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Anomaly detection aims at finding patterns in data that do not conform to the expected behavior. It is
largely adopted in intrusion detection systems, relying on unsupervised algorithms that have the potential
to detect zero-day attacks; however, efficacy of algorithms varies depending on the observed system and
the attacks. Selecting the algorithm that maximizes detection capability is a challenging task with no
master key. This paper tackles the challenge above by devising and applying a methodology to identify
relations between attack families, anomaly classes and algorithms. The implication is that an unknown
attack belonging to a specific attack family is most likely to get observed by unsupervised algorithms that
are particularly effective on such attack family. This paves the way to rules for the selection of algorithms
based on the identification of attack families. The paper proposes and applies a methodology based on
analytical and experimental investigations supported by a tool to i) identify which anomaly classes are
most likely raised by the different attack families, ii) study suitability of anomaly detection algorithms to
detect anomaly classes, iii) combine previous results to relate anomaly detection algorithms and attack

families, and iv) define guidelines to select unsupervised algorithms for intrusion detection.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Modern systems such as cyber-physical infrastructures,
Systems-of-Systems or Cloud environments may be targeted
by cyber-attacks, requiring attentive security countermeasures.
Intrusion Detectors (IDs, [2,24]) were proposed to enhance security
by analysing system data, aiming at identifying error-prone, ma-
licious or unauthorised activities. IDs may apply signature-based
techniques [2], which consist of checking properties or looking for
patterns (signatures) in monitored data to detect the manifestation
of a fault, or an ongoing attack.

Signature-based approaches have good detection capabilities
when dealing with known faults or attacks [1,2], but they may fail
in identifying unknown faults. In addition, when an unknown fault
or a zero-day attack [28,29] (i.e., an attack that exploit novel or
undiscovered system vulnerabilities) is revealed, a new signature
must be promptly devised and added to the signatures set.

To deal with unknowns, research moved to techniques suited to
detect unseen, novel attacks. Anomaly detectors are based on the

* Corresponding author.
E-mail addresses: tommaso.zoppi@unifi.it (T. Zoppi), andrea.ceccarelli@unifi.it
(A. Ceccarelli), andrea.bondavalli@unifi.it (A. Bondavalli).

https://doi.org/10.1016/j.jisa.2020.102474

assumption that an attack generates observable deviations from
the expected behavior, and they aim at finding patterns in data
that do not conform to the expected behavior of a system [1]: such
patterns are known as anomalies. Once an expected behavior is
defined, anomaly detectors target deviations from such expecta-
tions, protecting against known attacks [35,58] zero-day attacks
[26,28] emerging threats [15,54] and enhancing existing algorithms
[56]. In this paper we focus on unsupervised anomaly detection al-
gorithms, which are suited to detect, among others, zero-day attacks,
with no need of labels in training data [9,24].

Alongside with an appropriate quality of input data, selecting
the correct detection algorithm(s) represents a key decision when
defining an anomaly detector. Since IDs should be configured and
customized to suit the target system, adequate strategies to guide
the selection of appropriate anomaly detection algorithms may
support and speedup the process. However, a clear support to this
selection process in the domain of IDs is currently not available.
The scarcity of valid guidelines is mainly due to difficulties in ex-
tracting common characteristics of either attacks or algorithms, which
forces ad-hoc customizations.

Our contribution. This paper investigates which anomalies are
generated when attacks occur, and determines which algorithms
are more suited to detect specific anomaly classes. Consequently,
our study allows determining which algorithms are more suited to de-
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tect certain attacks. On top of that, the paper generalize this result,
presenting the connection between attack families and anomaly
classes: the implication is that it is possible to select anomaly de-
tection algorithms that are particularly suited to detect attacks,
even unknown ones, as long as these attacks belong to the same
family. This ultimately provides guidelines to identify the most suit-
able unsupervised algorithms for anomaly-based intrusion detection
for a given attack model.

We substantiate our results through a multi-level study, which
devises initial conjectures that are then confirmed or denied by
both inspection of data and by experimental campaigns. Briefly, we
proceed as follows. First we report on anomaly classes and attack
families according to reference taxonomies. This allows identify-
ing which anomaly classes are generated when attacks occur. Such
analysis is based on inspection of known attacks datasets typically
used for testing IDs, along with appropriate experimental cam-
paigns. Then, we define which algorithms are more suited to detect
certain anomaly classes, exploring their characteristics and exercis-
ing them using databases in which we injected different anomaly
classes. We select unsupervised algorithms belonging to different
families [1,5,48], building a pool of algorithms with heterogeneous
characteristics. Moreover, we favor well-known and consolidated
algorithms with availability of public implementations rather than
recent findings. This allows evaluating how the baseline idea be-
hind algorithms belonging to different families suits the detection
of specific classes of anomalies.

To corroborate the partial results obtained at the previous steps
- and deriving guidelines - algorithms are connected to attack fam-
ilies, executing the selected algorithms on well-known intrusion
datasets. Data generated or presented in the paper is publicly avail-
able [21], as well as the tool used for the experiments [36], allow-
ing to reproduce experiments as needed.

Paper Structure. This paper is structured as follows: Section 2
presents basics and related works, while Section 3 describes the
methodology we used throughout the paper. Section 4 expands on
anomaly classes generated by attack families; Section 5 digresses
on suitability of algorithms in detecting anomaly classes, while the
studies above are consolidated in Section 6. Section 7 proposes
guidelines to apply our study in IDs design, letting Section 8 to
conclude the paper, elaborating on future works.

2. Basics and related works
2.1. Anomaly-Based intrusion detection

Aiming at protecting cyber-physical systems, security specialists
are continuously researching mechanisms and strategies that aim
at neutralizing an attack or mitigating its adverse effects. Regard-
less of their characteristics, attacks [26,27] should be timely identi-
fied to activate reaction mechanisms that specifically aim at block-
ing an ongoing attack, or protecting critical data.

To such extent, many IDs were proposed in the literature -
and often distributed as enterprise software — to prevent attack-
ers from exploiting security breaches, or vulnerabilities. Significant
effort was put in comparing anomaly detection algorithms: for ex-
ample, in [52] authors used 7 algorithms on a dataset contain-
ing HTTP traffic. Instead, in [35], authors presented a compara-
tive study for IDs where k-Nearest Neighbors (KNN), Mahalanobis-
based, Local Outlier Factor (LOF) and one-class Support Vector Ma-
chines (SVM) were evaluated using the DARPA 98 dataset. Four al-
gorithms are evaluated in [51], which presents a review of novelty
detection methods that are classified as semi-supervised or unsu-
pervised. Additionally, in [5], authors presented a comparison of
anomaly detection algorithms for multivariate data points. In this
case, 19 algorithms were evaluated using 10 different datasets from
different areas. Instead, in [48], authors focus on quantitative com-

parisons of unsupervised algorithms for intrusion detection, draw-
ing conclusions about the effectiveness of algorithms on different
datasets.

