momentum pA = qN is softer than the momenta pB and pC . However,

this energy constraint has no effect on |J(q1, · · · , qN−1)|2ABC , which is exactly equal to the

squared currents in eqs. (6.1) and (6.4) with no energy constraints. This statement follows

from the fact that the soft limit q` → 0 (` = 1, . . . , N − 1) is insensitive to the actual size

of the energies of the hard partons. More formally, the statement is a consequence of the

invariance of the soft current J under the rescaling pi → ξipi (ξi are arbitrary positive

definite parameters) of each hard-parton momentum pi (such invariance is evident in the

computation of the current by using the eikonal approximation for soft emission from the

hard partons). We also note that the energy ordering requirement EN � E` with ` ≤ N−1

in eq. (7.3) only affects the expression of |J(q1, · · · , qN )|2BC in the left-hand side, without

affecting |J(q1, · · · , qN−1)|2ABC .

The relation (7.3) can be exploited in different ways. For instance, it can be used

to extract information on |J |2ABC from the knowledge of |J |2BC (see, e.g., eqs. (6.22)

and (7.11)), or viceversa (see, e.g., section 7.3). Obviously, it can also be used to check

explicit computations of the currents.

The proof of eq. (7.3) proceeds as follows. To compute the squared current |J |2BC for

emission of {q1, · · · , qN} from B and C, we first consider the emission of {q1, · · · , qN−1}
from three harder partons as given by the partons B and C and the hardest gluon A with

momentum pA = qN . Then we consider the emission of the soft gluon with momentum

pA = qN from the hard partons B and C. If the hard partons are {BC} = {qq̄}, this

procedure simply amounts to apply first the factorization formula (6.2) for N − 1 soft

gluons and then the factorization formula (7.2) for the emission of a single soft gluon with

momentum qN : the combination of eqs. (6.2) and (7.2) straightforwardly gives eq. (7.3). If

the hard partons B and C are two gluons, the procedure requires the use of the factorization

formulae in eqs. (6.6) and (7.2), and this leads to a subtle point since (at variance with
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eq. (6.2)) eq. (6.6) involves the emission of the soft gluon with momentum pA = qN from

two possible colour state configurations of the amplitude |MABC({pi}〉. Nonetheless, in the

soft limit pA = qN → 0 we find (see eqs. (7.4) and (7.6) and accompanying comments) that

the amplitude |MABC({pi}〉 is necessarily proportional to the antisymmetric colour state

|(ABC)f 〉 in eq. (6.3) (i.e., 〈(ABC)d |MABC({pi}〉 vanishes in the soft limit pA = qN → 0).

Therefore, the use of (6.6) leads to eq. (7.3), where |J(q1, · · · , qN−1)|2ABC is the squared

current eigenvalue of the antisymmetric colour state.

The all-order structure of eqs. (7.1), (7.2) and (7.3) refers to the squared current |J |2

for multiple soft-gluon emission from two hard partons. We also comment on the all-

order structure of the soft current J , although we limit our discussion to single soft-gluon

radiation.

We consider the scattering amplitude MBC(q, {pi}) with two hard partons B and C

(with momenta pB and pC) and a gluon with momentum q and colour index a, and we

perform the soft limit q → 0. The dominant singular behaviour in the soft limit is given

by the factorization formula (2.5), which we explicitly rewrite:

|MBC(q, {pi})〉 ' gS µ
ε
0 J(q) |MBC({pi})〉 . (7.4)

Here |MBC({pi})〉 is the all-loop scattering amplitude with the two hard partons B and

C in a colour singlet configuration, and J(q) is the all-loop current for single soft-gluon

emission from the two hard partons in the colour singlet state |BC 〉.
To present the all-order structure of J(q) and to highlight its colour structure, we

explicitly denote the dependence on the colour indices. The amplitude MBC(q, {pi}) de-

pends on the soft-gluon index a and on the colour indices of the hard partons B and C. If

{BC} = {gg} the hard-gluon colour indices are denoted by b and c, while if the two hard

partons are a quark (B) and an antiquark (C) their colour indices are denoted as β and γ̄,

respectively. The all-order structure of the current in eq. (7.4) is as follows

〈a β γ̄ | ε(σ)
µ (q)Jµ(q) |BC 〉 = taβγ̄ ε

(σ)
µ (q)

(
pµB
pB·q

−
pµC
pC ·q

)[
1+f

(qq̄)
h.o.

]
, ({BC} = {qq̄}) ,

(7.5)

〈a b c | ε(σ)
µ (q)Jµ(q) |BC 〉 = i f bac ε(σ)

µ (q)

(
pµB
pB·q

−
pµC
pC ·q

)[
1+f

(gg)
h.o.

]
, ({BC} = {gg}) ,

(7.6)

where ε
(σ)
µ (q) is the physical spin polarization vector of the soft gluon. As briefly discussed

below, eqs. (7.5) and (7.6) directly derive from extending and refining the reasoning in

refs. [12, 51, 52].

We first comment on the case {BC} = {qq̄}. There is a sole colour singlet state

|ABC 〉 that can be formed by the soft gluon and the qq̄ pair and, consequently (since

〈a β γ̄ |ABC 〉 ∝ taβγ̄), the right-hand side of eq. (7.5) is necessarily proportional to the

colour matrix taβγ̄ in the fundamental representation of SU(Nc). The soft-gluon current

Jµ(q) depends on the momenta q, pB and pC . It follows [12, 51, 52] that it is necessarily

proportional to the colourless current jµBC(q) = pµB/pB · q − p
µ
C/pC · q because of gauge
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invariance, namely, because of the current conservation relation qµJ
µ(q) = 0 (any terms

proportional to qµ in Jµ(q) do not contribute to eq. (7.6) since qµε
(σ)
µ (q) = 0 for physical

spin polarizations). This simple discussion leaves undetermined only the dimensionless

scalar function f
(qq̄)
h.o. in eq. (7.5). Setting f

(qq̄)
h.o. = 0, eq. (7.5) coincides with the tree-

level current in eq. (2.9) (one can simply use colour conservation, namely, TC |BC 〉 =

−TB|BC 〉 in eq. (2.9)). Therefore, the function f
(qq̄)
h.o. is due to loop corrections at higher

perturbative orders. The momentum dependence of f
(qq̄)
h.o. is constrained by symmetry

properties [12, 51, 52] such as, for instance, the invariance of the soft current with respect

to the rescaling pB → ξBpB and pC → ξCpC of the hard-parton momenta. In the case of

massless quark and antiquark, the functional dependence of f
(qq̄)
h.o. is

f
(qq̄)
h.o. = f

(qq̄)
h.o.

(
g2

S

(
µ2

0 (−2pB · pC − i0)

(−2pB · q − i0)(−2pC · q − i0)

)ε)
, (p2

B = p2
C = 0) , (7.7)

since the argument of f
(qq̄)
h.o. in the right-hand side of eq. (7.7) is the sole Lorentz invari-

ant and dimensionless function that is invariant under the rescaling of the massless hard

momenta (the infinitesimal part ‘−i0’ arises from the Feynman prescription for analytic

continuation in different physical kinematical regions of the momenta q, pB, pC). In the

case of massive hard partons, additional forms of momentum dependence can be present

in f
(qq̄)
h.o. (see ref. [17] at one-loop order). For instance, if p2

B 6= 0 the higher-order function

f
(qq̄)
h.o. can also depend on the argument g2

S[µ2
0p

2
B/(−2pB · q − i0)2]ε.

The all-order form of the soft-gluon current in eq. (7.6) for radiation from two hard

gluons follows from a discussion that is analogous to the discussion that leads to eq. (7.5)

for the qq̄ case. The only difference regards a subtle point related to the colour structure,

whereas the discussion about the dependence on the momenta q, pB and pC is unchanged.

The soft gluon can be combined with the two hard gluons B and C in two possible colour

singlet states, as given by the antisymmetric and symmetric states in eq. (6.3). There-

fore, the soft-gluon current in eq. (7.6) could have two colour components proportional

to fabc and dabc, respectively. The right-hand side of eq. (7.6) instead includes only the

fabc component, while the dabc component is absent. At the tree level, the explicit re-

sult in eq. (2.9) for the soft-gluon current implies that the soft gluon is produced in the

antisymmetric state. We recall (see the accompanying comments to eqs. (6.4) and (6.5))

that the antisymmetric and symmetric states have a different charge conjugation. Since

QCD radiative corrections at loop level are invariant under charge conjugation, high-order

loop corrections to the tree-level soft-gluon current cannot produce transitions from the

antisymmetric to the symmetric state. This explains the absence of the dabc component in

the right-hand side of eq. (7.6). Although the scattering amplitude |MBC(q, {pi})〉 in the

left-hand side of eq. (7.4) can have both antisymmetric and symmetric components, the

result in eq. (7.6) implies that the symmetric component is dynamically suppressed in the

soft limit q → 0.

The single soft-gluon current in eqs. (7.4)–(7.6) has been explicitly computed at one-

loop order (for both massless [11, 12] and massive [17] hard partons) and two-loop order

(for massless hard partons [51–53]). The explicit one-loop and two-loop results agree with
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the general structure in eqs. (7.5) and (7.6). In the case of massless hard partons, the

functions f
(qq̄)
h.o. and f

(gg)
h.o. turns out to be equal up to two-loop order. Such an equality is

not expected to be valid starting from the three-loop order [51]. This expectation follows

from observing that the colour coefficient dependence of f
(BC)
h.o. at three-loop order is in

close correspondence (through Feynman diagrams with similar topologies) with the colour

coefficient dependence of the squared current |J(q1, q2, q3, q4)|2BC for quadruple soft-gluon

radiation at the tree level. As shown and discussed in section 7.3, such squared current

exhibits correlations with colour coefficients that violate Casimir scaling. The same colour

coefficients contribute (modulo accidental cancellations of their overall factor) to f
(BC)
h.o. at

three-loop order, leading to an explicit dependence of f
(BC)
h.o. on the colour representation

of the hard partons B and C.

7.2 Soft-gluon radiation at the tree level

The squared current factor |J(q1, · · · , qN )|2BC of eq. (7.2) for emission of N = 1, 2 and 3 soft

gluons at the tree level can be explicitly computed by applying the general results of sec-

tions 4.1 and 5 to the case of two hard partons. We recall that colour quadrupole operators

do not contribute to soft-gluon radiation from two hard partons (see eq. (5.19)). Therefore,

only colour dipole operators T i ·T k (and their products) are involved in the colour structure

of the squared current |J(q1, · · · , qN )|2 for emission of N = 1 (see eqs. (4.11) and (4.15)),

N = 2 (see eqs. (4.9) and (4.16)) and N = 3 (see eqs. (5.1), (5.4) and (5.8)) soft gluons

from two hard partons. The action of colour dipole operators onto a colour singlet state

|BC〉 of two hard partons can be straightforwardly evaluated by using colour charge con-

servation (TB |BC〉 = −TC |BC〉), and it leads to TB · TC |BC〉 = −CB |BC〉) (note

that CC = CB, since the two hard partons {B,C} are a particle-antiparticle pair). It fol-

lows that |J(q1, · · · , qN )|2BC with N = 1, 2 and 3 can be directly expressed in terms of the

Casimir coefficient CB of the hard partons and of the factors CN−1
A w

(N)
BC in eqs. (4.15), (4.16)

and (5.8) for soft-gluon correlated emission. We obtain the following results:

|J(q)|2BC = CB w
(1)
BC(q) . (7.8)

|J(q1, q2)|2BC = C2
B w

(1)
BC(q1) w

(1)
BC(q2) + CBCA w

(2)
BC(q1, q2) , (7.9)

|J(q1, q2, q3)|2BC = C3
B w

(1)
BC(q1) w

(1)
BC(q2) w

(1)
BC(q3)

+ C2
BCA

[
w

(1)
BC(q1) w

(2)
BC(q2, q3) + (1↔ 2) + (1↔ 3)

]
+ CBC

2
A w

(3)
BC(q1, q2, q3) , (7.10)

where w
(N)
BC (q1, . . . , qN ) depends on the momenta of the soft gluons and the momenta pB

and pC of the two hard partons. Some brief comments on eqs. (7.8)–(7.10) are presented

below.

