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Preamble 

This PhD work started as a continuation of my master’s thesis in pharmacy, with the title 

“Millet from Burkina Faso: evaluation of bioactive compounds before and after fermentation”. 

Under the guidance of Professors Nadia Mulinacci and Marzia Innocenti I was involved in the 

NUTRATOSCAFRICA project, born with the aim of finding a correlation between daily-

consumed African cereals and a greater protection against gastrointestinal diseases. Within the 

NUTRATOSCAFRICA project my research group was involved in evaluating the phenolic 

compounds in cereals before and after fermentation. Cereals represent the first chapter of my 

PhD thesis, with particular attention on modern and ancient wheat species, millet as a 

rediscovered crop and fermentation as a useful technique to improve the nutritional value of 

cereals.  

The main goals in working with cereals have been: 

 Optimization of extractive procedures to accurately estimate the phenolic amount in cereals, 

focusing attention on bound phenols. Our newly investigated approach proposes a single 

extraction step in acidic conditions. 

 Evaluation of phenolic content in cereal samples before and after fermentation.  

 Systematic comparison, in terms of phenolic compounds, between ancient and modern 

wheat species grown in the same agronomical condition. 

 In vitro biological tests to evaluate the antidiabetic, prebiotic, and anti-inflammatory 

activity of our extracts.  

The second chapter of my PhD thesis is focused on pomegranate. In particular, my work 

investigated phenolic and polysaccharides fractions. In this context, part of the project was 

carried out at the University of Aveiro, Portugal, in the last year of my PhD, thanks to a 

collaboration with Professor Manuel Coimbra. The aim was to improve my knowledge about 

polysaccharides.  
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The main goals regarding pomegranate have been: 

 Evaluation of phenolic composition of both peel and arils of a new Spanish pomegranate 

cultivar, Purple Queen
®
, grown on different sediments dredged from the port of Livorno, 

Italy. 

 Systematic comparison of the phenolic composition of fifteen different pomegranate 

varieties, grown in the same nursery. 

  A focus on polysaccharides of three widespread pomegranate varieties. This work is still 

on going. 
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Chapter 1 

Cereals 

 

1.1 Introduction 

Cereals, in the Graminacee family, are considered staple foods recognized as good sources of 

minerals, vitamins, fiber, essential fatty acids, and protein and greatly contribute to the 

nutritional balance of the world’s population (Hussain et al., 2019). Characterized by a great 

adaptability to different environments, easy preservation and transportability, cereals represent 

the most important crops in the world and are transformed into a range of products able to 

satisfy the habits and food traditions of different countries. In terms of consumption, cereals 

have a privileged position among other agricultural products. According to FAO (Food and 

Agriculture Organization), their production accounts for about 2800 million tons per year with 

the main recognized producing countries of Africa and Asia contributing 80% of global cereal 

production (Figure 1.1.1). 

 

Figure 1.1.1 Distribution of cereals production worldwide (FAO, 2018). 
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Regular consumption of cereal grains, especially in their whole-grain form, has gained 

popularity and their related products have been regarded as ‘‘healthy and functional foods” 

because of their potential protection against life-style and diet-related disorders, such as 

obesity, diabetes, cardiovascular diseases and cancers (Masisi et al., 2016). Although the 

general requirements of human diet are met mainly by wheat and other widely-grown grains, 

such as rice and maize, the growing emphasis of today on a healthy and balanced diet has 

created a demand for new, rediscovered crops or ancient cereal species (Ciesarová et al., 2016). 

 

1.1.1 Wheat: modern and ancient species 

Wheat is considered a leading grain for consumption worldwide due to its nutraceutical profile, 

relatively easy harvesting, storage, transportation and processing as compared to other grains 

(Ciesarová et al., 2016). Wheat production accounted for about 749 million tons in 2016: 40% 

distributed in Asia, with China as the main producer, 30% in Europe and 15% in America. 

Africa and Oceania are leading regions in the production of other cereal varieties (FAOSTAT, 

2018). From a botanical point of view, wheat includes several species belonging to the genus 

Triticum. The best known species are Triticum aestivum L. and Triticum durum L.. The former, 

also known as "common wheat" or "soft wheat", is hexaploid wheat and constitutes 95% of the 

total production. Its flour is suitable for bread and bakery products. The remaining 5% includes 

Triticum durum L., tetraploid wheat also known as "durum wheat", which is traditionally used 

for pasta production (Dhanavath et al., 2017; Dinu et al., 2018). A further classification 

recognizes wheat as "ancient" or "modern" grains. In the last century, wheat breeding efforts 

concentrated on yield increases, typically using high-energy inputs in terms of fertilizers, 

herbicides, insecticides and fungicides to produce modern varieties characterized by genetic 

uniformity and adaptation to conventional agriculture (Dinu et al., 2018;  Arzani et al., 2017). 

This agronomic trend is commonly referred as the Green Revolution, when Mendel’s laws were 
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systematically applied to increase production and the technological quality of wheat grains. 

Compared to ancient varieties, the modern ones are characterized by several advantages such as 

higher yields, tolerance to environmental stresses, lower susceptibility to pathologies and 

insects, higher glutenin content leading to technological improvement in the quality of the 

bread and pasta. On the other hand, although there is no shared definition, it is generally 

accepted that ancient wheat has remained unchanged over the last hundred years. From a 

botanical point of view ancient grains include: einkorn (T. monococcum L.), a diploid wheat 

which is now cultivated in limited regions of the world; emmer (T. turgidum L.), a tetraploid 

wheat and spelt (T. aestivum), a hexaploid wheat. The latter two are considered the ancestors of 

Triticum durum L. and Triticum aestivum L., respectively  (Figure 1.1.2) (Arzani et al., 2017). 

In addition, there are several cultivars which have remained unchanged over the years: 

Russello, Senatore Cappelli, Timilia or Tumminia and Urria (Triticum durum), as well as 

Autonomia B, Frassineto, Gentil Rosso, Inallettabile, Maiorca, Sieve, Solina, and Verna 

(Triticum aestivum). 
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Figure 1.1.2 Phylogeny of Triticum species, including eikorn, spelt, durum and common wheat 

 (Arzani et al., 2017). 

 

The effects on wheat of the agronomic revolution concern not only environmental aspects, as 

yield and pest resistance, but also nutraceutical ones, linked to wheat caryopsis composition. In 

fact, intense breeding results in larger wheat grains with a higher percentage of several 

molecules such as starch, and a lower percentage of others, following the so called “yield 

dilution phenomenon” (Shewry et al., 2015). Although a number of studies on the content of 

bioactive molecules in ancient and modern wheat have been published, definitive comparisons 

of these species grown together in randomised field plots are actually rare. The reason behind 

this, is that ancient wheat species are usually grown in organic, or traditional low-input farming 

systems, while modern wheat species are usually bred for high-input intensive systems 

(Hidalgo et al., 2009; Dinu et al., 2018).  

Considering the starch composition, several studies highlighted lower amounts of total and 

resistant starch in old wheat species compared to modern ones. However, the content of the 
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slowly digested amylose in ancient varieties was significantly higher than amylopectin, 

decreasing both glucose and insulin post prandial levels (Brandolini et al., 2011). When 

analyzing the lipid fraction, it was also observed that eikorn contains approximately 50% more 

lipids, with higher amount of monounsaturated fatty acids (MUFA) and approximately 21% 

less saturated fatty acids (SFA) (Hidalgo et al., 2009). These values are associated with a 

reduction in total cholesterol, LDL cholesterol and triglycerides with a marked improvement in 

the lipid profile of diabetic patients or those with a high risk of cardiovascular diseases (Dinu et 

al., 2018). With regard to the mineral content, it is now widely established that modern grains 

have lower amounts, especially in iron and zinc, than ancient grains (Erba et al., 2011). The 

lack of these elements in populations of developing countries reinforces the need to support the 

development of local and diversified cereal crops rich in such micronutrients. Considering the 

fraction of tocopherols and carotenoids, ancient grains such as eikorn showed 8-10 times higher 

levels of lutein, the main carotenoid found in cereals, than modern grain and this contributes to 

increasing the antioxidant properties of the former (Ziegler et al., 2015). Moreover, a recent 

study conducted by an Italian research group investigated the phenolic fraction in both ancient 

and modern grains grown in the same Italian field. The results underline a greater quantity of 

phenolic compounds in the ancient varieties (average of 882 μg/g) compared to the modern 

ones (average of 662 μg/ g) (Gotti et al., 2018).  
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Figure 1.1.3 Beneficial properties of ancient wheat species. 

(Arzani et al., 2017) 

 

Concerning in vivo studies, in the last few years only five and thirteen studies on animals and 

humans, respectively, have been published (Dinu et al., 2018). Using rat models, the capability 

of ancient cultivars to ameliorate the antioxidant and anti-inflammatory parameters in blood 

plasma and hepatic tissue, with respect to modern wheat species, has been highlighted 

(Carnevali et al., 2014; Benedetti et al., 2012). Furthermore, the effects of ancient and modern 

wheat diets on plasma lipid profile and acute glycaemic response on Zucker diabetic fatty rats 

were evaluated. The results pointed to a less pronounced disease development in rats fed with 

ancient wheat (Thorup et al., 2014). 

Some of the in vivo studies on humans investigated the functionality of ancient wheat on 

oxidative stress and pro inflammatory markers, highlighting beneficial properties linked to the 

assumption of old varieties instead of modern ones (Dinu et al., 2018). Furthermore, replacing 

modern durum and common wheat with old varieties could induce a decrease in the so called 

adverse reaction linked to the consumption of wheat, as wheat allergies and wheat intolerance 

(Békés et al., 2017). For instance, significantly reduced irritable bowel syndrome (IBS) 

symptoms were observed by replacing modern durum and common wheat with Kamut
® 

(Sofi et 
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al., 2014). Moreover, a lower secretion of pro-inflammatory cytokine CXCL10, responsible of 

non-celiac gluten sensitivity (NCGS), was assessed when replacing common wheat with the old 

durum “Senatore Cappelli”, selected by Nazzareno Strampelli in 1915, and Kamut
®
 (Valerii et 

al., 2015).  

Keeping in line with the state of art, it is possible to say that further studies comparing old and 

modern species grown in the same field need to be carried out, with attention to caryopsis 

chemical characterization and human intervention trials (Hidalgo et al., 2009; Dinu et al., 

2018).   
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1.1.2 Millet 

Millet is a generic term that refers to various small grains belonging to the Poaceae family, 

growing easily in areas of the world with a temperate, tropical, or subtropical climate. Different 

millet species are present worldwide: Pennisetum glaucum, Eleusine coracana, Panicum 

sumatrense, Echinocloa crus-galli, Panicum miliaceum, Setaria italica (Figure 1.1.4). 

 

Figure 1.1.4 Pennisetum glaucum, Eleusine coracana, Panicum miliaceum, Echinocloa crus-galli, 

Panicum sumatrense, (from left to right). 
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In comparison to others, this cereal offers the advantages of multiple uses and resistance to 

drought, allowing it to be grown almost everywhere (Ragaee, 2006; Amadou et al., 2013). 

Despite being considered a minor cereal in Western countries, it is a main crop, together with 

barley, spelt and  kamut, and a staple food in some regions of Africa and Asia, ranking as the 

sixth most important crop worldwide (Chandr, 2013). Millet contains high levels of proteins, 

minerals and vitamins that confer it a higher nutritional value than non-millet cereals. Its 

proteins are reported to possess significant levels of essential amino acids. Compared to other 

cereals, millet is rich in slowly digestible starch (SDS) and resistant starch (RS) important in 

the prevention of diseases related to type-II diabetes, obesity and coronary heart disease due to 

its resistance to digestion, resulting in a slow release of glucose into the blood stream and 

reducing postprandial glycaemic and insulinemic responses (Muthamilarasan et al., 2015). The 

advantages linked to the daily consumption of millet grains have recently been reported in the 

literature. A 2010 study showed that a typical diet of a child in Burkina Faso, based on cereals 

and legumes, contributes to a reduced incidence of gastrointestinal diseases, mainly by 

modulating the intestinal microbiota composition, maximizing energy intake from fibres and 

protecting from inflammation and non-infectious colonic diseases. In particular, the gut 

microbiota of fifteen healthy children aged 1-6 years living in a village in rural Africa was 

compared to the gut microbiota of western European children of the same age. None of the 

children had taken antibiotics or probiotics in the six months before the sampling dates. The 

results revealed that the different dietary habits could affect bacterial lignages, for example the 

ratio between Firmicutes and Bacteroidetes phyla. Firmicutes were, in fact, twice as abundant 

in European children. The ratio of Firmicutes to Bacteroidetes can be considered a useful 

obesity biomarker: its proportion decreased with weight loss. It was therefore reasonable to 

surmise that the increase in F/B ratio in European children, probably driven by their high-

calorie diet, might predispose them to future obesity. In the same study it was also 
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demonstrated that short chain fatty acids, whose protective role against gut inflammation is 

well proven, were greater in BF children because of a unique bacterial community in African 

children able to use xylene and xylose to produce SCFA. The presence of short chain fatty 

acids possibly helps children of Burkina Faso to resist the establishment of some intestinal 

microbes such as Esterichia and Salmonella (De Filippo et al., 2010). A lower incidence of 

type II diabetes was also pointed out in Chinese populations that consumed this cereal daily 

(Montonen et al., 2003; Zhen et al., 2015). One of the possible mechanisms of action behind 

this effect is the inhibition of pancreatic α-amylase and intestinal glucosidase by millet’s 

phenolic fraction (Etxeberria et al., 2015). It has been noted recently that fractions of millet 

particularly rich in phenolic compounds, such as hull and bran, have a higher activity in 

inhibiting these enzymes, compared to fractions from the decorticated cereal (Pradeep et al., 

2018). Furthermore, millet is increasingly appreciated in western countries as an ingredient for 

gluten-free foods, a growing field in the food industry due to the growing number of celiacs 

(approx. 3% of world population) whose nutritional needs are not fully satisfied by existing 

products (Muthamilarasan et al., 2015;. Xiang et al., 2019). In light of all these peculiarities. 

this cereal has recently been called “nutritious millet" or "nutritious cereal”.  
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1.1.3 Phenolic composition of cereals 

Phenolic compounds are secondary metabolites of plants and are known to protect against pests 

and pathogens, but also to contribute to color and sensory characteristics. In the human diet, 

they provide health benefits associated with a reduced risk of chronic diseases caused by 

reactive oxygen species, mainly thanks to their antioxidant properties (Hung, 2016; Varga et 

al., 2018). Typically in cereals, phenolic compounds are present in free and bound forms, the 

latter linked to cell wall constituents such as polysaccharides, proteins, lignin and cutin in the 

outer layers of caryopses (Alves et al., 2016; Arranz et al., 2010). The literature reports that 

insoluble phenols are the major contributors to the total antioxidant capacity of cereals and 

need to be released through hydrolysis procedures (to break the linkage between phenols and 

cell wall) during the extractive step. Despite their abundance in plants, phenolic compounds are 

characterized by poor bioavailability (below 90%) because they are scarcely absorbed in the 

small intestine. However, they are carried in the colon by fiber and hydrolysis performed  by 

the gut microbiota increases the in situ release of phenolic compounds and consequently the 

production of their metabolites (González-Aguilar et al., 2017; Tuohy et al., 2012). These 

metabolites are more easily absorbed and have better properties than the precursors (Chiou et 

al., 2014; Rebello et al., 2014). 

The main classes of phenolic compounds in cereals are phenolic acids and flavonoids (Shahidi 

et al., 2013). Flavonoids are generally present in their O or C glycosylated forms, created by 

the attachment of a sugar substituent to a hydroxyl group during in planta flavonoid synthesis. 

Even though C glycosyl flavonoids are a less understood subclass of secondary plant 

metabolites in comparison to their more common O glycosyl cousins, they are largely 

expressed in cereal caryopsis (Courts et al., 2015). Some of the previously identified flavonoids 

in wheat grains are schaftoside and its isomer isoschaftoside; vitexin, apigenin and luteolin 

were identified both in wheat and millet (Sanak et al., 2016) (Figure 1.1.5).  
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Figure 1.1.5 Chemical structure of schaftoside (left) and vitexin (right) 

Phenolic acids include a large class of molecules derived from benzoic acid (C6-C1) or from 

cinnamic acid (C6-C3). In cereals, the main benzoic derivatives are p-hydroxybenzoic, gallic, 

vanillic and syringic acid (Figure 1.1.6). The generally more abundant cinnamic derivatives 

include ferulic, p-coumaric, caffeic, synapic and chlorogenic acids (Shahidi et al., 2016). 

 

 

Figure 1.1.6 Hydroxybenzoic and cinnamic derivatives of cereals 

 

Reviewing some literature data about total phenolic acids content of modern and old wheat 

species, it emerged that the ancient ones presented higher amounts of phenolic compounds, 

ranging from 766.2 to 1004 μg/g compared to 541.6 to 729.8 μg/g in modern wheat. It is worth 

noting that all the wheat species analysed and summarized in Table 1.1.1 presented cinnamic 

(TCC) derivatives as approximately 95% of total phenolic content (TPC). Among these, ferulic 

acid was identified as the main phenolic compound, representing approximately 90% of 

cinnamic derivatives and 80% of all phenolic acids.  
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Table 1.1.1 Total phenolic content in different ancient and modern wheat species. TBC (Total Benzoic 

Content), TCC (Total Cinnamic Content), AF (ferulic acid content), TPC (Total Phenolic Content). 

Data are expressed in µg/g. 