However, changing the target system, domain or attack model
requires that the process of building the IDS to re-start from
scratch. Therefore, in this paper we expand on the investigation on
detection capabilities of algorithms, and on how different attacks
generate anomaly classes, aiming at achieving general guidelines
to select unsupervised algorithms when building IDs.

2.2. Unsupervised anomaly detection

In the paper we will name data point the observation of the
state of the system at a given instant. Each data point is composed
by f feature values, which are processed by an anomaly detection
algorithm to determine if the data point exhibits anomalies. More
in detail, anomalies are rare data points that may be classified as

[1]:

+ point anomaly (outlier): a data point that is out of scope or not
compliant with the trend of a variable e.g., out-of-size payload
of a network packet;

- contextual anomaly: a data point that is unexpected in a specific
context e.g., low number of page faults while loading a program
for the first time;

« collective anomaly: a collection of related data points that is
anomalous with respect to the entire trend or dataset e.g., sub-
sequent ICMP requests in a short interval of time.

Different anomaly detectors may be instantiated depending on
the nature of the target system [1] and monitored data. If labeled
training data is available, supervised anomaly detection [57,58,61] or
semi-supervised may be adopted [25]. Labelled data points allow
training an algorithm using both expected and anomalous data
points that have already been reported. Another slightly different
approach embraces ensembles [59,60], which are executed simul-
taneously, and the results they individually obtain are merged to-
gether to obtain the final class to be assigned to a give data point.
It is worth noticing that feeding the algorithm with anomalies due
to known attacks makes it learning how such attacks differ from
expectations, disregarding the detection of anomalies due to un-
seen attacks. Instead, when training data is not available or la-
beled, the only option is an unsupervised anomaly detection ap-
proach [5,24].

Noticeably, when configuring an anomaly detector for a target
system, we can assume that a fully labeled training set will not be
available in most of the cases due to i) lack of trustable labeling
techniques, ii) difficulties in gathering reliable data, or iii) dynamic
and evolving characteristics of the system and its workload, calling
for adaptive data analysis solutions. As a consequence, the appli-
cability of supervised algorithms may not be guaranteed in sev-
eral scenarios, calling the adoption of techniques that are able to
deal with the scarcity of labels in training data. In addition, con-
solidated supervised algorithms may and should be used alongside
with algorithms that are able to deal also with unknown attacks,
building ensembles [59,60] or - more in general - IDSs that are
able to identify a broader span of attacks. Therefore, in this paper
we refer only to unsupervised algorithms.

2.3. Families of unsupervised algorithms

We describe here six families of unsupervised algorithms typ-
ically acknowledged in the literature [1,5], reporting their main
characteristics. It is worth noticing that there are some unavoidable
semantic overlaps among families. For example, neighbor-based
strategies may be used to improve the detection capabilities of al-
gorithms as in the angle-based FastABOD [4].
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Fig. 1. Motivation of the Study, along with the methodology (steps A-E).

Clustering algorithms [11] partition a set of data points in such
a way that data points in the same group (cluster) share similar
characteristics. Data points that cannot be assigned to any of the
existing clusters, or that do not met specific inclusion criteria, are
anomalous.

Neighbor-based algorithms learn by analogy: they label a data
point as anomalous or expected depending on the label of its near-
est neighbor(s), considering an f-dimensional space [6,7]. In unsu-
pervised mode, they use the distance of the data point from its
neighbors as anomaly score.

Angle-based algorithms relate data to high-dimensional spaces,
and measure the variance in the angles between the data point
to the other points [4]. Expected data points have a large angle
variance, while anomalies typically result in very small variance of
triples of points.

Classification algorithms identify the class a new data point de-
pending on information collected during previous activities e.g., as-
signing a given email into spam or non-spam classes. Despite they
were born for supervised setups, they can run unsupervised [9].

Density-based algorithms [10] estimate the density of the
neighborhood of each data point. When a data point differs from
the expectations, it lies in a low-density area and it is then labeled
as anomalous.

Statistical algorithms assume that expected data points occur
in high probability regions of a given statistical distribution. They
fit a distribution to the expected points, and then apply statistical
inference to determine if a novel data point belongs to this distri-
bution or not. In unsupervised mode, statistical algorithms [3] de-
rive the underlying distribution as data is computed.

3. Methodology

This section lists the main steps of the experimental method-
ology we propose and apply in the paper. Such steps describe the
selection of algorithms, datasets, attacks, metrics and tool support,
providing the pillars to build our analysis by means of qualita-
tive and quantitative studies. The former aims to define hypothe-
ses and conjectures based on literature reviews or manual inspec-
tions, which are scrutinized by the latter through experimental
campaigns. Our methodology is depicted in Fig. 1.

Step A. Algorithms Selection. We select an unsupervised anomaly
detection algorithm for each of the families above by surveying
what researchers and practitioners proposed and in the literature.
Algorithms must have been applied for intrusion detection in the
past.

Step B. Dataset selection. Algorithms will be exercised on pub-
lic datasets obtained by monitoring systems and reporting on ef-
fects of either real or simulated attacks on these systems. Datasets
should be adequately documented, recent, or widely used in the
past in similar studies.

Step C. Attacks classification. Attacks contained in the datasets
should be classified according to a unified attack model, partition-
ing them into families according to their intrinsic characteristics.

Step D. Metrics identification. Then, we define metrics to score
and compare the results of algorithms when applied to datasets.
We select a reference metric, reporting also the values of metrics
used in most of the other studies to allow state-of-the-art compar-
isons.

Step E. Experimental Setup and Tool Support. We select one or
more tools that can support quantitative and, where needed, qual-
itative analyses. Similar analyses should be supported by the same
tool, to limit variability of results e.g., the same implementation
of an algorithm should be used. Moreover, the same environment
should be defined and used to run experiments with tool support.

After defining the main steps of the methodology, a target of
each study needs to be identified. Then, qualitative and quantita-
tive analyses can be carried out, providing results to be used for
discussion. Three separate studies will be carried out from Section
4 to Section 6. More in detail, Section 4 will report on Attack Fami-
lies That Generate Anomaly Classes, Section 5 will expand on Detect-
ing Anomaly Classes, while in Section 6 we will be Applying Algo-
rithms to Datasets. As it is shown in Fig. 1, tool support (step E) is
needed to conduct the three analyses.

3.1. Step A: algorithms selection

Our selection criteria favor well-known, consolidated algorithms
with public implementations. Despite technical advancements that
may have been proposed by domain experts, we assume that al-
gorithms belonging to a given family share intrinsic strengths and
weaknesses that may be mitigated, but that cannot be removed
at all. Comparing consolidated versions of algorithms allow us to
evaluate how the baseline idea behind the algorithms of a given
family suits the detection of specific classes of anomalies. The se-
lected algorithms, one for each family in Section 2.3, are described
below.