From the viewpoint of the dependence on the colour coefficients, the expansion of

eqs. (7.8)–(7.10) in irreducible correlations for multiple soft-gluon emission corresponds to

an expansion in maximally non-abelian colour factors CkBC
N−k
A (k = 1, . . . , N). We also

note that the dependence of |J(q1, · · · , qN )|2BC on the colour of the two hard partons B
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and C is entirely determined by the Casimir invariant CB = CC of the two hard partons.

In particular, knowing |J(q1, · · · , qN )|2BC for the case {B,C} = {q, q̄} (i.e., CB = CF ), the

simple replacement CF → CA is sufficient to get |J(q1, · · · , qN )|2BC for the case {B,C} =

{g, g} (i.e., CB = CA). The correspondence between the {qq̄} and {gg} cases through this

simple replacement of colour coefficients can be regarded as a ‘Casimir scaling’ relation.

As shown in section 6.2, in the case of tree-level soft-gluon radiation from three hard

partons, Casimir scaling is fulfilled for emission of N = 1 and 2 soft gluons, but it is

violated for emission of N = 3 soft gluons. In the case of tree-level soft-gluon radiation

from two hard partons, eqs. (7.8)–(7.10) show the validity of Casimir scaling for emission of

N = 1, 2, 3 soft gluons, and we anticipate (see section 7.3) that Casimir scaling is violated

for emission of N = 4 soft gluons. In the case of three hard partons, the violation of Casimir

scaling is directly due to colour quadrupole correlations. These quadrupole correlations are

also responsible (though indirectly) for the violation of Casimir scaling in the case of two

hard partons (section 7.3).

The results in eqs. (7.8)–(7.10) are valid for both massless and massive hard partons.

In the massless case, eqs. (7.8) and (7.9) coincide with the results in ref. [13]. In the

massive case, eq. (7.9) can straightforwardly be obtained from the soft-current expression

in ref. [16].

The expression in eq. (7.10) for triple soft-gluon radiation from two hard partons

derives from the general results in section 5, and it is valid for arbitrary energies of the soft

gluons. Previous results in the literature [26, 27, 31] are limited to the region of energy

strong ordering (E1 � E2 � E3) of the three soft gluons, and to the case of massless hard

partons. Using the energy strong ordering approximations of w
(3)
ik and w

(3)
ik in eqs. (4.20)

and (5.11), we have compared the result in eq. (7.10) with those in refs. [26, 27, 31] and

we find full agreement. We add some comments on the comparison.

Triple soft-gluon radiation with energy strong ordering from two generic (either qq̄ or

gg) massless hard partons was computed in refs. [27] and [31]. The results in eqs. (31),

(47), (51) and (52) of ref. [27] and those in our eq. (7.10) have exactly the same structure

and, in particular, the irreducible gluon correlation in eq. (52) of ref. [27] identically agrees

with the expression in our eq. (5.11). Since eq. (5.11) is valid for both massless and massive

hard partons, the formal expressions in ref. [27] turn out to be valid also in the massive

case, although they were derived for massless hard partons.

In ref. [26] BCM considered the tree-level emission of N soft gluons from two hard

gluons, and they derived an explicit expression for the corresponding squared current

|J(q1, · · · , qN )|2g(B)g(C) that is valid in the kinematical region where the soft-gluon energies

E` are strongly ordered (E1 � E2 � · · · � EN ). The BCM formula is

|J(q1, · · · , qN )|2 (s.o.)
g(B)g(C) = 2CNA (pB · pC)2 F

(N+2)
eik (pB, pC , q1, · · · , qN ) +O((Nc)

N−2) ,

(7.11)

where F
(N+2)
eik is the multi-eikonal function in eq. (6.23). The term denoted by O((Nc)

N−2)

in the right-hand side of eq. (7.11) represents contributions that are formally subdominant

in the large-Nc approximation [29]. These contributions actually vanish for N ≤ 3 [26], and

they first explicitly appear for emission of N = 4 soft gluons (see eq. (7.21) in section 7.3).
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We have explicitly checked that eqs. (7.9) and (7.10) agree with the BCM for-

mula (7.11). Actually, the check is immediate by observing that setting CB = CA in

the expressions of eqs. (7.9) and (7.10), these expressions are proportional to the energy

strong ordering results in eqs. (5.13) and (5.14), whose right-hand side directly involves the

multi-eikonal function F
(N+2)
eik with N = 2 and N = 3.

The result that we have presented in eqs. (6.21) and (6.22) is a straightforward con-

sequence of eqs. (7.3) and (7.11). To see this, we first specify eq. (7.3) to the case of hard

gluons ({B,C} = {g, g}), and we rewrite it as

|J(q1, · · · , qN−1)|2g(A)g(B)g(C) =
|J(q1, · · · , qN )|2g(B)g(C)

|J(qN )|2g(B)g(C)

, (EN � E` with ` < N) ,

(7.12)

where qN = pA (as remarked in the accompanying comments to eq. (7.3), the fact that pA
is softer than pB and pC has no effect on the left-hand side of eq. (7.12)). Then we restrict

eq. (7.12) to the case of tree-level soft-gluon radiation in the region of strongly ordered ener-

gies (E1 � · · · � EN ). In the right-hand side, we use |J(qN )|2g(B)g(C) = 2CA(pB ·pC)/[(pC ·
pA)(pA · pB)] (see eq. (7.8)) and the BCM formula (7.11) for |J(q1, · · · , qN )|2g(B)g(C). This

directly leads to the expression of |J |2 (s.o.)
g(A)g(B)g(C) in eq. (6.22).

7.3 Quadruple soft-gluon radiation at the tree level

Multiple soft-gluon radiation (N ≥ 4) at the tree level can be examined by extending the

analysis of sections 3 and 5 to higher soft-gluon multiplicities.

The general expression of the tree-level squared current |J(q1, q2, q3, q4)|2 for quadruple

soft-gluon radiation in a generic process with an arbitrary number of hard-parton external

legs can be presented in the following form:

|J(q1, q2, q3, q4)|2
cs
=
(
W (1)(q1)W (1)(q2)W (1)(q3)W (1)(q4)

)
sym

+
[(
W (2)(q1, q2)W (1)(q3)W (1)(q4)

)
sym

+ ineq. perms. {1, 2, 3, 4}
]

+
[(
W (2)(q1, q2)W (2)(q3, q4)

)
sym

+ ineq. perms. {1, 2, 3, 4}
]

+
[(
W (1)(q1)W (3)(q2, q3, q4)

)
sym

+ (1↔ 2) + (1↔ 3) + (1↔ 4)
]

+ W (4)(q1, q2, q3, q4) . (7.13)

The expansions in irreducible gluon correlations, W (N)(q1, · · · , qN ), of the squared

currents for single, double and triple soft-gluon radiation are given by the expressions

in eqs. (4.11), (4.9) and (5.1). The expression in eq. (7.13) generalizes these expansions

to the case of quadruple soft-gluon radiation. In particular, since W (N) with N ≤ 3

is determined by the corresponding squared currents with N ≤ 3, the computation of

|J(q1, q2, q3, q4)|2 is equivalent to that of the irreducible four-gluon correlations W (4) in the

fifth line of eq. (7.13).

We recall that the correlations W (N) are colour operators, and they appear in the form

of symmetrized products in the right-hand side of eq. (7.13). The first line involves the
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symmetrized product of four operators W (1)(q`). The symmetrized product of four generic

colour operators OI is defined as(
O1O2O3O4

)
sym
≡ 1

4!

(
O1O2O3O4 + perms. {1, 2, 3, 4}

)
, (7.14)

where the right-hand side includes the sum over the 4! = 24 permutations of O1, O2, O3 and

O4. The other lines in the right-hand side of eq. (7.13) involve symmetrized products of two

and three colour operators (these symmetrized products are defined in eqs. (3.2) and (3.3))

and sums over permutations that lead to inequivalent contributions. The square-bracket

term in the second line involves a sum over 6 inequivalent permutations. The square-

bracket term in the third line involves a sum over 3 inequivalent permutations. The 4

inequivalent permutations that contribute to the square-bracket term in the fourth line are

explicitly denoted therein.

The general expression of the irreducible four-gluon correlation W (4)(q1, q2, q3, q4) can

be computed by applying the techniques of sections 3 and 5 to quadruple soft-gluon ra-

diation. In this subsection we limit ourselves to presenting explicit results for quadruple

soft-gluon radiation in scattering processes with two hard partons.

In the case of emission of four soft gluons from two hard partons, B and C, we have

to evaluate the action of the squared current |J(q1, q2, q3, q4)|2 or, equivalently, of the

correlation operator W (4)(q1, q2, q3, q4) onto the colour singlet state |BC 〉, as in eq. (7.1).

We find the results that are reported below.

The irreducible correlation W (4) has the following form:

W (4)(q1, q2, q3, q4)|BC〉 = |BC〉CB
[
C3
Aw

(4)(L)
BC (q1, q2, q3, q4) + λBNcw

(4)(S)
BC (q1, q2, q3, q4)

]
,

(7.15)

where the dependence on the colour state is due to the Casimir coefficient CB and the

colour dependent coefficient λB of eq. (6.13). The functions w
(4)(L)
BC and w

(4)(S)
BC are colour

independent, and they depend on the momenta {pB, pC , q1, q2, q3, q4} of the hard and soft

partons. We note that the two contributions in the right-hand side of eq. (7.15) behave

differently in the large-Nc limit: the dominant term is proportional to w
(4)(L)
BC , while w

(4)(S)
BC

produces a subdominant term that is formally suppressed by a relative factor of order 1/N2
c .

The expression of the squared current is

|J(q1, q2, q3, q4)|2BC = C4
B w

(1)
BC(q1) w

(1)
BC(q2) w

(1)
BC(q3) w

(1)
BC(q4)

+ C3
BCA

[
1

4
w

(1)
BC(q1) w

(1)
BC(q2) w

(2)
BC(q3, q4) + perms. {1, 2, 3, 4}

]
+ C2

BC
2
A

[
1

6
w

(1)
BC(q1) w

(3)
BC(q2, q3, q4) +

1

8
w

(2)
BC(q1, q2) w

(2)
BC(q3, q4) + perms. {1, 2, 3, 4}

]
+ CBC

3
Aw

(4)(L)
BC (q1, q2, q3, q4) + CBλBNcw

(4)(S)
BC (q1, q2, q3, q4) , (7.16)

where the functions w
(4)(L)
BC and w

(4)(S)
BC in the fourth line are those in eq. (7.15), and the

other momentum-dependent correlations w(N) with N ≤ 3 are explicitly known from lower-

multiplicity results (see eqs. (4.15), (4.16) and (5.8)). The results in eqs. (7.15) and (7.16)
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are valid for both massless and massive hard partons, and for arbitrary energies of the soft

gluons.

We have not computed the functions w
(4)(L)
BC and w

(4)(S)
BC in explicit form for arbitrary

soft-gluon energies. We can present the results in a wide energy ordered region where one

gluon is much harder than the others. In the region where E4 � E` with ` = 1, 2, 3 (note

that no other restriction is applied on the energies E1, E2 and E3 of the softer gluons),

we find

w
(4)(L)
BC (q1, q2, q3, q4) = w

(1)
BC(q4)

{
w

(3)
4BC(q1, q2, q3)+w

(1)
4BC(q1) w

(1)
4BC(q2) w

(1)
4BC(q3)

+
[
w

(1)
4BC(q1) w

(2)
4BC(q2, q3)+ (1↔ 2)+(1↔ 3)

]}
, (E` � E4, ` ≤ 3),

(7.17)

w
(4)(S)
BC (q1, q2, q3, q4) = w

(3)quad.
4BC (q1, q2, q3) w

(1)
BC(q4) , (E` � E4, ` ≤ 3) , (7.18)

where w
(N)
4BC withN ≤ 3 is the lower-multiplicity dipole correlation in eq. (6.9), and w

(3)quad.
4BC

is the quadrupole correlation function in eq. (6.14) for triple soft-gluon radiation from three

hard partons (we have to set pA = q4 in both eqs. (6.9) and (6.14)). Obviously, simple

permutations of the four gluon momenta in eqs. (7.17) and (7.18) are sufficient to give the

results in the other three regions where E3, or E2, or E1 is the larger soft-gluon energy.