 

With regard to the phenolic composition of different millet varieties, the total content of 

phenolic acids ranged from 367.5 to 3772.6 μg/g with higher percentages for Kodo and Proso, 

and lower percentages for Foxtail and Little millet (Table 1.1.2). As for wheat grains, the 

predominant phenolic fraction is represented by the cinnamic acids (TCC) which make up 

approximately 88% of the total phenolic content. Ferulic acid (approx. 46% of TCC) and p-

coumaric acid (approx. 36% of TCC) are the main hydroxycinnamic derivatives. It is 

Modern 

wheat 

TBC  TCC  AF  TPC  References 

Triticum 

aestivum 

46.1 

(8.5% di TPC) 

495.5 

(91.5% di 

TPC) 

398.8 

(80.5% di TCC 

73.6% di TPC) 

541.6 Li et al., 2008 

Triticum 

durum 

42.6 

(7.5% di TPC) 

527.9 

(92.5% di 

TPC) 

403.3 

(76.4% di TCC 

70.6% di TPC) 

570.5 Li et al., 2008 

Mieti 
24.4 

(3.7% di TPC) 

638.8 

(96.3% di 

TPC) 

574.2 

(89.8% di TCC 

86.5% di TPC) 

663.2 
Gotti et al., 

2018 

Bolero 
32.4 

(4.4% di TPC) 

697.4 

(95.6% di 

TPC) 

618.5 

(88.7% di TCC 

84.7% di TPC) 

729.8 
Gotti et al., 

2018 

Ancient wheat 

Andriolo 
41.8 

(4.7% di TPC) 

848.4 

(95.3% di 

TPC) 

772.4 

(91% di TCC 

86.8% di TPC) 

890.2 
Gotti et al., 

2018 

Frassineto 
43.1 

(5.6% di TPC) 

723.2 

(94.4% di 

TPC) 

670.1 

(92.6% di TCC 

87.4% di TPC) 

766.2 
Gotti et al., 

2018 

Gentil Rosso 
53.4 

(5.2% di TPC) 

950.6 

(94.7% di 

TPC) 

862.3 

(90.7% di TCC 

85.8% di TPC) 

1004 
Gotti et al., 

2018 

Inalettabile 
37.4 

(4.6% di TPC) 

784.7 

(95.4% di 

TPC) 

711.3 

(90.6% di TCC 

86.5% di TPC) 

822.2 
Gotti et al., 

2018 

Verna 
48.2 

(5% di TPC) 

910.2 

(95% di TPC) 

817.5 

(89.8% di TCC 

85.3% di TPC) 

958.4 
Gotti et al., 

2018 
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noteworthy that among the single varieties, lower percentages of ferulic acid are compensated 

by higher values of its biosynthetic precursor recognized as p-coumaric acid (Pradeep et al., 

2017). 

 

Table 1.1.2 Total phenolic content in different millet varieties. 

TBC (Total Benzoic Content), TCC (Total Cinnamic Content), AF (ferulic acid content), p-CA (para 

coumaric acid), TPC (Total Phenolic Content). Data are expressed in µg/g. 

 

The higher percentage of phenolic compounds within old wheat species and millet varieties 

could actually be related to different aspects such as inter- and intra-matrix genotypic 

differences, plant-development environment interactions and also from the efficiency of the 

extraction procedures. The extraction process is one of the crucial steps for recovery and 

accurate estimation of phenolic compounds in cereals. Different parameters, mainly related to 

Millet 

varieties 
TBC TCC AF p-CA TPC References 

Kodo 

343 

(9% di 

TPC) 

3429.6 

(91% di 

TPC) 

2209 

(64% di TCC 

58.5% di 

TPC) 

802 

(23% di TCC 

21% di TPC) 

3772.6 
Shahidi et al., 

2013 

Finger 

156.2 

(27% di 

TPC) 

416.5 

(73% di 

TPC) 

358.4 

(86% di TCC 

63% di TPC) 

41.4 

(10% di TCC 

7% di TPC) 

572.7 
Shahidi et al., 

2013 

Foxtail 

174.2 

(8.5% di 

TPC) 

1870.5 

(91.5% di 

TPC) 

856.5 

(46% di TCC 

42% di TPC) 

942.7 

(50.5% di 

TCC 

46% di TPC) 

2044.7 
Shahidi et al., 

2013 

Foxtail 

27.8 

(5% di 

TPC) 

484.2 

(95% di 

TPC) 

135.2 

(28% di TCC 

26% di TPC) 

85.1 

(18% di TCC 

17% di TPC) 

512 
Pradeep et 

al., 2018 

Foxtail 

53 

(14% di 

TPC) 

314.5 

(86% di 

TCC) 

100 

(32% di TCC 

27% di TPC) 

125 

(40% di TCC 

34% di TPC) 

367.5 
Pradeep et 

al., 2018 

Proso 

378.4 

(15.5% di 

TPC) 

2065.2 

(84.5% di 

TPC) 

444.6 

(21.5% di 

TCC 

18% di TPC) 

1235.2 

(60% di TCC 

50% di TPC) 

2443.6 
Shahidi et al., 

2013 

Little 

269.3 

(15% di 

TPC) 

1526.6 

(85% di 

TPC) 

355.3 

(23% di TCC 

20% di TPC) 

1085.2 

(71% di TCC 

60% di TPC) 

1795.9 
Shahidi et al., 

2013 

Little 

43.7 

(9% di 

TPC) 

422 

(91% di 

TPC) 

128.3 

(30% di TCC 

27.5% di 

TPC) 

175 

(41.5% di 

TCC 

37.5% di 

TPC) 

465.7 
Pradeep et 

al., 2018 
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the concentration of the extractive solvent, temperature of the process and time of extraction, 

should be taken into account. The choice of extractive solvent is generally based on the 

chemical nature and polarity of the compound to be extracted according to the “similia 

similibus solvuntur” principle. Phenolic compounds are water-soluble molecules; therefore, the 

optimal solvents in which they are extracted from the matrix are aqueous solutions or hydro-

alcoholic solutions (Acosta-Estrada et al., 2014). When we talk about the extraction of phenolic 

compounds from cereal matrices, it is necessary to distinguish between extraction procedures 

for the recovery of free and bound phenols. Free phenols, present in the form of monomers in 

the cytoplasm and in the cellular organelles, are easily extracted with aqueous solutions of the 

most common polar solvents: ethanol, methanol, acetone (Stalikas, 2007). Bound phenols, 

instead, represent almost 70% of the total phenolic amounts and are linked to the 

macromolecular constituents of the cell wall and need to be released through hydrolysis under 

alkaline or acidic conditions (Acosta-Estrada et al., 2014). Observing the previous work in 

greater depth, the data concerning the procedures to recover phenolic compounds in cereals are 

very controversial, without a specific method of extraction. The approaches proposed for the 

recovery of bound phenols, in both wheat and millet, preferred the use of sodium hydroxide 

ranging from 2 to 10 M at room temperature, otherwise the acidic conditions are reported to 

induce hydroxycinnamic acid degradation (Kim et al., 2006; Verma et al., 2009; Acosta-

Estrada et al., 2014). Some hydrolytic procedures proposed in the literature regarding cereals 

are collected in Table 1.1.3. 
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Table 1.1.3 Basic and acidic procedures proposed in the literature regarding cereals. 

 

 

 

 

 

 

 

Basic hydrolisis 
Extractive ratio 

(g/mL) 
References 

NaOH 2M 1h 1/15 Adom et al., 2003 

NaOH 2M 4h 1/40 Kim et al., 2006 

NaOH 2 M 4h 0.25/1 Li et al., 2008 

NaOH  2 M 4h 1/75 Verma et al., 2009 

NaOH 2 M 4h 0.2 /1.5 Arranz et al., 2010 

NaOH 10 M 16h 1/15 Dinelli et al., 2011 

NaOH 10 M 16h 1/15 Dinelli et al., 2013 

NaOH 4 M 4h 0.5/15 Brandolini et al., 2013 

NaOH 4 M 4h 0.5/15 Volkan et al., 2015 

NaOH 4 M 4h 0.5/15 Hidalgo et al., 2017 

Acid hydrolisis 
Extractive ratio 

(g/mL) 
References 

HCl 2 M 1h 0.2/0.4 Gao & Mazza 1994 

HCl 6 M 4h 1/75 Verma et al., 2009  

MeOH/H
2
SO

4 
9:1 v/v 

20 h 
0.2/2 Arranz et al., 2010 
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1.1.3 Fermentation to improve the nutritional value of cereals 

Fermentation has been traditionally used for ages as a cost-effective and low-energy 

preservation process to produce indigenous fermented foods with improved nutritional, health 

and sensorial qualities (Wang et al., 2014; Adebiyi et al., 2017). In this context, the 

fermentation of cereal is an economically sustainable, ancient technique capable of increasing 

the concentration of beneficial substances, making proteins more available, reducing anti-

nutritional components, providing food preservation, and improving food texture and shelf-life 

through the action of several microorganisms (Hur et al., 2014; Nout, 2009; Terefe, 2016; 

Ganguly et al., 2019). Cereal-based fermented products are an important part of diets in several 

African, south Asian, and Middle Eastern countries, constituting almost one-third of consumed 

foods. Low cost and need for low-tech home-made procedures accessible to poorer rural 

societies are two of the main advantages of fermentation (Oguntoyinbo et al., 2015; Prakash, 

2016). In developing countries, fermentation of cereals is mainly used as a way to increase the 

shelf life, to improve conservation and safety. During the fermentation process, the use of 

specific microorganisms leads to the production of antimicrobial compounds (such as 

bacteriocins and antibiotics),  hydrogen peroxide and other substances with antifungal effects 

(Chilton et al., 2015). Today’s growing emphasis on a healthy and balanced diet has created a 

demand for new functional foods. Mimicking the Asian and African tradition, novel fermented 

cereals could represent a promising trend in the production of new healthy foods (Ciesarová et 

al., 2016). In recent years, there has been renewed interest in fermented cereals in Europe, 

especially for the supposed health benefits linked to these foods (Terefe, 2016). First of all, pH 

reduction during the fermentation process optimizes the activity of the endogenous phytase, 

leading to a significant reduction of a large part of phytic acid, one of the main antinutritional 

factors present in cereals (Marco et al., 2017). Furthermore, prolonged fermentation times 

reduce oligosaccharides, disaccharides, monosaccharides and fermenting polyols (FODMAPS). 
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The reduction of the FODMAPS content in fermented cereals increases the tolerance towards 

these compounds of patients with irritable bowel syndrome (Laatikainen et al., 2016; Ziegler et 

al., 2016). Moreover, much epidemiological evidence has highlighted how the consumption of 

fermented-cereal foods, taken daily in high doses, is associated with the reduced risk of 

cardiovascular disease, diabetes and cancer (Rahman et al., 2017). One of the reasons for this 

preventive effect has been associated with the presence of antioxidant molecules capable of 

reducing in vivo the amount of free radicals (Colombo et al., 2008). These natural antioxidants, 

such as phenolic compounds, are mainly present in bound forms so they need to be released, 

mainly with hydrolytic treatment at laboratory scale. On the other hand, cereal fermentation 

seems to be a suitable technique able to enhance the release of bound phenols before 

consumption and to induce the production of a greater amount of free phenolic compounds with 

respect to the unfermented substrate (Simirgiotis et al., 2013). This may be due to breakage of 

the link between bound phenols and the cell wall, but also to the induced synthesis of bioactive 

compounds determined by microbial communities used during the fermentation process (Hur et 

al., 2014; Dey et al., 2016). The temperature of the process and the selected microorganisms 

are recognized as playing crucial roles in increasing the antioxidant power. Looking to the 

future, with the current growing interest by consumers in everything perceived as natural and 

healthy, the outlook consists of creating unique flavors, textures, nutritional profiles, and health 

benefits while maintaining 100% natural products via fermentation (Terefe 2016). 
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1.2 Results on millet and wheat phenolic composition 

 

1.2.1 Optimized hydrolytic methods by response surface methodology to accurately 

estimate the phenols in cereal by HPLC-DAD: the case of millet. 

Diletta Balli, Maria Bellumori, Serena Orlandini, Lorenzo Cecchi, Elisa Mani, Giuseppe Pieraccini, Nadia 

Mulinacci
*
, Marzia Innocenti 

*corresponding author 
 

     Published on Food Chemistry 303 (2020).
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Abstract 

Extraction of free and bound phenols from millet in acidic and basic hydrolytic conditions 

were compared for the first time. Acidic hydrolysis was able to extract the highest amount 

of total phenolic compounds (up to 178 mg/100g) while the basic hydrolysis underestimates 

the phenolic concentration. Our findings pointed out for the first time that methyl ferulate is 

naturally present as bound phenol in millet. Response Surface Methodology was then 

applied to both acidic and basic hydrolytic extractive conditions: the acidic procedure, 

optimized in terms of extractive time and temperature and concentration of the acidic mean, 

gave the best results, allowing definition of Method Operable Design Region and 

quantitation of the total amount of phenols in millet samples in a single extractive step. This 

optimized method is suitable for further accurate investigations of the typical phenols of the 

numerous varieties of this recently re-discovered minor cereal.  
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      1.2.1.1 State of the art and aims of the work 

Millet belongs to the Poaceae family and grows easily in areas of the world with a 

temperate, tropical, or subtropical climate. This cereal, compared to others, offers the 

advantages of multiple uses and resistance to drought, allowing it to be grown almost 

everywhere (Ragaee, 2006; Amadou et al., 2013). Typically in cereals, the phenolic 

compounds are present in free and bound forms, the latter linked to cell wall 

constituents such as polysaccharides, proteins, lignin and cutin in the outer layers of 

caryopses (Alves et al., 2016; Arranz et al., 2010). The literature points out that 

insoluble phenols are the major contributors to the total antioxidant capacity of cereals 

that need to be released through hydrolysis procedures (to break the linkage between 

phenols and cell wall) during the extractive step. Hydrolysis conditions can 

significantly affect the total amount and profile of recovered phenolic compounds. It 

has been reported that in cereals, the values of phenolic content are lower after 

extraction in acidic compared to basic conditions, and thus acidic conditions could lead 

to a degradation of the hydroxycinnamic acids (Kim et al., 2006; Verma et al., 2009; 

Acosta-Estrada et al., 2014). Nevertheless, despite this assertion, a systematic 

comparison between acidic and basic hydrolysis has not yet been reported for cereals, 

and particularly not for millet. 

To optimize the experimental conditions for basic and acidic hydrolysis, Response 

Surface Methodology (RSM) has been applied (Lewis et al., 1999). RSM makes it 

possible to obtain predictive maps of the responses throughout the selected 

experimental domain, to discover the possible interactions between factors, and to 

identify the zone where the responses are simultaneously optimized. Furthermore, the 

multivariate optimization strategy led to the definition of the method operable design 

region (MODR) (Deidda et al., 2018); MODR is a multidimensional region of the 
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experimental domain where the desired quality of the performances is achieved, 

maintaining the risk of error under a selected threshold, and is defined according to the 

analytical Quality by Design (QbD) strategy (Orlandini et al., 2013). The QbD 

approach has recently been introduced in the pharmaceutical field as an innovative 

quality paradigm, but it has up to now only two examples of applications in the field of 

food analysis, limited to the optimization of chromatographic methods (Silva et al., 

2014; Ancillotti et al., 2018). 

The aim of the present research was to define the best conditions for a complete 

recovery of all the phenolic components of millet, mainly cinnamic derivatives and 

flavonoidic molecules. Toward this aim, some batches of millet from Burkina Faso 

were preliminarily studied for their phenolic composition by a chromatographic 

fractionation and subsequently investigated by mass spectrometry (MS). Regarding the 

quantitative recovery, hydrolytic methods, both in basic and acidic solutions, were 

initially tested. After this screening, the RSM was applied, both for basic and acidic 

hydrolyses, to propose a simple and efficient extractive procedure suitable for a 

complete recovery of all the phenolic components. Furthermore, in the case of acidic 

hydrolysis the method operable design region (MODR) was also defined. To our 

knowledge, this is the first time this approach in cereals, and particularly in millet, has 

been described.  
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1.2.1.2 Materials and methods 

Samples and reagents 

Two batches (MP-1 and MP-2) of millet from Burkina Faso were purchased from 

African local market, according to the Nutratoscafrica project. 

All solvents were of analytical HPLC grade from Sigma Aldrich (St. Louis, Missouri, 

USA). Ultrapure water was obtained by the Milli-Q-system (Millipore SA, Molsheim, 

France). Sulfuric acid (95.0-98.0%) and sodium hydroxide (≥ 98) were purchased from 

Sigma Aldrich (St. Louis, Missouri, USA).  

Ferulic acid standard was purchased from Sigma Chemical Co. (St. Louis, MO, USA). 

Standards of vitexin and vitexin 2’’-O-rhamnoside were purchased from Extrasynthese 

(Genay, France).  

 

Extraction of phenolic compounds 

Free phenolic compounds. Millet was milled using a laboratory miller, and the obtained 

whole flour was defatted twice with hexane (1:10 (w/v) ratio) and kept on a mechanical 

shaker for 1 h.  

Two g of the defatted flour were suspended in 20 mL of acidic MeOH (1% HCl) and, 

after 30 minutes of sonication (DK Sonic, 42 KHz), stirred by a magnetic stirrer for 

about 12 h. The supernatant was separated by centrifugation (5000 rpm, 10 min), the 

residue re-suspended in 25 mL of the extractive mixture, sonicated for 30 minutes, and 

stirred for 2 h. The two supernatants were collected and brought up to a volume of 50 

mL in a flask. A further set of experiments was performed using as extractive mixture 

EtOH:H2O 7:3 v/v (HCOOH, 1%) and then applying the same steps described above.  

Bound phenolic compounds. The two batches (MP-1, MP-2) were both treated 

according to the method BF reported by Balli et al.,(2019). Briefly, 1 g of defatted 



28 

 

flour was suspended in 25 mL of MeOH:H2O 7:3 v/v (0.1 M NaOH); the solution was 

sonicated 1 h at 60° C, than CH3COOH was added until pH close to 6.5-7.0; the sample 

was centrifuged at 5,000 rpm for 10 minutes. The MP-2, due to its higher content in 

bound phenols, was selected for testing different hydrolysis methods both in basic and 

acidic media. The applied methods, BS, BK and A were previously applied by Balli et 

al., 2019  to study a fermented wheat. Method BS only differs from method BF for the 

stronger basic conditions (4M NaOH). Method BK was applied on the residue of the 

extraction of free phenols extracting 1 g of such residue with 40 mL of NaOH 2 M, and 

stirring the solution at room temperature for 4 hours. 

The hydrolysis was also performed in acidic conditions applying method A: 1 g of 

defatted flour was extracted with 25 mL of MeOH:H2SO4 9:1 v/v; the solution was 

sonicated 2 h at 60° C and centrifuged at 5.000 rpm for 10 minutes.  

 

HPLC-DAD analysis of phenolic extracts  

All the phenolic extracts were analysed using a HP 1200L liquid chromatograph 

equipped with a DAD detector (Agilent Technologies, Palo Alto, CA, USA) after 

removing suspended solids by centrifugation at 14.000 rpm, for 10 min. Firstly, a 

Poroshell 120, EC-C18 (150 x 3 mm, 2.7 µm, Agilent, USA) column was used for 

preliminary comparison between the two batches of millet. Successively, a Raptor 

ARC-18 column (150 x 3 mm, 5 µm, Restek USA) was used for all the other analysis. 