Neighbor-based: ODIN. Stemming from the k-th Nearest Neigh-
bour (kNN) [7], this distance-based method was designed to iden-
tify point anomalies. For each data point, kNN examines the whole
dataset to determine their feature distances to the given point. This
allows isolating k nearest neighbors (NN), creating the so-called
kNN graph. The Outlier Detection using Indegree Number (ODIN, [6])
algorithm improves kNN by defining as anomalies the data points
that have a low number of in-adjacent edges in the kNN graph.

Clustering: KMeans. K-means [11] assigns data points to k sub-
sets, or clusters, by their feature values. First, k centroids are ran-
domly initialized and each data point is assigned to the cluster
with the nearest centroid. Centroids may be updated, fitting evolv-
ing scenarios also in unsupervised mode. Finally, data points that
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are too far from the centroid of their cluster are labeled as anoma-
lies. There are many possible variants of this algorithm.

Angle-based: FastABOD. FastABOD anomalous data points de-
pending on the angles between pairs of distance vectors to other
points [4]. For each data point, the algorithm first calculates the
Angle Based Outlier Factor (ABOF) to its k-nearest neighbor as the
normalized scalar product of the difference vectors of any triple
of neighbors. According to [4], the usage of KNN provides a better
approximation. Then, FastABOD ranks the data points according to
their ABOF. The smaller the ABOF, the bigger the probability that
the data point represents an anomaly.

Classification: One-Class SVM. This algorithm conducts semi-
supervised anomaly detection [1] aiming to learn a decision
boundary [8]. However, One-Class SVMs can be used for unsuper-
vised anomaly detection: a support vector machine is trained with
the dataset and each data point is classified considering the nor-
malized distance of the data point from the determined boundary
[9].

Density-based: LOF. Local Outlier Factor (LOF) [10] computes
the kNN for each data point, and use them to calculate the density
index, called Local Reachability Density (LRD). The anomaly score is
then obtained by comparing the LRD of a data point with the LRD
of its kNN. Expected data points have scores close to 1.0, while
anomalies usually result in bigger scores.

Statistical: HBOS. This approach [3] generates a histogram for
each feature by using the values of all the available data points.
The anomaly score is computed by multiplying the inverse heights
of the columns in which each feature of the data point reside. Such
technique assumes that the investigated features are independent,
making HBOS fast even when dealing with large datasets [5]. If fea-
tures are dependent, such dependencies need to be neglected.

Computational Complexity. Despite not central to our selection
process, we report here some information on the computational
complexity of the selected algorithms. The complexity of density-
based and angle-based algorithms is at least O(N2), or rather the
complexity of an NN query. Clustering is generally more efficient,
with complexity of O(k N), where k represents the number of clus-
ters. Statistical and classification families may have very different
complexities; therefore it is not easy to present a bound. How-
ever, statistical algorithms are usually sub-linear e.g., O(N log N)
for HBOS, while classifiers usually build complex structures or con-
duct complex calculations e.g., OneClassSVM, O(N2).

3.2. Step B: selection of the datasets

The datasets initial selection requires them to contain enough
data points to ensure statistical evidence when evaluating the al-
gorithms e.g., DARPA 1999 dataset [30] was discarded since it
contains only 201 data points related to attacks, while ADFA-LD
[55] contains just the number of system calls as usable feature.
Furthermore, labels must be certain and not be assigned by clas-
sification algorithms or thresholds, to avoid biases due to mis-
takes in the labeling process. Consequently, we disregard datasets
as MAWI [31] or DEFCON [33], which are constituted of sniffed
data that is labeled applying classification algorithms. Last, data
points should be complete for all the features in the datasets, to
avoid applying feature recovery strategies that may bias results.

3.2.1. Selected datasets

The selected datasets are shortly described below and reported
in Table 1. We match each dataset to an acronym that will be used
throughout the paper. As a side note, during our selection pro-
cess we discarded Kyoto2006+ [32] NGIDS-DS [33]| and ADFA-LD
[55] datasets, since their amount of data was too huge to be pro-
cessed to a meaningful percentage.

Table 1

Datasets used in this study.
Dataset Data Points  Attacks %Attacks  Features
KDD Cup 99 (KC) [34] 311.028 223298 72 41
NSL-KDD (NK) [16] 148.503 71.280 48 42
ISCX2012 (IX) [17] 571.698 66.813 12 17
UNSW-NB15 (UN) [14]  175.341 119.341 68 46

(KC) KDD Cup 99 (1999) [34]. This is the most popular dataset
in the anomaly-based intrusion detection area, still used in re-
cent experiments and surveys [5,18] and works prior the release of
the updated NSL-KDD [20] despite being almost 20-years-old [55].
The dataset contains the following attacks: DoS (Denial of Service),
R2L (unauthorised access from remote), U2R (unauthorised access
to superuser/root functions) and Probing (gather network informa-
tion).

(NK) NSL-KDD (2009) [16]. This dataset was created to solve
problems in the KDD Cup 99 dataset as i) the presence of redun-
dant records in train sets, and ii) duplicates in test sets. The attacks
are the same as KC.

(IX) ISCX (2012) [17]. It is generated by the Canadian Institute of
CyberSecurity in a controlled environment based on a realistic net-
work and traffic to depict the real effects of attacks over the net-
work and the corresponding responses of workstations. Four dif-
ferent attack scenarios are simulated: infiltration, HTTP denial of
service, a distributed denial of service by using an IRC botnet, and
SSH brute-force login attempts.

(UN) UNSW-NB15 (2015) [14]. This dataset was released by the
Australian Defense Force Academy, University of New South Wale. Au-
thors simulate: i) Exploits, the attacker exploits a generic vulnera-
bility, ii) DoS, a (Distributed) Denial of Service, iii) Worms, a script
that replicates itself to spread to other networked computers, iv)
Generic, a technique that works against all block-ciphers, with a
given block and key size, v) Reconnaissance, attack that aim at
gathering information, vi) Shellcode, a code used as the payload in
exploits, and vii) Backdoors, that stealthily bypass security mecha-
nisms to access data.

3.2.2. Synthetic datasets

To adequately support experiments in Section V, we also create
sub-datasets of NK, IX and UN with respectively 48.084, 122.148,
and 44.353 data points without attacks. We left KC out because
most of its characteristics are shared with NK, especially when fil-
tering out attacks. In addition, for each feature, we process sub-
datasets to calculate statistical indexes e.g., minimum and maxi-
mum values, average, median, variance. These statistical indexes will
be used to inject anomaly classes into the sub-datasets, according
to their characterization in [1]. Despite injected anomalies do not
perfectly replicate manifestations of real attacks, we simulate them
to the best of our capabilities as follows:

1. Point anomalies: some feature values are updated with values
that are either smaller than the minimum values or bigger than
the maximum values logged in the dataset for a given feature.