We illustrate the derivation of the results in eqs. (7.15)–(7.18). To compute the squared

current |J(q1, q2, q3, q4)|2BC we start from the general expression in eq. (7.13), and we eval-

uate its action onto the colour singlet state |BC 〉. The right-hand side of eq. (7.13)

involves the four-gluon correlation W (4) and the correlations W (N) for lower gluon multi-

plicities (N ≤ 3). The contribution of W (N) with N ≤ 3 to |J(q1, q2, q3, q4)|2BC is given

in the first three lines in the right-hand side of eq. (7.16). This contribution can be ob-

tained in a straightforward way since the correlations W (N) with N ≤ 3 are known (see

eqs. (4.15), (4.16) and (5.8)), and their action onto |BC 〉 is completely given in terms of

colour dipole operators (analogously to the computation of eqs. (7.8)–(7.10)). The last

line in the right-hand side of eq. (7.16) is the contribution of W (4) (see eq. (7.15)) to

|J(q1, q2, q3, q4)|2BC .

To obtain the results in eqs. (7.15), (7.17) and (7.18) we exploit eqs. (7.3) and (6.12).

More explicitly, we first use eq. (7.3) at the tree-level with N = 4 in the corresponding

energy ordering region, and we have

|J(q1, q2, q3, q4)|2BC = |J(q4)|2BC |J(q1, q2, q3)|2ABC , (E` � E4, ` ≤ 3) , (7.19)

where pA = q4. Then we use |J(q4)|2BC as given in eq. (7.8) and the result in eq. (6.12) for

|J(q1, q2, q3)|2ABC . We obtain

|J(q1, q2, q3, q4)|2BC = CB w
(1)
BC(q4)

[
|J(q1, q2, q3)|2 (dip.)

4BC + λBNc w
(3)quad.
4BC (q1, q2, q3)

]
,

(7.20)

where we have set pA = q4. Finally, the expression (6.10) of |J(q1, q2, q3)|2 (dip.)
ABC (with

pA = q4) can be inserted in eq. (7.20), and the result can be compared with the right-hand

side of eq. (7.16). The comparison has to be performed in the energy ordering region where
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E` � E4 (with ` ≤ 3) by exploiting the corresponding energy ordering approximations in

eqs. (4.20) and (5.10). The comparison shows that eq. (7.20) correctly reproduces all the

terms with colour factors C4
B, C

3
BCA and C2

BC
2
A in eq. (7.16). Moreover, the comparison is

used to determine the remaining terms in the right-hand side of eq. (7.16), and we obtain

the results in eqs. (7.15), (7.17) and (7.18).

The derivation of eq. (7.15) that we have just described is valid in the energy region

where E` � E4 with ` ≤ 3. However, the energy restriction is only relevant to deter-

mine the corresponding expressions of w
(4)(L)
BC and w

(4)(S)
BC in eqs. (7.17) and (7.18). Indeed,

the colour coefficient dependence in the right-hand side of eq. (7.15) is the correct and

general dependence for arbitrary energies of the soft gluons. This conclusion about the

colour structure of eq. (7.15) is a consequence of the following observation. The compu-

tation of |J(q1, q2, q3, q4)|2BC in the energy ordered region requires the evaluation of all

the topologically-distinct Feynman diagrams that contribute to the squared current for

arbitrary energies of the four soft gluons. The explicit evaluation of the corresponding

colour coefficients directly leads to the colour structure of eq. (7.15). The energy ordering

approximation only affects the actual computation of the momentum dependence of the

Feynman diagrams and the ensuing momentum dependence of the squared soft current.

The comparison between eqs. (7.16) and (7.20) also leads to a direct interpretation

of the colour structure of the irreducible four-gluon correlation W (4) in eq. (7.15). In the

energy ordered region, the term |J(q4)|2BC |J(q1, q2, q3)|2 (dip.)
4BC in eq. (7.20) is due to the

iteration of colour dipole correlations for subsequent radiation of soft gluons. This term

produces the contributions to eq. (7.16) that are proportional to the colour factors C4−k
B CkA

(k = 0, 1, 2, 3). In particular, the contribution CBC
3
Aw

(4)(L)
BC to eq. (7.15) can be regarded

as the maximally non-abelian (irreducible) colour dipole correlation for quadruple soft-

gluon radiation. The term |J(q4)|2BC λBNc w
(3)quad.
4BC in eq. (7.20) originates from colour

quadrupole correlations for triple-soft gluon radiation. This term produces the contribution

CBλBNcw
(4)(S)
BC to eq. (7.15), which can be regarded as a ‘quadrupole-induced’ irreducible

correlation for radiation of four soft gluons from two hard partons.

The squared current for quadruple soft-gluon radiation form two massless hard partons

{B,C} was examined in section 6.3 of ref. [31]. The results of ref. [31] refer to the kinemat-

ical region where the soft-gluon energies are strongly ordered (e.g., E1 � E2 � E3 � E4).

In particular, the authors of ref. [31] pointed out the presence of an irreducible-correlation

contribution with colour factor CBNc, which was named ‘colour monster’ contribution,

and they explicitly computed it for the case of soft-gluon radiation from a quark-antiquark

pair ({B,C} = {q, q̄}). These findings are fully consistent with the colour structure of

eq. (7.15), where the term CBλBNcw
(4)(S)
BC , with CBλB = CF /2, corresponds to the colour

monster contribution.

The results in eqs. (7.15)–(7.18) extend the analysis of ref. [31] in many respects.

Equations (7.15) and (7.16) are fully general: they are valid for both massless and massive

hard partons and for arbitrary soft-gluon energies. In the following, we generically refer

to the term CBλBNcw
(4)(S)
BC in eqs. (7.15) and (7.16) as the colour monster contribution,

independently of its actual dependence on the momenta of the hard and soft partons.

In particular, eq. (7.15) shows that the colour monster contributions for {B,C} = {q, q̄}
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and {B,C} = {g, g} hard processes are directly proportional through the colour factor

(CFλF )/(CAλA) = CF /(6CA). Energy ordering approximations only affect the expressions

in eqs. (7.17) and (7.18), which are nonetheless valid in an energy region that is wider

than the strongly-ordered energy region examined in ref. [31]. Using the energy strong-

ordering approximations in eqs. (4.21), (5.12) and (6.15), we have explicitly checked that

eqs. (7.16)–(7.18) agree with the results of ref. [31]. In particular, in the case of radiation

from a massless quark and antiquark ({B,C} = {q, q̄}), the result in eqs. (7.16) and (7.18)

agrees with the colour monster contribution in eqs. (6.51a) and (6.51b) of ref. [31].

The colour monster contribution for radiation from two hard gluons ({B,C} = {g, g})
was not explicitly evaluated in ref. [31]. Using eqs. (7.16)–(7.18) we can compute the

squared current for quadruple soft-gluon radiation from two hard gluons in the energy

strong-ordering region where E1 � E2 � E3 � E4. We find

|J(q1, q2, q3, q4)|2 (s.o.)
g(B)g(C) = 2C4

A (pB · pC)2 F
(6)
eik (pB, pC , q1, q2, q3, q4)

+3N2
c w

(4)(S) (s.o.)
BC (q1, q2, q3, q4) , (7.21)

where w
(4)(S) (s.o.)
BC is the energy strong-ordering approximation of w

(4)(S)
BC and it is presented

in eq. (7.23). The expression in eq. (7.21) is fully consistent with the BCM formula (7.11).

In particular, the second term in the right-hand side of eq. (7.21) gives the first explicit

correction to the multi-eikonal BCM result of eq. (7.11). Owing to the angular-ordering

features of multiple soft gluon radiation, such correction is expected [26] to be dynamically

suppressed in collinear regions. Our explicit result actually shows a very strong suppression.

The contribution of the multi-eikonal function F
(6)
eik to eq. (7.21) is singular in all the

multiple collinear limits that involve either soft gluons or soft gluons and one hard parton.

The contribution of w
(4)(S) (s.o.)
BC is instead singular only in the five-parton collinear limit

of the four soft gluons and one hard parton (see eq. (7.23) and accompanying comments).

Therefore, performing the d-dimensional integration over the angles of the four soft gluons,

F
(6)
eik can produce collinear divergences of O(1/ε4), while w

(4)(S) (s.o.)
BC produces a collinear

divergence of O(1/ε).

In the energy strong-ordering region where E1 � E2 � E3 � E4, inserting eq. (6.15)

in eq. (7.18) we can straightforwardly obtain a compact expression for the colour monster

function w
(4)(S)
BC . In the case of massive hard partons (p2

B 6= 0, p2
C 6= 0) we find the expression

w
(4)(S)
BC (q1, q2, q3, q4) = w

(1)
BC(q4)

{[
w

(1)
4C (q3) G34CB(q1)+

1

2
w

(1)
BC(q3) G3B4C(q1)

]
G3C4B(q2)

+ (B ↔ C)

}
+(1↔ 2) , (E1 � E2 � E3 � E4) ,

(7.22)

which, in the massless case, can be rewritten as

w
(4)(S) (s.o.)
BC (q1, q2, q3, q4) = 2 (pB · pC)2

{[
2G34CB(q1)

(q3 · q4)(pC · pB)
+

G3B4C(q1)

(q3 · pB)(q4 · pC)

]
× G3C4B(q2)

(q3 · pC)(q4 · pB)
+ (3↔ 4)

}
+ (1↔ 2) , (E1 � E2 � E3 � E4) , (7.23)
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where Gimkl(q`) is the quadrupole eikonal function in eq. (6.16). We note that eq. (7.22)

is symmetric with respect to the exchange q1 ↔ q2, whereas its massless limit in eq. (7.23)

is remarkably symmetric also with respect to the exchange q3 ↔ q4.

The colour monster contribution w
(4)(S)
BC has collinear singularities, as first noticed in

ref. [31]. The expression in eq. (7.23) is particularly suitable to highlight the collinear be-

haviour of the colour monster in the energy strong-ordering region. We see that w
(4)(S) (s.o.)
BC

is a sum of terms that include the product of two factors with the following structure:

Gimkl(q`)

(ki · km)(kk · kl)
, ` = 1, 2 , (7.24)

where the four distinct momenta {ki, km, kk, kl} are either hard-parton momenta or soft-

gluon momenta harder than q`. As discussed in the accompanying comments to eq. (6.16),

the quadrupole eikonal function Gimkl(q`) is collinear safe with respect to the direction

of q`. Moreover, Gimkl(q`) vanishes if ki and km (or, kk and kl) are collinear, and such

vanishing behaviour cancels the collinear singularity of eq. (7.24) in the limit ki·km → 0 (or,

kk ·kl → 0). Such cancellation mechanism is effective in various multiparton collinear limits,

and eventually w
(4)(S) (s.o.)
BC (q1, q2, q3, q4) is singular only in the five-parton collinear limit of

the four soft gluons and one of the two massless hard partons. The same conclusion on the

collinear behaviour of the colour monster function w
(4)(S)
BC applies to the energy ordering

approximation in eq. (7.18). In the expression of eq. (7.18) the factor w
(1)
BC(q4) for the

emission of the hardest soft gluon is singular if the momentum q4 is collinear to one of the

massless hard-parton momenta pB and pC . However, such collinear singularity is partly

screened by the vanishing behaviour of the quadrupole correlation factor w
(3)quad.
4BC (q1, q2, q3),

which is collinear safe with respect to the directions of q1, q2 and q3.

We comment on the colour structure of quadruple soft-gluon radiation from two hard

partons and, in particular, on the dependence on the colour representation of the hard

partons. This dependence is encoded by the colour coefficients CB and λB in eqs. (7.15)

and (7.16). We note that the simple replacement CF → CA is not sufficient to relate

soft radiation from two hard quarks and two hard gluons. Therefore, quadruple soft-gluon

radiation at the tree level produces violation of Casimir scaling. The violation is due

to the irreducible correlation W (4) in eq. (7.15) and, specifically, to its colour monster

contribution, which depends on the colour coefficient λB. Although the colour monster

contribution is formally suppressed in the large-Nc limit, its relative effect in {B,C} =

{g, g} and {B,C} = {q, q̄} scattering amplitudes is sizeably different since λA/λF = 6

(see eq. (6.13)). We also note that the momentum dependence of the colour monster

contribution is the same in {B,C} = {q, q̄} and {B,C} = {g, g} scattering amplitudes.