The solvents were the same used for the semipreparative HPLC. The following 

gradient method was applied in the two columns: solvent A varied from 0.10 to 10% in 

5 min, from 10 to 15% in 5 min, from 15 to 30% in 10 min, from 30 to 35% in 5 min, 

from 35 to 40% in 3 min, from 40 to 45% in 3 min, from 45 to 100% in 11 min and 

then was kept in these conditions for 5 min. Total time of analysis 47 min, equilibration 
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time 5 min, flow rate 0.4 mL/min with the Poroshell column and 0.8 mL/min with the 

Raptor column. Injection volume 10 μL. The chromatograms were recorded at 280 nm, 

330 nm, 350 nm. 

 

Fractionation of MP-1 by semipreparative HPLC-DAD 

About 1 g of millet flour was extracted in 50 mL of acidic MeOH (1% HCl v/v), then 

filtered and the solution recovered and concentrated up to few mL. This extract was 

used for the next fractionation by semipreparative HPLC-DAD, with a system HP 

series 1050 and a Polaris RP-C18 Ether column (250×10 mm, 5µm, Varian, Germany). 

Elution was performed at a flow rate of 4 mL/min with CH3CN (solvent A) and H2O 

(pH 3.2, formic acid, solvent B). Solvent A varied from 0.10 to 10% in 10 min, from 

10% to 15% in 10 min, from 15% to 30% in 10 min, from 30% to 100% in 5 min and 

then 10 min at 100% A; total time of analysis 45 min, equilibration time, 10 min; 

injection volume of sample 100 µL; a total of 10 fractions were recovered. 

 

MS analysis  

The HPLC-DAD-MS analysis of the phenolic extracts were performed using the same 

column and chromatographic conditions described in the HPLC-DAD section. HPLC-

DAD-MS system was from Waters and composed by 2695 HPLC, 2996 DAD and 4 

micro MS equipped with Zspray ESI source. The ESI interface parameters were 

capillary 2.90 kV, cone 64 V in the first 18 minutes and 30 V till the end of the 

analysis, source temperature 120°C, desolvation temperature 350°C, cone gas flow 19 

(L/Hr), desolvation gas flow 350 (L/Hr). Data were acquired in negative ion mode 

from 110 m/z to 1000 m/z. 
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The isolated fractions by semipreparative HPLC were analysed without applying a 

chromatographic separation but by direct infusion in MS and MS
n
 on a LTQ (Thermo 

Scientific, Germany) ion trap mass spectrometer. Each fraction was taken to dryness by 

evaporation under vacuum and re-suspended in a CH3CN/H2O mixture, containing 

0.1% formic acid. This solution was infused by syringe into the ESI interface of the 

instrument. Sheath and auxiliary gas flow rates were 10 and 2 (arbitrary units), 

respectively; capillary voltage and tube lens voltages, as the collision energy and 

wideband activation voltage in MS
n
 experiments, were optimized for each compound 

of interest during the infusion. The mass spectrometer was calibrated with the standard 

mixture indicated by the producer immediately before the acquisition of the samples, 

both in positive and in negative ion mode. 

 

Quantitation of phenolic acids and flavonoids by HPLC-DAD 

The phenolic acids were quantified using a five-point calibration curve with ferulic 

acid as external standard (purity ≥ 99%) at 330 nm, linearity range 0-0.21 µg (R
2
=1.0). 

The content of flavonoid aglycones was determined using a five-point calibration curve 

with vitexin as external standard (purity ≥ 95%) at 350 nm, linearity range 0-1.23 µg 

(R
2
=1.0); vitexin 2”-O-rhamnoside (purity ≥ 95%) at 350 nm, linearity range 0-0.67 

µg, (R
2
=1.0) was selected to quantify the glycosylated flavonoids. 

 

Response Surface Methodology 

Response surface methodology was carried out on the second batch of millet (MP-2) 

with the support of Modde 10 software package (Modde 10 reference), which was 

purchased from S-IN (Vicenza, Italy). For the investigation of both acidic and basic 

hydrolysis, a Doehlert Design was selected. In the case of basic hydrolysis, sonication 
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time was studied at five levels (range 60-120 min), NaOH concentration at seven levels 

(range 0.10 M - 4.00 M), and temperature at three levels (range 20-60 °C). For acidic 

hydrolysis, H2SO4 concentration was investigated at five levels (range 0.1-2.0 M), 

sonication time at seven levels (range 30-240 min), while temperature at three levels 

(20-40-60 °C). The planned experiments were run in a randomized order and data 

treatment was performed. The software was used to calculate the hypothesized 

quadratic models, to perform ANOVA, and to find the MODR by means of risk failure 

map, setting the risk of failure threshold to 1% (corresponding to 99% probability). 

 

Proximate analysis 

A Soxhlet extraction was used to gravimetrically determine the fat content in MP-2 

sample, according to ISS protocol (1996/34). The protein content was determined by 

the Kjeldal method, with N*6.25 (N= total nitrogen). Dietary fiber (soluble and 

insoluble) was assessed according to AOAC Method 991.43 (Determination of soluble, 

insoluble and total dietary fiber in foods and food products, final approval 1991). 

 

Statistic methods  

Each experiment was performed in triplicate and results were expressed as mean ± SD 

using EXCEL software (version 2013) in-house routines. One-way ANOVA and F-test 

(p < 0.05) by Microsoft Excel statistical software and Fisher’s LSD (DSAASTAT 

software v. 1.1, Onofri, Pisa, 2007) were used for pointing out significant differences 

between quantitative data. 

Modde 10 software package (Modde 10 reference) was purchased from S-IN (Vicenza, 

Italy) and was used to generate the Doehlert Design used for RSM, to perform data 

analyses and to find the MODR by means of risk failure maps. 
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1.2.1.3 Results and Discussion 

The two samples of small millet from Burkina Faso (MP1-MP2) were morphologically 

similar in terms of shape, size, color of the caryopsis and well represent typical samples 

found in the local markets and consumed by the local population. To better characterize 

their composition in terms of phenolic compounds, a fractionation by semipreparative 

HPLC was first applied. The defatted flours of the two samples were preliminary 

characterized in terms of free and bound phenols and the richest one regarding bound 

phenols was selected for further investigations and to optimize the phenolic recovery 

also using RSM.  

 

Characterization of phenols by HPLC-DAD-MS and MS
n
 

A preliminary investigation was performed on MP-1 and MP-2 millet samples to obtain 

chromatographic profiles regarding their content in flavonoids and cinnamic acids as 

free components; this step allowed to recognize MP-1 as the richest sample. This latter 

one was selected to apply a fractionation by semipreparative HPLC-DAD. Analysing 

by direct infusion in HPLC-MS and MS
n
 the ten fractions recovered from the 

semipreparative HPLC a group of C-glycosylated flavonoids (3, 4 and 7), one O-

glycosylated flavonoid (6), and five cinnamic derivatives (8-11 and 12) were detected 

(Table 1.2.1.1). 
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Table 1.2.1.1 Identified compounds in millet sample MP-1 according to UV-Vis and  

mass spectra 

 

Compound 1 was identified as N
1
,N

4
-dicaffeoylspermidin: the MS

2
 spectrum showed a 

base peak at 332 m/z due to the loss of 162 Da and two other peaks at 289 m/z and 161 

m/z. This fragmentation suggested the presence of a caffeoyl group linked to an amide 

portion, as already described by (Kang et al., 2016) for sorghum grains. The mass 

spectra in negative ionization for compound 3 (Fig. 1.2.1.1) showed the deprotonated 

molecular ion at 609 m/z. The MS
2
 of this species produced the fragment at 489 m/z 

[M-H-120]
−
, a typical loss of C-glycosyl flavonoids, corresponding to cross-ring 

cleavages in the sugar moiety (Iswaldi et al., 2011). 

 

Analytes λ max 

(nm) [M-H]
-

 Fragment ions (m/z) Identified compounds 

1 327 468 332,306,289,161 N
1
,N

4
-dicaffeoylspermidine 

3 
270,349 

609 489,429,357,327 luteolin-(7-O-glucopyranosyl)-8-C-

glucopyranoside 

4 268,334 593 503,473,413,327,299 vicenin II 
6 268,334 577 413,293 vitexin-2”-O-rhamnoside 
7 268,336 431 311,283 vitexin 
8 287sh,323 339 324,307,193,175 ferulic acid rhamnoside 
9 287sh,323 339 324,307,193,175 ferulic acid rhamnoside isomer 

10 287sh,323 193 178,161,134 isoferulic acid 

11 290sh,310 177 162,145,118 methyl hydroxycinnamate 

12 300sh,324 207 192 methyl ferulate 
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Figure 1.2.1.1 MS
2 
spectrum of the deprotonated molecular ion at 609 m/z of the compound 3: 

luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside 

 

The ion species at 327 m/z obtained also from MS
3
 (data not shown) was linked to the loss 

of 162 Da typical of hexoses (Simirgiotis et al., 2013). In light of these findings, 

compound 3 was identified as luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside. 

Compound 4, with a deprotonated molecular ion at 593 m/z, showed a MS
2
 spectrum with 

three ion species at 503 m/z [M-H-90]
−
, 473 m/z [M-H-120]

−
, and 413 m/z [M-H-180]

−
 

and, according to literature (Chandr, 2013; Silva et al., 2014) it was identified as vicenin II. 

Compound 6 was identified as vitexin 2”-O-rhamnoside, an O-glycosylated flavonoid, with 

the deprotonated molecular ion at 577 m/z and the species at 413 m/z and 293 m/z 

attributable to the loss of 164 and 120 Da, respectively (Figure 1.2.1.2) as previously 

highlighted (Silva et al., 2014; Wu et al., 2012; Dinelli et al., 2011).  
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Figure 1.2.1.2 MS
2
 spectrum of compound 6 vitexin 2”-O-rhamnoside 

 

Compound 7 with a deprotonated molecular ion at 431 m/z and a typical fragmentation 

of a C-glycosylated with a loss of 120 Da (311 m/z) was identified as vitexin. With 

regard to the cynnamoyl derivatives, the isobaric compounds 8 and 9 at 339 m/z were 

identified as two ferulic acid rhamnoside isomers. The fragmentation in MS
2
, 

highlighting three ion species at 324 m/z [M-H-15]
−
, 193 [M-H-146]

−
 and 174 m/z [M-

H-164]
−
 with different relative abundances, was in agreement with the hypothesized 

structure (Figure 1.2.1.3).  
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Figure 1.2.1.3 MS
2 
spectra of compounds 8 and 9 (ferulic acid rhamnoside isomers). 

 

Compound 10 was identified as isoferulic acid with a deprotonated molecular ion at 

193 m/z and ion species at 178 m/z, 161 m/z and 134 m/z (Li et al., 2003). Compound 

11 showed a deprotonated molecular ion at 177 m/z and was identified as methyl 

hydroxycinnamate (Figure 1.2.1.4).  
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Figure 1.2.1.4 MS
2 
spectrum of compound 11 as methyl hydroxycinnamate 

 

Compound 12 was initially identified in millet as methyl ferulate in agreement with a 

deprotonated molecular ion at 207 m/z and the ion at 192 m/z attributable to the loss of a 

methyl group (Figure 1.2.1.5). Compounds 11 and 12 were tentatively identified as 

cinnamic ester derivatives detected in millet for the first time, to the best of our knowledge, 

but already reported as components of cereals according to literature (Nyström et al., 2005; 

Karamać et al., 2005). 
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Figure 1.2.1.5 MS
2 
spectrum of compound 12 as methyl ferulate 

 

     Free and bound phenol distribution 

Manifold methods have been used for the extraction of free phenols in cereals, and 

specifically for millet varieties (Chandr, 2013; Pradeep et al., 2018; Xiang et al., 2019). 

According to the preliminary work of Banerjee et al., (2012) in which the extraction 

power of different solvents was compared, acidified MeOH was selected as the best 

solvent to recover this fraction. Moreover, our preliminary tests, using also an acidified 

EtOH:H2O 7:3 v/v mixture, confirmed the acidified MeOH as the most suitable solvent 

to recover the free phenolic compounds (data not shown). The HPLC-DAD profiles of 

the free phenols obtained from the two batches of millet were similar (Figure 1.2.1.6 a), 

with only small differences in the relative abundance of a few analytes (3 and 4). 

Applying method BF, the HPLC-DAD profiles of the two extracted batches showed 

some differences in the composition of bound phenols (Figure 1.2.1.6 b). 
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Figure 1.2.1.6 Chromatographic profiles at 330 nm of a) free and b) total phenols of MP-1 and 

MP-2 (Poroshell column). Compounds 1, N
1
,N

4
-dicaffeoyl-spermidin; 2, p-coumaric acid; 3, 

luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside; 4, vicenin II; 5, ferulic acid; 6, vitexin 2”-O-

rhamnoside; 7, vitexin; 8, ferulic acid rhamnoside; 9, ferulic acid rhamnoside isomer; 10, isoferulic 

acid; 11, methyl hydroxycinnamate; 12, methyl ferulate. 

 

a) 

b) 
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Vitexin 2”-O-rhamnoside (6) was not detected in the two batches; p-coumaric acid, 

which is reported as the most abundant phenolic acid in millet (Pradeep et al., 2018), 

was not present in sample MP-1 (Figure 1.2.1.6 b). On the other hand, methyl ferulate 

(12) was identified for the first time in both the millet samples. How this molecule is 

related to the extractive procedure will be discussed later in this article. 

 

Quantitative evaluation of free and bound phenols 

The quantitative results for the two batches are reported in Table 1.2.1.2. Although the 

total phenols obtained after basic hydrolysis were higher than the free ones in both 

millet samples, this result was not confirmed for some of the compounds. Samples MP-

1 and MP-2 showed a total content of free phenols of 127.4 mg/100g and 63.3 

mg/100g, respectively, with approximately 90% of flavonoids. Although the highest 

content of total phenols was found in MP-1, MP-2 was characterized by the highest 

amount of the bound fraction (60.4 mg/100g), calculated by the difference between 

total and free phenols. 
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Table 1.2.1.2 Free and total phenolic compounds in the two batches of millet. Total phenols were 

recovered  applying BF method. Data are the mean of three independent extractions and are 

expressed as mg/100 g of dry weight. RSD <1%. nd, not detected. 

In the subsequent step, we applied different extractive procedures, both in basic and 

acidic conditions, to identify the most suitable one for an exhaustive recovery of 

phenols. To this aim, we selected sample MP-2 due to its higher amount of bound 

phenols. The same batch was also analysed regarding its nutritional composition: a 

total fiber amount of 10.8 % (of which 88% was insoluble fiber), 8.3% of total proteins 

and 1.2% of ash were found. 

 

Optimization of the extractive methods for total phenols 

Regarding bound phenols, almost all the literature about millet reports the application 

of basic hydrolyses with NaOH 1-2 M, usually at room temperature, similarly to what 

proposed for the other cereals (Table 1.1.3). At the same time, acidic hydrolysis was 

reported as not suitable because it induces a degradation of hydroxycinnamic and 

hydroxybenzoic acids (Adom et al., 2002; Arranz et al., 2010; Dinelli et al., 2011). 

Nevertheless, in the literature data reporting the effect of acidic procedures on the 

stability of phenolic compounds during their extraction from cereals are scant and not 

  
Extraction of 

free phenols  

Extraction of 

total phenols 

Analytes Compounds MP-1 MP-2 MP-1 MP-2 

1 N
1
,N

4
-dicaffeoyl-spermidin 6.8 7.1 nd nd 

2 p-coumaric acid nd nd nd 2.3 

3 luteolin-(7-O-glucopyranosyl)-

8-C-glucopyranoside 
44.3 35.3 17.3 3.2 

4 vicenin II 44.7 7.6 45.2 6.7 

5 ferulic acid nd nd 16.5 34.2 

6 vitexin 2”-O-rhamnoside 12.9 3.0 nd nd 

7 vitexin 9.1 4.6 9.4 4.9 

8 ferulic acid rhamnoside 2.5 1.3 nd nd 

9 ferulic acid rhamnoside isomer 3.2 1.6 nd nd 

10 isoferulic acid 1.1 0.5 nd nd 

11 methyl hydroxycinnamate 1.1 1.2 4.4 5.3 

12 methyl ferulate 1.7 1.1 56.5 67.1 

Total  127.4 63.3 149.3 123.7 
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supported by sufficient experimental data. For this reason, in this investigation a set of 

different extractive procedures (both in acidic and basic conditions) were 

systematically applied to sample MP-2 and the effectiveness of these procedures was 

compared in terms of total phenols recovered and applied extraction times. 

For the analysis of the extracts, we selected the Raptor column, which guaranteed a 

better chromatographic resolution particularly for compounds 5 and 6, identified as 

ferulic acid and vitexin 2”-O-rhamnoside, respectively. These peaks were co-eluted 

using the Poroshell column (Fig. 1.2.1.7), while the Raptor column made it possible to 

maintain the same resolution for the other analytes and to reduce the total analysis 

time. 

 

Figure 1.2.1.7 Chromatographic profiles at 330 nm of the bound phenols from method BF 

using the Poroshell and Raptor columns. Compounds  2, p-coumaric acid; 3, luteolin-(7-O-

glucopyranosyl)-8-C-glucopyranoside; 4, vicenin II; 5, ferulic acid; 6, vitexin 2”-O-

rhamnoside; 7, vitexin; 11, methyl hydroxycinnamate; 12, methyl ferulate. 
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As for the basic hydrolysis, a methanol solution with 4 M NaOH (method BS) was 

applied and compared with the softer conditions of method BF (0.1 M NaOH). The 

former procedure induced a partial degradation of the phenolic compounds in millet, 

higher than that observed applying method BF, demonstrating that the use of NaOH 4 

M leads to full disappearance of methyl ferulate, completely converted into ferulic 

acid. On the contrary, no differences in flavonoid composition were observed (Figure 

1.2.1.8).  

 

Figure 1.2.1.8 Chromatographic profiles of total phenols extracts from MP-2 with BF and BS 

methods. Compounds 2, p-coumaric acid; 3, luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside; 

4, vicenin II; 5, ferulic acid; 6, vitexin 2”-O-rhamnoside; 7, vitexin; 11, methyl hydroxycinnamate; 

12, methyl ferulate. 
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At the same time, to investigate the effects of acidic hydrolysis, MP-2 was also 

extracted in methanol with H2SO4 1%, as previously applied (Arranz et al., 2010); the 

extraction was carried out with the aid of ultrasounds to obtain the phenolic profile 

shown in Figure 1.2.1.9. 