2. Contextual anomalies: some feature values are updated with
values that are not contained in the 95% confidence interval,
considering the last 100 feature values as current context.

3. Collective anomalies: we inject a collective anomaly as a set of
three subsequent data points where we updated some feature
values with values outside the 80% confidence interval, consid-
ering the last 100 feature values as current context. Collective
anomalies are not subsequent point or contextual anomalies;
therefore we used a different confidence interval to generate
them.
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Table 2
Unified Attack Model and Mapping of Specific Attacks.

Attack Family Description

Mapping of (Dataset) Attack

Communication - Passive

Communication - Active

Attacks which targets the communication channel to
gather information without active damage

Attacks conducted through the communication
channel to actively damage the system

(KD - NK) Probing, (IX) Infiltration, (UN)
Reconnaissance, (UN) Analysis

(IX) Bruteforce, (KD - NK - IX - UN) DoS, (IX)
DDoS, (UN) Fuzzers, (UN) Backdoor

As a final step, we inject point, contextual and collective
anomalies in the sub-datasets, obtaining a 95% - 5% ratio of ex-
pected - anomalous data points. The resulting sub-datasets NK-S,
IX-S, UN-S are available [21].

3.3. Step C. unified attack model

Each of the datasets above uses inconsistent naming and group-
ing of attacks. To perform cross-datasets comparisons, we adopt
the unified attack model that builds on [26,27,47] and is used in
[46,48]. The model partition attacks in the following families: i)
communication passive: attacks directed to gather or steal data
through the passive observation of the communication channel, ii)
communication active: attacks which use the communication chan-
nel as a way to send malicious data / requests to the target system,
iii) host: malware or malicious code injected in a target host ex-
ploiting vulnerabilities of the operating system, and iv) application:
attacks that exploits vulnerabilities of (web)services. The unified
attack model is summarized in Table 2. The table reports also the
mapping of all the different attacks referenced in the datasets to
each of the 4 attack families. As example, exploits attacks of UNSW-
NB15 (UN) fall into the application family, as it can be observed at
the bottom right cell of the table. Attacks with different labels, or
reported in different datasets, which resemble the same attack are
merged into a unique attack, e.g., DoS, which can be found in both
NSL-KDD (NK) and ISCX (IX) datasets.

3.4. Step D. Scoring Metrics

The effectiveness of anomaly detectors is usually scored
through correct detections - true positives (TP), true negatives (TN)
- and wrong detections (false negatives, FN), (false positives, FP).
These indicators are commonly used to derive the so-called con-
fusion matrix. Aggregate metrics based on the abovementioned
indicators are Precision, Recall (or Coverage), False Positive Rate,
Accuracy, F-Score(B) [18], F-Measure (F1), Area Under ROC Curve
(AUC, [20]) and Matthews Coefficient (MCC, [19]). As highlighted in
[49,53], under specific circumstances some metrics can be mislead-
ing, since they either i) do not consider all the four classes of the
confusion matrix i.e., F1, FScore($), or ii) consider all the classes
without weighting the size of trues and falses i.e., Accuracy. To
such extent, in this paper we mainly refer to MCC [19], which does
not show the weaknesses above.

3.5. Step E. tool support and experimental setup

3.5.1. Tool support

To execute experiments, we need tools that allow i) executing
the selected algorithms, and ii) extracting the metrics above. Af-
ter examining well-known frameworks as ELKI [22], WEKA [23] or
Pandas [50], our final choice has been RELOAD [36], an open-
source tool that embeds implementations from different frame-
works and runs experiments through a simple and intuitive user
interface.

Briefly, RELOAD' automates the selection of the most relevant
features out of a data set or data stream, which is typically very

1 RELOAD, GitHub Wiki, github.com/tommyippoz/RELOAD/wiki.

important in attack detection to reduce the amount of data to be
observed. Further, it includes built-in metrics for the evaluation.
The tool wraps the implementation of several unsupervised algo-
rithms, amongst those which are often deemed the most useful
[24,35] for unsupervised anomaly detection in cyber-security. Ad-
ditionally, it embeds automatic tuning of algorithms’ parameters,
and facilitates examining outputs through reports of CSV files and
graphical plots.

RELOAD also considers different decision functions to convert al-
gorithms’ scores into boolean e.g., anomaly, normal, scores: out of
the pool of available ones, we chose IQR and Confidence Interval
[39], which RELOAD shapes depending on the characteristics of the
algorithm.

3.5.2. Experimental setup

We describe here the experimental setup we used throughout
the paper. Starting from the data sets, we downloaded the source
files of KC, NK, IX and UN from their repositories and we pre-
processed them to shape such data as csv files, which can be ef-
ficiently processed by RELOAD. Then, we downloaded the latest
release of RELOAD from the GitHub repository, setting up its pa-
rameters. We set MCC as target metric, using as feature selection
strategies the variance of feature values and their information gain
[38] with respect to the label. We also proceed with a 10-fold sam-
pling of the training set as widely suggested [37] in the literature.

We executed different experimental campaigns including all the
algorithms considered in this study. Parameters tuning is adopted
by RELOAD to find an adequate setup of each instance of a given
algorithm. Tuning is performed by i) first, executing training trying
different combinations of parameters; ii) then, comparing results
for the different parameters. For example, we run kKNN-dependent
algorithms i.e., ODIN, FastABOD, with k € {1, 2, 3, 5, 10, 20, 50, 100}.
In addition, metrics other than MCC e.g., TP, FP, TN, FN, Precision,
Recall, False Positive Rate, Accuracy and Area Under ROC Curve, are
reported for completeness and for easiness of comparison with ex-
isting studies.

Machine to Execute Experiments. The experiments have been
executed on a server equipped with Intel Core i7-6700 with four
3.40 GHz cores, 24GB of RAM and 100GB of user storage. Overall,
executing all the experiments supporting the quantitative analyses
reported in this paper required approximately three weeks of 24H
execution. We choose the portions considering the biggest subset
of the dataset that do not escalate in heap memory errors, i.e., 16%
for KC, 33% for NK, 20% for IX, 24% for UN and all the NK-S, IX-S,
UN-S synthetic datasets. All metric scores, RELOAD data logs and
files we used to collect and summarize values are publicly avail-
able [21].

4. Attack families that generate anomaly classes

This section expands on qualitative and quantitative analysis di-
rected to identify the anomaly classes generated by the attacks con-
tained in the datasets IX, KD, NK, UN considered in the paper.