Therefore, the corresponding squared currents for quadruple soft-gluon emission can be

related through a generalized form of Casimir scaling. The generalized Casimir scaling

relation involves the simultaneous replacement CF → CA and λF → λA.

In the case of colour singlet quantities such as the squared currents for soft-gluon

radiation from two hard partons, violation of Casimir scaling at high perturbative orders is

expected. The expectation is based on the fact that the colour factors of the corresponding

Feynman diagrams depend not only on quadratic Casimir coefficients (e.g., CF and CA)
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but also on additional Casimir invariants (see, e.g., ref. [54]). In the case of quadruple soft-

gluon radiation from two hard partons, the additional invariants are the ‘quartic’ Casimir

coefficients d
(4)
AB, with B = F if {B,C} = {q, q̄} and B = A if {B,C} = {g, g}. We use the

definition and normalization of d
(4)
AB as specified in eqs. (2.6)–(2.9) of ref. [5]. In particular,

for SU(Nc) QCD we have

d
(4)
AA

NA
=
N2
c (N2

c + 36)

24
,

d
(4)
AF

NF
=

(N2
c − 1)(N2

c + 6)

48
, (7.25)

where NB is the dimension of the colour representation of the hard parton B (NB = NF =

Nc if B is a quark, and NB = NA = N2
c − 1 if B is a gluon).

The coefficient of the colour monster contribution to eq. (7.15) can be expressed in

terms of the quadratic and quartic Casimir invariants. Indeed, we find

CB λB Nc = 2
d

(4)
AB

NB
− 1

12
CB C

3
A . (7.26)

Correspondingly, the irreducible four-gluon correlation W (4) in eq. (7.15) can be rewritten

as follows

W (4)(q1, q2, q3, q4) = CB C
3
Aw

(4)[2]
BC (q1, q2, q3, q4) + 2

d
(4)
AB

NB
w

(4)[4]
BC (q1, q2, q3, q4) , (7.27)

where w
(4)[4]
BC = w

(4)(S)
BC and

w
(4)[2]
BC (q1, q2, q3, q4) = w

(4)(L)
BC (q1, q2, q3, q4)− 1

12
w

(4)(S)
BC (q1, q2, q3, q4) . (7.28)

Therefore, the violation of Casimir scaling in W (4), as due to the colour monster contri-

bution, can be equivalently view as the effect produced by the quartic Casimir invariant.

The generalization of Casimir scaling that we have already noticed appears in eq. (7.27)

through the dependence on the quadratic and quartic Casimir coefficients CB and d
(4)
AB/NB.

Our discussion on the colour structure of the squared current |J(q1, q2, q3, q4)|2BC even-

tually depends only on the colour coefficients of the corresponding Feynman diagrams.

Therefore, colour monster contributions do appear (modulo accidental, though unlikely,

cancellations) in related soft factors for radiation from two hard partons at O(α4
S). Specif-

ically, we refer to the soft factors for emission of three gluons at one loop, two gluons at

two loops, and a single gluon at three loops.

The squared current |J(q1, q2, q3, q4)|2BC in eq. (7.16) for quadruple soft-gluon radi-

ation has collinear singularities, analogously to the squared currents for lower soft-gluon

multiplicities (see section 5.4). In particular, the colour monster contribution w
(4)(S)
BC has

collinear singularities, as we have previously discussed.

The collinear singularity of the colour monster term implies that, at the inclusive

level, it also contributes to the soft limit of the collinear evolution kernel of the parton

distribution functions [4, 5]. The soft limit of the evolution kernel is proportional to

the cusp anomalous dimension [55]. At O(α4
S) the cusp anomalous dimension for quark
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and gluon evolution violates quadratic Casimir scaling, and the violation is due to terms

proportional to quartic Casimir invariants [5]. The relation between the cusp anomalous

dimension and soft multiparton radiation is discussed in ref. [56]. The term of the cusp

anomalous dimension that is proportional to the quartic Casimir invariants d
(4)
AA and d

(4)
AF of

eqs. (7.25) and (7.26) (such term is presently known in approximated numerical form [5]) is

due to the colour monster contribution in eq. (7.16) (see also eq. (7.27)) and to analogous

contributions from loop corrections to the squared currents |J(q1, · · · , qN )|2BC with N ≤ 3.

We have devoted the entire section 7 to examine multiple soft-gluon radiation in a

generic hard-scattering amplitude MBC({q`}, {pi}) with two hard partons, and we have

explicitly discussed the physically most relevant cases in which the two hard partons B

and C are either two gluons or a qq̄ pair. Most of the discussion and, in particular, the

main final results can be directly extended to arbitrary hard partons. In the following we

briefly comment on such extension.

We consider soft-gluon radiation in the general case in which the hard partons B and

C (with arbitrary massless or massive momenta pA and pB) of MBC({q`}, {pi}) belong to

generic irreducible colour representations of SU(Nc). The only constraint is that B and

C belong to colour conjugate representations,8 say, B in the representation R and C in

the representation R that is conjugate to R (R and R are not necessarily inequivalent,

and we can also have R = R such as, for instance, if {B,C} = {g, g}). Therefore, there

is only one colour singlet configuration |BC 〉 of the two hard partons, and eqs. (7.1)

and (7.2) are valid. In particular, we can consider the generic c-number squared current

|J(q1, · · · , qN )|2BC , whose colour factors depend on the colour representation R of the hard

partons.

The results in eqs. (7.8)–(7.10), (7.15) and (7.16) about the squared currents for single,

double, triple and quadruple soft-gluon radiation at the tree level are valid for the generic

colour representation R. In these equations the soft functions w
(N)
BC (with N = 1, 2, 3),

w
(4)(L)
BC and w

(4)(S)
BC have a pure kinematical dependence on the parton momenta and no

dependence on colour coefficients. The colour dependence is embodied in the coefficients

CB and λB.

The coefficient CB is the Casimir coefficient of the hard parton B, namely, it is the

quadratic Casimir CB = T aR T
a
R ≡ TR · TR of the colour matrices T aR of the representation

R. The colour quadrupole coefficient λB of the hard parton B is defined by generalizing

eqs. (B.16) and (B.17) to the case of a generic representation R. The generalization is

obtained by considering a specific colour singlet state, |(ABC)R 〉, which is formed by the

gluon A and the partons B and C in the representations R and R. This colour singlet

state is defined as

〈a β γ | (ABC)R 〉 = (T aR)β γ , (7.29)

where a, β and γ are the colour indices of the gluon A, parton B and parton C. The colour

quadrupole coefficient λB of the parton B in the colour representation R is then defined

as follows by the expectation value of the quadrupole operator QBCBC onto this colour

8If B and C do not belong to conjugate representations, the hard-parton state |MBC({pi})〉 cannot be

a colour singlet state.
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singlet state (see eqs. (B.16) and (B.17) for comparison):

Nc λB ≡
〈 (ABC)R | QBCBC | (ABC)R 〉

〈 (ABC)R | (ABC)R 〉
. (7.30)

Using this definition of λB, the derivation of eqs. (7.15) and (7.16) that we have

previously illustrated applies to the generic hard partons B and C. Moreover, using SU(Nc)

colour algebra we find that the colour monster coefficient CBλBNc and the gluon (A)

quartic Casimir invariant d
(4)
AB (we still refer to the definition in eqs. (2.6) and (2.7) of

ref. [5]) fulfil the relation in eq. (7.26) for an arbitrary irreducible colour representation R

of the parton B.

8 Generating functional and exponentiation

The expansion of the squared current |J(q1, · · · , qN )|2 in terms of irreducible correlations

W (N)(q1, · · · , qN ) can be recast in a compact form by introducing the corresponding gen-

erating functional. Considering the soft-gluon squared current for a generic scattering

amplitude, we define the generating functional Ψ[u] as follows

Ψ[u] ≡ 1 +
∞∑
N=1

1

N !

∫ ( N∏
`=1

[dq`] u(q`)

)
|J(q1, · · · , qN )|2 , (8.1)

where u(q) is an auxiliary weight function of the soft-gluon momentum q and the soft-gluon

d-dimensional phase space is denoted as

[dq`] ≡
ddq`

(2π)d−1
δ+(q2

` ) . (8.2)

Equivalently, the squared current is obtained through the functional derivative δ/(δu(q))

of Ψ[u] with respect to the weight function:

|J(q1, · · · , qN )|2 ≡

(
N∏
`=1

δ

δu(q`)

)
Ψ[u]

∣∣∣∣∣
u=0

. (8.3)

The irreducible correlations W (N)(q1, · · · , qN ) are therefore defined through the loga-

rithm of Ψ[u]. We write

Ψ[u] ≡ exp
{
W [u]

}
, (8.4)

and we have

W (N)(q1, · · · , qN ) =

(
N∏
`=1

δ

δu(q`)

)
W [u]

∣∣∣∣∣
u=0

, (8.5)

or, equivalently,

W [u] =

∞∑
N=1

1

N !

∫ ( N∏
`=1

[dq`] u(q`)

)
W (N)(q1, · · · , qN ) . (8.6)
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Note that, analogously to |J |2 and W (N), the generating functionals Ψ[u] and W [u] are

colour operators acting on the hard-parton scattering amplitude |M({pi})〉.
The exponential form of Ψ[u] in eq. (8.4) is just a definition of the irreducible corre-

lations W (N), with no additional physics content. The physics content is introduced by

considering the explicit results in eqs. (4.15), (4.16), (5.4), (5.6), and (5.8) and inserting

them in eqs. (8.4) and (8.6). We obtain

Ψ[u] = exp

−1

2

∑
i,k

T i · T k W(pi,pk)[u;Nc] +
∑
i,m,k,l

Qimkl W(pi,pm,pk,pl)[u] +O(u4)

 ,

(8.7)

where the dipole (W(pi,pk)[u;Nc]) and quadrupole (W(pi,pm,pk,pl)[u]) generating function-

als are

W(pi,pk)[u;Nc] =

∫
[dq] u(q) w

(1)
ik (q) +

1

2
CA

∫
[dq1][dq2] u(q1)u(q2) w

(2)
ik (q1, q2)

+
1

3!
C2
A

∫
[dq1][dq2][dq3] u(q1)u(q2)u(q3) w

(3)
ik (q1, q2, q3) , (8.8)

W(pi,pm,pk,pl)[u] =
1

3!

∫
[dq1][dq2][dq3] u(q1)u(q2)u(q3) Simkl(q1, q2, q3) . (8.9)

We note that the quadrupole operators Qimkl are irreducible to dipole operators (see sec-

tion 5.1 and appendix B) and, therefore, the distinction between the dipole and quadrupole

terms in eq. (8.7) is physically meaningful (e.g., gauge invariant).

We recall that, according to our notation, the tree-level current J(q1, · · · , qN ) is defined

by factorizing the overall power gNS of the QCD coupling (see eq. (2.5)). Therefore, the

expansions in powers of u in eqs. (8.7)–(8.9) are analogous to expansions in powers of αS,

with the formal correspondence O(un) ∼ O(αnS).

We note that the entire dependence of Ψ[u] on the colour charges of the hard par-

tons is embodied in the exponentiated dipole (T i · T k) and quadrupole (Qimkl) operators

of eq. (8.7). The generating functionals W(pi,pk)[u;Nc] and W(pi,pm,pk,pl)[u] in eqs. (8.8)

and (8.9) depend on the momenta of the hard partons (but they do not depend on their

colour charges) and of the soft gluons (through differentiation with respect to u(q`)), and

they also depend on Nc. In particular, the dependence on Nc in eq. (8.8) is maximally

non-abelian, i.e. it is proportional to Cn−1
A un ∼ O(Cn−1

A αnS).

