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Anomaly detection aims at finding patterns in data that do not conform to the expected behavior. It is 

largely adopted in intrusion detection systems, relying on unsupervised algorithms that have the potential 

to detect zero-day attacks; however, efficacy of algorithms varies depending on the observed system and 

the attacks. Selecting the algorithm that maximizes detection capability is a challenging task with no 

master key. This paper tackles the challenge above by devising and applying a methodology to identify 

relations between attack families, anomaly classes and algorithms. The implication is that an unknown 

attack belonging to a specific attack family is most likely to get observed by unsupervised algorithms that 

are particularly effective on such attack family. This paves the way to rules for the selection of algorithms 

based on the identification of attack families. The paper proposes and applies a methodology based on 

analytical and experimental investigations supported by a tool to i) identify which anomaly classes are 

most likely raised by the different attack families, ii) study suitability of anomaly detection algorithms to 

detect anomaly classes, iii) combine previous results to relate anomaly detection algorithms and attack 

families, and iv) define guidelines to select unsupervised algorithms for intrusion detection. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

S  

b  

I  

b  

l  

t  

p  

o

 

w  

i  

o  

u  

m

 

d  

a  

t  

t  

p  

d  

t  

[  

[  

g  

w

 

t  

d  

c  

t  

s  

s  

T  

t  

h

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research
. Introduction 

Modern systems such as cyber-physical infrastructures,

ystems-of-Systems or Cloud environments may be targeted

y cyber-attacks, requiring attentive security countermeasures.

ntrusion Detectors (IDs, [2,24] ) were proposed to enhance security

y analysing system data, aiming at identifying error-prone, ma-

icious or unauthorised activities. IDs may apply signature-based

echniques [2] , which consist of checking properties or looking for

atterns ( signatures ) in monitored data to detect the manifestation

f a fault, or an ongoing attack. 

Signature-based approaches have good detection capabilities

hen dealing with known faults or attacks [1,2] , but they may fail

n identifying unknown faults. In addition, when an unknown fault

r a zero-day attack [28,29] (i.e., an attack that exploit novel or

ndiscovered system vulnerabilities) is revealed, a new signature

ust be promptly devised and added to the signatures set. 

To deal with unknowns, research moved to techniques suited to

etect unseen, novel attacks. Anomaly detectors are based on the
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ssumption that an attack generates observable deviations from

he expected behavior, and they aim at finding patterns in data

hat do not conform to the expected behavior of a system [1] : such

atterns are known as anomalies . Once an expected behavior is

efined, anomaly detectors target deviations from such expecta-

ions, protecting against known attacks [35,58] zero-day attacks

26,28] emerging threats [15,54] and enhancing existing algorithms

56] . In this paper we focus on unsupervised anomaly detection al-

orithms, which are suited to detect, among others, zero-day attacks ,

ith no need of labels in training data [9,24] . 

Alongside with an appropriate quality of input data, selecting

he correct detection algorithm(s) represents a key decision when

efining an anomaly detector. Since IDs should be configured and

ustomized to suit the target system, adequate strategies to guide

he selection of appropriate anomaly detection algorithms may

upport and speedup the process. However, a clear support to this

election process in the domain of IDs is currently not available.

he scarcity of valid guidelines is mainly due to difficulties in ex-

racting common characteristics of either attacks or algorithms , which

orces ad-hoc customizations. 

Our contribution. This paper investigates which anomalies are

enerated when attacks occur, and determines which algorithms

re more suited to detect specific anomaly classes. Consequently,

ur study allows determining which algorithms are more suited to de-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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tect certain attacks . On top of that, the paper generalize this result,

presenting the connection between attack families and anomaly

classes: the implication is that it is possible to select anomaly de-

tection algorithms that are particularly suited to detect attacks,

even unknown ones, as long as these attacks belong to the same

family. This ultimately provides guidelines to identify the most suit-

able unsupervised algorithms for anomaly-based intrusion detection

for a given attack model. 

We substantiate our results through a multi-level study, which

devises initial conjectures that are then confirmed or denied by

both inspection of data and by experimental campaigns. Briefly, we

proceed as follows. First we report on anomaly classes and attack

families according to reference taxonomies. This allows identify-

ing which anomaly classes are generated when attacks occur. Such

analysis is based on inspection of known attacks datasets typically

used for testing IDs, along with appropriate experimental cam-

paigns. Then, we define which algorithms are more suited to detect

certain anomaly classes, exploring their characteristics and exercis-

ing them using databases in which we injected different anomaly

classes. We select unsupervised algorithms belonging to different

families [1,5,48] , building a pool of algorithms with heterogeneous

characteristics. Moreover, we favor well-known and consolidated

algorithms with availability of public implementations rather than

recent findings. This allows evaluating how the baseline idea be-

hind algorithms belonging to different families suits the detection

of specific classes of anomalies. 

To corroborate the partial results obtained at the previous steps

- and deriving guidelines - algorithms are connected to attack fam-

ilies, executing the selected algorithms on well-known intrusion

datasets. Data generated or presented in the paper is publicly avail-

able [21] , as well as the tool used for the experiments [36] , allow-

ing to reproduce experiments as needed. 

Paper Structure. This paper is structured as follows: Section 2

presents basics and related works, while Section 3 describes the

methodology we used throughout the paper. Section 4 expands on

anomaly classes generated by attack families; Section 5 digresses

on suitability of algorithms in detecting anomaly classes, while the

studies above are consolidated in Section 6. Section 7 proposes

guidelines to apply our study in IDs design, letting Section 8 to

conclude the paper, elaborating on future works. 

2. Basics and related works 

2.1. Anomaly-Based intrusion detection 

Aiming at protecting cyber-physical systems, security specialists

are continuously researching mechanisms and strategies that aim

at neutralizing an attack or mitigating its adverse effects. Regard-

less of their characteristics, attacks [26,27] should be timely identi-

fied to activate reaction mechanisms that specifically aim at block-

ing an ongoing attack, or protecting critical data. 

To such extent, many IDs were proposed in the literature -

and often distributed as enterprise software – to prevent attack-

ers from exploiting security breaches, or vulnerabilities. Significant

effort was put in comparing anomaly detection algorithms: for ex-

ample, in [52] authors used 7 algorithms on a dataset contain-

ing HTTP traffic. Instead, in [35] , authors presented a compara-

tive study for IDs where k-Nearest Neighbors (kNN), Mahalanobis -

based, Local Outlier Factor (LOF) and one-class Support Vector Ma-

chines (SVM) were evaluated using the DARPA 98 dataset. Four al-

gorithms are evaluated in [51] , which presents a review of novelty

detection methods that are classified as semi-supervised or unsu-

pervised. Additionally, in [5] , authors presented a comparison of

anomaly detection algorithms for multivariate data points. In this

case, 19 algorithms were evaluated using 10 different datasets from

different areas. Instead, in [48] , authors focus on quantitative com-
arisons of unsupervised algorithms for intrusion detection, draw-

ng conclusions about the effectiveness of algorithms on different

atasets. 

However, changing the target system, domain or attack model

equires that the process of building the IDS to re-start from

cratch. Therefore, in this paper we expand on the investigation on

etection capabilities of algorithms, and on how different attacks

enerate anomaly classes, aiming at achieving general guidelines

o select unsupervised algorithms when building IDs. 

.2. Unsupervised anomaly detection 

In the paper we will name data point the observation of the

tate of the system at a given instant . Each data point is composed

y f feature values, which are processed by an anomaly detection

lgorithm to determine if the data point exhibits anomalies. More

n detail, anomalies are rare data points that may be classified as

1] : 

• point anomaly (outlier): a data point that is out of scope or not

compliant with the trend of a variable e.g., out-of-size payload

of a network packet; 

• contextual anomaly: a data point that is unexpected in a specific

context e.g., low number of page faults while loading a program

for the first time; 

• collective anomaly: a collection of related data points that is

anomalous with respect to the entire trend or dataset e.g., sub-

sequent ICMP requests in a short interval of time. 

Different anomaly detectors may be instantiated depending on

he nature of the target system [1] and monitored data. If labeled

raining data is available, supervised anomaly detection [57,58,61] or

emi-supervised may be adopted [25] . Labelled data points allow

raining an algorithm using both expected and anomalous data

oints that have already been reported. Another slightly different

pproach embraces ensembles [59,60] , which are executed simul-

aneously, and the results they individually obtain are merged to-

ether to obtain the final class to be assigned to a give data point.

t is worth noticing that feeding the algorithm with anomalies due

o known attacks makes it learning how such attacks differ from

xpectations, disregarding the detection of anomalies due to un-

een attacks. Instead, when training data is not available or la-

eled, the only option is an unsupervised anomaly detection ap-

roach [5,24] . 