4.1. Inspection on the selected datasets

4.1.1. Attacks characteristics
We first consider the characteristics of attacks to identify how
they usually manifest. Attacks as Shellcode or Exploits (appearing in
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1 protocol_type service flag symbolic  src_bytes is_guest logir  count srv_count

3888 tep http SF 189 5957 6 6 0
3889 tep imap4 RSTO 0 44 2 11 0
3890 tep private REJ 0 0 219 16 0
3891 tep private REJ 0 0 248 6 0.01
3892 tep smtp SF 881 387 1 1 0
3893  op fip_data SF 240118 0 5 25 0
3894  tep RSTR 0 0 1 1 0
3895 tep private SH 0 0 1 1 1
3896  udp private SF 53 52 511 511 0
3897 tep ftp_data SF 1010 0 2 2 0
3898 tep other REJ 0 0 444 1 0.02
3899 tep pop_3 SF 32 93 1 1 0
3900 tep telnet SF 0 15 1 1 0
3901 tep iso_tsap S0 0 0 130 1 1
3902 tep http SF 219 405 5 5 0
3903 tep smtp SF 993 336 1 1 0
3904 tep private REJ 0 0 257 5 0
3905 tep http SF 54540 8314 4 20 0
3906 tep private REJ] () (] 137 18 (]

T. Zoppi, A. Ceccarelli and L. Salani et al./Journal of Information Security and Applications 52 (2020) 102474

Z AA AB AC AD AE AP
serror_rate rv_serror_rat rerror_rate rv_rerror_rat;ame srv_ratcdiff srv_ratet host_srv_rerror_r

0 0 0 1 0 0 normal

0 1 0.73 0.5 1 1 mscan

0 1 1 0.07 0.06 0 neptune

0 0.99 1 0.02 0.07 0 neptune

0 0 0 1 0 0 normal

0 0 0.8 0 0.08 normal

0 1 1 1 0 0 portsweep

1 0 0 1 0 0 nmap

0 0 0 1 0 0 normal

0 0 0 1 0 0 normal

0 0.96 1 0 1 0 saint

0 0 0 1 0 0 guess_passwd

0 0 0 1 0 0 processtable

1 0 0 0.01 0.09 0 neptune

0 0 0 1 0 0 normal

0 0 0 1 0 0 normal

0 1 1 0.02 0.05 0 neptune

0 0 0 1 0 0.15 back

0 1 1 0.13 0.07 0 neptune

Fig. 2. Example of collective anomalies: subsequent occurrence of probe attacks portsweep and nmap - in yellow - and DoS attacks neptune and back - gray rows - in NK

dataset (Test sub-dataset, rows 3889 - 3906).

the UN dataset) aim at damaging a system with single requests or
actions: therefore, we expect them to generate either point or con-
textual anomalies. Instead, attacks that submit several requests to
a victim will generate separate anomalies that share common char-
acteristics i.e., collective anomalies. Differentiating between attacks
generating point anomalies or contextual anomalies is not trivial:
in particular, it requires understanding if attacks act only in spe-
cific scenarios (context), and how they impact the victim.

More in detail, Probing, Reconnaissance, and Analysis attacks
(e.g., PortScan [42]) aim at scanning system interfaces or network
devices in order to determine vulnerabilities. This activity may be
leveraged through time, sending multiple ping or arp requests that
do not appear during normal operation conditions, generating col-
lective anomalies. Other attacks as Fuzzers and Bruteforce aim at
submitting inputs to a system to either block it or gain unautho-
rised access. Similarly, DoS attacks [26] aim to damage the vic-
tim leading to its unavailability. As example, denial of service may
be exercised by sending many requests (also from different adver-
saries networked together, as in Distributed DoS, DDoS) or send-
ing malformed packets [40], generating either collective or point
anomalies.

Instead, we found that attacks belonging to the Host family in
Table 2 generate contextual anomalies as follows. These attacks ex-
ploit system vulnerabilities to execute scripts (as it is for Shellcode
or Backdoors), software (Worms, Malware), or change/obtain per-
missions (r2L, u2r) by directly executing instructions on the vic-
tim machine. Such attacks need to damage the system as quickly
as possible, also hiding their activities (as it is common for Cam-
ouflaged Worms [41]), to avoid being detected and quarantined by
antiviruses. Our conjecture is that they generate contextual anoma-
lies, impacting the system in a short timespan without relevant
fluctuations of feature values. For example, a worm may aim at
scanning the system for passwords and sending them to some
remote repository, or to change credentials for VPN or SSH ac-
cess on a machine: sending data or changing permissions are
not anomalies by themselves, but they are anomalous in specific
contexts.

4.1.2. Manual inspections into datasets

Similarly to what was done in the previous section for algo-
rithms, we verify our conjectures by examining how attacks man-
ifest in the NK, KD, IX, and UN datasets. Manual inspections allow
distinguishing which attacks appear as groups of anomalous data
points rather than attacks that affect single data points. Fig. 2 high-
lights a section of the NK Test (note that NK is provided as two
separate CSV files, one for train and one for test) dataset, where we

can observe specific probing attacks as ipsweep, nmap, portsweep,
or satan.

Subsequent data points - rows in the dataset - are labelled
with one of the attacks above i.e., last column of rows 3894 and
3895 in Fig. 2, either portsweep and nmap. For DoS attacks, in-
stead, datasets report both on single and groups of anomalies.
Fig. 2 shows single (row 3901) and multiple occurrences of neptune
attack (rows 3890, 3891), and also multiple occurrences of differ-
ent DoS attacks i.e., neptune and back, rows 3904 - 3906.

4.1.3. Deciding on point, contextual or collective anomalies

If an attack always appears in subsequent data points, we
can definitively claim that such attack manifests as a collective
anomaly. Otherwise, examining the datasets to differentiate be-
tween point and contextual anomalies requires more effort. We
proceed as follows. We select the most relevant features of each
of the datasets by calculating Pearson correlation indexes between
each feature of the datasets and the label column, considering the
label as 0 if normal, 1 otherwise. Then, we select the 3 features
that are more relevant: the bigger the absolute value of Pearson in-
dex, the greater the correlation with the label. Moreover, we rank
all the data points in the dataset according to these feature values
and we carefully examine the results: if most of the attacks are
either at the beginning or at the end of the ranked dataset, this
means that attacks lead one or more of these features to show val-
ues outside the usual range, and therefore represent point anoma-
lies.

In any other case, we check if such anomalies are contextual.
Values related to the three features are processed to extract statis-
tical indexes as average, median and standard deviation, differen-
tiating between normal and anomalous data points. A noticeable
difference between the two series of statistical indexes can sug-
gest possible alterations due to this specific attack. Then, we select
5 portions of the dataset in which the attack appears. Once we
find a row with the attack we look at the context in which the
attack is put (i.e., up to 30 rows before and up to 5 rows later)
to understand if, for some features, the data point corresponding
to the attack has values that differ with respect to the “surround-
ing” data points, according to the statistical indexes calculated
before.