If we consider the generating functional Ψ
(BC)
(pB ,pC)[u] for soft-gluon radiation from two

hard partons {BC}, the results in eqs. (7.8)–(7.10) can be expressed as

Ψ
(qq̄)
(pB ,pC)[u] = exp

{
CF W(pB ,pC)[u;Nc] +O(u4)

}
, (8.10)

Ψ
(gg)
(pB ,pC)[u] = exp

{
CA W(pB ,pC)[u;Nc] +O(u4)

}
, (8.11)

where W(pB ,pC)[u;Nc] is exactly equal to the generating functional in eq. (8.8). Equa-

tions (8.10) and (8.11) clearly show the exponentiated Casimir scaling correspondence

CF ↔ CA between radiation from qq̄ and gg colour singlets. At O(u4) Casimir scaling

violation (generalization) effects occur according to the results in eq. (7.16) and the ac-

companying discussion in section 7.3.
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Neglecting quadrupole contributions, the exponentiated result in eq. (8.7) is obtained

from eqs. (8.10) or (8.11) by ‘simply’ replacing the colour factor CF or CA with the colour

dipole factor T i·T k and summing over colour dipole terms. Therefore the generic generating

functional in eq. (8.7) fulfils exponentiated ‘colour dipole scaling’, which is violated by

colour quadrupole interactions between three or more hard partons (see eq. (5.19)) starting

at O(u3) ∼ O(α3
S). From our discussion in section 5.4, we also recall that the colour

quadrupole term in eq. (8.7) has no collinear singularities,9 while the dipole scaling term

has collinear singularities whose dominant contributions are effective in angular-ordered

regions (see the points (c1)–(c5) in section 5.4).

The exponentiated form in eq. (8.7) derives from the explicit results on triple-soft gluon

radiation at the tree level that we have computed in this paper. At the purely technical

level, this exponentiated form partly follows from an observation on non-abelian eikonal

exponentiation that was made long ago in refs. [57, 58]. In particular, the structure of

eq. (8.7) is partly similar to that of the virtual (loop-level) IR divergences of scattering

amplitudes [6, 19–21, 59–63]. However, as remarked below, there are important conceptual

and physical differences between the exponentiation of the generating functional and the

exponentiation of virtual IR divergences.

In the case of virtual IR divergences, the exponentiated functionals W(pi,pk)[u;Nc] and

W(pi,pm,pk,pl)[u] of eq. (8.7) are replaced by dipole and quadrupole functions that only

depend on the hard-parton momenta and Nc (see eqs. (2), (3), (4) and (7) in ref. [6]).

These ‘virtual-radiation’ functions are obtained by integration over the loop momenta. In

contrast, the exponentiated functionals in eq. (8.7) embody the full information on the

structure of multiple final-state radiation of soft-gluons at the completely exclusive level.

Owing to the physical differences between exclusive and loop-level radiation, the struc-

ture of the generating functional Ψ[u] can be much complex and quite different from the

structure of the factor Z (see eqs. (1) and (2) in ref. [6]) that controls the virtual IR di-

vergences of the scattering amplitudes. Relevant differences on the IR divergences still

persist after the integration over the phase space of the radiated soft gluons. Indeed, the

d-dimensional phase space integration in eq. (8.8) over the soft-gluon momenta produces

ε poles of the type (αS/ε
2)n in the exponent of the tree-level generating functional Ψ[u] in

eq. (8.7), whereas the exponent of the virtual-radiation factor Z has milder IR divergences

of the type αnS/ε
n+1. The stronger IR divergences embodied in the tree-level generat-

ing functional arise from the singular collinear behaviour of the irreducible correlations

w(N)(q1, . . . , qN ) (see section 5.4). Analogous IR divergences are produced by supplement-

ing the tree-level generating functional with loop-level radiative corrections to the squared

current |J(q1, · · · , qN )|2 and, eventually IR divergences cancel in the computation of phys-

ical cross sections. Incidentally, we note that the inclusion of the one-loop correction to

single soft-gluon radiation produces colour correlations of the type fabcT ai T
b
kT

c
m between

four or more hard partons (see section 3 in ref. [12]) in the exponent of the generating

functional Ψ[u] at O(u2).

9In the case of three hard partons we also recall from section 6.2 that the quadrupole terms at O(α3
S)

are suppressed with respect to colour dipole terms by a relative factor of O(1/N2
c ) in the large-Nc limit.

– 51 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
8

The exponentiated structure of the generating functional Ψ[u] is relevant for studies

of soft multiparton radiation at the exclusive level. Such structure is certainly important

in the context of the calculation and resummation of soft-gluon logarithmic corrections to

physical observables. The relation with soft-gluon resummation is particularly evident for

physical observables whose phase space factorizes in the soft limit (see, e.g., ref. [64]). In

these cases the auxiliary weight function u(q) in Ψ[u] can be properly replaced with the

phase space dependence of the corresponding physical observable, and eq. (8.7) directly

leads to the exponentiation of the large logarithmic contributions from multiple soft-gluon

radiation at the tree-level. In this paper we have explicitly computed the exponentiated

structure of the tree-level generating functional in eq. (8.7) up to O(u3), which contributes

to logarithmic resummation up to O(α3
S) for generic hard-scattering processes.

9 Summary

We have considered the radiation of three soft gluons in QCD hard scattering. We have

computed the tree-level current J(q1, q2, q3) for triple soft-gluon emission in a generic scat-

tering amplitude with an arbitrary number of external hard partons. The result is valid

for arbitrary relative energies of the three soft gluons. The current is expressed in terms

of irreducible correlations for emission of one, two and three gluons. Such expression high-

lights the maximally non-abelian character of the irreducible correlations. The soft currents

acts in colour space, and it is written in terms of the colour charges and momenta of the

generic hard partons. In the specific case of pure multigluon amplitudes, we have obtained

the explicit result of the colour stripped current for the decomposition in colour ordered

subamplitudes.

We have computed the tree-level squared current |J(q1, q2, q3)|2 and the ensuing colour

correlations for squared amplitudes with both massless and massive hard partons. We have

shown the presence of non-abelian colour quadrupole correlations between three or more

hard partons, in addition to the colour dipole correlations that appear in the cases of single

and double soft-gluon radiation. We have properly identified colour quadrupole operators

that are irreducible to dipole operators. Such identification is essential to introduce a

physically meaningful (e.g., gauge invariant) distinction between dipole and quadrupole

correlation effects. We have also discussed the singular collinear behaviour of |J(q1, q2, q3)|2,

which turns out to be consistent with collinear factorization properties and angular-ordering

features of multiple soft-gluon radiation. In particular, colour quadrupole correlations have

no associated collinear singularities.

In the specific cases of processes with two and three hard partons, the colour structure

can be simplified, and we have discussed some ensuing features of multiple soft-gluon

radiation to all orders in the loop expansion.

We have evaluated the tree-level squared current |J(q1, q2, q3)|2 for radiation from

three hard partons by explicitly computing the colour quadrupole coefficients. We find

that the quadrupole contributions for triple soft-gluon radiation breaks the Casimir scaling

symmetry (due to colour dipole interactions) between hard quarks and gluons. We have

also considered multiple soft-gluon radiation with energy strong ordering, and we have
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derived a generalization of the multi-eikonal BCM formula to processes with three hard

gluons.

In the case of processes with two hard partons, we have extended our analysis to

the emission of four soft gluons at the tree level. We have presented the general colour

structure of the squared current |J(q1, q2, q3, q4)|2, and we have explicitly computed it in a

wide energy region where one of the four soft gluons is harder than the others. The result

includes a colour monster contribution (suppresses by O(1/N2
c ) in the large-Nc limit) that

had been previously noticed by applying energy strong-ordering approximations. We have

computed the colour monster contribution for radiation from both hard quarks and gluons,

and we point out that it is directly related to quartic Casimir invariants for quarks and

gluons. Consequently the colour monster contribution violates quadratic Casimir scaling,

and it leads to a generalized form of Casimir scaling between quarks and gluons at O(α4
S).

The colour monster term has collinear singularities and, therefore, it contributes to the

cusp anomalous dimension at O(α4
S). Considering quadruple soft-gluon radiation from

two hard gluons we have also explicitly computed the first correction of O(1/N2
c ) to the

multi-eikonal BCM formula.

We have also introduced the generating functional for multiple soft-gluon radiation,

and we have discussed its exponentiation for tree-level radiation up to O(α3
S) in generic

hard-scattering processes. The exponentiated structure fulfils colour dipole scaling, which

is violated at O(α3
S) by colour quadrupole correlations between three or more hard partons.

A Current conservation

We present a general (i.e., for emission of an arbitrary number of soft gluons and to all

orders in the loop expansion) and formal proof of the current conservation relation in

eq. (2.8). The proof exploits the fact that the current J(q1, · · · , qN ) in the soft-gluon

factorization formula (2.5) has a certain degree of arbitrariness: different forms of J are

physically equivalent provided they differ by terms that give vanishing contributions when

acting onto the colour singlet amplitude |M({pi})〉.
We start our proof by considering a generic expression J̃a1...aNµ1...µN

(q1, · · · , qN ) of the soft

current that fulfils the non-abelian Ward identity in eq. (2.7). Having J̃ at our disposal

we define the current J as follows:

Ja1...aNµ1...µN
(q1, · · · , qN ) =

(
N∏
`=1

[
− d̃µ`ν`(q`;n`)

])
J̃ν1...νNa1...aN

(q1, · · · , qN ) , (A.1)

d̃µ`ν`(q`;n`) =
∑
σ

ε̃µ`(σ)(q`;n`)
[
ε̃ν`(σ)(q`;n`)

]∗
(A.2)

= −gµ`ν` + gauge terms (∝ qµ`` or qν`` ) , (A.3)

where d̃µ`ν`(q`;n`) is the spin polarization tensor of the soft gluon with momentum q`, as ob-

tained by summing over a complete set of physical polarizations ε̃µ`(σ)(q`;n`) (see eq. (A.2)).

The auxiliary physical polarization vectors ε̃µ`(σ)(q`;n`) of the gluon ` are specified by some

gauge fixing conditions, and we choose the axial gauge condition nµ` ε̃
(σ)
µ (q`;n`) = 0, where
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nµ` is an arbitrary auxiliary vector that can be different for each of the soft gluons. Inde-

pendently of the choice of the gauge vector n`, the polarization tensor d̃µ`ν`(q`;n`) has the

form in eq. (A.3), where the gauge terms are proportional to either qµ`` or qν`` .

The two currents J̃ and J of eq. (A.1) are physically equivalent onto colour singlet

amplitudes since they fulfil the following identity:(
N∏
`=1

εµ`(σ`)
(q`)

)
Ja1...aNµ1...µN

(q1, · · · , qN )
cs
=

(
N∏
`=1

εµ`(σ`)
(q`)

)
J̃a1...aNµ1...µN

(q1, · · · , qN ) , (A.4)

where εµ`(σ`)
(q`) are the polarization vectors of the scattering amplitude |M({q`}, {pi})〉 in

the soft-gluon factorization formula (see eqs. (2.5) and (2.6)). To prove eq. (A.4), we first

notice that, due to the definition of J in eq. (A.1), the difference between the left-hand and

right-hand sides of eq. (A.4) can only be due to the gauge terms proportional to either qµ``
or qν`` in eq. (A.3). However the terms qµ`` of d̃µ`ν`(q`;n`) gives a vanishing contribution

to eq. (A.4) because εµ`(σ`)
(q`) is a physical polarization (qµ` ε

(σ`)
µ (q`) = 0). Analogously, the

term qν`` of d̃µ`ν`(q`;n`) gives a vanishing contribution to eq. (A.4), since it contributes in

the form

qν``

∏
`′ 6=`

ε
ν`′
(σ`′ )

(q`′)

 J̃a1...a`...aNν1...ν`...νN
(q1, · · · , qN )

cs
= 0 , (A.5)

which vanishes because of eq. (2.7). Note that, by iteratively removing the vanishing

contributions of qν11 , q
ν2
2 , . . . to eq. (A.4), the Lorentz indices of J̃ν1...νN are multiplied by

polarization vectors that can be either εν(q`) or ε̃ν(q`;n`), and these polarization vectors are

generically denoted by εν(q`) in eq. (A.5). However, εν(q`) is always a physical polarization

vector and, therefore, the physical equivalence of J̃ and J (see eq. (A.4)) is eventually a

simple consequence of the fact that J̃ fulfils the non-abelian Ward identity in eq. (2.7).

The auxiliary polarization vectors ε̃ν(q`;n`) in eq. (A.2) are physical (q` · ε̃(q`;n`) =

0) and, consequently, the soft-gluon current J in eq. (A.1) is conserved. Therefore, we

have proven that we can always find an explicit expression of the current J that fulfils

current conservation as in eq. (2.8). Actually, we have explicitly constructed many different

expressions of physically equivalent and conserved soft-gluon currents. These expressions

are directly obtained by choosing the auxiliary gauge vectors n` in eq. (A.1).