Noticeably, when configuring an anomaly detector for a target

ystem, we can assume that a fully labeled training set will not be

vailable in most of the cases due to i) lack of trustable labeling

echniques, ii) difficulties in gathering reliable data, or iii) dynamic

nd evolving characteristics of the system and its workload, calling

or adaptive data analysis solutions. As a consequence, the appli-

ability of supervised algorithms may not be guaranteed in sev-

ral scenarios, calling the adoption of techniques that are able to

eal with the scarcity of labels in training data. In addition, con-

olidated supervised algorithms may and should be used alongside

ith algorithms that are able to deal also with unknown attacks,

uilding ensembles [59,60] or - more in general - IDSs that are

ble to identify a broader span of attacks. Therefore, in this paper

e refer only to unsupervised algorithms . 

.3. Families of unsupervised algorithms 

We describe here six families of unsupervised algorithms typ-

cally acknowledged in the literature [1,5] , reporting their main

haracteristics. It is worth noticing that there are some unavoidable

emantic overlaps among families. For example, neighbor-based

trategies may be used to improve the detection capabilities of al-

orithms as in the angle-based FastABOD [4] . 
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Fig. 1. Motivation of the Study, along with the methodology (steps A-E). 
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Clustering algorithms [11] partition a set of data points in such

 way that data points in the same group (cluster) share similar

haracteristics. Data points that cannot be assigned to any of the

xisting clusters, or that do not met specific inclusion criteria, are

nomalous. 

Neighbor-based algorithms learn by analogy: they label a data

oint as anomalous or expected depending on the label of its near-

st neighbor(s), considering an f -dimensional space [6,7] . In unsu-

ervised mode, they use the distance of the data point from its

eighbors as anomaly score. 

Angle-based algorithms relate data to high-dimensional spaces,

nd measure the variance in the angles between the data point

o the other points [4] . Expected data points have a large angle

ariance, while anomalies typically result in very small variance of

riples of points. 

Classification algorithms identify the class a new data point de-

ending on information collected during previous activities e.g., as-

igning a given email into spam or non-spam classes. Despite they

ere born for supervised setups, they can run unsupervised [9] . 

Density-based algorithms [10] estimate the density of the

eighborhood of each data point. When a data point differs from

he expectations, it lies in a low-density area and it is then labeled

s anomalous. 

Statistical algorithms assume that expected data points occur

n high probability regions of a given statistical distribution. They

t a distribution to the expected points, and then apply statistical

nference to determine if a novel data point belongs to this distri-

ution or not. In unsupervised mode, statistical algorithms [3] de-

ive the underlying distribution as data is computed. 

. Methodology 

This section lists the main steps of the experimental method-

logy we propose and apply in the paper. Such steps describe the

election of algorithms, datasets, attacks, metrics and tool support,

roviding the pillars to build our analysis by means of qualita-

ive and quantitative studies . The former aims to define hypothe-

es and conjectures based on literature reviews or manual inspec-

ions, which are scrutinized by the latter through experimental

ampaigns. Our methodology is depicted in Fig. 1 . 

Step A. Alg orithms Selection . We select an unsupervised anomaly

etection algorithm for each of the families above by surveying

hat researchers and practitioners proposed and in the literature.

lgorithms must have been applied for intrusion detection in the

ast. 

Step B. Dataset selection. Algorithms will be exercised on pub-

ic datasets obtained by monitoring systems and reporting on ef-

ects of either real or simulated attacks on these systems. Datasets

hould be adequately documented, recent, or widely used in the

ast in similar studies. 
Step C. Attack s classification. Attacks contained in the datasets

hould be classified according to a unified attack model, partition-

ng them into families according to their intrinsic characteristics. 

Step D. Metrics identification. Then, we define metrics to score

nd compare the results of algorithms when applied to datasets.

e select a reference metric, reporting also the values of metrics

sed in most of the other studies to allow state-of-the-art compar-

sons. 

Step E. Exp erimental Setup and Tool Support. We select one or

ore tools that can support quantitative and, where needed, qual-

tative analyses. Similar analyses should be supported by the same

ool, to limit variability of results e.g., the same implementation

f an algorithm should be used. Moreover, the same environment

hould be defined and used to run experiments with tool support. 

After defining the main steps of the methodology, a target of

ach study needs to be identified. Then, qualitative and quantita-

ive analyses can be carried out, providing results to be used for

iscussion. Three separate studies will be carried out from Section

 to Section 6. More in detail, Section 4 will report on Attack Fami-

ies That Generate Anomaly Classes , Section 5 will expand on Detect-

ng Anomaly Classes , while in Section 6 we will be Applying Algo-

ithms to Datasets . As it is shown in Fig. 1 , tool support (step E) is

eeded to conduct the three analyses. 

.1. Step A: algorithms selection 

Our selection criteria favor well-known, consolidated algorithms

ith public implementations. Despite technical advancements that

ay have been proposed by domain experts, we assume that al-

orithms belonging to a given family share intrinsic strengths and

eaknesses that may be mitigated, but that cannot be removed

t all. Comparing consolidated versions of algorithms allow us to

valuate how the baseline idea behind the algorithms of a given

amily suits the detection of specific classes of anomalies. The se-

ected algorithms, one for each family in Section 2.3, are described

elow. 

Neighbor-based: ODIN. Stemming from the k-th Nearest Neigh-

our (kNN) [7] , this distance-based method was designed to iden-

ify point anomalies. For each data point, kNN examines the whole

ataset to determine their feature distances to the given point. This

llows isolating k nearest neighbors (NN), creating the so-called

NN graph . The Outlier Detection using Indegree Number (ODIN, [6] )

lgorithm improves kNN by defining as anomalies the data points

hat have a low number of in-adjacent edges in the kNN graph. 

Clustering: KMeans. K-means [11] assigns data points to k sub-

ets, or clusters , by their feature values. First, k centroids are ran-

omly initialized and each data point is assigned to the cluster

ith the nearest centroid. Centroids may be updated, fitting evolv-

ng scenarios also in unsupervised mode. Finally, data points that
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Table 1 

Datasets used in this study. 

Dataset Data Points Attacks %Attacks Features 

KDD Cup 99 (KC) [34] 311.028 223.298 72 41 

NSL-KDD (NK) [16] 148.503 71.280 48 42 

ISCX2012 (IX) [17] 571.698 66.813 12 17 

UNSW-NB15 (UN) [14] 175.341 119.341 68 46 
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them. 
are too far from the centroid of their cluster are labeled as anoma-

lies. There are many possible variants of this algorithm. 

Angle-based: FastABOD. FastABOD anomalous data points de-

pending on the angles between pairs of distance vectors to other

points [4] . For each data point, the algorithm first calculates the

Angle Based Outlier Factor (ABOF) to its k-nearest neighbor as the

normalized scalar product of the difference vectors of any triple

of neighbors. According to [4] , the usage of kNN provides a better

approximation. Then, FastABOD ranks the data points according to

their ABOF. The smaller the ABOF, the bigger the probability that

the data point represents an anomaly. 

Classification: One-Class SVM. This algorithm conducts semi-

supervised anomaly detection [1] aiming to learn a decision

boundary [8] . However, One-Class SVMs can be used for unsuper-

vised anomaly detection: a support vector machine is trained with

the dataset and each data point is classified considering the nor-

malized distance of the data point from the determined boundary

[9] . 

Density-based: LOF. Local Outlier Factor (LOF) [10] computes

the kNN for each data point, and use them to calculate the density

index, called Local Reachability Density (LRD). The anomaly score is

then obtained by comparing the LRD of a data point with the LRD

of its kNN. Expected data points have scores close to 1.0, while

anomalies usually result in bigger scores. 

Statistical: HBOS. This approach [3] generates a histogram for

each feature by using the values of all the available data points.

The anomaly score is computed by multiplying the inverse heights

of the columns in which each feature of the data point reside. Such

technique assumes that the investigated features are independent,

making HBOS fast even when dealing with large datasets [5] . If fea-

tures are dependent, such dependencies need to be neglected. 

Computational Complexity. Despite not central to our selection

process, we report here some information on the computational

complexity of the selected algorithms. The complexity of density-

based and angle-based algorithms is at least O(N 

2 ), or rather the

complexity of an NN query. Clustering is generally more efficient,

with complexity of O(k N), where k represents the number of clus-

ters. S tatistical and classification families may have very different

complexities; therefore it is not easy to present a bound. How-

ever, statistical algorithms are usually sub-linear e.g., O(N log N)

for HBOS , while classifiers usually build complex structures or con-

duct complex calculations e.g., OneClassSVM , O(N 

2 ). 