The chromatograms obtained from basic hydrolysis with NaOH 0.1 M revealed two 

main compounds: ferulic acid (5) and methyl ferulate (12), while those from acidic 

hydrolysis (Figure 1.2.1.9) revealed only methyl ferulate (12), previously found in rice 

(Tanaka et al., 1964) but never identified in millet to date. In order to exclude that 

methyl ferulate was an artefact of the extraction process (due to the simultaneous 

presence of ferulic acid and methanol), softer basic conditions (NaOH 0.1 M in 

methanol) were tested on a solution of ferulic acid as pure standard: no formation of 

methyl ferulate was observed, allowing us to conclude that this ester is naturally 

present in bound form in millet. The absence of methyl ferulate is attributable to the 

strong basic conditions applied in the previous studies, which induced the breaking of 

the ester bond. 

 

Figure 1.2.1.9 Chromatographic profile at 330 nm of bound phenols from method A of MP-2 (on 

the Raptor column). Compounds 4*, luteolin 8-C-glucopyranoside, 7, vitexin; 10, isoferulic acid; 

11, methyl hydroxycinnamate; 12, methyl ferulate 
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The previously proposed method BK (Kim et al., 2006) was then tested to verify if a 

unique extractive step could be sufficient to recover free and bound phenols. This 

procedure was applied on the solid residue recovered from the extraction of free 

phenols; the results from the HPLC-DAD analyses highlighted the absence of the 

flavonoids, thus confirming that these molecules were only present in free form (Figure 

1.2.1.10). 

 

Figure 1.2.1.10 Chromatographic profile (Raptor column) at 330 nm: bound phenols from method 

BK applied to MP-2. Compounds 2, p-coumaric acid; 5, ferulic acid; 11, methyl hydroxy 

cinnamate; 12, methyl ferulate. 

 

Furthermore, the basic hydrolyses applied on the flour (methods BF and BS) modified 

the flavonoid content.Luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside (3) strongly 

decreased (as much as 88%) with respect to the amounts found in the free phenolic 

extract (Table 1.2.1.3). On the contrary, vicenin II (4) and vitexin 2”-O-rhamnoside (6) 

remained unaltered during basic hydrolysis but, analogously to compound 3, both 

disappeared after acidic hydrolysis. The HPLC-DAD-MS analyses confirmed that the 

acidic condition did not alter the distribution of the phenols, with only the exception of 
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two O-glycosylated flavonoids that were hydrolysed in the corresponding aglycones. 

Indeed, regarding vitexin 2”-O-rhamnoside (6), acidic hydrolysis increased the 

concentration of the aglycone, vitexin (7). In addition to these changes, acidic 

hydrolysis also revealed one new flavonoid, compound 4*, with the same UV-Vis 

spectrum of compound 3 and a MS spectrum with an ion at 447 m/z. Based on these 

findings, it was identified as luteolin 8-C-glucopyranoside, and the complete hydrolysis 

of compound 3 was also confirmed by the quantitative findings. 

Overall, in terms of recovery of total phenols, the tested methods gave different results. 

The strong basic hydrolysis (method BS) led to the degradation of methyl ferulate (12) 

and to a minimum recovery of phenols (Table 1.2.1.3), while the acidic procedure 

(method A) gave the highest recovery of total phenols with a value of 163.8 mg/100g. 

Differently from hydrochloric acid (Gao et al., 1994), the use of sulfuric acid to 

hydrolyse the phenolic compounds in other matrices different from cereals, has been 

successfully applied (Bellumori et al., 2019).  

It has been reported that, in several varieties of millet, ferulic acid is the most abundant 

molecule among the phenolic acids, reaching values close to 86% of the total phenols. 

Our findings with a strong basic hydrolysis (method BS) were perfectly in agreement 

with the literature (ferulic acid 87% of total phenolic acids), but by choosing milder 

basic conditions (method BF) ferulic acid was not the main compound (only 23% of 

the total phenols) because methyl ferulate, revealed for the first time, was not 

hydrolysed in these conditions. This finding allowed us to ascertain that methyl ferulate 

is the most abundant molecule among phenolic acids and their derivatives (70%). 

Starting from these results, RSM was applied to optimize the extractive yields, working 

both in basic and acidic media. 
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Table 1.2.1.3 Concentrations of phenolic compounds from different extractive procedures applied 

on MP-2 sample. Data are the mean of three independent extractions (RSD <1%) and are expressed 

as mg/100 g of dry weight. In each raw, different letters indicate significant differences at p < 0.05. 

nd, not detected. 

 

 

Response surface methodology (RSM) for basic extraction 

In order to evaluate the possibility of increasing the recovery values obtained by basic 

hydrolysis, the experimental parameters were investigated in greater depth with the aid 

of RSM to identify the zone where a selected target value of recovery of total phenols 

could be obtained with a probability of 99%.  

The considered factors were sonication time, NaOH concentration and temperature, 

while the studied responses were the total recovery of bound phenols and the recovery 

of compound 5, ferulic acid. This latter was selected in order to have detailed 

information on the effects of the basic hydrolysis on the possible degradation of 

compound 12, methyl ferulate. A quadratic polynomial model, with linear, quadratic 

and interaction terms, was postulated to link the factors to the responses, according to 

the following: 

y=β0+β1x1+β2x2+β3x3+β11x12+β22x22+β33x32+β12x1x2+β13x1x3+β23x2x3+ ε 

Analytes Compounds BF BS A 

2 p-coumaric acid 3.9 a 7.9 b nd 

3 luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside 1.8 a 2.1 a nd 

4 vicenin II 5.4 a 12.7 b nd 

4* luteolin-8-C-glucopyranoside nd nd 40.8 

5 ferulic acid 23.1 a 75.5 b nd 

6 vitexin 2”-O-rhamnoside 11.6 a 12.7 a nd 

7 vitexin 7.5 b 4.6 a 15.7 c 

10 isoferulic acid nd nd 12.7 

11 methyl hydroxycinnamate 5.5 a  nd 9.1 b 

12 methyl ferulate 69.7 a nd 85.5 b 

Total  128.5 115.5 163.8 
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where y is the experimental response, xi are the independent variables, β0 is the 

intercept, βi are the true coefficients, and ε is the experimental error.  

A Doehlert Design (Lewis, 1999; Ancillotti et al., 2018) was generated to estimate the 

coefficients of the model and the related experimental plan is reported in Table 1.2.1.4, 

including three replicate experiments at the center of the experimental domain in order 

to estimate the experimental variance. Sonication time was studied at five levels (range 

60-120 min), NaOH concentration was studied at seven levels (range 0.10 M - 4.00 M), 

and temperature was studied at three levels (range 20-60 °C). 

 

Table 1.2.1.4 Doehlert Design for response surface methodology in the study of basic hydrolysis 

 

The calculated models were refined by deleting selected not significant terms in order 

to improve their quality. According to ANOVA results, the model for the total recovery 

of phenolic compounds was valid but not significant, evidencing that no one of the 

investigated factors exerted a significant influence on this response. On the other hand, 

Exp. no. Sonication 

time 

(min) 

NaOH 

concentration 

(M) 

Temperature 

(°C) 

Total phenolic compounds 

(mg/100g) 

5 Ferulic acid 

(mg/100g) 

1 150 2.05 40 127.0 82.4 

2 120 4.00 40 125.7 81.9 

3 120 2.70 60 124.4 80.7 

4 30 2.05 40 130.6 81.4 

5 60 0.10 40 118.4 11.2 

6 60 1.40 20 124.7 66.5 

7 120 0.10 40 129.4 21.7 

8 120 1.40 20 129.4 81.3 

9 90 3.35 20 118.3 74.3 

10 60 4.00 40 129.4 79.4 

11 60 2.70 60 130.9 82.2 

12 90 0.75 60 129.8 83.3 

13 90 2.05 40 124.5 80.3 

14 90 2.05 40 128.7 83.8 

15 90 2.05 40 122.7 78.7 
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the model for the recovery of compound 5 was found to be significant, but not valid. 

Thus, even if the goodness of prediction (Q
2
=0.498) of this model was acceptable, the 

model could be used only to give a description of the trend of the response, without 

using it in a predictive way. 

The contour plots reporting NaOH concentration vs. sonication time at three different 

values of temperature (20-40-60 °C) are reported in Fig. 1.2.1.11a for the total bound 

phenols and Fig. 1.2.11b  for ferulic acid. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2.1.11 Contour plots obtained by plotting NaOH concentration (0.1-4 M) vs. sonication time 

(60-150 min) at three levels of temperature (20 °C, 40 °C and 60 °C). (a) Total recovery of 

phenolic compounds; (b) recovery of compound 5 ferulic acid. 

 

By examining the plot in Fig. 1.2.1.11a  it appears that the maximum value of total 

phenolic compounds which could be achieved is about 140 mg/100 g, thus much lower 

than the value which could be obtained by using acidic hydrolysis (Table 1.2.1.5). As 

regards compound 5 (Fig. 1.2.1.11b), the zone where this response was maximized 

a) 

b) 
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corresponded at high temperature, high sonication time and medium-high 

concentration, thus confirming that stronger basic conditions could actually lead to the 

degradation of 12 methyl ferulate and thus to an increased amount of compound 5. 

 

RSM for acidic extraction and method operable design region 

In the case of acidic hydrolysis, the selected factors were H2SO4 concentration, 

sonication time and temperature, and the considered response was, again, the total 

recovery of bound phenols. Similarly to the RSM study of basic hydrolysis, a quadratic 

polynomial model with linear, quadratic and interaction terms was postulated, and the 

Doehlert Design was chosen to estimate its coefficients. In any case, for acidic 

hydrolysis the experimental domain for reagent concentration was narrower and the 

one for sonication time was wider with respect to those considered for the basic 

conditions. Hence, in this case H2SO4 concentration was investigated at five levels 

(range 0.1-2.0 M) and sonication time at seven levels (range 30-240 min), while three 

levels of temperature were chosen (20-40-60 °C). The experimental plan is shown in 

detail in Table 1.2.1.5. 
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Table 1.2.1.5 Doehlert Design for response surface methodology in the study of acidic hydrolysis 

 

The model for the total recovery of phenolic compounds was refined, leading to very 

good results in terms of goodness of fit (R
2
=0.963) and goodness of prediction 

(Q
2
=0.701), and it was demonstrated as significant and valid in terms of ANOVA. 

The contour plots are reported in Figure 1.2.1.12  and show that the maximization of 

the response was obtained by setting high levels of sonication time, medium-high 

levels of H2SO4 concentration, and high levels of temperature. Both a quadratic effect 

of H2SO4 concentration and a negative interaction between H2SO4 concentration and 

sonication time were highlighted. 

 

 

 

Exp. no. H2SO4 

concentration 

(M) 

Sonication 

time 

(min) 

Temperature 

(°C) 

Total phenolic compounds 

(mg/100g) 

1 2.000 135 40 164.0 

2 1.525 240 40 165.9 

3 1.525 170 60 171.0 

4 0.100 135 40 86.5 

5 0.575 30 40 99.0 

6 0.575 100 20 112.9 

7 1.525 30 40 145.7 

8 1.525 100 20 154.6 

9 1.050 205 20 158.2 

10 0.575 240 40 166.7 

11 0.575 170 60 168.3 

12 1.050 65 60 157.7 

13 1.050 135 40 165.0 

14 1.050 135 40 162.8 

15 1.050 135 40 174.0 
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a) 

 

b) 

 

 

Figure 1.2.1.12. a) Contour plots for the response total recovery of phenolic compounds, 

obtained by plotting H2SO4 concentration (0.1-2 M) vs. sonication time (30-240 min) at three 

levels of temperature (20 °C, 40 °C and 60 °C). b) Probability maps obtained by plotting 

H2SO4 concentration (1.113 M) vs. sonication time (212min) at three levels of temperature (40 

°C, 50 °C and 60 °C). The MODR is green and included within the line corresponding to 1% 

risk of having a total recovery of phenolic compounds 

 lower than 165 mg/100g 

 

The target value for the total recovery of phenolic compounds was set as 165 mg/100 g 

and the zone where the predicted value of the response is equal or higher to the target 

corresponds to the green zone depicted in the sweet spot plots presented in Figure 

1.2.12b. The green zone becomes wider when moving from low to high levels of 

temperature. 
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However, the sweet spot region is calculated on the basis of the model but cannot give 

any guarantee that the response will fulfil the requirement (≥165 mg/100 g) with high 

probability. As a matter of fact, to define the MODR it is necessary to consider model 

uncertainty because the MODR is a set of experimental conditions where the criteria 

meet acceptance limits with a selected probability (Deidda et al., 2018). In this case, 

calculation of the MODR was performed by MODDE
®

 10 software by using Monte-

Carlo, setting the desired probability as 99% and expanding the factor ranges from an 

optimum set-point to the widest possible range where the prediction for the total 

recovery of phenolic compounds is equal or higher to the target limit of 165 mg/100 g. 

The starting set-point was the following: H2SO4 concentration, 1.113 M; sonication 

time, 212 min; temperature, 55 °C. The resulting probability maps are represented in 

Figure 1.2.12b and the MODR was defined as the zone included within the line 

corresponding to a risk of failure equal to 1%, corresponding to probability π≥99%.  

The resulting MODR was the following: H2SO4 concentration, 0.827-1.398 M; 

sonication time, 163-240 min; temperature, 40-60°C. The MODR was validated by 

testing verification points at its edges and verifying the prediction of the model. Inside 

the MODR every combination of the factor values can be selected as working points 

(Orlandini et al., 2013) and in this case the selection was made taking into 

consideration that saving time in terms of sonication could lead to practical advantages 

for the analyst. Hence, the final optimized conditions were: H2SO4 1.20 M; sonication 

time of 180 min; temperature 55 °C. When applying these conditions (n=3, α/2=0.025), 

the measured recovery of the total phenols reached a concentration of 178±2 mg/100 g, 

twenty percent higher with respect to the best result obtained in a basic media. 

The validated method, attained by applying RSM and MODR, allowed recovery of the 

free and bound forms in only one extractive step, the detection of methyl ferulate for 
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the first time and confirmation that the acidic hydrolysis is the suitable procedure to 

guarantee the highest recovery of the total phenols from millet and presumably from 

cereals, differently from that in the literature to date.  

Finally, the validated method in acidic media was tested on five not decorticated millet 

samples which differed a lot in colour (yellow, green and reddish), shape and size of 

the caryopsis. Furthermore, to confirm the goodness of the method in the recovery of 

total phenols, a comparison was made on these samples by applying an acid procedure 

with few modifications (Table 1.2.1.6). The obtained results confirmed the selected 

procedure by RSM and MODR as suitable to guarantee the maximum phenolic 

recovery also working on millet samples with very different morphological characters.  

 Total phenols mg/100g 

Samples *Method  A1 Method ARSM 

M1 55.8 a 69.0 b 

M2 45.1 a 82.8 b 

M3 89.5 a 90.8 b 

M4 106.8 a 135.0 b 

M5 88.6 a 100.3 b 

 

Table 1.2.1.6 Total phenolic recovered after two different acidic hydrolysis on different millet 

samples. In each raw, different letters indicate significant differences at p < 0.05 

*Method A1 differs from the optimized method (Method ARSM) as follow: sonication time, 135 

min; temperature of sonication, 40°C; and molarity, 1.05 M. 

M1-M5 are not decorticated millet samples collected from the same geographical area (Cesa-

Arezzo, Italy) with different color and shape. 
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1.2.1.4 Conclusions  

This is the first report to focus on the comparison between acid and basic hydrolytic 

conditions in recovering the bound phenols of millet. Despite the literature data, the 

applied acidic hydrolysis was able to extract the highest amount of total phenolic 

compounds while, according to our results, the basic hydrolysis underestimates the 

phenolic concentration.  

For the first time methyl ferulate was shown to be naturally present as bound phenol in 

millet, while the absence of this molecule in the previous works is attributable to the 

strong basic conditions usually applied and responsible of the breaking of the ester 

bond.  

The best acidic procedure was defined and validated by RSM and MODR. The novelty 

of the work can be related to several aspects: a) a comparison with different extractive 

procedures in basic and acidic media suitable for millet but easily applicable also to 

other cereals; b) the use of RSM to define the best one-step extraction for recovering 

free and bound phenols; c) the identification of an acidic hydrolysis as extractive 

procedure faster and easier in comparison of those proposed by the literature to date.  
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1.2.2 Phenolic composition of ancient and modern wheat species  

from Tuscany and Campania 

Diletta Balli, Maria Bellumori, Nadia Mulinacci, Marzia Innocenti* 

*corresponding author 

Unpublished results 

 

Abstract 

A big challenge for our century has to do with discovering new foods, including a re-

discovering of new cereal species, with greater health effects. Ancient grains are defined as 

species that have remained unchanged over the years and they are gaining growing 

scientific interest thanks to their healthier nutritional profile with respect to modern ones. 

The phenolic composition of ten wheat species from Tuscany (eight old and two modern 

grains) and eleven wheat species from Campania (nine old and two modern grains) was 

evaluated; Tuscan grains were grown under two types of densities. Different hydrolysis 

strategies were preliminarily performed, both in acidic and basic media, on the Tuscan 

samples. The best extractive procedure with H2SO4 (1.20 M, sonication time of 180 

minutes and temperature of 55° C) was then applied to all Campania wheat grains. The 

results showed that the ancient species, cultivated at a higher density, were characterized 

by greater yields per unit area, highlighting that it is possible to increase agronomic yields 

without losing phenolic compounds. All the modern and old species from Tuscany and 

Campania showed similar phenolic content, ranging from 0.67 to 1.14 mg/g and from 0.72 

to 0.85 mg/g in Tuscan and Campania samples, respectively. No significant differences 

were observed in terms of phenolic composition among old and modern species. 
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1.2.2.1 State of the art and aims of the work 

Food products derived from cereal grains constitute a major part of the daily diet and 

wheat is considered the most important cereal crop worldwide (Shewry et al., 2015).  

Today, most wheat species are hybrids created from ancient wheat over the last 100 to 150 

years. Cereal varieties developed in recent years have been oriented toward promoting crop 

yields, reducing height and timing of crop maturation, increasing proteins content and 

technological characteristics (Adom et al., 2002). Although these modern wheat varieties 

have positive properties in terms of production, compared with the original ancient wheat, 

little attention has been given to the nutritional value of the ancient species (Dinu et al., 

2018). In this context, establishing the amount of phenolic compounds in ancient and 

modern wheat varieties can be valuable in order to select specific cereal grains suitable for 

the production of health-promoting staple food (Gotti et al., 2018). 