Since the current J in eq. (A.1) depends on the auxiliary gauge vectors n`, one may

wonder whether the definition of a conserved soft-gluon current necessarily introduces an

explicit dependence on external (unphysical) momenta. This is not the case, since one

can use the soft-gluon momenta to define the gauge vectors. For example, in the case

of N = 2 soft gluons one can set n1 = q2 and n2 = q1 in eq. (A.1). Analogously, in

the case of N = 3 soft gluons one can use both choices {n1 = q2, n2 = q3, n3 = q1} and

{n1 = q3, n2 = q1, n3 = q2} and, one can also define J by symmetrizing with respect to these

two choices of gauge vectors. Such a symmetrization procedure can be straightforwardly

extended to an arbitrary nunmber N of soft gluons. In summary, the gluon polarization

tensors d̃(q`;n`) of eq. (A.1) can be introduced in such a way that the difference between

J̃ and the conserved current J is due to contributions that only depend on the soft-gluon

momenta, and with a fully symmetric dependence on them.
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In this appendix we have presented a general proof of the current conservation relation

in eq. (2.8). The formal proof uses the construction in eq. (A.1). However, we remark

on the fact that in the cases with N = 2 and N = 3 soft gluons the explicit results

of the conserved currents in eqs. (2.11)–(2.13) [13] and in section 3 (see eqs. (3.1), (3.4)

and (3.7)) are obtained without using the construction in eq. (A.1). These results are

straightforwardly obtained by computing J and by simply applying eq. (2.3) to neglect

terms (which are possibly gauge dependent) that give a vanishing contribution onto colour

singlet scattering amplitudes. We expect that a similar straightforward procedure directly

leads to conserved currents also for higher soft-gluon multiplicities.

B Colour quadrupole operators

We consider colour quadrupole operators, which are obtained by the colour contraction

(with respect to the colour indices of the soft gluons) of two structure constants fab,cd (see

eq. (3.5)) with four colour charges T i of the hard partons. If the four hard partons are

distinct, the quadrupole operators are defined in eq. (5.2), and any other definition simply

differs by an overall normalization factor. If the four hard partons are not distinct, we are

dealing with pseudo quadrupoles. In this case the ordering of the four colour charges does

matter, and we distinguish three types of hermitian conjugate (pseudo) quadrupoles:

Q
(U)
klmi ≡ fab,cd (T ak T

b
l T

c
mT

d
i + h.c.) , (B.1)

Q
(S)
klmi ≡ fab,cd (T ak T

c
mT

b
l T

d
i + h.c.) , (B.2)

Q
(D)
klmi ≡ fab,cd (T ak T

d
i T

c
mT

b
l + h.c.) . (B.3)

In the (‘untwisted’) quadrupole of eq. (B.1) the colour connected indices a and b of fab,cd

are contracted with those of two adjacent colour charges, T ak and T bl . In the quadrupoles

of eqs. (B.2) and (B.3) the colour charge T bl is shifted by one position (single twist) and

two positions (double twist), respectively. Owing to the symmetry properties of fab,cd with

respect to its colour indices, other orderings of the four colour charges lead to quadrupoles

that are equivalent (modulo overall signs) to the untwisted, ‘single-twisted’ and ‘double-

twisted’ quadrupoles in eqs. (B.1)–(B.3).

It is evident that quadrupoles operators can eventually lead to colour dipole operators

in various cases. For instance, by considering two pairs of distinct colour charge indices k

and i (k 6= i) and performing elementary colour algebra, eqs. (B.1)–(B.3) give

Q
(U)
kkii = Q

(S)
kkii = −Q(D)

kkii = −1

2
C2
A T i · T k , (k 6= i) . (B.4)

More generally, different orderings of the four colour charges can be related by using colour

algebra commutation relations and, consequently, the quadrupole operators in eqs. (B.1)–

(B.3) can be related through colour dipole operators. We are interested in identifying

quadrupole operators that are ‘irreducible’ to colour dipoles, in the sense that they do not

produce dipole terms of the type C2
A T i · T k (i.e., a dipole T i · T k with the maximally

non-abelian colour factor C2
A). As stated in section 5.1, the operators

Qklmi ≡
1

2
fab,cd

(
T ak {T cm, T di }T bl + h.c.

)
, (B.5)
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which are defined in eq. (5.3) (see also eq. (5.16)), are irreducible quadrupoles. In the

following we first consider the symmetry properties of the quadrupoles Qklmi and then

we discuss their irreducibility and the relation with the generic quadrupole operators in

eqs. (B.1)–(B.3).

The quadrupole operator of eq. (B.5) fulfils the symmetry properties in eqs. (5.15)–

(5.18). The property in eq. (5.16) directly follows from considering the hermitian con-

jugated term in the round brackets of eq. (B.5) and exploiting the symmetry relation

fab,cd = f cd,ab. Similarly, the antisymmetry of Qklmi with respect to the exchange m ↔ i

in the second pair of indices directly follows eq. (B.5) by using the identity fab,cd = −fab,dc.
Combining this antisymmetry with eq. (5.16), we directly obtain the antisymmetry of Qklmi
with respect to the exchange k ↔ l in the first pair of indices (see eq. (5.15)). The re-

lation (5.17) is a consequence of the Jacobi identity in eq. (3.6) for the product of two

structure constants (see also eq. (B.12) and accompanying comments). The property in

eq. (5.18) is a consequence of the colour conservation relation in eq. (2.4) for colour singlet

states. The proofs of eqs. (5.17) and (5.18) are also straightforward, although they require

the use of colour algebra commutation relations to perform some reordering of the four

colour charges of the quadrupole operator Qklmi.

The quadrupole operator of eq. (B.5) can be directly related to the quadrupoles in

eqs. (B.1)–(B.3). We first notice that Qklmi can be expressed as an antisymmetric combi-

nation of double-twisted quadrupoles:

Qklmi =
1

2

(
Q

(D)
klmi −Q

(D)
klim

)
. (B.6)

The corresponding symmetric combination, Q
(D)
klmi+Q

(D)
klim, of quadrupoles can be expressed

in terms of dipole operators and, therefore, we obtain the following general relation between

the double-twisted quadrupole and Qklmi:

Q
(D)
klmi = Qklmi +

1

2
C2
A δmi [ δkl T k · Tm − (δkm + δlm)T k · T l ] . (B.7)

The relations between Qklmi and the untwisted and single-twisted quadrupoles are as

follows:

Q
(S)
klmi = − Q(D)

klim −
1

2
C2
A δli [ δmk T k · T i + (δmi − δki) T k · Tm ] (B.8)

= Qklmi +
1

2
C2
A (δkl − δkm) (δli − δmi) T l · Tm , (B.9)

Q
(U)
klmi = − Q(S)

klmi +
1

2
C2
A δlm [ δki T k · Tm − (δkm + δmi) T k · T i ] (B.10)

= Qklmi +
1

2
C2
A

{
δlm [ δki T k · Tm − (δkm + δmi) T k · T i ]

+ (δkl − δkm) (δli − δmi) T l · Tm

}
. (B.11)

The equality (B.8) is obtained by using eq. (B.2) and displacing the colour charge T bl
by one position to the right: the displacement leads to Q

(D)
klim and to the commutator
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[T bl , T
d
i ], which eventually produces the colour dipole contributions on the right-hand side

of eq. (B.8). The equality (B.9) is directly obtained from eq. (B.8) by using eq. (B.7) to

express Q
(D)
klim in terms of Qklmi (note that Qklmi = −Qklim because of eq. (5.15)). An

analogous procedure leads to eqs. (B.10) and (B.11). More precisely, eq. (B.10) is obtained

by relating eqs. (B.1) and (B.2) through the displacement of T bl , and eq. (B.11) is obtained

by inserting eq. (B.9) into eq. (B.10).

We also notice that the three quadrupoles in eqs. (B.1)–(B.3) can be directly related by

using the Jacobi identity for the structure constants. Specifically, multiplying eq. (3.6) by

the colour charge factor (T bkT
a1
l T a2m T a3i + h.c.) and performing the sum over {b, a1, a2, a3}

we obtain

Q
(U)
klmi −Q

(S)
kmli −Q

(D)
kiml = 0 . (B.12)

Inserting eqs. (B.7), (B.9) and (B.11) in eq. (B.12), the colour dipole contributions identi-

cally cancel, and we obtain the Jacobi identity (5.17) for the quadrupoles Qklmi.

The relations (B.7), (B.9) and (B.11) show that the quadrupoles Q
(U)
klmi, Q

(S)
klmi andQ

(D)
klmi

can be expressed in terms of Qklmi plus colour dipole contributions. The quadrupoles

Q
(U)
klmi, Q

(S)
klmi and Q

(D)
klmi are directly reducible to colour dipoles in some configurations

of the hard-parton indices {k, l,m, i} (see, e.g., eq. (B.4)). This is not the case for the

quadrupole Qklmi, as we briefly discuss below. Owing to the symmetry properties in

eqs. (5.15) and (5.16), we first note that Qklmi is not vanishing only in the following

configurations of hard-parton indices: four distinct indices, three distinct indices (i.e.,

Qklki = −Qklik = −Qlkki = Qlkik with distinct indices k, l and i) and two pairs of distinct

indices (i.e., Qkiki = −Qikki with k 6= i). In the cases of four or three distinct indices,

eqs. (B.7), (B.9) and (B.11) explicitly show that the various quadrupole definitions are

equivalent and, precisely, we have

Q
(U)
klmi = Q

(S)
klmi = Q

(D)
klmi = Qklmi , (3 or 4 distinct indices) . (B.13)

In the case of two pairs of distinct indices, Qkiki vanishes onto any colour singlet states with

only two hard partons (see eq. (5.19)) and, therefore, Qkiki is not reducible (proportional)

to the colour dipole T k ·T i (the colour dipole is indeed not vanishing onto the colour singlet

configuration of the two hard partons k and i).

We specifically examine the action of the irreducible quadrupoles onto a colour singlet

state formed by three distinct (and generic) hard partons k, l and i. The only non-vanishing

quadrupoles have either three distinct indices or two pairs of distinct indices. Owing to

the symmetries in eqs. (5.15) and (5.16), all quadrupoles with three distinct indices are

proportional (through an overall sign) to Qklki. Then we have

Qklki cs
= −Qkiki , (3 hard partons) , (B.14)

where we have used the colour conservation relation (5.18) to replace the index l with the

sum over the indices k and i (note that Qkkki = 0). By repeated use of eq. (5.18) we

also have

Qkiki cs
= Qklkl cs

= Qilil , (3 hard partons) . (B.15)
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In summary, eqs. (B.14) and (B.15) show that all the non-vanishing quadrupole operators

are eventually proportional, through corresponding overall signs, to a single quadrupole

operator Qkiki with two pairs of distinct indices. By using relations for the SU(NC) colour

algebra, we have explicitly evaluated the action of this quadrupole operator onto colour

singlet states formed by quarks, antiquarks and gluons. To present the results we use the

notation of section 6, and we consider the colour singlet states |ABC 〉 with {ABC} = {gqq̄}
and {ABC} = {ggg}. We find

QBCBC |ABC 〉 =
1

2
Nc |ABC 〉 ≡ Nc λF |ABC 〉 , {ABC} = {gqq̄} , (B.16)

QBCBC |(ABC)f 〉 = 3Nc |(ABC)f 〉 ≡ Nc λA |(ABC)f 〉 , {ABC} = {ggg} , (B.17)

QBCBC |(ABC)d 〉 = 0 , {ABC} = {ggg} , (B.18)

where |(ABC)f 〉 and |(ABC)d 〉 are the colour antisymmetric and colour symmetric states

of eq. (6.3), and we have also defined the colour coefficients λF (λF = 1/2) and λA (λA = 3)

in the fundamental and adjoint representation, respectively.

As we have just discussed, the evaluation of the action of the irreducible quadrupoles

Qklmi onto a colour singlet state formed by three hard partons eventually requires the

explicit computation of a single quadrupole operator. It is of interest to count the number

of independent quadrupole operators that have to be explicitly computed while dealing

with a colour singlet state with four or more hard partons.