4.14. Example: backdoor attack

To prove how our manual inspection works, we show as exam-
ple the backdoor attacks, which we suspected to generate contex-
tual anomalies. To confirm or deny the initial hypothesis, we first
look for datasets containing this attack (UN, see Fig. 3), observing
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1 rate v swin ~ ct_dst_sport_ltn ~ label - bool_label
49888 333333.3215 0 1 Normal 0
49889 111111.1072 0 1 Normal 0
49890 125000.0003 0 1 Normal 0
49891 111111.1072 0 1 Normal 0
49892  125000.0003 0 1 Normal 0
49893 111111.1072 0 1 Normal 0
49894  125000.0003 0 1 Normal 0
49895  200000.0051 0 1 Normal 0
49896 111111.1072 0 2 Backdoor 1
49897  125000.0003 0 1 Normal 0

Fig. 3. Example of contextual anomaly: occurrence of backdoor attack - in yellow
- in UN dataset (rows 49,888 - 49,897).

that data points labeled as backdoor attacks mainly come individ-
ually, excluding collective anomalies. We then execute the feature
selection process using pearson index. Out of the possible 46 fea-
tures, the 3 that show higher correlation are rate (0.249 of pear-
son index), swin (—0.247) and ct_dst_sport_Itm (0.357). Ranking the
dataset according to the values of these features does not show at-
tacks that are concentrated either at the beginning or at the end:
therefore, we cannot classify backdoor attacks as point anoma-
lies. We then compute average, median and standard deviation
for each of the three features, differentiating normal and anoma-
lous data points. In particular, we notice how avg + std values for
ct_dst_sport_ltm are separated between normal (1.388 + 0.847) and
anomalous (2.234 + 0.656) values, indicating average higher val-
ues of this feature in presence of attacks. Most of the data points
labeled as backdoor attacks in the dataset show different values
with respect to their context. As example, row 49,896 in Fig. 3 is
the only data point that has value 2 for the ct_dst_sport_ltm feature
considering rows 48,866 - 49,900 (30 rows before the attack - 5
rows after the attack).

Manual inspections, as shown above, are executed for each at-
tack that is logged in the considered datasets, while final results
are summarized in Table 3 and Table 4. The tables report on
anomaly classes generated by i) attacks (Table 3), and ii) attack
families (Table 4).

4.2. Experimental analysis

We now proceed to a dedicated quantitative analysis to con-
firm or deny manual inspections. Despite unsupervised algorithms
execute training without relying on labels in the data, a tuning
phase is employed by RELOAD to derive the optimal values of the
parameters (e.g., the size k of the neighbourhood for kNN, when
needed) for each algorithm. Tuning requires extracting a subset of
the dataset - the tuning subset - containing expected data points

Table 3

Attacks and Anomaly Classes they Generate.
Attacks Datasets Anomalies
Denial of Service KC, NK, IX, UN Point, Collective

Distributed Denial of Service  IX Contextual, Collective

Probing / Reconnaissance KC, NK, UN Collective
R2L, U2R KC, NK Contextual
Infiltration, Bruteforce IX Collective
Shellcode, Backdoors, Worms ~ UN Contextual
Fuzzers, Analysis UN Collective
Exploits UN Point
Table 4
Attack Families and Anomaly Classes they Generate.
Family Attacks Anomalies
Communication Probing, Infiltration, Collective

- Passive Reconnaissance, Analysis

and data points collected while a given attack - the tuning attack -
was exercised, computing metric scores for each parameters’ com-
binations.

Once the training-tuning phases are completed, algorithms are
ready to provide anomaly scores for data points in the evaluation
set. Using an evaluation set that contains a target attack other than
the tuning attack allows to completely decoupling the training-
tuning phases from the evaluation, leading algorithms to detect
unknown attacks. Indeed, we expect to have higher detection scores
in detecting unknown target attacks that generate the same anomaly
classes of the tuning attacks contained in the tuning subsets. There-
fore, we proceed as follows:

+ For each dataset we choose the target attack, identifying an
evaluation set containing both normal data points and data
points collected when the target attack was exercised.

« We then identify different tuning subsets of the dataset con-
taining normal data points and data points related to an attack
(i.e., the tuning attack), other than the target attack.

« Finally, we run experiments by training anomaly detection al-
gorithms with normal data points, tuning them using a tuning
subset, and then using trained algorithms to score the evalua-
tion set.

4.3. Results and discussion

Table 5 reports on the analysis regarding three different tar-
get attacks: bruteforce (ISCX dataset), u2r (NSL-KDD), and worms
(UNSW). For the full list of experiments please refer to the files
available at [21]. For each target attack we report on the average
and standard deviation scores we obtained by training, tuning and
then evaluating the 6 algorithms we used in this study. In addi-
tion, each row reports on i) the dataset used, ii) the target attack
and the anomalies we suppose it generates, li) the tuning attack
and the anomalies we suppose it generates.

As it can be noticed in the table, highest MCC scores are ob-
tained when tuning attack corresponds to target attack. More im-
portantly, we point out that when tuning attack and target attack
differ, the highest scores are obtained when the anomalies generated
by the tuning attack match the anomalies generated by the target at-
tack. For example, Worms attacks (see the last batch of rows in
Table 5) are on average identified with better scores by algorithms
if tuning is carried out using an tuning subset containing attacks
generating contextual anomalies. The same trend can be observed
also for U2R and Bruteforce attacks, as reported in rows 4-7 and
8-11 of Table 5. The results of this experimental campaign allow
consolidating the link between attacks and anomaly classes that
was figured out, as a first stage, through manual inspections.

5. Detecting anomaly classes

We discuss here how the characteristics of each algorithm impact
their ability in identifying specific anomaly classes. Discussion is car-
ried out by revising algorithms as they were proposed, and then
corroborating initial conjectures with quantitative analyses.

5.1. Investigating characteristics of algorithms

Each unsupervised anomaly detection algorithm relies on its
own properties. According to their characteristics [4,7,10], algo-
rithms belonging to neighbor-based, angle-based and density-based
families such as ODIN, FastABOD and LOF are primarily intended
to identify point anomalies, while they may not be able to detect
collective anomalies if the size k of the neighborhood is smaller
than the size of the collective group of anomalies. Indeed, an inde-
gree score may help detecting them, as demonstrated in [6]. This



8 T. Zoppi, A. Ceccarelli and L. Salani et al./Journal of Information Security and Applications 52 (2020) 102474

Table 5

Detecting Unknown Attacks by Combining different Tuning Attack and Target Attack.