The aim of this work was to shed light on the phenolic content of different wheat species 

from Tuscany cultivated under two types of densities and species from Campania. To 

avoid environmental interference, both ancient and modern wheat samples, were grown in 

the same field and harvested in the same period of the year, dividing the wheats into 

Tuscan and Campania groups.  
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1.2.2.2. Materials and methods 

Samples and reagents 

A total of 21 samples were analysed. Eight ancient and two modern wheat species were 

purchased in 2018 from Cesa, Arezzo, Italy, and were cultivated under two densities: 

density 1= 250 m
2
, density 2= 350 m

2
. Nine old wheat species and three modern ones were 

cultivated in 2019 in Caselle in Pittari, Salerno, Italy. The ancient and modern varieties 

were as follows. Ancient varieties from Tuscany: Gentil Rosso (GRd1; GRd2); Verna 

(VRd1; VRd2); Frassineto (FRd1;Frd2); Bianconostrale (BNd1; BNd2); Inalettabile (ILd1; 

ILd2); Andriolo (ADd1;ADd2); Sieve (SVd1; SVd2) and Gentil Bianco (GBd1;GBd2). 

Modern varieties from Tuscany: Control (COd1; COd2) and Bologna (BOd1; BOd2) 

Ancient varieties from  Campania: Carosella 1 (CAR1), Carosella 2 (CAR2), Russulidda 

(RUS), Ianculidda 1 (IA1), Ianculidda 2 (IA2), Annibale (AN), Saragolia Rossa (SR), 

Cappelli (CA). Modern varieties from Campania: Ambrogio (AM) Aureo (AU) and 

Bologna (BO) (Table 1.2.2.1). All solvents were of analytical HPLC grade from Sigma 

Aldrich (St. Louis, Missouri, USA). Ultrapure water was obtained by the Milli-Q-system 

(Millipore SA, Molsheim, France). Sulfuric acid (95.0-98.0%) and sodium hydroxide (≥ 

98) were purchased from Sigma Aldrich (St. Louis, Missouri, USA). Ferulic acid standard 

was purchased from Sigma Chemical Co. (St. Louis, MO, USA). Standards of schaftoside 

was purchased from Extrasynthese (Genay, France).  
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Table 1.2.2.1. Ancient and modern wheat varieties from Tuscany (a) and Campania (b).

 Ancient wheat Modern wheat 

 
Gentil 
Rosso 

Verna Frassineto Bianconostrale Inallettabile Andriolo Sieve 
Gentil 
Bianco 

Control Bologna 

Density 
1 

GRd1 VRd1 FRd1 BNd1 ILd1 ADd1 SVd1 GBd1 COd1 BOd1 

Density 
2 

GRd2 VRd2 FRd2 BNd2 ILd2 ADd2 SVd2 GBd2 COd2 BOd2 

 

Ancient wheat 
Modern wheat 

Carosella 

I 

Carosella 

2 
Russulidda 

Ianculidda 

1 

Ianculidda 

2 
Annibale 

Saragolla 

Rossa Cappelli 
Ambrogio Aureo Bologna 

CAR1 CAR2 RUS IA1 IA2 AN SR CA AM AU BO 

 

a) 

b) 
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Extraction of phenolic compounds  

Free phenols. The Tuscan samples Gentil Rosso (GRd1), Bianconostrale (BNd2), Verna 

(VRd2), and Gentil Bianco (GBd2) were treated, according to the method reported by Balli 

et al. (2019), for the extraction of free phenolic compounds. Briefly, two g of the defatted 

flour were suspended in 20 mL of acidic MeOH and, after 30 minutes of sonication (DK 

Sonic, 42 KHz), stirred by a magnetic stirrer for about 12 h. The supernatant was separated 

by centrifugation (5000 rpm, 10 min), the residue re-suspended in 25 mL of the extractive 

mixture, sonicated for 30 minutes, and stirred for 2 h. The two supernatants were collected 

and brought up to a volume of 50 mL in a flask. 

Bound phenols: basic hydrolysis by NaOH. 1 g of the residue obtained after free phenols 

extraction was suspended in 25 mL of MeOH:H2O 7:3 v/v (0.1 M NaOH); the solution was 

sonicated for 1 h at 60 °C, then CH3COOH was added until pH reached 6.5-7.0; the sample 

was centrifuged at 5,000 rpm for 10 min. 

Total phenols: acidic hydrolyses by H2SO4. All the wheat samples from Tuscany were 

preliminarily treated with an acidic hydrolysis (Method A). Briefly 1 g of defatted flour 

was suspended in 25 mL of MeOH
+
 (1.05 M H2SO4), the solution was sonicated for 135 

min at 40 °C. The sample was then centrifuged at 5,000 rpm for 10 min. Furthermore, all 

the density two samples from Tuscany (GRd2, FRd2, BOd2, BNd2, ILd2, ADd2, VRd2, 

SVd1, GBd2 and COd2) and all the wheat species from Campania were selected to 

perform the optimized acidic hydrolysis (Method Arsm) proposed by Balli et al., (2020) 

for millet. 
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HPLC-DAD analysis of phenolic extracts  

All the phenolic extracts were analyzed using a HP 1200L liquid chromatograph equipped 

with a DAD detector (Agilent Technologies, Palo Alto, CA, USA) after removing 

suspended solids by centrifugation at 14,000 rpm for 10 min with a Raptor ARC-18 

column (150 x 3 mm, 5 µm, Restek USA). The gradient method was the same proposed by 

Balli et al., for millet samples (2020). 

 

Quantitation of phenolic acids and flavonoids by HPLC-DAD 

Phenolic acids were quantified using a five-point calibration curve with ferulic acid as 

external standard (purity ≥ 99%) at 330 nm, linearity range 0 - 0.21 µg (R
2
=1.0). The 

content of flavonoid was determined using a five-point calibration curve with schaftoside 

standard (purity ≥ 95%) at 350 nm, linearity range 0-0.79 µg, (R
2
=0.999). 

 

Statistical methods  

Each experiment was performed in triplicate and results were expressed as mean ± SD 

using EXCEL software (version 2013) in-house routines. One-way ANOVA and F-test (p 

< 0.05) by Microsoft Excel statistical software and Fisher’s LSD (DSAASTAT software v. 

1.1, Onofri, Pisa, 2007) were used to identify significant differences between quantitative 

data. 

 

1.2.2.3  Results and Discussion 

Characterization of phenols by HPLC-DAD analysis 

The HPLC-DAD profiles of modern and ancient wheat species, from Tuscany and 

Campania, resulted superimposable with a total of eleven compounds: two flavonoids 

(compounds 1 and 2) and eight cinnamic derivatives (compounds 3-11) (Figure 1.2.2.1).   
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Figure 1.2.2.1 HPLC-DAD profile at 330 nm of total phenolic extract of Gentil Rosso  

grown at density one (GRd1). 

 

All the compounds were tentatively identified by their retention time, UV-Vis spectra and 

the previous published data on a fermented wheat Italian dietary supplement (Balli et al., 

2019). The identified compounds are listed in Table 1.2.2.2. 

Analytes λ max 

(nm) 
Identified compounds 

1 327 isoschaftoside 
2 270,349 schaftoside 

3 287sh,323 ferulic acid 
4 287sh,323 cin. derivative 
5 290sh,310 methyl hydroxycinnamate 
6 300sh,324 methyl ferulate 
7 287sh,323 cin. derivative 
8 287sh,323 cin. derivative 

9 287sh,323 cin. derivative 

10 287sh,323 cin. derivative 
11 287sh,323 cin. derivative 

 

Table 1.2.2.2 Phenolic compounds identified in wheat species and their λ max 
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Total phenolic content  

One of the main limitations that disincentives the cultivation of ancient grains is related to 

their reduced yield per unit area, with respect to modern species (Cooper, 2015). In this 

context an intensive treatment (density 2) was performed to verify if the agricultural 

conditions could influence the plants’ grown and the plants’ phenols production. All the 

Tuscan samples were firstly treated with acidic hydrolysis (Method A) for the recovery of 

the total phenols in a single extractive step. The quantitative evaluations, for both the 

densities, are reported in Figure 1.2.2.2. 

 

 

Figure 1.2.2.2 Total phenolic content in Tuscan wheat species for both densities.  

The data are expressed in mg/g as a mean of a triplicate. Different letters indicate significant 

differences at p < 0.05. 

 

The total phenolic amounts ranged from 0.66 mg/g to 0.99 mg/g with higher values for 

Gentil Rosso, Andriolo and Verna from density 2, and Control from density 1. Significant 
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differences in the phenolic amount were observed between the two density types for some 

of the species. The results highlighted the greater amount of total phenols in most of the  

samples grown with higher rate of plants per m
2
 (density 2), confirming, a certain  

capability of plants to increase phenolic compound expression in stressful conditions 

(Sarker et al., 2018). On the other hand, no significant differences were observed in the 

total phenolic amount of ancient (Gentil Rosso, Frassineto, Bianconostrale, Inalettabile, 

Andriolo, Verna, Sieve and Gentil Bianco) and modern (Bologna and Control) wheats. 

This result is in agreement with other recent studies in literature in which the phenolic 

composition of ancient and modern species was compared, highlighting a similar content 

(Dinu et al., 2018; Schewry et al., 2018). According to Balli et al., (2020), the hydrolytic 

method (Method Arsm), optimized by Response Surface Methodology for millet, was 

performed on a pool of selected samples from Tuscany (GRd1, FRd2, BOd2, BNd2, ILd1, 

ADd2, VRd2, SVd1, GBd2 and COd1). The total phenolic amounts recovered after the two 

acidic hydrolyses are compared in Figure 1.2.2.3.  

 

Figure 1.2.2.3 Total phenolic content after acidic hydrolyses by H2SO4 (1.05 and 1.20 M) 

Data are expressed as a mean of a triplicate in mg/g. Different letters indicate significant 

differences at p < 0.05. 

b 
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The results highlighted that the total phenolic compounds recovered with the optimized 

procedure (1.20 M) were significantly higher in almost all the samples, with few 

exceptions (Andriolo, Verna and Control).  

The low amounts of flavonoids, ranging from 2% to 5 % of total phenols, are in agreement 

with the literature on wheat and not determined by the hydrolytic procedures. According to 

Balli et al., (2020), no degradation of C-glycolsylated flavonoids was observed applying 

the acidic hydrolysis by sulphuric acid. Indeed, through the extraction of free phenols we 

were able to confirm that flavonoids were natively present in lower amounts in these wheat 

samples and did not diminish after acidic hydrolysis (Figure 1.2.2.4). 

 

 

Figure 1.2.2.4 Flavonoids content after free phenols and acidic hydrolysis 1.20 M. 

Data are expressed in mg/g as a mean of triplicate.  

 

Within phenolic compounds, flavonoids are those more sensitive to the agronomic and 

environmental conditions, for example drought stress and excess of light, which could 

influence their biosynthesis in plants (Rozema et al., 1997; Tattini et al., 2004).  
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Because basic hydrolysis is the most common method proposed so far for the extraction of 

bound phenolic compounds in cereals, some wheat samples from Tuscany (VRd2, GBd2, 

GRd1, BNd2) were also treated in alkaline conditions. It is generally carried out with 

sodium hydroxide ranging from 1 to 4 M and may require extraction times of several hours 

(Dinelli et al., 2011; Acosta-Estrada et al., 2014).  

Comparing the total phenolic amounts obtained after basic procedure (free+bound 

compounds) and acidic hydrolyses, the results confirmed the ability of acidic conditions, in 

a single extractive step, to increase the percentage of recovered phenols (Figure 1.2.2.5). 

 

 

Figure 1.2.2.5 Total phenolic compounds recovered after acidic hydrolysis (1.20 M) and basic 

hydrolysis (0.1M). Data are expressed in mg/g as a mean of triplicate.  

 

In light of these results, the optimized acidic procedure was also performed on the 

Campania wheat samples. The total phenolic compounds in the optimized procedure 

ranged from 0.72 to 0.85 mg/g and from 0.67 to 1.14 mg/g in Tuscan and Campania wheat 

species, respectively. Our values were in the same range as those obtained by Gotti et al., 
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(2018) and those collected in the EU Healthgrain project (Poutanen et al., 2008). 

Moreover, ancient and modern wheat species presented comparable results in terms of 

recovered total phenols.  

The distribution and the total phenolic content of Tuscan and Campania samples are 

described in Table 1.2.2.3.  

a) 

 

b) 

 

Table 1.2.2.3 Phenolic content by acidic hydrolysis in all wheat species from Tuscany (a) and from 

Campania (b). Data are expressed in mg/g as a mean of triplicate. RSD<5% 

 

 

 

Ancient wheat Modern wheat 

Analytes 330 nm GR VR FR BN IL AD SV GB CO BO 

3 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.02 0.01 

4 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03 

5 0.03 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 

6 0.81 0.68 0.47 0.59 0.64 0.63 0.64 0.64 0.67 0.57 

7 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

8 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.02 

9 0.05 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.03 

10 0.05 0.04 0.04 0.07 0.04 0.04 0.04 0.04 0.03 0.04 

11 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.00 0.02 

Total cinnamics 1.10 0.87 0.63 0.83 0.79 0.77 0.82 0.82 0.83 0.75 

           Analytes 350 nm 
          1 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 

2 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 

Total flavonoids 0.04 0.03 0.04 0.02 0.02 0.04 0.03 0.03 0.02 0.04 
 

                                                                             Ancient wheat                                                                                             Modern wheat 

Analytes 330 nm CAR1 CAR2 RUS IA1 IA2 AN SR CA AM AU BO 

3 0.01 0.01 0.01 0.02 0.02 0.01 - 0.01 0.01 0.00 0.01 

4 0.02 0.03 0.03 0.03 0.03 0.02 0.01 0.01 0.02 0.01 0.03 

5 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 

6 0.60 0.61 0.60 0.64 0.58 0.67 0.41 0.56 0.64 0.53 0.63 

7 0.01 0.01 - 0.00 - 0.00 - 0.01 0.01 0.02 0.00 

8 0.01 0.00 - - 
 

0.01 - 0.01 - 0.01 - 

9 0.05 0.04 0.04 0.05 - 0.04 0.03 0.06 0.03 0.05 0.03 

10 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.03 0.01 0.02 0.02 

11 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 

Total cinnamics 0.75 0.75 0.74 0.79 0.69 0.81 0.50 0.75 0.76 0.68 0.77 

            Analytes 350 nm 
           2 0.04 0.06 0.04 0.04 0.05 0.04 0.06 0.07 0.02 0.04 0.01 

Total flavonoids 0.04 0.06 0.04 0.04 0.05 0.04 0.06 0.07 0.02 0.04 0.01 
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1.2.2.4 Conclusions 

Currently, despite the rediscovered interest in ancient wheat, only few literature studies 

propose an accurate comparison between ancient and modern wheat, excluding 

environmental interferences. This work aimed to compare the phenolic content of 

different modern and old species from Tuscany and Campania by analysing samples 

grown in the same field. 

With regard to the extractive procedures, the optimized acidic hydrolysis based on only 

a single step of extraction resulted the most suitable for the recovery of total phenolic 

compounds. The alkaline hydrolysis usually applied to recover the bound phenols from 

cereals underestimated the total amount. All the wheat samples presented similar 

phenolic profiles. Cinnamic derivatives represented the larger class of phenols, instead, 

the C-glycosylated flavonoids, schaftoside and its isomer, were natively lower. Total 

phenolic content ranged from 0.67 to 1.14 mg/g and from 0.72 to 0.85 mg/g in Tuscan 

and Campania samples respectively. No significant differences were observed among 

ancient and modern species despite some reported data in the literature.  
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1.3 Results of fermentation on millet and wheat 

1.3.1 Does Fermentation really increase the phenolic amount in cereals? 

A study on millet. 

Diletta Balli, Maria Bellumori, Laura Pucci, Morena Gabriele, Vincenzo Longo, Paolo Paoli,  

Nadia Mulinacci, Marzia Innocenti
* 

 

*corresponding author 

Submitted to Foods 

Abstract 

Millet is underutilized in Europe, with great advantages compare to other common cereals 

as high proteins, minerals and vitamins levels, its ability to grown everywhere and the 

absence of gluten that make it suitable for patient with celiac disease. In Asia and Africa 

millet is mainly eaten as fermented, and its consume leads to beneficial properties on 

human health. In this context, functional foods based on fermented millet could represent 

new trend in European market. Three millet batches were compared in terms of free and 

bound phenols by HPLC-DAD-MS. The richest one in terms of bound phenols was 

selected for testing a basic (0.1 M NaOH) and an acidic (1.2 M H2SO4) hydrolysis with 

149.3 and 193.6 mg/100g of phenols recovered, respectively. The ability of fermentation, 

with yeast and lactobacilli, in increasing the phenolic compounds, was verified. 

Fermentation increased the cinnamic acids and flavonoids (approx. 30%), mechanically 

trapped into fiber. Vitexin and vitexin-2-O-rhamnoside, significantly higher in the 

fermented millet, inhibited PTP1B enzyme overexpressed in type two diabetes of approx. 

30%. The phenolic extract from fermented millet, demonstrated a higher antioxidant 

protection on human erythrocytes by the Cellular Antioxidant Activity in Red Blood Cells 

(CAA-RBC). 
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1.3.1.1 State of the art and aims of the work 

Gluten free cereals have gained special consideration not only for their nutritional 

suitability for celiac, but also for their properties linked to the presence of many 

phytochemicals able to act as preventive factors against several human (Collar, 2019; Wei 

et al., 2018). For millet the research related to the formulation of new gluten free foods is a 

challenging topic. Despite the potential advantages of millet consumption, this cereal is 

poorly utilized in Europe for human nutrition because of the scarce economic and 

technological support provided till now (Dias-martins et al., 2018). On the contrary, in 

African and Asian tradition, millet is considered a staple crop and approximately 90% of 

world production is destined for human consumption in form of fermented cereal 

(Chandrasekara et al., 2011). In particular, fermentation is reported to increase the bio-

conversion of phenolic compounds from their linked or conjugated forms to their free ones, 

resulting in an increasing concentration of the phenolic component with greater antioxidant 

power (Saharan et al., 2017). In this context the objective of this work was to verify how 

fermentation processes, performed using a commercial mixture of yeast and lactobacilli for 

bread production, influenced the phenolic profile in millet samples. The ability of vitexin 

and vitexin 2”-O-rhamnoside, present in millet samples in inhibiting the PTP1B enzyme 

overexpressed in type two diabetes, was investigated, and the ex vivo Cellular Antioxidant 

Activity (CAA-RBC) in Red Blood Cells was assessed for fermented and unfermented 

samples. The work aims to propose a simple method to improve the nutritional value of 

millet, a cereal not commonly used in Europe, paving the way for the design of new 

fermented products based on millet. 
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1.3.1.2 Materials and Methods  

Samples and reagents 

Three batches of millet namely M1, M2 and M3, were purchased from Burkina Faso’s 

local markets. All solvents used were of analytical HPLC grade from Sigma Aldrich (St. 