Considering a generic colour singlet state with Nh (Nh ≥ 4) hard partons, we recall

that the non-vanishing quadrupoles Qklmi can have two pairs of distinct indices, three

distinct indices and four distinct indices. In the case of two pairs of distinct indices k and

i (k 6= i) we can use the colour conservation relation (5.18) to write

Qkiki cs
=

∑
l

l 6= i,k

Qklki , (k 6= i) . (B.19)

This relation shows that a quadrupole with two pairs of distinct indices can always be re-

placed by a linear combination of quadrupoles with three distinct indices when it acts onto

a colour singlet state. Therefore, we can consider the quadrupoles Qkiki as linearly depen-

dent quadrupoles, and we can move to count the number of remaining linearly independent

quadrupoles with three and four distinct indices.

To proceed in our counting it is convenient to order the Nh hard partons in the

colour singlet state and, correspondingly, to consider ordered sets of distinct indices in

the quadrupoles Qklmi.

In the case of irreducible quadrupoles with three distinct indices, one of the quadrupole

index is repeated. Owing to eq. (5.15), the repeated index is placed in the first and second

pair of the quadrupole indices and we can always (modulo the overall sign) assign the first

position in each pair to the repeated index. Then, due to eq. (5.16), the position of the non

repeated indices does not matter. In summary, considering the ordered indices k < l < i,

we have to deal with the following independent quadrupoles:

Qklki , Qlkli , Qikil , (k < l < i) . (B.20)
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We can also exploit eq. (5.18), and we have

Qlkli = Qklki −
∑
m

m 6= k,l,i

Qlkmi , (k < l < i) , (B.21)

Qikil = Qklki −
∑
m

m 6= k,l,i

Qikml , (k < l < i) . (B.22)

The identity in eq. (B.21) (eq. (B.22)) is obtained by applying the colour conservation

relation in eq. (5.18) to the quadrupole index l (i) in the third position and by using

the properties in eqs. (5.15) and (5.16). The relations (B.21) and (B.22) show that we

can select a single independent quadrupole (e.g., Qklki) in eq. (B.20) and consider the

other two quadrupoles as obtained from the selected quadrupole with three distinct indices

and quadrupoles with four distinct indices. In summary, among the quadrupoles with three

distinct indices we can limit ourselves to the explicit evaluation of a single set of quadrupoles

with the ordered indices k < l < i. There are Nh(Nh − 1)(Nh − 2) ways to select three

indices among those of the Nh hard partons, and they lead to 3! unordered permutations

of the selected indices. Considering only one ordered permutation, we eventually select the

number
Nh (Nh − 1) (Nh − 2)

3!
(B.23)

of independent quadrupoles with three distinct indices.

To complete our counting of independent quadrupoles we have to consider quadrupoles

with four distinct indices. We order the distinct indices as k < l < m < i. Owing to

eq. (5.15) we can always select (modulo overall signs) a single ordering of the two indices

in each adjacent pair of indices of the quadrupole. Owing to eq. (5.16) we can moreover

select some relative ordering among the indices of the two adjacent pairs. Eventually, we

can limit ourselves to considering the following independent quadrupoles:

Qklmi , Qkmli , Qkilm , (k < l < m < i) . (B.24)

We can also exploit the Jacobi identity in eq. (5.17) (and eq. (5.15)) to write

Qkilm = − Qklmi +Qkmli , (B.25)

and to express one of the quadrupoles in eq. (B.24) in terms of only two independent

quadrupoles with four distinct indices (e.g., Qklmi and Qkmli). In summary, among the

quadrupoles with four distinct indices we can limit ourselves to the explicit computation

of two sets of quadrupoles with four ordered indices k < l < m < i. There are Nh (Nh −
1) (Nh − 2) (Nh − 3)/4! ways to select four ordered indices among the set of the Nh hard

partons and, therefore, we obtain the number

2
Nh (Nh − 1) (Nh − 2) (Nh − 3)

4!
(B.26)

of independent quadrupoles with four distinct indices.
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Combining eqs. (B.23) and (B.26) we end up with

Nh (Nh − 1)2 (Nh − 2)

12
(B.27)

independent quadrupole operators whose action onto hard-parton scattering amplitudes

has to be explicitly computed in the context of soft-gluon factorization formulae. For

instance, if Nh = 4 (5) the number of independent quadrupole is 6 (20). Soft-gluon factor-

ization formulae also involve colour dipole operators T k · T i. The number of independent

colour dipoles (after using dipole symmetries and colour conservation) for a colour singlet

state of Nh (Nh ≥ 4) hard partons was computed in appendix A of ref. [10], and it is

equal to Nh (Nh − 3)/2. If Nh = 4 (5) the number of independent dipoles is 2 (5). Obvi-

ously this number of independent quadrupoles and dipoles refers to a sole colour singlet

state of the Nh hard partons. Depending on the colour representations of the Nh hard

partons, the number of colour singlet states varies, and the actual number of independent

quadrupole and dipole terms to be explicitly computed by using SU(Nc) colour algebra

increases accordingly.

C Momentum dependence of quadrupole and dipole correlations for

triple soft-gluon radiation

In this appendix we write down explicit expressions for the momentum dependence of the

dipole and quadrupole correlations in eqs. (5.5) and (5.6). We consider generic masses of

the hard partons, and we define p2
i ≡ m2

i (m2
i = 0 for the massless case).

The quadrupole correlation W (3)quad. in eq. (5.6) is controlled by the function Simkl.
The explicit form of Simkl in terms of momenta can be obtained from eq. (5.20) by sim-

ply inserting the kinematical expressions of ji(q`) (eq. (3.9)), γi(q1, q2) (eq. (2.13)) and

γi(q1, q2, q3) (eq. (3.7)). This leads to a long algebraic expression for Simkl. Such expres-

sion can be partly simplified by exploiting the symmetry properties in eqs. (5.15)–(5.18)

of the quadrupoles Qimkl and the fact that we are actually interested in the computation

of W (3)quad.. For instance, we can subtract from Simkl any term that is symmetric in the

first ({im}) or second ({kl}) pair of indices without affecting the value of W (3)quad.. The

value of W (3)quad. is also unchanged by subtracting from Simkl any term that depends on

three (rather than four) hard-parton momenta (such term leads to a vanishing contribution

because of the colour singlet relation in eq. (5.18)). Moreover, we can also limit ourselves

to considering the unsymmetrized component of Simkl with respect to the momenta q1, q2

and q3. Eventually, we rewrite Simkl in the following form:

Simkl(q1, q2, q3) =
[
Simkl(q1, q2, q3) + perms. {1, 2, 3}

]
+ . . . , (C.1)

where the dots in the right-hand side denote terms that give a vanishing contribution to

W (3)quad.. Equivalently, we can rewrite eq. (5.6) as

W (3)quad.(q1, q2, q3)
cs
=
∑
i,m,k,l

Qimkl
[
Simkl(q1, q2, q3) + perms. {1, 2, 3}

]
. (C.2)
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We note that eq. (C.1) can also be used for the computation of the quadrupole function

w
(3)quad.
ABC in eq. (6.14) (i.e., the terms denoted by dots in eq. (C.1) give a vanishing contri-

bution to w
(3)quad.
ABC ).

The expression of Simkl in terms of scalar products (ki · km ≡ kikm) of soft and hard

momenta is

Simkl(q1, q2, q3) = − 7

24

pkpl pipm plpm
pkq1 plq1 piq2 pmq2 plq3 pmq3

+
1

pkq1 plq2 pmq3 piq123

×

{
pipk pipl pipm pi(3q3−q12)

12 piq2 piq3 piq12
+
pipm pi(q3−q12)

4 q1q2 piq12 piq3
(pkpl piq1+2 pipl pkq2)−pipl pkpm

q2123

+
1

q2123 q1q2

[
2 pipl pmq12 pkq2+2 pkpl piq1 pmq2+2 pmpl piq3 pkq2−pipm (q1q3 pkpl+2 pkq2 plq3)

]}

+
1

8

pipm
piq3 pmq3 pkq1

{
1

piq12 plq2

[
pi(q2−q1) pipk pipl

piq1 piq2
+

1

q1q2

(
4 pipk plq1+pkpl pi(q2−q1)

)]

+
2

plq12 pmq2

[
pl(q1−q2) pkpl pmpl

plq1 plq2
+

1

q1q2

(
pkpm pl(q1−q2)+2 (plpm pkq2−pkpl pmq1)

)]}

+
1

2 pkq1 pmq3 plq12 piq23

{
1

q1q2 q2q3

[
2 plq1 (pipk pmq2−pmpi pkq3)+pkpm plq1 piq3

+pkpl pmpi q1q3+pipl pkq2 pmq2−2 pkpl piq1 pmq2

]

+
pipm pi(q3−q2)

q1q2 piq2 piq3
(pipk plq1+pipl pkq2−pkpl piq1)+

pkpl plpi pipm pl(q1−q2) pi(q3−q2)

4 plq1 plq2 piq2 piq3

}
. (C.3)

The momentum dependence of the dipole correlation W (3)dip. (see eqs. (5.5), (5.8)

and (5.9)) is controlled by the function Sik(q1, q2, q3) in eq. (5.7). The explicit expression

of Sik(q1, q2, q3) in terms of scalar products of momenta is very long. Analogously to

the case of Simkl, this expression can be slightly simplified by exploiting the symmetry

properties of the colour dipole operators. We rewrite Sik(q1, q2, q3) in the following form:

Sik(q1, q2, q3) =
[
Sik(q1, q2, q3) + perms. {1, 2, 3}

]
+ . . . , (C.4)

where the dots in the right-hand side denote terms that give a vanishing contribution to

W (3)dip.. We note that the symmetry properties of the colour dipole operators are directly

embodied by the momentum function w
(3)
ik in eq. (5.9). Therefore, this function can also

be rewritten as

w
(3)
ik (q1, q2, q3) =

{
Sik(q1, q2, q3) + Ski(q1, q2, q3)− Sii(q1, q2, q3)− Skk(q1, q2, q3)

}
+perms. {1, 2, 3} . (C.5)

The explicit expression of Sik(q1, q2, q3) is still very long, and we write it as a sum of

various terms

Sik(q1, q2, q3) =
∑

t∈{a,b,c,d}

S(t)
ik (q1, q2, q3) . (C.6)
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The term S(a)
ik , which has no singularities if two soft gluons are collinear, is

S(a)ik =
31

144

(pipk)3

piq1 pkq1 piq2 pkq2 piq3 pkq3
+

m2
i pipk

48 (piq1)2 piq2 pkq2

(
8m2

i

(piq3)2
+

3m2
k

(pkq3)2
− 20 pipk
piq3 pkq3

)
+

m2
i pipk

16 piq12 piq1

(
1

piq1 pkq2
− 1

piq2 pkq1

) (
7 pipk
piq3 pkq3

− 3m2
i

(piq3)2
− 2m2

k

(pkq3)2

)
+

1

48 pkq123

m2
k pipk

pkq1 piq2

(
3

pkq12
− 1

pkq3

) (
1

pkq2
− 1

pkq1

) (
pipk
piq3

+
m2
k

pkq3

)
+

(pipk)3

32 pkq12 pkq3 piq1 piq3

(
1

pkq1
− 1

pkq2

) (
6

piq12
+
pi(q3−q1)

piq13 piq2

)

+
m2
i pipk

16 piq12 piq1

{
2 pipk

pkq12 (piq3)2

(
1

pkq2
− 1

pkq1

)
+

(
1

piq2
− 1

piq1

)

×

[
m2
i

pkq3

(
2

piq12 piq3
+

1

piq23

(
1

piq3
− 1

piq2

))
+

1

pkq23

(
m2
k

pkq3
−pipk
piq3

) (
1

pkq2
− 1

pkq3

)]}

+
m2
k pipk

48 pkq123

(
1

pkq3
− 3

pkq12

) (
1

pkq1
− 1

pkq2

) {
2 pipk

piq12 pkq3 piq1
+

pipk
piq13 pkq2

(
1

piq1
− 1

piq3

)

+
m2
k

pkq12 piq3

(
1

pkq2
− 1

pkq1

)
+

m2
k

pkq13 piq2

(
1

pkq3
− 1

pkq1

)}
+

(pipk)3

288 pkq123 piq123

(
1

pkq1
− 1

pkq2

)

×

{
2

piq1

(
1

piq3
− 3

piq12

) (
1

pkq3
− 3

pkq12

)
+

(
1

piq2
− 3

piq13

) (
1

piq1
− 1

piq3

) (
1

pkq3
− 3

pkq12

)}
.