Target Attack

Tuning Attack MCC

Dataset
Name Anomaly

IX Bruteforce Collective
IX Bruteforce  Collective
IX Bruteforce  Collective
NK U2R Contextual
NK U2R Contextual
NK U2R Contextual

Name Anomaly avg std

Bruteforce  Collective 0.82 0.17
Infiltrator Collective 0.31 0.21
DoS Collective 0.27 0.09

(Point)

U2R Contextual 0.35 0.07
R2L Contextual 0.19 0.08
Probe Collective 0.05 0.04

issue is shared also with some implementations of KMeans (a clus-
tering algorithm), since a collective anomaly may lead them to cre-
ate a separate cluster for the particular group of data points. How-
ever, variants as [12]| mitigate this problem by labeling as anoma-
lous both data points i) belonging to small clusters and ii) far from
known clusters. Classification algorithms for unsupervised anomaly
detection are often identified as One-Class SVM [9]. It is worth re-
marking that algorithms selected for this study - HBOS, KMeans,
FastABOD, LOF, ODIN and OneClass SVM - are intended to repre-
sent the intrinsic characteristics of different families, rather than
the most recent variants of existing algorithms.

5.2. Experimental analysis

Starting from the NK-S, IX-S and UN-S reported in Table 1, non-
numeric features were removed, and feature selection was exe-
cuted by RELOAD, leaving 16 features for NK-S, 5 for IX-S, and 13
for UN-S. During the training phase, RELOAD respectively creates
38, 20, and 25 feature subsets according to Pearson Correlation. This
results in 42 feature subsets for NK-S, 26 for IX-S, and 39 for UN-
S, which sum i) the single features, ii) the connected features, and
iii) the set composed by all the single selected features. All the in-
stances are evaluated together during training phase and all the
possible algorithm configurations are ranked according to MCC.

Fig. 4 shows the metric scores we obtain by running the se-
lected algorithms on our three synthetic datasets, and aggregat-
ing scores by algorithm and anomaly classes. Six series of three
columns can be found in the figure: the columns on the left re-
port on the detection of point anomalies, central columns report
on contextual anomalies, while columns on the right describe the
detection of collective anomalies. Such figure allows observing that
SVM shows the highest average scores, while sub-quadratic al-
gorithms as HBOS and K-Means show overall worse results i.e.,
bars are shorter in Fig. 4. However, we can observe how algo-
rithms with lower bars may be really effective in detecting spe-
cific anomaly classes, i.e., KMeans and FastABOD. Point anomalies
are detected well by FastABOD (see columns on the left of each

100 m Point N Contextual [ Collective
0.90
0.80
@ 0.70
2050 - § :
0.40 | \ E
. \é
0501 4 § i 5':'

HBOS KMeans LOF

FastABOD

ODIN SVM

Fig. 4. Average metric scores of algorithms for each class of anomalies. Er-ror bars
represent standard deviation among the datasets NK-S, IX-S, UN-S.

triple of columns in Fig. 4), while KMeans show good capabilities
in identifying collective anomalies (columns on the right of the
triples in Fig. 4). ODIN and, to a lesser extent, LOF, are balanced
algorithms: they do not show specific weaknesses for any anomaly
class. Lastly, we remark how HBOS, despite not optimal in terms of
metric scores, is a light and fast algorithm, making it useful when
a computational resources are scarce.

Overall, we expected point anomalies to be the easiest to de-
tect. Instead, except for the angle-based FastABOD, it was easier to
detect collective anomalies than contextual and point anomalies.
We explain this result as follows: the selected algorithms use large
training sets, which allow a careful and precise definition of the
boundaries between anomalous and expected behavior. However,
during training they derive a global boundary, which does not al-
ways fit the detection of single anomalies, while groups of anoma-
lous data points become easier to identify.

5.3. Results and discussion

Overall, our results show which unsupervised algorithms are
more suitable than others to detect anomalies belonging to spe-
cific classes. The final results of our analyses are depicted in Fig. 5,
which is built considering algorithms as capable of identifying an
anomaly class if in our experiments the average MCC obtained
by the algorithm exceeds 0.6. We choose this MCC threshold by
considering each algorithm as capable of identifying at least an
anomaly class.

We observe how Fig. 5 shows a few mismatches with respect
to our conjectures from Section 5.1. We supposed clustering al-
gorithms to be capable of identifying both point and collective
anomalies, while Fig. 5 puts KMeans, the clustering algorithm, in
the intersection of “contextual” and “collective” sets. Instead, SVM
scores confirm that under average conditions i.e., the boundary
of SVM is found, this algorithms is the most balanced overall.
Moreover, as reported previously, higher scores are obtained by
the algorithms that have quadratic computational complexity while

Point Anomaly

@ FastABOD
&= Fes ¥ statistical

&8 Angle

& Clustering
& Density

@ Neighbour
© Classification

Collective Anomaly

Contextual Anomaly

Fig. 5. Linking anomaly classes to algorithms depending on quantitative analyses
by executing algorithms on datasets.
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Table 6

Metric Scores obtained by applying each algorithm on the datasets KD, NK, IX, UN. Results are grouped by Algorithm and Anomaly Class Generated by the Attacks Evaluated

through Algorithms.

TP TN FP FN MCC (Fig. 6) Expected MCC (Fig. 4)  Diff wrt
Algorithm  Anomaly FPR P R F1 ACC AUC Expected
¥4 % % % avg std avg std
HBOS Point 2198 5844 10.88 8.70 015 061 072 059 080 079 049 026 059 0.26 19.7%
Contextual ~ 5.75 86.26  5.10 2.89 006 052 054 050 092 074 047 029 063 0.05 32.1%
Collective 534 81.24 595 7.47 007 049 052 046 087 073 041 009 0.63 0.06 55.0%
K-Means Point 2389 5729 12.03 6.79 017 057 063 058 081 073 045 031 049 0.04 7.7%
Contextual  5.88 8511 6.25 2.76 008 054 059 047 091 076 047 021 060 0.23 27.4%
Collective 7.97 83.04 4.15 4.83 005 066 058 058 091 077 056 021 075 0.07 35.4%
LOF Point 19.93 6262 6.70 1076 011 066 071 060 083 080 050 0.14 066 0.18 29.8%
Contextual  6.77 84.45 6.90 1.88 008 050 066 053 091 079 051 017 062 0.06 22.5%
Collective 7.95 82.81 438 4.85 005 062 065 061 091 080 057 018 073 0.06 28.7%

faster algorithms as KMeans and HBOS showed worse detection ca-
pabilities.

6. Applying algorithms to datasets

We now apply the selected algorithms to datasets, analysing met-
ric scores to understand if they confirm or deny the results ob-
tained in Section 4 and Section 5. We skip qualitative analyses, go-
ing directly to experimental evaluations.