Louis, Missouri, USA). Water was ultrapure (Milli-Q
®
), ferulic acid (purity ≥ 99%), 

vitexin and vitexin 2”-O-rhamnoside (purity ≥ 95%) were from Extrasynthese (Genay, 

France). Phosphate buffer saline (PBS) tablets, 2,2’-azobis-(2-amidinopropane) 

dihydrochloride (AAPH), 2’,7’-dichlorofluorescein diacetate (DCFH-DA) and 6-hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) were purchased from Fluka-

Sigma-Aldrich, Inc. (St. Louis, MO). 

 

Fermentation processes 

The fermentation was performed on the M1 sample (FM1) at the CNR of Pisa using a 

natural sourdough purchased from a bakery, constituted by a mixture of lactobacilli and 

yeast strains in a ratio of approx. 100:1. Millet flour was obtained by grinding millet grains 

using a laboratory miller. Water was added to moisten the mix, and then selected microbial 

starter cultures were inoculated to initiate fermentation. Once the product was fermented, it 

was dried. The fermentation temperature was maintained around 38° C, while the pH 

reached value of 4. Different withdrawals were performed at time 0 (T0) and during the 

process, that is after 24 h (T1), 48 h (T2), 72 h (T3) and 96 h (T4) of fermentation.  

 

Extraction of phenolic compounds  

Free phenols. The flour obtained from three milled samples (M1, M2, M3) was defatted 

twice with hexane (1:10 (w/v)) and kept on a mechanical shaker for 1 hour. The samples 

were treated according to Balli et al., 2019. Briefly, 2 g of defatted flour was suspended in 
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20 mL of acidic MeOH (1% HCl) and, after 30 minutes of sonication, stirred by a magnetic 

stirrer for about 12 h. The supernatant was separated by centrifugation (5000 rpm, 10 min), 

the residue re-suspended in 25 mL of the extractive mixture, sonicated for 30 minutes, and 

stirred for 2 h. The two supernatants were collected and taken to a volume of 50 mL. The 

extractive procedure applied to the fermented samples has been the same already used for 

other fermented products as reported by Balli et al., (2019). Briefly, 250 mg of fermented 

flour of M1 was extracted with ethanol/water 80:20 v/v under magnetic stirring in 

ultrasound bath for about 15 minutes. The extract was centrifuged at 5000 rpm for 10 

minutes, 10 mL of the supernatant were evaporated to dryness and the residue re-dissolved 

in 1.5 mL of acidified H2O (1% HCOOH).  

Total phenols. The flour of the three millet samples, and the fermented sample from M1 

(FM1) taken after 96 hours, were treated with the following acidic and basic hydrolytic 

procedures. The M1 and FM1 samples were treated with an acidic hydrolysis for the 

recovery of total phenols by applying only a single extractive step according to Balli et al., 

2020: 1 g of defatted flour was suspended in 25 mL of MeOH
+
 (1.20 M H2SO4), the 

solution was sonicated 180 min at 55°C. The sample was then centrifuged at 5000 rpm for 

10 minutes (Acidic hydrolysis). The basic hydrolysis was carried out by the aid of 

ultrasounds as previously described  (Balli et al., 2019): 1 g of sample was treated with 25 

mL of  NaOH 0.1 M in MeOH/H2O 7:3 v/v and sonicated (40 MHz) for 1 h at 60°C; the 

pH was neutralized with acetic acid, the suspension centrifuged at 5000 rpm for 10 minutes 

and the supernatant was recovered.  
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Analytical HPLC-DAD  

The millet extracts recovered after centrifugation, were analyzed using a HP 1200L liquid 

chromatography equipped with a DAD detector (Agilent Technologies, Palo Alto, CA, 

USA); the column was a Poroshell 120, EC-C18 (150x3 mm, 2.7 µm, Agilent, USA). The 

solvents for the mobile phase were (A) CH3CN and (B) 0.1% formic acid/water; the multi-

step linear solvent gradient was the same proposed by Balli et al., (2020). 

 

MS analysis  

The HPLC-DAD-MS analysis of the phenolic extracts were performed according to Balli 

et al., (2020). HPLC-DAD-MS system was from Waters and composed by 2695 HPLC, 

2996 DAD and 4 micro MS equipped with Zspray ESI source. The ESI interface 

parameters were capillary 2.90 kV, cone 64 V in the first 18 minutes and 30 V till the end 

of the analysis, source temperature 120°C, desolvation temperature 350°C, cone gas flow 

19 (L/Hr), desolvation gas flow 350 (L/Hr). Data were acquired in negative ion mode from 

110 m/z to 1000 m/z. 

 

Quantitative determination of phenolic acids and flavonoids 

The phenolic acids were evaluated using a five-point calibration curve of ferulic acid at 

330 nm, (R
2
=1, linearity range 0-0.21 µg); the content of flavonoid aglycones was 

determined using a five-point calibration curve with vitexin (purity ≥ 95%) at 350 nm, 

linearity range 0-21 µg (R
2
=1.0); vitexin 2”-O-rhamnoside (purity ≥ 95%) at 350 nm, 

linearity range 0-0.11 µg, (R
2
=1.0) was selected to quantify the glycosylated flavonoids. 
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Folin-Ciocalteu reducing capacity 

Polyphenols, estimated as Folin-Ciocalteu (FC) reducing capacity, were determined as 

reported by Domenici et al., (2015) and expressed as mg /100g, dry weight (DW). 

 

Inhibition test on PTP1B enzyme 

The two flavonoids vitexin and vitexin 2”-O-rhamnoside were tested on PTP1B enzyme in 

a concentration of 0.205 mg/mL and 0.111 mg/mL, respectively. Enzymatic assays were 

carried out using human recombinant PTP1B and p-nitrophenylphosphate (pNPP) as 

reference substrate. According to Paoli et al., (2013), the pNPP (2.5 mM final 

concentration) was dissolved in sodium β,β-dimethyl glutarate buffer (75 mM, pH 7.0), 

containing 1mM EDTA and 1 mM dithiothreitol. Reactions were started by addition of 

aliquots of the enzyme and stopped by adding 2 ml of KOH 0.2 M. The released p-

nitrophenolate was quantified by reading absorbance of the final solution at 400 nm (ε = 

18,000 M-1 cm-1). The net hydrolysis rate was determined subtracting the value of 

spontaneous hydrolysis rate of pNPP from each sample. The inhibitory power of vitexin 

standards was tested adding different amount of extracts: 5, 10 and 20 µL/mL for vitexin 

and 12, 25 and 50 µL/mL for vitexin 2”-O-rhamnoside. The percentage of inhibition was 

calculated normalizing the absorbance values obtained for assays carried out in the 

presence of inhibitor versus the control test. All the results were expressed as a mean of 

three independent experiments.  

 

Ex vivo cellular antioxidant activity (CAA-RBC) assay in red blood cells 

Human blood samples from healthy volunteers were collected in 

ethylenediaminetetraacetic acid (EDTA)-treated tubes and centrifuged for 10 minutes at 

2300 xg at 4°C. Plasma and buffy coat were discarded and erythrocytes were washed twice 
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with PBS pH 7.4. Fermented and unfermented millet samples were extracted with 10% 

DMSO in distilled water according to Gabriele et al., (2018). The antioxidant activity of 

millet extract was tested at three different concentrations (0.01, 0.1 and 1 mg/mL) on 

human erythrocytes as described by Frassinetti et al., (2015). Trolox was used as a 

reference standard. The fluorescence was read at 485 nm excitation and 535 nm emission 

by using a Victor TM X3 Multilabel Plate Reader (Waltham, MA, US) and each value was 

expressed using the following formula: CAA unit = 100-(∫SA ⁄∫CA) × 100, where ∫SA is 

the integrated area of the sample curve and ∫CA is the integrated area of the control curve. 

 

Statistical analysis 

Each experiment was performed in triplicate, and the results were expressed as the mean 

values ± SD; the EXCEL software in-house routines was applied. Differences between 

fermented and unfermented millet effects on human erythrocytes were analyzed by one-

way analysis of variance (ANOVA) with Dunnett's multiple comparison test and by 

unpaired t-test. A p-value lower than 0.05 was considered as statistically significant. 

 

Proximate analysis 

Dietary fiber (soluble and insoluble) was determined according to AOAC Method 991.43 

(Determination of soluble, insoluble and total dietary fiber in foods and food products, 

final approval 1991). 
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1.3.1.3 Results and Discussion 

Different batches of millet were compared in terms of free and total phenols, and the 

richest one was selected for fermentation. The effect of a fermentation process using a mix 

of yeast and lactobacilli on the phenolic content of millet was studied. The choice of this 

fermentation mixture, commonly used for bread making, can guarantee a better availability 

and reproducibility of the process, and constitutes a cheap way to improve the nutritional 

value of staple foods. 

Phenolic characterization of non-fermented flours 

The HPLC profiles obtained from the extraction of free phenols from the three analyzed 

batches are very similar from a qualitative point of view (Figure 1.3.1.1): compounds 3; 4; 

6; 7 have been recognized as flavonoids (f), while the compounds 1; 5; 8-12 as cinnamic 

(c) derivatives. 

 

a) 
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Figure 1.3.1.1 Chromatographic profiles at 330 nm of the free (a) and total phenols obtained after 

basic hydrolysis (b) of the millet batches (M1,M2,M3): c1, N
1
,N

4
-dicaffeoyl-spermidin; c2, p-

coumaric acid; f3, luteolin (7-O-glucopyranosyl) 8-C-glucopyranoside; f4, vicenin II; c5, ferulic 

acid; f6, vitexin 2”-O-rhamnoside; f7, vitexin; c8, ferulic acid rhamnoside; c9, ferulic acid 

rhamnoside isomer; c10, isoferulic acid; c11, methyl hydroxycinnamate; c12, methyl ferulate 

 

All these molecules have been already identified in millet (Balli et al., 2020).  

 

Table 1.3.1.1 Identified compounds in millet samples 

Analytes [M-H]
-
 Identified compounds 

c1 468 N
1

,N
4

-dicaffeoylspermidin 

c8 339 ferulic acid rhamnoside 

c9 339 ferulic acid rhamnoside isomer 

c10 193 isoferulic acid 

c11 177 methylhydroxycinnamate 

c12 192 methyl ferulate 

f3 
609 luteolin-(7-O-glucopyranosyl)-8-C-

glucopyiranoside 

f4 593 vicenin II 

f6 577 vitexin 2”-O-rhamnoside 

f7 431 vitexin 

 1 

b) 
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From a quantitative point of view, M1 showed a total of free phenols of 127.4 mg/100g, 

87% of which are flavonoids; M2 showed a total of 48.2 mg/100g with 68% of flavonoids 

and M3 showed a total of 64.0 mg/100g with 83% of flavonoids (Table1.3.1.2).  

 

Table 1.3.1.2 The data are a mean of three independent extractions expressed as mg/100 g 

of dry weight. TCC: total cinnamic content; TFC: total flavonoids content; TPC: total 

phenolic content; RSD < 5% 

Extraction of total phenols was carried out on the whole defatted flour with a basic 

hydrolysis using NaOH 0.1 M. The applied hydrolytic conditions were milder than those 

proposed in the literature (Chandrasekara et al., 2010; Zhen et al., 2015). Chromatographic 

profiles showed differences in relative abundances among the three batches, while 

regarding cinnamic derivatives, compound c5 identified as ferulic acid, was only present in 

M1 and M3 batches (Figure 1.3.1.1b). Table 1.3.1.2 shows that M1 resulted the richest in 

terms of total phenols (149.3 mg/100g), in terms of bound phenols, calculated by 

difference (59.7 mg/100g), M3 was the richest one. The M1 sample was also treated with 

an acidic hydrolysis optimized on millet sample by Response Surface Methodology 

                      Free phenols                        Total phenols 
                                                                       (basic hydrolysis) 

 

Analytes M1 M2 M3 M1 M2 M3 

1 6.8a 7.4a 7.1a - - - 

2 - - - - - 2.3 

5 - - - 16.5b - 34.2a 

8 2.5a 1.9a 1.3a - - - 

9 3.2a 1.6b 1.6b - - - 

10 1.1a 1.1a 0.5b - - - 

11 1.1a 1.3a 1.2a 4.4b - 5.3a 

12 1.7a 2.0a 1.1b 56.5b 40.8c 67.1a 

       

3 44.3a 22.0c 35.3b 17.3a 13.9b 3.2c 

4  44.7a 7.4b 7.6b 45.2a 8.6b 6.7c 

6 12.9a 1.5c 3.0b - - - 

7 9.1a 2.0c 4.6b 9.4a 3.2c 4.9b 

       

TCC 16.4a 15.3b 12.8c 77.4b 40.8c 108.9a 

TFC 111a 32.9c 53.2b 71.9a 22.7b 14.8c 

TPC 127.4a 48.2c 64.0b 149.3a 66.5c 123.7b 
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according to Balli et al., (2020). The acidic hydrolysis guaranteed a higher amount of total 

phenols recovered, with respect to the basic one (193.6 mg/100g instead of 149.3 

mg/100g). Furthermore, a comparison between cinnamic acids and flavonoids yield in M1 

sample, after acidic, basic hydrolysis and free phenols extraction, was carried out (Figure 

1.3.1.2).  

 

Figure 1.3.1.2 Total phenolic content (TPC) expressed as total flavonoid and cinnamic 

derivatives in M1 sample after acidic and basic hydrolysis. The data are expressed as a 

mean of three independent extraction in mg/100g of dry weight 

Our results confirmed that flavonoids in millet are almost completely present in free forms, 

pointing out a higher recovery in acidic condition with respect to the basic hydrolysis. 

Analogously, the acidic hydrolysis guaranteed a higher release of cinnamic derivatives 

bound to cell wall structures. 

Phenolic characterization of fermented flours 

Millet is usually decorticated before consumption to improve its edible properties. This 

practice leads to reduction in some nutrients (minerals, fiber, and antioxidants as phenolic 

compounds) and anti-nutrients (phytates, tannins), both located in the peripheral parts of 

the grains (pericarp and aleurone layer) (Saleh et al., 2013). In this context, fermentation 
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can be applied in order to consume the whole non-decorticated flour avoiding losing part 

of functional components. Controversial data about the effectiveness of fermentation in 

increasing phenolic content are present in the literature till now. Some studies reported that 

fermentation is able to increase the bio-conversion of phenolic compounds from their 

linked or conjugated to their free forms (Dey et al., 2016), other works reported a decrease 

in the total phenolic content attributable to the rearrangement of phenolic structures after 

self-polymerization in acidic condition induced by fermentation (Adebiyi et al., 2017; 

Taylor et al., 2014). It’s noteworthy that fermentation leads to the production of various 

unknown compounds extracted with phenols that can interfere with an unspecific assay 

like Folin Ciocalteau, predominantly used in the literature for the quantification of total 

phenolic compounds in cereal samples. In this context, the use of HPLC-DAD and of pure 

standards for quantification of phenolic compounds before and after fermentation, 

represents a more accurate method to estimate their real content. Herein, the extractions of 

both free and bound phenols were performed in order to verify whether fermentation is 

able to guarantee an almost complete release of the bound forms linked to the cellular 

structures, as cellulose or lignin. The M1 sample, the richest one in terms of total phenolic 

compounds content, was selected to evaluate the effect of fermentation. Different 

fermentation times were performed in order to study the evolution of the phenolic profile: 

at time 0, after 24, 48, 72 and 96 hours (T0, T1, T2, T3 and T4 respectively). HPLC-DAD 

profiles of free phenols from fermented matrix showed a lower number of peaks compared 

to those obtained from non-fermented sample: in particular, only flavonoids were detected 

(Figure 1.3.1.3). 
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Figure 1.3.1.3 Chromatographic profiles at 350 nm of the fermented millet (FM1): f3, luteolin (7-

O-glucopyranosyl) 8-C-glucopyranoside; f4, vicenin II;  

f6, vitexin 2”-O-rhamnoside; f7, vitexin. 

 

 

 

The total content of free phenols changed during fermentation, from 126.9 mg/100g at T0 

to a maximum of 145.3 mg/100 g at T3; the value during the following 24 h (T4) resulted 

almost unchanged (Figure 1.3.1.4). 
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Figure 1.3.1.4 Free phenols content determined by HPLC-DAD in unfermented (M1) and 

fermented (FM1) millet flour at different withdrawals (T0-T4). Data are expressed in mg/100 g of 

dry weight as a mean of three different extractions. 

 

The Folin Ciocalteu assay, pointed out for FM1-T3 a significant higher level of total 

phenols than M1 sample (270.1 ± 34.2 vs 150.3 ± 8.1 mg GAE/100g DW, p < 0.05). These 

results demonstrated a positive improvement of the millet flour in terms of phytochemicals 

content following the fermentation process (Table 1.3.1.3). For a more in deep 

characterization, the basic hydrolysis was applied on the sample collected at T3 (72 h of 

fermentation) for the chromatographic evaluation of total phenols. The corresponding 

HPLC-DAD profile was very similar to the non-fermented sample, showing methyl 

ferulate (c12) as the predominant compound (data not shown). From a quantitative point of 

view, the basic hydrolysis on FM1-T3, allowed extracting a higher amount of phenols 

(206.2 mg/100g) compared to unfermented sample (149.3 mg/100g).  
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The optimized acidic hydrolysis was then performed on FM1-T3 confirming the capability 

of this method to recover the highest amount of total phenols (278.3 mg/100 g) as already 

observed also for the unfermented matrix.  

 

 

Table 1.3.1.3 Total phenolic content estimated after basic hydrolysis (left column), acidic 

hydrolysis (central column) and as Folin-Ciocalteu (FC) reducing capacity, in the unfermented  

(M1) and  fermented  (FM1-T3) flours. Unpaired t-test for comparing millet flours with the 

respective fermented flour; *p<0.05. 