3.2. Step B: selection of the datasets 

The datasets initial selection requires them to contain enough

data points to ensure statistical evidence when evaluating the al-

gorithms e.g., DARPA 1999 dataset [30] was discarded since it

contains only 201 data points related to attacks, while ADFA-LD

[55] contains just the number of system calls as usable feature.

Furthermore, labels must be certain and not be assigned by clas-

sification algorithms or thresholds, to avoid biases due to mis-

takes in the labeling process. Consequently, we disregard datasets

as MAWI [31] or DEFCON [33] , which are constituted of sniffed

data that is labeled applying classification algorithms. Last, data

points should be complete for all the features in the datasets, to

avoid applying feature recovery strategies that may bias results. 

3.2.1. Selected datasets 

The selected datasets are shortly described below and reported

in Table 1 . We match each dataset to an acronym that will be used

throughout the paper. As a side note, during our selection pro-

cess we discarded Kyoto2006 + [32] NGIDS-DS [33] and ADFA-LD

[55] datasets, since their amount of data was too huge to be pro-

cessed to a meaningful percentage. 
(KC) KDD Cup 99 (1999) [34] . This is the most popular dataset

n the anomaly-based intrusion detection area, still used in re-

ent experiments and surveys [5,18] and works prior the release of

he updated NSL-KDD [20] despite being almost 20-years-old [55] .

he dataset contains the following attacks: DoS (Denial of Service),

2L (unauthorised access from remote), U2R (unauthorised access

o superuser/root functions) and Probing (gather network informa-

ion). 

(NK) NSL-KDD (2009) [16] . This dataset was created to solve

roblems in the KDD Cup 99 dataset as i) the presence of redun-

ant records in train sets, and ii) duplicates in test sets. The attacks

re the same as KC. 

(IX) ISCX (2012) [17] . It is generated by the Canadian Institute of

yberSecurity in a controlled environment based on a realistic net-

ork and traffic to depict the real effects of attacks over the net-

ork and the corresponding responses of workstations. Four dif-

erent attack scenarios are simulated: infiltration, HTTP denial of

ervice, a distributed denial of service by using an IRC botnet, and

SH brute-force login attempts. 

(UN) UNSW-NB15 (2015) [14] . This dataset was released by the

ustralian Defense Force Academy, University of New South Wale . Au-

hors simulate: i) Exploits, the attacker exploits a generic vulnera-

ility, ii) DoS, a (Distributed) Denial of Service, iii) Worms, a script

hat replicates itself to spread to other networked computers, iv)

eneric, a technique that works against all block-ciphers, with a

iven block and key size, v) Reconnaissance, attack that aim at

athering information, vi) Shellcode, a code used as the payload in

xploits, and vii) Backdoors, that stealthily bypass security mecha-

isms to access data. 

.2.2. Synthetic datasets 

To adequately support experiments in Section V, we also create

ub-datasets of NK, IX and UN with respectively 4 8.084, 122.14 8,

nd 44.353 data points without attacks. We left KC out because

ost of its characteristics are shared with NK, especially when fil-

ering out attacks. In addition, for each feature, we process sub-

atasets to calculate statistical indexes e.g., minimum and maxi-

um values, average, median, variance . These statistical indexes will

e used to inject anomaly classes into the sub-datasets, according

o their characterization in [1] . Despite injected anomalies do not

erfectly replicate manifestations of real attacks, we simulate them

o the best of our capabilities as follows: 

1. Point anomalies: some feature values are updated with values

that are either smaller than the minimum values or bigger than

the maximum values logged in the dataset for a given feature. 

2. Contextual anomalies: some feature values are updated with

values that are not contained in the 95% confidence interval,

considering the last 100 feature values as current context. 

3. Collective anomalies: we inject a collective anomaly as a set of

three subsequent data points where we updated some feature

values with values outside the 80% confidence interval, consid-

ering the last 100 feature values as current context. Collective

anomalies are not subsequent point or contextual anomalies;

therefore we used a different confidence interval to generate
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Table 2 

Unified Attack Model and Mapping of Specific Attacks. 

Attack Family Description Mapping of (Dataset) Attack 

Communication - Passive Attacks which targets the communication channel to 

gather information without active damage 

(KD - NK) Probing, (IX) Infiltration, (UN) 

Reconnaissance, (UN) Analysis 

Communication - Active Attacks conducted through the communication 

channel to actively damage the system 

(IX) Bruteforce, (KD - NK - IX - UN) DoS, (IX) 

DDoS, (UN) Fuzzers, (UN) Backdoor 
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As a final step, we inject point, contextual and collective

nomalies in the sub-datasets, obtaining a 95% - 5% ratio of ex-

ected – anomalous data points. The resulting sub-datasets NK-S,

X-S, UN-S are available [21] . 

.3. Step C. unified attack model 

Each of the datasets above uses inconsistent naming and group-

ng of attacks. To perform cross-datasets comparisons, we adopt

he unified attack model that builds on [26,27,47] and is used in

46,48] . The model partition attacks in the following families: i)

ommunication passive : attacks directed to gather or steal data

hrough the passive observation of the communication channel, ii)

ommunication active : attacks which use the communication chan-

el as a way to send malicious data / requests to the target system,

ii) host : malware or malicious code injected in a target host ex-

loiting vulnerabilities of the operating system, and iv) application :

ttacks that exploits vulnerabilities of (web)services. The unified

ttack model is summarized in Table 2 . The table reports also the

apping of all the different attacks referenced in the datasets to

ach of the 4 attack families. As example, exploits attacks of UNSW-

B15 (UN) fall into the application family, as it can be observed at

he bottom right cell of the table. Attacks with different labels, or

eported in different datasets, which resemble the same attack are

erged into a unique attack, e.g., DoS, which can be found in both

SL-KDD (NK) and ISCX (IX) datasets. 

.4. Step D. Scoring Metrics 

The effectiveness of anomaly detectors is usually scored

hrough correct detections - true positives (TP), true negatives (TN)

 and wrong detections ( false negatives , FN), ( false positives , FP).

hese indicators are commonly used to derive the so-called con-

usion matrix . Aggregate metrics based on the abovementioned

ndicators are Precision, Recall (or Coverage ), False Positive Rate,

ccuracy, F-Score ( β) [18] , F-Measure (F1), Area Under ROC Curve

 AUC , [20] ) and Matthews Coefficient (MCC, [19] ). As highlighted in

49,53] , under specific circumstances some metrics can be mislead-

ng, since they either i) do not consider all the four classes of the

onfusion matrix i.e., F1, FScore( β), or ii) consider all the classes

ithout weighting the size of trues and falses i.e., Accuracy. To

uch extent, in this paper we mainly refer to MCC [19] , which does

ot show the weaknesses above. 

.5. Step E. tool support and experimental setup 

.5.1. Tool support 

To execute experiments, we need tools that allow i) executing

he selected algorithms, and ii) extracting the metrics above. Af-

er examining well-known frameworks as ELKI [22] , WEKA [23] or

andas [50] , our final choice has been RELOAD [36] , an open-

ource tool that embeds implementations from different frame-

orks and runs experiments through a simple and intuitive user

nterface. 

Briefly, RELOAD 

1 automates the selection of the most relevant

eatures out of a data set or data stream, which is typically very
1 RELOAD, GitHub Wiki, github.com/tommyippoz/RELOAD/wiki. 

4

 

t  
mportant in attack detection to reduce the amount of data to be

bserved. Further, it includes built-in metrics for the evaluation.

he tool wraps the implementation of several unsupervised algo-

ithms, amongst those which are often deemed the most useful

24,35] for unsupervised anomaly detection in cyber-security. Ad-

itionally, it embeds automatic tuning of algorithms’ parameters,

nd facilitates examining outputs through reports of CSV files and

raphical plots. 

RELOAD also considers different decision functions to convert al-

orithms’ scores into boolean e.g., anomaly, normal, scores: out of

he pool of available ones, we chose IQR and Confidence Interval

39] , which RELOAD shapes depending on the characteristics of the

lgorithm. 

.5.2. Experimental setup 

We describe here the experimental setup we used throughout

he paper. Starting from the data sets, we downloaded the source

les of KC, NK, IX and UN from their repositories and we pre-

rocessed them to shape such data as csv files, which can be ef-

ciently processed by RELOAD. Then, we downloaded the latest

elease of RELOAD from the GitHub repository, setting up its pa-

ameters. We set MCC as target metric, using as feature selection

trategies the variance of feature values and their information gain

38] with respect to the label. We also proceed with a 10-fold sam-

ling of the training set as widely suggested [37] in the literature. 