6.1. Experimental analysis

We set an experimental campaign using the real datasets KD,
NK, IX, and UN. We executed an experimental campaign by apply-
ing the 6 algorithms on the datasets KD, NK, IX and UN, according
to the procedure described in Section 4. In Fig. 6 we report results
of this experimental campaign, while the detailed metric scores are
in Table 6. The results herein were obtained by applying the algo-
rithms on the datasets, then grouping by attacks and, ultimately,
by anomalies through the analysis in Section 4.

6.2. Results and discussion

Focusing on Fig. 6, we can observe that bars are lower then
their counterparts in Fig. 4. This is pointed out in the last col-
umn of Table 6 and is explained considering that synthetic datasets
were artificially created by injecting anomalies with a common
pattern, making their detection easier than real attacks.

However, it is worth noticing that the characteristics of algo-
rithms are confirmed. Algorithms that were classified in Fig. 5 to
be particularly effective in detecting specific anomaly classes show
metric scores that comply with our expectations. LOF, ODIN and
SVM (respectively, density-based, neighbor-based and classification)
have good overall capabilities for all anomaly classes. Fast algo-
rithms as HBOS (statistical) and K-Means (clustering), instead, show

0.90
0.80 m Point ¥ Contextual g Collective _

0.70 T T
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722222220
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.

"

K-Means

LOF FastABOD ODIN

Fig. 6. Average metric scores of algorithms for each anomaly class. Error bars rep-
resent standard deviation among datasets KD, NK, IX, UN.

results that are on average worse than algorithms with quadratic
complexity. Moreover, HBOS shows bad scores in identifying collec-
tive anomalies, while it was supposed to detect collective anoma-
lies quite well in Section 5.

While all the algorithms show worse performance with respect
to the results on synthetic datasets (24.8% on average), FastABOD
shows scores that are similar to the analysis on synthetic datasets
(14.4% worse on average), achieving the best average score in de-
tecting attacks generating point anomalies.

7. On the design of anomaly-based IDs

The work described in the previous Sections allows establishing
links between i) attacks - or attack families - and anomaly classes
they usually generate (Section 4), and ii) algorithms and anomaly
classes depending on detection capabilities (Section 5). These two
separate studies - consolidated in Section 6 - constitute the base-
line to derive the most suitable unsupervised anomaly detection al-
gorithm(s) for intrusion detection in a given system. This ultimately
allows building guidelines to identify the most suitable anomaly
detection algorithms for a given system, assuming that the system
has enough computational, memory and storage resources to sup-
port the algorithms execution. Here we have considered a represen-
tative set of algorithms and dataset, however our guidelines may be
generalized for a selection of different algorithms, dataset and attacks.

Guidelines are summarized in Table 7, where we give a brief
description of possible attack families that can impact a system,
pointing out the anomaly classes they usually generate, and then
proposing algorithm(s) to apply for intrusion detection. More in
detail, Table 7 reports on all the 7 possible combinations of point,
contextual and collective anomaly classes. The system administra-
tor, the researcher or the practitioner that wants to take advan-
tage of our design guidelines has to first devise a list of possible
attacks that may threaten the system, building an attack model
e.g., DoS and probing attacks. Then, each attack of the attack model
should be shaped according to the attack families we presented
in Table 2 e.g., communication - active and communication - pas-
sive families. Once this model is done, attack families derived from
the attack model should be used to find a matching item in the
first column of Table 7 (e.g., the third row of the table for com-
munication attacks). In this way, the user can get immediate recom-
mendations about the most suitable algorithm(s) to adopt to detect
intrusions as defined in the attack model.

When devising an attack model is not possible or feasible, the
researcher or practitioner may want to be covered against a wide
range of attacks. To such extent, the last row of Table 7 reports on
algorithms that showed overall good capabilities in detecting all
the three anomaly classes, meaning that they offer a balanced cov-
erage against most of the possible manifestations of attacks, either
known or unknown.
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Table 7

Guidelines for Designing Intrusion Detectors based on Anomaly Classes.

Attack Families Anomaly Classes

Algorithms (Families)

Motivation

They show good scores in detecting point anomalies. We
may consider to use both strategies in parallel, since the

Application Point ODIN (Neighbour),
FastABOD (Angle)

Host Contextual ODIN (Neighbour), SVM
(Classification)

Communication - Collective SVM (Classification),

Passive, KMeans (Clustering)

Communication -

Active

Host, Application Point, Contextual
(Neighbour)
Host, Communication

- Passive

Contextual, Collective

FastABOD (Angle), ODIN

SVM (Classification)

core of ODIN and FastABOD share a kNN search.

SVM is a better choice if additional coverage against attacks
generating collective anomalies is desired. Otherwise, SVMs
fit the most here.

SVM shows the best detection capabilities in detecting
collective anomalies. Clustering may be a good alternative if
the system cannot rely on fast CPU or enough RAM memory

They show good capabilities in detecting both anomaly
classes.
It shows good capabilities in detecting both anomaly classes.

Finally, in our analysis, we observe that all algorithms but HBOS
and KMeans rely on actions e.g., finding the k-NNs or creating
graphs, that are quadratic with respect to the amount of the data
points used for training. To mitigate this problem, in some scenar-
ios as the detection of attacks generating collective anomalies (see
third row of Table 7), it is possible to adopt algorithms that have
slightly worse detection capabilities, but on the other side require
considerably less resources for their training. Other possible solu-
tions could rely on sliding windows algorithms [12,13,43], which
depend on a fixed size of data points to train their model, limiting
the effort required during training phase. However, despite show-
ing promising results in some application domains [45], to the best
of our knowledge such strategies are not mature enough [44] for
being compared with more consolidated algorithms for detailed
analyses.

8. Conclusions

In this paper we described activities on attacks, anomalies and
unsupervised algorithms, which allowed deriving guidelines to se-
lect unsupervised anomaly detection algorithms for intrusion de-
tection. Guidelines constitute the last step of a process which al-
lowed: i) to characterize known attacks in terms of the anomaly
classes they usually generate, i) to study suitability of anomaly
detection algorithms to detect anomaly classes, iii) to establish a
link between anomaly detection algorithms and attacks through
anomaly classes, iv) and to take advantage of the link to propose
guidelines to select unsupervised algorithms. Steps i) - iii) started
from qualitative analyses then substantiated by quantitative ones
using state-of-the-art algorithms, attack models and datasets. All
data generated for these quantitative analyses is publicly available
[21], as well as the tool used for the experiments [36].

Overall, such analyses escalated into guidelines to derive the
most suitable unsupervised anomaly detection algorithm for intru-
sion detection in a given system depending on anomaly classes. In
addition, we carefully described the methodology we followed, to
promote further expansions of our work e.g., by considering un-
supervised algorithms other than the 6 we took into account. Our
guidelines could also be used to suggest a set of unsupervised al-
gorithms: however, to the best of our knowledge, there are no
consolidated mechanisms that allow combining individual anomaly
scores of different algorithms in an efficient and trusted manner.
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