(C.7)

The term S(b)
ik includes the soft-gluon propagator (q1q2)−1, and it is

S(b)
ik =

1

16 q1q2 piq12

{
7 pipk

piq1 piq3 pkq2 pkq3
(2m2

i pkq1−pipk piq12)

+

(
3m2

i

(piq3)2
+

2m2
k

(pkq3)2

) [
pipk

(
1

pkq2
+

piq1
piq2 pkq1

)
−2

m2
i pkq1

piq1 pkq2

]
+

(pipk)2

piq3

[
12 pi(q1−q2)

pkq12 piq1 pkq3
+

1

pkq13

(
1

pkq3
− 1

pkq1

) (
3+

piq1
piq2
−2 pkq1
pkq2

)]

+m2
i

[
4 pipk pi(q2−q1)

piq12 piq1 piq3 pkq3
+

1

piq13

(
1

piq1
− 1

piq3

) (
pipk piq12−2m2

i pkq1
pkq2 piq3

+
pipk pi(q2−q1)

pkq3 piq2

)

+
1

pkq12 piq3

(
2 pk(q2−q1)

piq1

(
3 pipk
pkq3

− m2
i

piq3

)
+

4 pipk
piq3

(
piq2
piq1

+
pkq2
pkq1

−2

)
+

2m2
k pi(q1−q2)

pkq1 piq3

)]

+
1

pkq13

(
1

pkq1
− 1

pkq3

) [
m2

k

(
pi(q1−q2)

pkq2

(
m2

k

pkq3
−pipk
piq3

)
+

2 pipk
pkq3

(
2+

piq1
piq2
−pkq1
pkq2

)
−4m2

i pkq2
piq2 pkq3

)

+
2m2

i pipk pkq2
piq2 piq3

]}
+

1

48 q1q2 pkq123

{
3

pkq1 piq2

(
1

pkq12
− 1

pkq3

) (
pipk
piq3

+
m2

k

pkq3

)
(pipk pkq12−2m2

k piq1)

+
m2

k

piq12 pkq3

[((
1

pkq3
− 3

pkq12

)
2

pkq1
+

(
1

pkq2
− 3

pkq13

)(
1

pkq1
− 1

pkq3

))
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×
(

2 pipk pk(q1−q2)+m2
k pi(q2−q1)

)
+

6

piq1

(
1

pkq3
− 1

pkq12

) (
2 pipk pi(q1−q2)+m2

i pk(q2−q1)

)]

+
4m2

k pipk
pkq12 piq3

(
1−pkq2

pkq1

) (
3

pkq12
− 2

pkq3

)
+

m2
k pipk

pkq12 piq3

(
3

pkq13
− 1

pkq2

) (
1

pkq1
− 1

pkq3

)
pk(q1−q2)

+3

(
1

pkq3
− 1

pkq12

)
(pipk pkq12−2m2

k piq1)

[
pipk

piq23 pkq1

(
1

piq2
− 1

piq3

)
+

m2
k

pkq13 piq2

(
1

pkq1
− 1

pkq3

)]}

+
pipk

48 q1q2 pkq123 piq123

(
1

piq12
− 1

piq3

) (
2 pipk pk(q2−q1)+m2

k pi(q1−q2)

)
×
[(

1

pkq3
− 3

pkq12

) (
1

pkq1
− 1

pkq2

)
+

(
1

pkq2
− 3

pkq13

) (
1

pkq1
− 1

pkq3

)]
. (C.8)

The term S(c)
ik , which contains the soft-gluon propagators (q1q2)−2 and (q1q2)−1(q1q3)−1, is

S(c)ik =
1

8 (q1q2)2 piq12 pkq3

{(
(4−d) piq1+d piq2

)[
pipk pkq1

2 pkq123 piq123

(
pkq3
pkq12

−1

) (
piq12
piq3

−1

)

+
pkq1
pkq12

(
m2
k

pkq3
+
m2
i pkq3
piq3

(
2

piq123
− 1

piq3

))
+
pipk
piq3

(
piq1
piq12

−3

2

pkq1
pkq12

)]

+
pipk
piq123

(
1

piq3
− 1

piq12

) (
(4−d) (pkq1)2+d piq1 piq2

)}

+
1

32 q1q2 q1q3 piq12

{
pipk
pkq2

[
4 pk(q2−q1)

pkq3
+

2 piq12
piq3

+2
piq2 piq3+piq1 piq123

piq13 piq3

+
1

pkq13 piq3

(
piq1 pk(5 q1−8 q2+2 q3)−3 piq2 pkq3+4 pipk q2q3

)]

+m2
i

[
4
piq2 pkq3+piq3 pkq1−piq1 pkq13−2 pipk q2q3

piq13 pkq2 piq3
+

1

pkq13

(
4
pkq1 pk(q3−q1)

pkq2 piq3

+8
m2
k q2q3−pkq13 pkq2

piq2 pkq3
+2

piq1 pk(q1+4q2−q3)+piq2 pk(q3−q1)−4 pipk q2q3
piq2 piq3

)]

+
2

piq123 pkq3

(
1

piq2
− 1

piq13

)(
pipk piq12 piq13+2m2

i (pkq2 piq3+pkq1 piq2−piq1 pkq12−2 pipk q2q3)

)

+
2

pkq123 pkq3

(
1

pkq13
− 1

pkq2

)[
m2
k

(
4 pkq1 piq3+pk(q1−q3) pi(q1−q2)−4 pipk q2q3

)

+2 pipk pkq13 pk(q2−q1)

]
+

1

pkq123 piq123

(
1−piq12

piq3

) (
1

pkq13
− 1

pkq2

)

×

[
4 (pipk)2 q2q3+pipk

(
piq1 pk(5 q1−8 q2+2 q3)−3 piq2 pkq3

)
+4m2

i pkq1 pk(q3−q1)

]}
. (C.9)
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The remaining term S(d)
ik of eq. (C.6) includes all the other types of soft-gluon propagators,

and it is

S(d)ik =
m2
i m

2
k−(pipk)2

4q2123 pkq123 pkq1 piq2 piq3
+

1

4q2123 pkq123

{
1

q1q2

[
1

pkq1 piq2

(
pipk (q2q3−q1q3)

(
m2
k

pkq3
+
pipk
piq3

)

+2
pipk
piq3

(piq12 pkq123−piq3 pkq2−piq2 pkq3)+
m2
i

piq3
pkq2 pk(q3−q12)

+
m2
k

pkq3

(
piq1 pk(q3−q12)−2piq3 pkq2

)
−2m2

k

piq1 piq12
piq3

)
+

1

2piq13 pkq2

{(
1

piq1
− 1

piq3

)

×

[
pipk

(
pkq1 pi(4q3−3q12)−3pkq2 piq12+pkq3 pi(q1−3q2)+2pipk (q2q3−q1q3)

)

+4m2
k piq12 piq2−2m2

i pkq1 pk(q3−q12)

]
+4pipk pk(q3−q1)+2m2

k pi(q1−q3)

}

+
1

piq12 pkq3

{(
1

piq1
− 1

piq2

)(
4m2

k piq1 piq3+m2
i (pkq1 pkq13−2m2

k q1q3)−2pipk piq1 pkq123

)

+pipk pk(q1−3q2−q3)+m2
k

(
(d−5)pi(q1−q2)+4piq3

)}
+

1

pkq13 piq2

{
pipk pkq13−2m2

k piq3

+

(
1

pkq3
− 1

pkq1

)[
m2
k

(
piq1 pk(q3−q12)−2pkq2 piq3+pipk (q2q3−q1q3)

)

+
pipk

2
pkq123 pkq12

]}
+

1

pkq12 piq3

{
pipk pk(3q1+q2−3q3)+2m2

k pi(q1−q2)

+

(
1

pkq2
− 1

pkq1

)[
2pipk pkq1 pkq13+m2

k

(
piq1 pk(q23−3q1)−2pipk q1q3

)]
−2m2

k piq1

}
+

+
2

piq123

{(
pkq13
pkq2

−1

)(
pipk

2
−m

2
k piq1
pkq13

)
+

(
1

pkq12
− 1

pkq3

)(
m2
k piq2−pipk pk(q2+2q3)

)

+
1

3

(
1

pkq3
− 3

pkq12

)(
1

pkq1
− 1

pkq2

)(
2pipk pkq2 pk(q12−q3)+m2

k (pipk q2q3+2pkq1 piq1)

)

+
1

12

(
1

pkq2
− 3

pkq13

)(
1

pkq1
− 1

pkq3

)[
4pipk pk(q1−q2)pk(q3−q12)

+m2
k

(
2pipk (q2q3−q1q3)+4pkq1 piq1−4pkq2 piq2

)]}]
+

1

(q1q2)2

[
2

piq123

(
1

pkq3
− 1

pkq12

)

×

[
pipk q1q3

(
(d−4)pkq1−dpkq2

)
+2(d−2)piq2 (pkq1)2+pkq1 pkq2

(
(4−d)piq1+

d

2
piq3

)]

+
1

piq12 pkq3

{
(d−2)pi(q2−q1)pkq1 pkq13+2m2

k piq1

(
(d−4)q1q3−dq2q3

)}

+
1

pkq12 piq3

{
2pipk q1q3

(
(4−d)pkq1+dpkq2

)
+(d−2)piq1 pk(q1−q2)pk(q13−3q2)

}]
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+
1

2q1q2 q1q3

[
1

piq12 pkq3

{
4pipk q2q3 pk(2q1+q3)+2m2

k q2q3 pi(q2−5q1−4q3)

+(pkq1)2
(

(7−2d)piq1+(2d+1)piq2−4piq3

)
+2pkq1 pkq3

(
(5−d)piq1+(d−5)piq2−2piq3

)
+pkq1 pkq2

(
(2d−3)piq1+(9−2d)piq2−2piq3

)
+3(pkq3)2 pi(q1−q2)

+pkq3 pkq2 pi(9q1−3q2+2q3)+2(pkq2)2 pi(q3−q1)

}

+
1

pkq12 piq3

{
2pipk q2q3 pk(q12+2q3)−4m2

k q2q3 piq2+(pkq1)2
(

(2d−7)piq1+2piq2+piq3

)

+pkq1 pkq3

(
(2d−7)piq1+4piq2−3piq3

)
+2pkq1 pkq2 (piq2−2dpiq1)+2(pkq3)2 pi(2q1−q2)

+pkq3 pkq2

(
2piq2+3piq3−(2d+1)piq1

)
+(pkq2)2

(
(2d−9)piq1−piq3

)}

+
4

piq123

(
1

pkq12
− 1

pkq3

){
q2q3

[
pipk

2
pk(5q1−3q2+4q3)+m2

k pi(2q2−q1)

]
+(pkq2)2 piq3

+(pkq1)2
(
piq1+(3−d)piq2

)
+(d−2)pkq1 pkq2 piq2+pkq1 pkq3 pi(q1−3q2)+pkq2 pkq3 pi(3q1−q2)

}]}

+
1

2(q2123)2 piq123 pkq123

{
(3d−10)pipk+

2pipk q1q3
(q1q2)2

(
(d−4)q1q3−dq2q3

)

+
1

q1q2

[
pkq1

(
(8−3d)piq1+(16−7d)piq2

)
−d

2
pkq3 piq3−2pipk (2q1q3+3q2q3)

]

+
q2q3

q1q2 q1q3

[
pipk q2q3+4(d−4)pkq1 piq1−16pkq1 piq2+4(2−d)pkq2 piq2

]}
. (C.10)

The quadrupole function Simkl does not depend on ε. The dipole function Sik(q1, q2, q3)

includes contributions that have a linear dependence on ε (see the terms proportional to

d = 4− 2ε in eqs. (C.9) and (C.10)). Such dependence originates from the use of the CDR

scheme for the dimensional regularization procedure. The result for |J(q1, q2, q3)|2 in the

DR and 4DH schemes is obtained by setting ε = 0 in the expression of Sik(q1, q2, q3).
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