We executed different experimental campaigns including all the

lgorithms considered in this study. Parameters tuning is adopted

y RELOAD to find an adequate setup of each instance of a given

lgorithm. Tuning is performed by i) first, executing training trying

ifferent combinations of parameters; ii) then, comparing results

or the different parameters. For example, we run kNN-dependent

lgorithms i.e., ODIN, FastABOD , with k ε {1, 2, 3, 5, 10, 20, 50, 100}.

n addition, metrics other than MCC e.g., TP, FP, TN, FN, Precision,

ecall, False Positive Rate, Accuracy and Area Under ROC Curve , are

eported for completeness and for easiness of comparison with ex-

sting studies. 

Machine to Execute Experiments. The experiments have been

xecuted on a server equipped with Intel Core i7-6700 with four

.40 GHz cores, 24GB of RAM and 100GB of user storage. Overall,

xecuting all the experiments supporting the quantitative analyses

eported in this paper required approximately three weeks of 24H

xecution. We choose the portions considering the biggest subset

f the dataset that do not escalate in heap memory errors, i.e., 16%

or KC, 33% for NK, 20% for IX, 24% for UN and all the NK-S, IX-S,

N-S synthetic datasets. All metric scores, RELOAD data logs and

les we used to collect and summarize values are publicly avail-

ble [21] . 

. Attack families that generate anomaly classes 

This section expands on qualitative and quantitative analysis di-

ected to identify the anomaly classes generated by the attacks con-

ained in the datasets IX, KD, NK, UN considered in the paper. 

.1. Inspection on the selected datasets 

.1.1. Attacks characteristics 

We first consider the characteristics of attacks to identify how

hey usually manifest. Attacks as Shellcode or Exploits (appearing in
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Fig. 2. Example of collective anomalies: subsequent occurrence of probe attacks portsweep and nmap – in yellow – and DoS attacks neptune and back – gray rows - in NK 

dataset (Test sub-dataset, rows 3889 - 3906). 
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the UN dataset) aim at damaging a system with single requests or

actions: therefore, we expect them to generate either point or con-

textual anomalies. Instead, attacks that submit several requests to

a victim will generate separate anomalies that share common char-

acteristics i.e., collective anomalies. Differentiating between attacks

generating point anomalies or contextual anomalies is not trivial:

in particular, it requires understanding if attacks act only in spe-

cific scenarios (context), and how they impact the victim. 

More in detail, Probing, Reconnaissance , and Analysis attacks

(e.g., PortScan [42] ) aim at scanning system interfaces or network

devices in order to determine vulnerabilities. This activity may be

leveraged through time, sending multiple ping or arp requests that

do not appear during normal operation conditions, generating col-

lective anomalies. Other attacks as Fuzzers and Bruteforce aim at

submitting inputs to a system to either block it or gain unautho-

rised access. Similarly, DoS attacks [26] aim to damage the vic-

tim leading to its unavailability. As example, denial of service may

be exercised by sending many requests (also from different adver-

saries networked together, as in Distributed DoS, DDoS ) or send-

ing malformed packets [40] , generating either collective or point

anomalies. 

Instead, we found that attacks belonging to the Host family in

Table 2 generate contextual anomalies as follows. These attacks ex-

ploit system vulnerabilities to execute scripts (as it is for Shellcode

or Backdoors ), software ( Worms, Malware ), or change/obtain per-

missions ( r2L , u2r ) by directly executing instructions on the vic-

tim machine. Such attacks need to damage the system as quickly

as possible, also hiding their activities (as it is common for Cam-

ouflaged Worms [41] ), to avoid being detected and quarantined by

antiviruses. Our conjecture is that they generate contextual anoma-

lies, impacting the system in a short timespan without relevant

fluctuations of feature values. For example, a worm may aim at

scanning the system for passwords and sending them to some

remote repository, or to change credentials for VPN or SSH ac-

cess on a machine: sending data or changing permissions are

not anomalies by themselves, but they are anomalous in specific

contexts. 

4.1.2. Manual inspections into datasets 

Similarly to what was done in the previous section for algo-

rithms, we verify our conjectures by examining how attacks man-

ifest in the NK, KD, IX, and UN datasets. Manual inspections allow

distinguishing which attacks appear as groups of anomalous data

points rather than attacks that affect single data points. Fig. 2 high-

lights a section of the NK Test (note that NK is provided as two

separate CSV files, one for train and one for test) dataset, where we
an observe specific probing attacks as ipsweep, nmap, portsweep ,

r satan . 

Subsequent data points – rows in the dataset – are labelled

ith one of the attacks above i.e., last column of rows 3894 and

895 in Fig. 2 , either portsweep and nmap . For DoS attacks, in-

tead, datasets report both on single and groups of anomalies.

ig. 2 shows single (row 3901) and multiple occurrences of neptune

ttack (rows 3890, 3891), and also multiple occurrences of differ-

nt DoS attacks i.e., neptune and back , rows 3904 – 3906. 

.1.3. Deciding on point, contextual or collective anomalies 

If an attack always appears in subsequent data points, we

an definitively claim that such attack manifests as a collective

nomaly. Otherwise, examining the datasets to differentiate be-

ween point and contextual anomalies requires more effort. We

roceed as follows. We select the most relevant features of each

f the datasets by calculating Pearson correlation indexes between

ach feature of the datasets and the label column, considering the

abel as 0 if normal, 1 otherwise. Then, we select the 3 features

hat are more relevant: the bigger the absolute value of Pearson in-

ex, the greater the correlation with the label. Moreover, we rank

ll the data points in the dataset according to these feature values

nd we carefully examine the results: if most of the attacks are

ither at the beginning or at the end of the ranked dataset, this

eans that attacks lead one or more of these features to show val-

es outside the usual range, and therefore represent point anoma-

ies. 

In any other case, we check if such anomalies are contextual.

alues related to the three features are processed to extract statis-

ical indexes as average, median and standard deviation, differen-

iating between normal and anomalous data points. A noticeable

ifference between the two series of statistical indexes can sug-

est possible alterations due to this specific attack. Then, we select

 portions of the dataset in which the attack appears. Once we

nd a row with the attack we look at the context in which the

ttack is put (i.e., up to 30 rows before and up to 5 rows later)

o understand if, for some features, the data point corresponding

o the attack has values that differ with respect to the “surround-

ng” data points, according to the statistical indexes calculated

efore. 

.1.4. Example: backdoor attack 

To prove how our manual inspection works, we show as exam-

le the backdoor attacks, which we suspected to generate contex-

ual anomalies. To confirm or deny the initial hypothesis, we first

ook for datasets containing this attack (UN, see Fig. 3 ), observing
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Fig. 3. Example of contextual anomaly: occurrence of backdoor attack – in yellow 

– in UN dataset (rows 49,888 - 49,897). 
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c  
hat data points labeled as backdoor attacks mainly come individ-

ally, excluding collective anomalies. We then execute the feature

election process using pearson index . Out of the possible 46 fea-

ures, the 3 that show higher correlation are rate (0.249 of pear-

on index), swin ( −0.247) and ct_dst_sport_ltm (0.357). Ranking the

ataset according to the values of these features does not show at-

acks that are concentrated either at the beginning or at the end:

herefore, we cannot classify backdoor attacks as point anoma-

ies. We then compute average, median and standard deviation

or each of the three features, differentiating normal and anoma-

ous data points. In particular, we notice how avg ± std values for

t_dst_sport_ltm are separated between normal (1.388 ± 0.847) and

nomalous (2.234 ± 0.656) values, indicating average higher val-

es of this feature in presence of attacks. Most of the data points

abeled as backdoor attacks in the dataset show different values

ith respect to their context. As example, row 49,896 in Fig. 3 is

he only data point that has value 2 for the ct_dst_sport_ltm feature

onsidering rows 48,866 – 49,900 (30 rows before the attack – 5

ows after the attack). 

Manual inspections, as shown above, are executed for each at-

ack that is logged in the considered datasets, while final results

re summarized in Table 3 and Table 4 . The tables report on

nomaly classes generated by i) attacks ( Table 3 ), and ii) attack

amilies ( Table 4 ). 