 

Our results pointed out that the three methods in Table 1.3.1.3 were suitable to highlight 

the differences in phenolic content after fermentation. Nevertheless, in order to not 

underestimate the phenolic amount in cereal grains the application of an acidic hydrolysis 

is suggested. The higher total phenolic values in fermented sample could be attributable to 

the action of microorganisms by using the part of the fiber for their grown, release the 

phenolic compounds “mechanically trapped” in these structures. According to this 

hypothesis, the evaluation of soluble fiber was also done. This latter, in M1 sample was 2 

g/100g but after fermentation strongly decreased up to <0.10 g/100 g. It’s noteworthy from 

our results that fermentation can be a useful pretreatment to release phenolic compounds 

from the soluble fiber where they are mechanically trapped, inducing an increase up to 

35%. To verify this latter result, another batch of millet (M2) was fermented using the 

 
Total phenols- Method B 

(mg/100g) 

Total phenols-Method A 

(mg/100g) 

FC reducing capacity 

(mg/100g) 

M1 149.3±3.2* 193.6±4.0* 150.3 ± 8.1* 

FM1-T3 206.2±0.8* 278.3±1.8* 270.1 ± 34.2* 

 1 
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same mixture of yeast and lactobacilli, and evaluated at time 0 (T0), 72 h (T3) and 96h 

(T4). The results highlighted again an increase of 36% in the total phenolic content passing 

from 66.5 mg/100g to 90.7 mg/100g for the unfermented and fermented matrix 

respectively (Figure 1.3.1.5). Higher phenolic contents in fermented flours could be 

associated to several health properties. 

 
 

Figure 1.3.1.5 Free and Total phenolic amount before and after fermentation in M2 sample. 

The fermented sample was withdrawn after 72 hours of fermentation. Data are expressed in 

mg/100g as a mean of three independent extraction. 

 

Inhibition test on PTP1B enzyme 

The two standards, vitexin and vitexin 2”-O-rhamnoside, were evaluated in vitro for their 

inhibitory effect on PTP1B, known as a negative regulator of insulin receptors. The choice 

of these flavonoids was based on the inhibitory activity already showed by this class of 

molecules on PTP1B enzyme (Jiang et al., 2012). On the opposite, the cinnamic 

derivatives that resulted higher in millet, were unable to inhibit the enzyme (Adisakwattana 

et al., 2013). Our results pointed out that vitexin and vitexin 2”-O-rhamnoside were not 
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able to inhibit the enzyme in concentrations of 2.3 µM and 4.7 µM respectively, but an 

inhibition of 25% and 32% was pointed out for both these flavonoids, at 9.5 µM (Figure 

1.3.1.6).  

 

Figure 1.3.1.6 In vitro activity (as %) of PTP1B enzyme after a treatment with vitexin (V) and 

vitexin 2”-O-rhamnoside (V-Rh), both tested at three concentration values:  

2.3 µM, 4.7 µM and 9.5 µM. 

 

The concentration of the two flavonoids resulted higher in the fermented extracts (FM1) 

with respect to the unfermented millet (MF1). In particular, after the recovery of total 

phenols in acidic condition, vitexin increased from 45 mg/100g in MF1 to 70 mg/100g in 

FM1 (55% higher). Analogously, vitexin 2”-O-rhamnoside was 20 mg/100g in MF1 and 

32 mg/100 g in FM1 (60% higher). In light of these findings, we can affirm that a daily 

consume of fermented millet containing higher amount of flavonoids with respect to the 

unfermented flour, could help to reduce the incidence of type two diabetes by the 

inhibition of PTP1B enzyme, overexpressed in these subjects. Further analyses will be 

conducted to better understand if the entire fermented extract is able to inhibit the PTP1B 

through a synergic action between the single components of the fermented flour.  
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Ex vivo cellular antioxidant activity on human erythrocytes 

Erythrocytes play a key role in the body in terms of anti-inflammatory and antioxidant 

protection and represent a powerful tool to assess the radicals scavenging activity of many 

natural compounds (Caddeo et al., 2018). In this study, the biological effects of millet, 

before and after the fermentation process, was evaluated on an ex vivo model of human 

erythrocytes under oxidative condition using the CAA-RBC assay (Figure 1.3.1.7).  

 

Figure 1.3.1.7 Effects of unfermented (M1) and fermented (FM1) millet extracts at different 

concentrations (0.01, 0.1 and 1 mg/mL) on the cellular antioxidant activity (CAA) of human 

erythrocytes under oxidative conditions. Trolox was used as a reference standard. One-way 

ANOVA with Dunnett’s multiple comparison test: *significantly different from CNT, AAPH 

treated cells (CAA = 0), **p ≤ 0.01, ***p ≤ 0.001. Unpaired t-test: #significantly different from the 

respective non-fermented flour, #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001. 

 

In this assay, following 1-hour pretreatment with millet extracts (0.01, 0.1 and 1 mg/mL), 

human erythrocytes were exposed to an oxidative insult induced by the thermal 
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decomposition of AAPH in peroxyl radicals. Our results demonstrated a good and dose-

dependent antioxidant protection of human erythrocytes from all tested samples with the 

exclusion of millet flour at the highest tested concentration (1 mg/mL), that induced 

erythrocytes’ hemolysis (Figure 1.3.1.7). The fermented millet obtained after 72 hours of 

fermentation  (FM1) and unfermented millet (M1) extracts significantly raised the cellular 

antioxidant activity of human erythrocytes compared to control, that refers to only AAPH-

exposed cells (CAA = 0; **p < 0.01), with CAA values comparable to or higher than 

Trolox 10 and 50 μM, used as reference standard. Besides, millet fermented extract 

exhibited, at all tested doses, significantly higher antioxidant protection than the co-

respective unfermented ones (#p<0.05).  

 

1.3.1.4 Conclusions 

The work aimed to increase the knowledge on the effect of fermentation on millet. 

According to our results, the fermentation carried out using a mixture of natural sourdough 

mainly constituted by lactobacilli, increased the total amount of phenolic compounds in 

millet of approx. 30%, presumably releasing those mechanically trapped into the aliquot of 

soluble and fermentescible fiber. Indeed, soluble fiber can be used by lactobacilli and 

yeasts for their grown. Acidic hydrolysis compared to the basic one, guaranteed a higher 

recovery of total cinnamic and flavonoids both from fermented and unfermented samples. 

Both these classes of phenols resulted higher in the fermented millet with respect to the 

unfermented one, particularly the flavonoids recovery resulted consistently higher in the 

fermented flour, with increases over fifty percent. Fermentation time could last 72 hours 

because extend the process until 96 hours did not increase the total phenolic content in 

millet. The flavonoids of millet, showed a partial inhibition of PTP1B enzyme, 

overexpressed in diabetes, suggesting that a daily intake of fermented millet can contribute 
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to reduce the expression of type 2 diabetes. The results of this study also showed a good 

and dose-dependent antioxidant protection of human erythrocytes exerted by both 

unfermented and fermented millet samples. According to the phytonutrients enrichment 

determined by the chemical analyses, sourdough fermentation significantly raised the ex 

vivo antioxidant activities, higher in fermented millet flour with respect to the unfermented 

one. Today it is reasonable to conclude that the total phenolic content in cereals is 

underestimated due to various factors, such as the application of unsuitable extraction 

methods based on alkaline hydrolysis, but also for the mechanical entrapment of these 

molecules by the fibers. Fermented millet with a higher phenolic content, which leads to 

their higher bioavailability, could be used as new food, also suitable for the feeding of 

celiac. 
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Abstract 

 Fermented cereals, staple foods in Asia and Africa, are recently receiving a growing 

interest in Western countries. The object of this work is the characterization of a fermented 

wheat used as a food ingredient and dietary supplement. To this aim, the phenolic 

composition, the activity on protein tyrosine phosphatase 1B (PTP1B), an enzyme 

overexpressed in type-II diabetes, the in vitro prebiotic properties on Lactobacillus reuteri 

and the microbial composition were investigated. Basic and acidic hydrolysis were tested 

for an exhaustive recovery of bound phenols: the acidic hydrolysis gave the best yields. 

Methyl ferulate and neocarlinoside were identified for the first time in wheat. The 

inhibitory activity of the extracts of several batches were investigated on PTP1B enzyme. 

The product was not able to inhibit the enzyme, however, for the first time, a complete 

inhibition was observed for schaftoside, a major C-flavonoid of wheat. The microbial 

composition was assessed identifying Lactobacillus, Enterococcus, and Pediococcus as the 

main bacterial species. The fermented wheat was a suitable substrate for the growth of L. 

reuteri, recognized for its health properties in the human gut. The proposed method for 

phenols is easier compared to those based on strong basic hydrolysis; our results assessed 

the bound phenols as the major fraction, differently from that suggested by the literature 

for fermented cereals. 
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1.3.2.1 State of the art and aims of the work 

A fermented product from wheat (Triticum aestivum), used as food ingredient and food 

supplement, is Lisosan
®
 G. The product is obtained as follows: the grounded wholegrain is 

mixed with water and sourdough in order to initiate the fermenting process. After three 

days the product is recovered and dried. Recently, Lisosan
®
 G has been object of in vivo 

and ex vivo studies, but few data are available on its composition. A protective activity 

against the toxicity of cisplatin was observed on Wistar rats fed with different dosages of 

Lisosan
®
 G (Longo et al., 2011). The protective effects of Lisosan

®
 G on human 

microvascular endothelial cells incubated with oxidized LDL and Lisosan
®
 G were 

evaluated, at different concentrations of the product observing a decrease of some 

inflammatory markers (Lubrano et al., 2012). The study of  Lucchesi et al., (2014)  

focused on the effects of Lisosan
®
 G as an antioxidant for human endothelial progenitor 

cells exposed to oxidative stress. These cells, treated with the product before the incubation 

with hydrogen peroxide, increased the cell viability and adhesion, and decreased cellular 

senescence. The liver was a further target of studies on Lisosan
®
 G: treatment with 

Lisosan
®
 G on primary cultures of rat hepatocytes in presence of hydrogen peroxide, 

induced the inactivation of NF-KB transcription factor involved in oxidative damage and 

an up-regulation of Nrf2 responsible for cytoprotection by inducing detoxifying enzymes 

(La Marca et al., 2013). Despite the studies focused on the evaluation of some health 

properties, no data concerning the phenolic content, the microbiological composition, the 

prebiotic effect and the activity on Protein Tyrosine Phosphatase 1B (PTP1B) enzyme are 

available for this wholegrain fermented product. PTP1B enzyme is recognized as an 

important target as negative regulator of insulin and leptin receptor signaling pathways 

(Verma et al., 2017). The present work was aimed: (i) to investigate the chemical 

composition of Lisosan
®
 G in terms of free, bound, and total phenolic compounds, 
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optimizing the extraction method; (ii) to investigate the ability of several batches of 

Lisosan
®
 G and of schaftoside to inhibit the PTP1B enzyme; (iii) to assess the microbial 

composition of Lisosan
®
 G by sequencing of the bacterial 16 rRNA gene; and (iv) to 

evaluate the prebiotic effect on the growth of a common human probiotic species 

Lactobacillus reuteri, a widely distributed species recognized for its health properties in 

the human gut. 

1.3.2.2 Materials and Methods 

Samples and Reagents 

Four batches of Lisosan
®

 G (LG1, LG2, LG3, LG4), a food supplement obtained from lysed 

fine bran and germ of organic wheat grains (Triticum aestivum), were provided by Agrisan 

Srl Company, Larciano (Pistoia, Italy). All solvents used were of analytical HPLC grade 

from Sigma Aldrich (St. Louis, MI, USA). Water was ultrapure (Milli-Q
®
, Merck 

Millipore, Darmstad, Germany), ferulic acid (purity ≥ 99%), and apigenin (purity ≥ 95%) 

were purchased from Extrasynthese (Genay, France). 

 

Extraction of Phenolic Compounds 

Free phenols. Lisosan
®
 G, LG1, (250 mg) was extracted with EtOH/H20 80:20 v/v under 

magnetic stirring in ultrasonic bath for about 15 min. The extract was centrifuged at 5000 

rpm for 10 min. Ten mL of the supernatant were evaporated to dryness and the residue re-

dissolved in 1.5 mL of acidified H2O (1% HCOOH). The same extraction was performed 

with H2O acidified with 1% HCOOH. 

Bound and total phenols. An acidic hydrolysis (method A) and three different basic 

hydrolyses (BF, B and BS methods) were applied on the fermented wheat as reported 

below. All the hydrolyses were carried out by the help of an ultrasonic bath (40 MHz). 

Method BF: 1 g of the sample was extracted with 25 mL of NaOH 0.1 M in MeOH/H2O 
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7:3 v/v, sonicated for 1 h at 60 °C. The pH was adjusted to neutrality with acetic acid and 

the solution centrifuged at 5000 rpm for 10 min to recover the supernatant. The same 

procedure was applied to the solid residue recovered after the extraction of free phenols. 

Method B was the same of method BF with only a difference on the solvent-dry sample 

ratio:1 g of Lisosan
®
 G was extracted in 100 mL NaOH 0.1 M in MeOH/H2O 7:3 v/v. 

Method BS: 1 g of the sample was extracted in 25 mL of MeOH/H20 7:3 v/v with NaOH 4 

M, sonicated for 1 h at 60 °C. The pH was adjusted to neutrality with CH3COOH and the 

solution diluted to a final volume of 50 mL with MeOH/H20 7:3 v/v; the sample was then 

centrifuged at 5000 rpm for 10 min to recover the supernatant. Method A was an acidic 

hydrolysis performed on the four batches (LG1–LG4) using the mixture MeOH/H2SO4 9:1 

v/v: 1 g of Lisosan
®

 G was extracted in 25 mL, sonicated for 2 h at 60 °C, and then 

centrifuged at 5000 rpm for 10 min to recover the supernatant. 

Fractionation by Semipreparative HPLC 

About 700 mg of Lisosan
®
 G (LG1) were almost completely dissolved in 150 mL of 

HCOOH (1%) under magnetic stirring for 15 min at 60 °C. After centrifugation (5000 rpm, 

10 min), the supernatant was dried under vacuum and re-dissolved in 6 mL of distilled 

water obtaining the total Lisosan
®
 G extract. This extract was fractionated by 

semipreparative HPLC using a Hewlett Packard 1050 series and a Polaris RP-C18 Ether 

column (250 × 10 mm, 5 µm, Varian, Germany); 12 fractions were recovered after 30 

injections of 100 µL. Elution was carried out at a flow rate of 4 mL min
−1

 with CH3CN as 

solvent A and H2O (0.1% HCOOH) as solvent B. A linear elution gradient was employed: 

solvent A was increased from 0% to 10% in 10 min, from 10% to 15% in 10 min, from 

15% to 30% in 10 min, from 30% to 100% in 5 min with a final plateau of 10 min. Total 

time of analysis was 45 min, equilibration time 10 min. The collection was carried out 

monitoring the chromatogram at 280 nm up to 15 min, successively 350 nm was the 
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wavelength selected to detect and recover the flavonoids. The fractions were dried, re-

dissolved in 1 mL of water, and controlled by analytical HPLC-DAD and MS
n
 analysis. 

 

Inhibition Test on PTP1B Enzyme  

All four batches were treated as follow: the maximum amount of Lisosan
®
 G (250 mg) was 

dissolved in 50 mL of acidified H2O (1% HCOOH), after a magnetic stirring of 15 min. 

The extracts were then evaporated to dryness and re-dissolved in 2 mL of water. These 

extracts (LG1–LG4), the pure schaftoside (at concentration 2.7 µM), and the pure myricetin 

(at concentration 0.5 µM) were evaluated as inhibitors of the enzyme PTP1B. Furthermore, 

the IC50 was also determined for the schaftoside. Enzymatic assays were carried out using 

human recombinant PTP1B and p-nitrophenylphosphate (pNPP) as reference substrate. 

According to Paoli et al. (2013), the pNPP (2.5 mM final concentration) was dissolved in 

sodium β,β-dimethyl glutarate buffer (75 mM, pH 7.0), containing 1 mM EDTA and 1 mM 

dithiothreitol; this solution was used as control (Ctr). Reactions were started by addition of 

aliquots of the enzyme and stopped by adding 2 mL of KOH 0.2 M. The released p-

nitrophenolate was quantified by reading absorbance of the final solution at 400 nm (ε = 

18,000 M
−1

 cm
−1

). The net hydrolysis rate was determined subtracting the value of 

spontaneous hydrolysis rate of pNPP from each sample. The inhibitory power of LG 

extracts and schaftoside standard was tested adding different amount of extracts (10 and 50 

µL/mL) for each assay. Then, the percentage of inhibition was calculated normalizing the 

absorbance values obtained for assays carried out in the presence of inhibitor versus the 

control test. All the results were expressed as a mean of three independent experiments.  
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Bacteriological Analysis  

In order to exclude the presence of bacterial contaminants of food specimens, such as 

coliforms and staphylococci, LG1 batch was tested in McConkey III medium (Oxoid 

Basingstone, UK; for the detection of coliform, bacilli, Salmonella and Shigella species) 

and in Mannitol salt medium (Oxoid Basingstone, UK; for detection of presumptive 

pathogenic staphylococci). Lisosan
®

 G (500 mg) were directly plated on the two different 

media and, after incubation for 24–48 h, presence of potential microbial contaminants were 

evaluated. 

 

 16. S Ribosomial RNA Gene Amplicons Preparation and Illumine MISEQ and Data 

Analysis 

By LG1 batch, library of 16S rRNA gene amplicons was prepared by IGA Technology 

Services (Udine, Italy) through amplification of the V3–V4 hypervariable region. The 

standard protocol was followed according to the 16S metagenomic sequencing library 

preparation guide from Illumina (Part #15044223 Rev. B; https://support.illumina.com/, 

San Diego, CA). Pooled V3–V4 amplicon libraries were sequenced using the Illumina 

MiSeq platform. Sequence data are available at  European Bioinformatics Insitute-EMBL-

EBI database, under the accession number PRJEB30414. Reads (total number 126.669) 

were further processed using the MICCA pipeline (version 1.6, 

ttp://compmetagen.github.io/micca/, San Diego, CA), as reported by Di Paola et al., 

(2018). A total of 104.277 Operational Taxonomic Units (OTUs) were assigned by 

clustering the sequences with a threshold of 97% pair-wise identity. OTU tables for each 

taxonomic level were created. To deep at species level sequence alignment using Basic 

Local Alignment Search Tool nucleotide (BLASTn) software (San Diego, CA) in the 

National Center for Biotechnology Information (NCBI) database was performed. The 



97 

 

highest percentage of identity (query cover 100–99% and identity 99%). Expectation value 

(E-value) was used to select significant BLAST hits, keeping only outcomes with the 

lowest E-value (minimal E-value of 10
−3

). 