.2. Experimental analysis 

We now proceed to a dedicated quantitative analysis to con-

rm or deny manual inspections. Despite unsupervised algorithms

xecute training without relying on labels in the data, a tuning

hase is employed by RELOAD to derive the optimal values of the

arameters (e.g., the size k of the neighbourhood for kNN , when

eeded) for each algorithm. Tuning requires extracting a subset of

he dataset – the tuning subset - containing expected data points
Table 3 

Attacks and Anomaly Classes they Generate. 

Attacks Datasets Anomalies 

Denial of Service KC, NK, IX, UN Point, Collective 

Distributed Denial of Service IX Contextual, Collective 

Probing / Reconnaissance KC, NK, UN Collective 

R2L, U2R KC, NK Contextual 

Infiltration, Bruteforce IX Collective 

Shellcode, Backdoors, Worms UN Contextual 

Fuzzers, Analysis UN Collective 

Exploits UN Point 

Table 4 

Attack Families and Anomaly Classes they Generate. 

Family Attacks Anomalies 

Communication 

- Passive 

Probing, Infiltration, 

Reconnaissance, Analysis 

Collective 

w

5

 

t  

r  

c

5

 

o  

r

f  

t  

c  

t  

g  
nd data points collected while a given attack – the tuning attack –

as exercised, computing metric scores for each parameters’ com-

inations. 

Once the training-tuning phases are completed, algorithms are

eady to provide anomaly scores for data points in the evaluation

et . Using an evaluation set that contains a target attack other than

he tuning attack allows to completely decoupling the training-

uning phases from the evaluation, leading algorithms to detect

nknown attacks. Indeed, we expect to have higher detection scores

n detecting unknown target attacks that generate the same anomaly

lasses of the tuning attacks contained in the tuning subsets. There-

ore, we proceed as follows: 

• For each dataset we choose the target attack, identifying an

evaluation set containing both normal data points and data

points collected when the target attack was exercised. 

• We then identify different tuning subsets of the dataset con-

taining normal data points and data points related to an attack

(i.e., the tuning attack), other than the target attack. 

• Finally, we run experiments by training anomaly detection al-

gorithms with normal data points, tuning them using a tuning

subset, and then using trained algorithms to score the evalua-

tion set. 

.3. Results and discussion 

Table 5 reports on the analysis regarding three different tar-

et attacks: bruteforce (ISCX dataset), u2r (NSL-KDD), and worms

UNSW). For the full list of experiments please refer to the files

vailable at [21] . For each target attack we report on the average

nd standard deviation scores we obtained by training, tuning and

hen evaluating the 6 algorithms we used in this study. In addi-

ion, each row reports on i) the dataset used, ii) the target attack

nd the anomalies we suppose it generates, Ii) the tuning attack

nd the anomalies we suppose it generates. 

As it can be noticed in the table, highest MCC scores are ob-

ained when tuning attack corresponds to target attack . More im-

ortantly, we point out that when tuning attack and target attack

iffer, the highest scores are obtained when the anomalies generated

y the tuning attack match the anomalies generated by the target at-

ack. For example, Worms attacks (see the last batch of rows in

able 5 ) are on average identified with better scores by algorithms

f tuning is carried out using an tuning subset containing attacks

enerating contextual anomalies. The same trend can be observed

lso for U2R and Bruteforce attacks, as reported in rows 4–7 and

–11 of Table 5 . The results of this experimental campaign allow

onsolidating the link between attacks and anomaly classes that

as figured out, as a first stage, through manual inspections. 

. Detecting anomaly classes 

We discuss here how the characteristics of each algorithm impact

heir ability in identifying specific anomaly classes . Discussion is car-

ied out by revising algorithms as they were proposed, and then

orroborating initial conjectures with quantitative analyses. 

.1. Investigating characteristics of algorithms 

Each unsupervised anomaly detection algorithm relies on its

wn properties. According to their characteristics [4,7,10] , algo-

ithms belonging to neighbor-based, angle-based and density-based 

amilies such as ODIN, FastABOD and LOF are primarily intended

o identify point anomalies, while they may not be able to detect

ollective anomalies if the size k of the neighborhood is smaller

han the size of the collective group of anomalies. Indeed, an inde-

ree score may help detecting them, as demonstrated in [6] . This



8 T. Zoppi, A. Ceccarelli and L. Salani et al. / Journal of Information Security and Applications 52 (2020) 102474 

Table 5 

Detecting Unknown Attacks by Combining different Tuning Attack and Target Attack. 

Dataset 

Target Attack Tuning Attack MCC 

Name Anomaly Name Anomaly avg std 

IX Bruteforce Collective Bruteforce Collective 0.82 0.17 

IX Bruteforce Collective Infiltrator Collective 0.31 0.21 

IX Bruteforce Collective DoS Collective 

(Point) 

0.27 0.09 

NK U2R Contextual U2R Contextual 0.35 0.07 

NK U2R Contextual R2L Contextual 0.19 0.08 

NK U2R Contextual Probe Collective 0.05 0.04 
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issue is shared also with some implementations of KMeans (a clus-

tering algorithm), since a collective anomaly may lead them to cre-

ate a separate cluster for the particular group of data points. How-

ever, variants as [12] mitigate this problem by labeling as anoma-

lous both data points i) belonging to small clusters and ii) far from

known clusters. Classification algorithms for unsupervised anomaly

detection are often identified as One-Class SVM [9] . It is worth re-

marking that algorithms selected for this study – HBOS, KMeans,

FastABOD, LOF, ODIN and OneClass SVM – are intended to repre-

sent the intrinsic characteristics of different families, rather than

the most recent variants of existing algorithms. 

5.2. Experimental analysis 

Starting from the NK-S, IX-S and UN-S reported in Table 1 , non-

numeric features were removed, and feature selection was exe-

cuted by RELOAD, leaving 16 features for NK-S, 5 for IX-S, and 13

for UN-S. During the training phase, RELOAD respectively creates

38, 20, and 25 feature subsets according to Pearson Correlation . This

results in 42 feature subsets for NK-S, 26 for IX-S, and 39 for UN-

S, which sum i) the single features, ii) the connected features, and

iii) the set composed by all the single selected features. All the in-

stances are evaluated together during training phase and all the

possible algorithm configurations are ranked according to MCC. 

Fig. 4 shows the metric scores we obtain by running the se-

lected algorithms on our three synthetic datasets, and aggregat-

ing scores by algorithm and anomaly classes. Six series of three

columns can be found in the figure: the columns on the left re-

port on the detection of point anomalies, central columns report

on contextual anomalies, while columns on the right describe the

detection of collective anomalies. Such figure allows observing that

SVM shows the highest average scores, while sub-quadratic al-

gorithms as HBOS and K-Means show overall worse results i.e.,

bars are shorter in Fig. 4 . However, we can observe how algo-

rithms with lower bars may be really effective in detecting spe-

cific anomaly classes, i.e., KMeans and FastABOD . Point anomalies

are detected well by FastABOD (see columns on the left of each
Fig. 4. Average metric scores of algorithms for each class of anomalies. Er-ror bars 

represent standard deviation among the datasets NK-S, IX-S, UN-S. 

F

b

riple of columns in Fig. 4 ), while KMeans show good capabilities

n identifying collective anomalies (columns on the right of the

riples in Fig. 4 ). ODIN and, to a lesser extent, LOF , are balanced

lgorithms: they do not show specific weaknesses for any anomaly

lass. Lastly, we remark how HBOS , despite not optimal in terms of

etric scores, is a light and fast algorithm, making it useful when

 computational resources are scarce. 

Overall, we expected point anomalies to be the easiest to de-

ect. Instead, except for the angle-based FastABOD , it was easier to

etect collective anomalies than contextual and point anomalies.

e explain this result as follows: the selected algorithms use large

raining sets, which allow a careful and precise definition of the

oundaries between anomalous and expected behavior. However,

uring training they derive a global boundary, which does not al-

ays fit the detection of single anomalies, while groups of anoma-

ous data points become easier to identify. 

.3. Results and discussion 

Overall, our results show which unsupervised algorithms are

ore suitable than others to detect anomalies belonging to spe-

ific classes. The final results of our analyses are depicted in Fig. 5 ,

hich is built considering algorithms as capable of identifying an

nomaly class if in our experiments the average MCC obtained

y the algorithm exceeds 0.6. We choose this MCC threshold by

onsidering each algorithm as capable of identifying at least an

nomaly class. 

We observe how Fig. 5 shows a few mismatches with respect

o our conjectures from Section 5.1. We supposed clustering al-

orithms to be capable of identifying both point and collective

nomalies, while Fig. 5 puts KMeans , the clustering algorithm, in

he intersection of “contextual” and “collective” sets. Instead, SVM

cores confirm that under average conditions i.e., the boundary

f SVM is found, this algorithms is the most balanced overall.

oreover, as reported previously, higher scores are obtained by

he algorithms that have quadratic computational complexity while
ig. 5. Linking anomaly classes to algorithms depending on quantitative analyses 

y executing algorithms on datasets. 
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Table 6 

Metric Scores obtained by applying each algorithm on the datasets KD, NK, IX, UN. Results are grouped by Algorithm and Anomaly Class Generated by the Attacks Evaluated 

through Algorithms. 

Algorithm Anomaly 

TP TN FP FN 

FPR P R F1 ACC AUC 

MCC ( Fig. 6 ) Expected MCC ( Fig. 4 ) Diff wrt 

Expected 
% % % % avg std avg std 

HBOS Point 21.98 58.44 10.88 8.70 0.15 0.61 0.72 0.59 0.80 0.79 0.49 0.26 0.59 0.26 19.7% 

Contextual 5.75 86.26 5.10 2.89 0.06 0.52 0.54 0.50 0.92 0.74 0.47 0.29 0.63 0.05 32.1% 

Collective 5.34 81.24 5.95 7.47 0.07 0.49 0.52 0.46 0.87 0.73 0.41 0.09 0.63 0.06 55.0% 

K-Means Point 23.89 57.29 12.03 6.79 0.17 0.57 0.63 0.58 0.81 0.73 0.45 0.31 0.49 0.04 7.7% 

Contextual 5.88 85.11 6.25 2.76 0.08 0.54 0.59 0.47 0.91 0.76 0.47 0.21 0.60 0.23 27.4% 

Collective 7.97 83.04 4.15 4.83 0.05 0.66 0.58 0.58 0.91 0.77 0.56 0.21 0.75 0.07 35.4% 

LOF Point 19.93 62.62 6.70 10.76 0.11 0.66 0.71 0.60 0.83 0.80 0.50 0.14 0.66 0.18 29.8% 

Contextual 6.77 84.45 6.90 1.88 0.08 0.50 0.66 0.53 0.91 0.79 0.51 0.17 0.62 0.06 22.5% 

Collective 7.95 82.81 4.38 4.85 0.05 0.62 0.65 0.61 0.91 0.80 0.57 0.18 0.73 0.06 28.7% 
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aster algorithms as KMeans and HBOS showed worse detection ca-

abilities. 

. Applying algorithms to datasets 

We now apply the selected algorithms to datasets, analysing met-

ic scores to understand if they confirm or deny the results ob-

ained in Section 4 and Section 5. We skip qualitative analyses, go-

ng directly to experimental evaluations. 

.1. Experimental analysis 

We set an experimental campaign using the real datasets KD,

K, IX, and UN. We executed an experimental campaign by apply-

ng the 6 algorithms on the datasets KD, NK, IX and UN, according

o the procedure described in Section 4. In Fig. 6 we report results

f this experimental campaign, while the detailed metric scores are

n Table 6 . The results herein were obtained by applying the algo-

ithms on the datasets, then grouping by attacks and, ultimately,

y anomalies through the analysis in Section 4. 

.2. Results and discussion 

Focusing on Fig. 6 , we can observe that bars are lower then

heir counterparts in Fig. 4 . This is pointed out in the last col-

mn of Table 6 and is explained considering that synthetic datasets

ere artificially created by injecting anomalies with a common

attern, making their detection easier than real attacks. 

However, it is worth noticing that the characteristics of algo-

ithms are confirmed. Algorithms that were classified in Fig. 5 to

e particularly effective in detecting specific anomaly classes show

etric scores that comply with our expectations. LOF, ODIN and

VM (respectively, density-based, neighbor-based and classification )

ave good overall capabilities for all anomaly classes. Fast algo-

ithms as HBOS ( statistical ) and K-Means ( clustering ), instead, show
ig. 6. Average metric scores of algorithms for each anomaly class. Error bars rep- 

esent standard deviation among datasets KD, NK, IX, UN. 
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e  
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esults that are on average worse than algorithms with quadratic

omplexity. Moreover, HBOS shows bad scores in identifying collec-

ive anomalies, while it was supposed to detect collective anoma-

ies quite well in Section 5. 

While all the algorithms show worse performance with respect

o the results on synthetic datasets (24.8% on average), FastABOD

hows scores that are similar to the analysis on synthetic datasets

14.4% worse on average), achieving the best average score in de-

ecting attacks generating point anomalies. 

. On the design of anomaly-based IDs 

The work described in the previous Sections allows establishing

inks between i) attacks – or attack families – and anomaly classes

hey usually generate (Section 4), and ii) algorithms and anomaly

lasses depending on detection capabilities (Section 5). These two

eparate studies – consolidated in Section 6 - constitute the base-

ine to derive the most suitable unsupervised anomaly detection al-

orithm(s) for intrusion detection in a given system . This ultimately

llows building guidelines to identify the most suitable anomaly

etection algorithms for a given system, assuming that the system

as enough computational, memory and storage resources to sup-

ort the algorithms execution. Here we have considered a represen-

ative set of algorithms and dataset, however our guidelines may be

eneralized for a selection of different algorithms, dataset and attacks.

Guidelines are summarized in Table 7 , where we give a brief

escription of possible attack families that can impact a system,

ointing out the anomaly classes they usually generate, and then

roposing algorithm(s) to apply for intrusion detection. More in

etail, Table 7 reports on all the 7 possible combinations of point,

ontextual and collective anomaly classes. The system administra-

or, the researcher or the practitioner that wants to take advan-

age of our design guidelines has to first devise a list of possible

ttacks that may threaten the system, building an attack model

.g. , DoS and probing attacks . Then, each attack of the attack model

hould be shaped according to the attack families we presented

n Table 2 e.g. , communication – active and communication – pas-

ive families . Once this model is done, attack families derived from

he attack model should be used to find a matching item in the

rst column of Table 7 (e.g., the third row of the table for com-

unication attacks). In this way, the user can get immediate recom-

endations about the most suitable algorithm(s) to adopt to detect

ntrusions as defined in the attack model . 

When devising an attack model is not possible or feasible, the

esearcher or practitioner may want to be covered against a wide

ange of attacks. To such extent, the last row of Table 7 reports on

lgorithms that showed overall good capabilities in detecting all

he three anomaly classes, meaning that they offer a balanced cov-

rage against most of the possible manifestations of attacks, either

nown or unknown. 
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Table 7 

Guidelines for Designing Intrusion Detectors based on Anomaly Classes. 

Attack Families Anomaly Classes Algorithms (Families) Motivation 

Application Point ODIN (Neighbour), 

FastABOD (Angle) 

They show good scores in detecting point anomalies. We 

may consider to use both strategies in parallel, since the 

core of ODIN and FastABOD share a kNN search. 

Host Contextual ODIN (Neighbour), SVM 

(Classification) 

SVM is a better choice if additional coverage against attacks 

generating collective anomalies is desired. Otherwise, SVMs 

fit the most here. 

Communication - 

Passive, 

Communication - 

Active 

Collective SVM (Classification), 

KMeans (Clustering) 

SVM shows the best detection capabilities in detecting 

collective anomalies. Clustering may be a good alternative if 

the system cannot rely on fast CPU or enough RAM memory 

Host, Application Point, Contextual FastABOD (Angle), ODIN 

(Neighbour) 

They show good capabilities in detecting both anomaly 

classes. 

Host, Communication 

- Passive 

Contextual, Collective SVM (Classification) It shows good capabilities in detecting both anomaly classes. 
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Finally, in our analysis, we observe that all algorithms but HBOS

and KMeans rely on actions e.g., finding the k-NNs or creating

graphs, that are quadratic with respect to the amount of the data

points used for training. To mitigate this problem, in some scenar-

ios as the detection of attacks generating collective anomalies (see

third row of Table 7 ), it is possible to adopt algorithms that have

slightly worse detection capabilities, but on the other side require

considerably less resources for their training. Other possible solu-

tions could rely on sliding windows algorithms [12,13,43] , which

depend on a fixed size of data points to train their model, limiting

the effort required during training phase. However, despite show-

ing promising results in some application domains [45] , to the best

of our knowledge such strategies are not mature enough [44] for

being compared with more consolidated algorithms for detailed

analyses. 

8. Conclusions 

In this paper we described activities on attacks, anomalies and

unsupervised algorithms, which allowed deriving guidelines to se-

lect unsupervised anomaly detection algorithms for intrusion de-

tection. Guidelines constitute the last step of a process which al-

lowed: i) to characterize known attacks in terms of the anomaly

classes they usually generate, i) to study suitability of anomaly

detection algorithms to detect anomaly classes, iii) to establish a

link between anomaly detection algorithms and attacks through

anomaly classes, iv) and to take advantage of the link to propose

guidelines to select unsupervised algorithms. Steps i) – iii) started

from qualitative analyses then substantiated by quantitative ones

using state-of-the-art algorithms, attack models and datasets. All

data generated for these quantitative analyses is publicly available

[21] , as well as the tool used for the experiments [36] . 

Overall, such analyses escalated into guidelines to derive the

most suitable unsupervised anomaly detection algorithm for intru-

sion detection in a given system depending on anomaly classes. In

addition, we carefully described the methodology we followed, to

promote further expansions of our work e.g., by considering un-

supervised algorithms other than the 6 we took into account. Our

guidelines could also be used to suggest a set of unsupervised al-

gorithms: however, to the best of our knowledge, there are no

consolidated mechanisms that allow combining individual anomaly

scores of different algorithms in an efficient and trusted manner. 

Declaration of Competing Interests 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 
RediT authorship contribution statement 

Tommaso Zoppi: Conceptualization, Methodology, Writing -

riginal draft, Investigation, Software, Validation, Writing - re-

iew & editing. Andrea Ceccarelli: Conceptualization, Methodol-

gy, Writing - original draft, Visualization, Validation, Supervision,

riting - review & editing. Lorenzo Salani: Data curation, Investi-

ation, Methodology, Validation. Andrea Bondavalli: Visualization,

upervision, Writing - review & editing, Project administration. 

cknowledgement 

This work has been partially supported by the REGIONE

OSCANA POR FESR 2014–2020 SISTER and by the H2020 program

nder the Marie Sklodowska-Curie grant agreement 823788 (AD-

ANCE) projects. 

eferences 

[1] Chandola, V., Banerjee, A., Kumar, V. “Anomaly detection: a survey”. (2009)

ACM computing surveys (CSUR), 41(3), 15. 
[2] Modi Chirag , et al. A survey of intrusion detection techniques in cloud. Journal

of Network and Computer Appl 2013;36(1):42–57 . 

[3] Goldstein Markus , Dengel Andreas . "Histogram-based outlier score (hbos): a
fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo

Track 2012:59–63 . 
[4] Kriegel H.-.P., Zimek A. “Angle-based outlier detection in high-dimensional

data”. Proc. of the 14th ACM SIGKDD Int. Conference on Knowledge discovery
and data mining; ‘08. p. 4 4 4– 52. 

[5] Goldstein M , Uchida S . A comparative evaluation of unsupervised anomaly de-

tection algorithms for multivariate data. PLoS ONE 2016;11(4):152–73 p.e . 
[6] Hautamaki V , Karkkainen I , Franti P . Outlier detection using k-nearest neigh-

bour graph. in pattern recognition. ICPR 2004. Proceedings of the 17th Inter-
national Conference on 2004;3:430–3 August. IEEE . 

[7] Liao Y , Vemuri VR . Use of k-nearest neighbor classifier for intrusion detection.
Computers&Security 2002;21(5):439–48 . 

[8] Scholkopf B , Platt JC , Shawe-Taylor J , Smola AJ , CWilliamson R . Esti-

mating the support of a high-dimensional distribution. Neural Comput
2001;13(7):1443–71 . 

[9] Amer M , Goldstein M , Abdennadher S . Enhancing one-class support vector ma-
chines for unsupervised anomaly detection. in Proceedings of the ACM SIGKDD

Workshop on Outlier Detection and Description. ACM 2013:8–15 . 
[10] Breunig MM , Kriegel HP , Ng RT , Sander J . LOF: identifying density-based local

outliers. ACM sigmod record 20 0 0;29(2):93–104 May. ACM . 

[11] Schubert E , Koos A , Emrich T , Züfle A , Schmid KA , Zimek A . A frame-
work for clustering uncertain data. Proceedings of the VLDB Endowment

2015;8(12):1976–9 . 
[12] Zhou A , Cao F , Qian W , Jin C . Tracking clusters in evolving data streams over

sliding windows. Knowl Inf Syst 2008;15(2):181–214 . 
[13] Zhang Liangwei , Lin Jing , Karim Ramin . "Sliding window-based fault detection

from high-dimensional data streams. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 2017;47(2):289–303 . 

[14] Moustafa N , Slay J . UNSW-NB15: a comprehensive data set for network intru-

sion detection systems (UNSW-NB15 network data set). Military Communica-
tions and Information Systems Conference (Mil-CIS) 2015:1–6 IEEE, 2015 . 

[15] Zoppi T , Ceccarelli A , Bondavalli A . Exploring anomaly detection in systems of
systems. Proceedings of the Symposium on Applied Computing 2017:1139–46

April. ACM . 

http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0001
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0001
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0001
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0002
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0002
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0002
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0011
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0012
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0012
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0012
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0013
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0013
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0013
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0013


T. Zoppi, A. Ceccarelli and L. Salani et al. / Journal of Information Security and Applications 52 (2020) 102474 11 

 

 

 

 

 

 

 

 

[  

[
[  

 

 

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

 

 

 

[  

 

 

[  

 

 

[  

 

 

 

 

[  

 

[  

[  

 

 

 

[  

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

[

 

[  

[  

 

 

 

[16] Tavallaee M , Bagheri E , Lu W , Ghorbani AA . A detailed analysis of the kdd cup
99 data set. Computational Intelligence for Security and Defense Applications,

2009. CISDA 2009. IEEESymposium on. IEEE 2009:1–6 . 
[17] Shiravi A , Shiravi H , Tavallaee M , Ghorbani AA . Toward developing a systematic

approach to generate benchmark datasets for intrusion detection. computers &
security 2012;31(3):357–74 . 

[18] Campos GO , Zimek A , Sander J , Campello RJ , Micenkova B , Schubert E , et al. On
the evaluation of outlier detection: measures, datasets, and an empirical study.

Lernen, Wissen, Daten, Analysen 2016. CEUR workshop proceedings 2016 . 

[19] Boughorbel Sabri , Jarray Fethi , El-Anbari Mohammed . "Optimal classifier for
imbalanced data using matthews correlation coefficient metric. PLoS ONE

2017;12(6):e0177678 . 
20] D.M. Powers, “Evaluation: from precision, recall and f-measure to roc, in-

formedness, markedness and correlation,” 2011 
[21] Source Files (online), github.com/tommyippoz/Miscellaneous-Files/blob/ mas- 

ter/SupplementaryMaterial_JISA.zip, accessed: 2019-09-20 

22] Elki data mining. elki-project.github.io 2018-05-30 accessed . 
23] “Weka 3: Data mining software in java”, www.cs.waikato.ac.nz/ ∼ml/weka/ , ac-

cessed: 2019-07-20 
[24] Leung K , Leckie C . Unsupervised anomaly detection in network intru-

sion detection using clusters. Proc. of the Twenty-eighth Australasian
conference on Computer Science 2005;38:333–42 January. Australian Com-

puter Society, Inc . 

25] He S , Zhu J , He P , Lyu MR . Experience report: system log analysis for anomaly
detection. In Software Reliability Engineering (ISSRE), 2016 IEEE 27th Interna-

tional Symposium on 2016:207–18 October. IEEE . 
26] Mirkovic J , Reiher P . A taxonomy of ddos attack and ddos defense mechanisms.

ACM SIGCOMM Computer Communication Review 2004;34(2):39–53 . 
[27] Gruschka N , Jensen M . Attack surfaces: a taxonomy for attacks on cloud ser-

vices. in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference

on. IEEE 2010:276–9 . 
28] J. Syversen, “Method and apparatus for defending against zero-day worm-

based attacks,” Apr. 24 2008, US Patent 11/632,669. http://www.google.com/
patents/US20 080 098476 [Online] 

29] Bilge L , Dumitras T . Before we knew it: an empirical study of zero-day attacks
in the real world. Proceedings of the 2012 ACM conference on Computer and

communications security. ACM 2012:833–44 . 

30] Lippmann Richard , Haines Joshua W , Fried David J , Korba Jonathan , Das Ku-
mar . The 1999 darpa offline intrusion detection evaluation. Computer net-

works 20 0 0;34(4):579–95 20 0 0 . 
[31] Fontugne Romain , Borgnat Pierre , Abry Patrice , Fukuda Kensuke . "Mawilab:

combining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking. Proc. of the 6th International Conference 2010:8

ACM . 

32] Song, J., Takakura, H., & Okabe, Y. (2006). Description of kyoto univer-
sity benchmark data. Available at link: http://www.takakura.com/Kyoto_data/ 

BenchmarkData-Description-v5.pdf. 
[33] Haider W , Hu J , Slay J , Turnbull BP , Xie Y . Generating realistic intrusion detec-

tion system dataset based on fuzzy qualitative modeling. Journal of Network
and Computer Appl 2017;87:185–92 2017 . 

34] Rosset S , Inger A . KDD-cup 99: knowledge discovery in a charitable organiza-
tion’s donor database. SIGKDD Explorations 20 0 0;1(2):85–90 . 

[35] Lazarevic A , Ertoz L , Kumar V , Ozgur A , Srivastava J . A comparative study of

anomaly detection schemes in network intrusion detection. Proceedings of the
2003 SIAM Int. Conference on Data Mining, pages 2003;25:36 SIAM . 

36] Zoppi T, Ceccarelli A, Bondavalli A. “Evaluation of anomaly detection algo-
rithms made easy with reload. Proceedings of the 30th Int. Symposium on

Software Reliability Engineering (ISSRE 2019:446–55 October. IEEE. doi: 10.
1109/ISSRE.2019.0 0 051 . 

[37] Rodriguez Juan D , Perez Aritz , Lozano Jose A . "Sensitivity analysis of k-fold

cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach
Intell 2010;32(3):569–75 . 

38] Saeys Y , Abeel T , Van de Peer Y . Robust feature selection using ensemble fea-
ture selection techniques. Joint European Conference on Machine Learning and

Knowledge Discovery in Databases 2008:313–25 September . 
39] Bonett Douglas G . Confidence interval for a coefficient of quartile variation.
Comput Stat Data Anal 2006;50(11):2953–7 . 

40] Cisco Security Advisory, Cisco nx-os malformed arp header denial of
service vulnerability, [Online]. Available at https://tools.cisco.com/security/ 

center/content/CiscoSecurityAdvisory/Cisco- SA- 20150901- CVE- 2015- 6277 , ac-
cessed: 2019-07-20 

[41] Yu W , Wang X , Calyam P , Xuan D , Zhao W . “Modeling and detection
of camouflaging worm. Transactions on Dependable and Secure Computing

2010;8(3):377–90 IEEE . 

42] Gadge J , Patil AA . Port scan detection. in 2008 16th ieee international confer-
ence on networks. IEEE 2008:1–6 December . 

43] Curry E , Hasan S , Pavlopoulou N , Zaarour T , et al. Grand challenge: automatic
anomaly detection over sliding windows. Proc. of the 11th ACM International

Conference on Distributed and Event-based Systems. ACM 2017 . 
44] Zoppi T , Ceccarelli A , Bondavalli A . An initial investigation on sliding windows

for anomaly-based intrusion detection. to appear at IEEE SERVICES Workshop

on Cyber Security & Resilience in the Internet of Things (CSRIoT) 2019 July . 
45] Zoppi Tommaso, Ceccarelli Andrea, Bondavalli Andrea. "MADneSs: a multi-

layer anomaly detection framework for complex dynamic systems. IEEE Trans
Dependable Secure Comput 2019. doi: 10.1109/TDSC.2019.2908366 . 

46] Nostro Nicola , Bondavalli Andrea , Silva Nuno . Adding security concerns to
safety critical certification. in software reliability engineering workshops (IS-

SREW). 2014 IEEE Int. Symposium on. IEEE 2014:521–6 . 

[47] OWASP. 2018. Open web application security project. www.owasp.org/index.
php/Main _ Page . Accessed: 2019-07-20 

48] Falcão F , Zoppi T , Silva CBV , Santos A , Fonseca B , Ceccarelli A , Bondavalli A .
Quantitative comparison of unsupervised anomaly detection algorithms for in-

trusion detection. Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing 2019:318–27 April. ACM . 

49] Chicco Davide . "Ten quick tips for machine learning in computational biology.

BioData Min 2017;10(1):35 . 
50] McKinney Wes . Python for data analysis: data wrangling with pandas, numpy,

and IPython. O’Reilly Media, Inc 2012 . 
[51] Ding Xuemei , Li Yuhua , Belatreche Ammar , Maguire Liam P . An experimental

evaluation of novelty detection methods. Neurocomputing 2014;135:313–27 
2014 . 

52] Ingham Kenneth L , Inoue Hajime . Comparing anomaly detection techniques for

http. In International Workshop on Recent Advances in Intrusion Detection.
2007:42–62 . 

53] Gharib M , Bondavalli A . On the evaluation measures for machine learning algo-
rithms for safety-critical systems. In the 15th European Dependable Computing

Conference (EDCC 2019 IEEE, To Appear . 
54] Mori M , Ceccarelli A , Zoppi T , Bondavalli A . On the impact of emergent prop-

erties on sos security. In 2016 11th System of Systems Engineering Conference

(SoSE) 2016:1–6 June. IEEE . 
55] Abubakar Adamu I , et al. A review of the advances in cyber security bench-

mark datasets for evaluating data-driven based intrusion detection systems.
Procedia Comput Sci 2015;62:221–7 . 

56] Erhan D , Bengio Y , Courville A , Manzagol PA , Vincent P , Bengio S . Why does
unsupervised pre-training help deep learning? Journal of Machine Learning

Research 2010;11:625–60 . 
[57] Huang SY , Yu F , Tsaih RH , Huang Y . Resistant learning on the envelope bulk

for identifying anomalous patterns. Proceeding of the 2014 International Joint

Conference on Neural Networks (IJCNN 2014 . 
58] Sheikhan M , Jadidi Z , Farrokhi A . Intrusion detection using reduced–

size rnn based on feature grouping. Neural Computing and Applications
2012;21(6):1185–90 . 

59] Shoemaker L , Hall LO . Anomaly detection using ensembles. Proceedings of the
10th Multiple Classifier Systems International Workshop (MCS 2011:6–15 . 

60] Tenenboim-Chekina L , Rokach L , Shapira B . Ensemble of feature chains for

anomaly detection. Proceedings of the 11th Multiple Classifier Systems Inter-
national Workshop (MCS 2013:295–306 . 

[61] Tsaih Rua-Huan , Huang Shin-Ying , Lian Mao-Ci , Yennun Huang . “ANN mech-
anism for network traffic anomaly detection in the concept drifting environ-

ment. IEEE DSC 2018 2018:1–6 2018 . 

http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0018
http://www.cs.waikato.ac.nz/~ml/weka/
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0022
http://www.google.com/patents/US20080098476
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0028
https://doi.org/10.1109/ISSRE.2019.00051
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0032
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/Cisco-SA-20150901-CVE-2015-6277
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0036
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0036
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0036
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0036
https://doi.org/10.1109/TDSC.2019.2908366
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0038
http://www.owasp.org/index.php/Main_Page
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0046
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0046
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0046
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0047
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0048
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0048
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0048
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0048
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0048
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0049
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0049
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0049
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0049
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0050
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0050
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0050
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0051
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0051
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0051
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0051
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0052
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0052
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0052
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0052
http://refhub.elsevier.com/S2214-2126(19)30797-5/sbref0052

	On the educated selection of unsupervised algorithms via attacks and anomaly classes
	1 Introduction
	2 Basics and related works
	2.1 Anomaly-Based intrusion detection
	2.2 Unsupervised anomaly detection
	2.3 Families of unsupervised algorithms

	3 Methodology
	3.1 Step A: algorithms selection
	3.2 Step B: selection of the datasets
	3.2.1 Selected datasets
	3.2.2 Synthetic datasets

	3.3 Step C. unified attack model
	3.4 Step D. Scoring Metrics
	3.5 Step E. tool support and experimental setup
	3.5.1 Tool support
	3.5.2 Experimental setup


	4 Attack families that generate anomaly classes
	4.1 Inspection on the selected datasets
	4.1.1 Attacks characteristics
	4.1.2 Manual inspections into datasets
	4.1.3 Deciding on point, contextual or collective anomalies
	4.1.4 Example: backdoor attack
	4.2 Experimental analysis

	4.3 Results and discussion

	5 Detecting anomaly classes
	5.1 Investigating characteristics of algorithms
	5.2 Experimental analysis
	5.3 Results and discussion

	6 Applying algorithms to datasets
	6.1 Experimental analysis
	6.2 Results and discussion

	7 On the design of anomaly-based IDs
	8 Conclusions
	Declaration of Competing Interests
	CRediT authorship contribution statement
	acknowledgement
	References