 

Test on Lactobacillus reuteri  

The strain used was obtained from the German Collection of Microorganisms and Cell 

Cultures (L. reuteri DSM 17938). The lyophilized strain was re-vitalized in the Man 

Rogosa Sharpe (MRS) medium (Oxoid, Basingstone, UK) supplemented with 0.05% 

cysteine and incubated in anaerobic chamber at 37 °C for 24 h. The MRS medium 

composition was modified to perform the growth experiment with Lisosan
®
 G in order to 

eliminate glucose and reduce the concentration of potential growth factors, as described 

b
Khatib et al., (2017). The modified medium is referred to as m-MRS. The prebiotic 

activity was evaluated using Lisosan
® 

G, LG1 batch, at 0.5% and 1% (w/v) in m-MRS. A 

positive growth control was performed using m-MRS with 0.5% (w/v) glucose and a 

negative control in m-MRS with no added carbon source. The medium containing 

Lisosan
®
 G as potential carbon source was prepared as follows: the m-MRS ingredients 

were weighed and the medium autoclaved at 120 °C for 15 min. Lisosan
® 

G was then 

added, the solution stirred at 80 °C and then autoclaved again at 102 °C for 10 min. The 

strain was grown overnight in MRS, centrifuged, washed in saline (0.9% NaCl), and re-

suspended in saline to obtain an absorbance of 0.7 mAu at 600 nm. This suspension was 

used to inoculate at 2% (v/v) the flasks containing the m-MRS medium plus Lisosan
®

 G or 

glucose or the negative control with no carbon source. The tubes were incubated at 37 °C 

in anaerobic conditions for 48 h and a 1 mL culture was sampled from each flask, serially 

diluted, and inoculated on MRS agar plates for viable bacterial counts at pre-established 

times (0, 24, 30, and 48 h of incubation). Upon incubation, the number of colonies, 
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corresponding to the number of viable cells, were counted and expressed as CFU mL
−1

. 

The number was transformed into a log10 value (log CFU mL
−1

). 

 

Analytical HPLC-DAD 

The extracts from Lisosan
®
 G were centrifuged (5000 rpm, 10 min) and analyzed using a 

HP 1200L liquid chromatograph equipped with a DAD detector (Agilent Technologies, 

Palo Alto, CA, USA) using a Poroshell 120, EC-C18 column (150 × 3 mm, 2.7 µm, 

Agilent, USA). The solvents for the mobile phase were (A) CH3CN and (B) 0.1% formic 

acid/water; the multi-step linear solvent gradient was: 0–5 min 0–10% A; 5–10 min 10–

15% A; 10–20 min 15–30% A; 20–25 min 30–35% A; 25–28 min 35–40% A; 28–31 min 

40–45% A; 31–42 min 100% A; 42–47 min 100–0% A; equilibration time 5 min; flow rate 

0.4 mL min
−1

; injection volume 10 μL. The following wavelengths were simultaneously 

selected: 240 nm, 280 nm, 330 nm, 350 nm. 

 

MS Analysis of Lisosan
® 

G fractions  

The isolated fractions by semipreparative HPLC were analyzed by direct infusion in ESI-

HRMS and MS
n
 on a LTQ-Orbitrap (Thermo Scientific, Bremen, Germany). Each fraction 

was taken to dryness by evaporation under vacuum and re-suspended in a CH3CN/H2O 

mixture, containing 0.1% formic acid. This solution was infused by syringe into the ESI 

interface of the instrument. Sheath and auxiliary gas flow rates were 10 and 2 (arbitrary 

units), respectively; capillary voltage and tube lens voltages, as the collision energy and 

wideband activation voltage in MS
n
 experiments, were optimized for each compound of 

interest during the infusion. The mass spectrometer was calibrated with the standard 

mixture indicated by the producer immediately before the acquisition of the samples, both 

in positive and in negative ion mode. 



99 

 

Quantitative Determination of Phenolic Acids and Flavonoids  

The phenolic acids were evaluated using a five-point calibration curve of ferulic acid at 

330 nm, (R
2
 = 1, linearity range 0–0.21 µg), while the flavonoid content was determined 

using a five-point calibration curve of apigenin at 350 nm (R
2
 = 0.999, linearity range 0–

0.80 µg). 

 

Statistical Analysis  

Each experiment was performed in triplicate, and the results were expressed as the mean 

values ± SD; the EXCEL software (version 2013, Microsoft Corporation, WA, USA) in-

house routines were applied. Significance in the prebiotic properties experiment was 

calculated within each evaluation time with a t-test, using the MEANS procedure (SAS). 

Statistical analysis of data from PTP1B was performed using the Student t-tests, using 

OriginPro 2018 (OriginLab Corporation, Northampton, MA 01060 USA 

http://www.originlab.com). The differences between the groups were considered 

significant when p < 0.05. 

 

1.3.2.3 Results and Discussion 

The phenolic molecules in the fermented wheat were studied as free, bound, and total 

phenols by applying different extractive procedures, some of them already suggested for 

wheat. The first aim was to verify if the fermentation process increases the free phenols as 

suggested by literature (Hur et al., 2014) diminishing the bound fraction. In order to study 

better the minor components, Lisosan
®
 G was fractionated by semipreparative HPLC and 

the content of several phenolic fractions was determined by chromatographic and MS 

analysis. After the identification of the main phenolic constituents and the optimization of 

the extractive and analytical procedures, several batches were investigated. The ability of 

http://www.originlab.com/
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four batches of Lisosan
®
 G and schaftoside standard to inhibit the PTP1B enzyme was 

successively evaluated in vitro. Microbial composition was also assessed. The potential 

prebiotic properties of Lisosan
® 

G were tested on L. reuteri DSM 17938, a probiotic strain 

with demonstrated potential beneficial effects in treating and preventing human diseases. 

Fractionation by Semipreparative HPLC 

Regarding the free phenols, the hydroalcoholic mixture (ethanol /H2O 8:2, v/v) and acidic 

water showed comparable results, confirmed by the chromatographic profiles (data not 

shown). Consequently, the aqueous extract was preferred as reference sample for the 

semipreparative HPLC. According to Figure 1.3.2.1a and Table 1.3.2.1, some analytes 

detected at 280 nm (compounds 1–8) were recovered; while at 350 nm C-flavonoids (9–11 

and 13), ferulic acid (15), and some unknown phenols were recorded (16–18).  
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               b) 

 

Figure 1.3.2.1 (a) Chromatographic profiles at 280 and 350 nm of the aqueous extract of Lisosan
®
 

G on the Poroshell column, obtained applying the same gradient elution used for the 

semipreparative HPLC. Compounds 1–8, unknowns; 9 and 10, neocarlinoside or its isobars, 

isocarlinoside/carlinoside; 11, isoschaftoside; 13, schaftoside; 15, ferulic acid; 16–18 unknowns; 

and (b) comparison of the HPLC profiles at 330 nm obtained for bound phenols with methods B 

and A on the whole flour, method BF on the residue from free phenol extraction; 9 and 10, 

neocarlinoside/isocarlinoside/carlinoside; 11, isoschaftoside; 13, schaftoside; 15, ferulic acid; 19, 

methyl ferulate and its chemical formula. 

 

 

a) 
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As expected in a fermented wheat, the presence of several free amino acids was confirmed 

by HRMS
n
 analyses in positive ion mode, in the more polar fractions (compounds 1–8), the 

compound 8 was identified as tryptophan (205 m/z) in co-presence with valine (118 m/z), 

proline (116 m/z) and leucine (132 m/z), while the other analytes (1–7) to date remained 

unknown. The main detected phenols were cinnamic derivatives and flavonoids, as shown 

in Figure 1.3.2.1 a,b.  From experimental data collected on the fractions by HRMS
n
 and 

from the results in the literature on wheat (Dinelli et al., 2011; Leoncini et al., 2012; 

Rahman et al., 2017), it was possible to identify a group of C-glycosylated flavonoids (9–

11 and 13) present only in two of the fractions from semipreparative HPLC (Figure 

1.3.2.2).  

 

Figure 1.3.2.2 Chromatographic profiles at 210 nm and 350 nm of the two fractions 

containing the C-glycosylated flavonoids recovered by semi-preparative HPLC; 9 and 10, 

neocarlinoside/isocarlinoside/carlinoside; 11, isoschaftoside; 13, schaftoside  

(UV–VIS spectra of peaks 9 and 13 and chemical formula of carlinoside and schaftoside 

are also shown). 
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The profiles at 210 nm, a non-selective wavelength, confirm the exclusive presence of 

flavonoid compounds. The mass spectra of compounds 9 and 10 (Figure 1.3.3.3) showed 

the [M – H]
−
 ion at 579 m/z in negative ionization, and similar UV–VIS spectra. The 

MS/MS experiments on 579 m/z showed the loss of water (561 m/z) while the two 

fragment ions at 489 and 459 m/z are consistent with the loss of 90
 
and 120 mass units, 

respectively. According to Iswaldi et al., (2011), these losses correspond to cross-ring 

cleavages in the sugar moiety of C-glycosilated flavonoids. In light of these findings, 

compounds 9 and 10 were tentatively identified as carlinoside, isocarlinoside, and/or 

neocarlinoside. These isobaric forms have only been reported once in wheat Rahman et al., 

(2017), as a plant response associated to drought tolerance. Compounds 11 and 13, with 

empirical formula C26H28O14, exhibited the same deprotonated ion at 563 m/z. The ion 

species at 473 m/z and 443 m/z, obtained by MS/MS dissociation of the [M−H]
−
 ion, 

showed again the losses of 90 and 120 mass units, respectively. From MS
3
 experiments it 

was possible to confirm that the common fragment ion at 353 m/z is originated from the 

563 m/z (after two successive losses of 120 and 90 mass units). According to literature 

(Colombo et al., 2008; Simirgiotis et al., 2013), it was possible to identify 11 as 

isoschaftoside and 13 as schaftoside. 
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Figure  1.3.2.3 MS
2 
and MS

3
 spectra (a) of carlinoside/isocarlinoside/neocarlinoside (10) and MS

2 

and MS
4
 spectra (b) of isoschaftoside (11). All MS

n
 spectra were recorded at the optimised 

collision energy using wideband activation. The fragmentation of the glycosidic moiety, originating 

the losses of 90 and 120 mass units, is also shown. 

 

The spectral data in positive and negative ion mode for the pool of C-glycosylated 

flavonoids are reported in Table 1.3.2.1. Compound 15 was identified as ferulic acid as 

also confirmed by the MS
2
 spectrum of its deprotonated molecular ion showing the species 

at 178 m/z, corresponding to the loss of a methyl group, and 134 m/z from the successive 

loss of carbon dioxide (59 mass units). 

a 

b 
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Table 1.3.2.1 C-glycosylated flavonoids detected in Lisosan
® 

G by MS
n
 experiments 

 

Extraction of Free, Bound, and Total Phenols 

The free phenols in the first batch of Lisosan
®
 G were 38 mg/100 g, a comparable amount 

to those reported by other authors for wheat, in which the concentrations were lower than 

20 mg/100 g  (Dinelli et al., 2011; Brandolini et al., 2013). Regarding the bound forms, it 

was invesitgated whether the fermentation process can induce a release of the bound 

phenols. To recover this fraction, almost all the available studies on cereals reported the 

use of strong basic hydrolysis with NaOH (from 2 M to 10 M), usually at room 

temperature; the acidic hydrolysis was reported as not suitable, due to the degradation of 

hydroxycinnamic and benzoic acids (Dinelli et al., 2011, Adom et al., 2002). Nevertheless, 

we observed that few data are available on the effects of different basic or acidic 

procedures on the chemical stability of phenols during their extraction from cereals. 

Consequently, with the aim of selecting the best method to effectively recover the phenolic 

fraction, a methanol solution with 4 M NaOH (Method BS) was firstly tested and compared 

with a softer condition with 0.1 M NaOH (Method B). HPLC-DAD analysis highlighted 

that the former procedure induced a partial degradation of the phenolic compounds when 

  Positive Ion MSn Negative Ion MSn 

Analytes 
C-glycosylated 

flavonoids 
[M−H]+ fragment ions [M−H]- fragment ions 

9 

Carlinoside/ 

Neocarlinoside/ 

Isocarlinoside 

581 563; 545; 527; 509 579 489; 399 

10 

Carlinoside/ 

Neocarlinoside/ 

Isocarlinoside 

581 563; 545; 527; 509 579 489; 399 

11 Isoschaftoside 565 547; 529; 511; 427; 349 563 473; 353; 325 

13 Schaftoside 565 547; 529; 511; 427; 349 563 473; 353; 325 
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compared with the weaker basic hydrolysis: the use of 4 M NaOH led to the degradation of 

methyl ferulate converted in ferulic acid, and of compounds 9 and 10 (Table 1.3.2.2). 

At the same time, Lisosan
®
 G was also treated according to Arranz et al., (2010) to better 

investigate the effects of the acidic hydrolysis on the phenolic fraction. The 

chromatographic profiles of the sample after basic hydrolysis with 0.1 M NaOH present 

two main compounds: ferulic acid (15) and methyl ferulate (19), while the acidic 

hydrolysis (Figure 1.3.2.1b) shows only the presence of methyl ferulate (19), a compound 

previously detected in rice Tanaka et al., (1964), but to date never reported in wheat. 

Presumably, the absence of methyl ferulate in literature could be attributable to the applied 

strong basic hydrolysis (from 2 M to 10 M) causing the formation of ferulic acid by 

hydrolysis of the ester bond. On the other hand, the use of a basic medium but in a weaker 

condition could avoid this reaction. To verify this hypothesis, pure ferulic acid was treated 

in the same way of Lisosan
®
 G with Method B (0.1 M NaOH in methanol); as expected, 

the formation of methyl ferulate was not observed and it was possible to conclude that this 

ester is not an artefact of the extraction process, but is naturally present in Lisosan
®
 G. 

Observing the profile obtained from the basic extraction (Method BF) of the solid residue 

of Lisosan
®
 G remaining after recovery of the free phenols, it was possible to assess that 

C-glycosylated flavonoids (9–13) were only present in free form (Figure 1.3.2.1b). In 

terms of extraction efficiency, the methods tested for the recovery of bound phenols gave 

different results. The strong basic hydrolysis (Method BS) led to a partial degradation of 

the compounds of interest (some minor C-flavonoids) and reduced the total phenolic 

recovery, in comparison to the other applied methods (Table 1.3.2.2a). A strong increase in 

solvent/dry sample ratio (from method BF 1:25 w/v, to method B, 1:100 w/v) guaranteed a 

better recovery (up to 60% higher) in terms of total phenols (Table 1.3.2.2a).The basic 

hydrolysis (B) and the acidic procedure (A) applied to LG1 batch were the more 
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advantageous, giving the highest yields in total phenols, with similar values of 279 mg/100 

g and 265 mg/100 g, respectively. It is worth noting that the acidic hydrolysis (Table 

1.3.2.2b, column LG1) maintained almost the same amount of the C-glycosylated 

flavonoids (compounds 9–11 and 13) extracted with the simple procedure for free phenols 

(Table 1.3.2.2a, column FP). The acidic hydrolysis was chosen as a reliable method to 

compare the four Lisosan
®
 G batches for the following reasons: i) the quantitative data 

from the methods A were almost the same obtained applying the basic procedure B, but in 

the latter case applying a four times higher extractive ratio, ii) the phenolic compounds are 

chemically stable in acidic media differently to what can happen in the basic media, in 

which the more hydroxylated flavonoids can go toward a partial degradation, and iii) the 

same acid procedure applied to other cereals (data not shown) gave again the highest 

recovery in terms of total phenols. The first batch (LG1) was the richest in terms of total 

phenolic content; the LG2 and LG3 resulted very similar otherwise the LG4 was the poorest 

(Table 1.3.2.2b). These variable amounts of the phenolic components is in agreement with 

what expected for a natural product with a complex composition. Overall, in light with the 

findings in Table 1.3.2.2, it was possible to conclude that this type of fermentation is not 

able to increase the release of the bound phenolic fraction that remains higher than 80%, 

more or less the same amount measured in unfermented wheat (Brandolini et al., 2013). 
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Table 1.3.2.2 Concentration of the phenolic compounds identified in Lisosan
® 

G applying different extraction methods and evaluated through HPLC-DAD 

by suitable external standards. (a) free phenols (FP), and total phenols determined after basic hydrolyses (methods BS, BF, B) applied to Lisosan
®
 G first 

batch (LG1); (b) total phenols determined after acidic hydrolysis (method A) applied to the four batches of Lisosan
®
 G (LG1; LG2; LG3; LG4). The data 

are a mean of three independent extractions expressed as mg/100 g dry product.  

The relative standard deviation (RSD) was below 4% for all the detected phenol

(a) Free (FP) and Total Phenols (Bs, Bf and B) from Basic Hydrolyses in mg/100 g 

Compounds FP Bs 
BF (on whole 

flour) 
B 

Carlinoside/isocarlinoside/

neocarlinoside (9) 
6 - 4 2 

Carlinoside/isocarlinoside/

neocarlinoside (10) 
5 - 3 2 

Isoschaftoside (11) 7 6 7 13 

Schaftoside (13) 17 12 15 22 

Ferulic Acid (15) 3 223 12 48 

Methyl Ferulate (19) - - 70 178 

Total ferulates 3 223 82 226 

Total phenols 38 241 111 265 

(b) Total Phenols Obtained Applying the Acidic Hydrolysis mg/100g 

Compounds LG1 LG2 LG3 LG4 

Carlinoside/isocarlinoside/

neocarlinoside (9) 
2 2 2 2 

Carlinoside/isocarlinoside/

neocarlinoside (10) 
3 2 3 3 

Isoschaftoside (11) 10 6 6 6 

Schaftoside (13) 17 10 9 10 

Ferulic Acid (15) 2 2 3 2 

Methyl Ferulate (19) 245 197 208 158 

Total ferulates 247 199 211 160 

Total phenols 279 219 231 181 
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Inhibition of PTP1B 

The four batches of Lisosan
®
 G and the schaftoside pure standard were in vitro evaluated 

for their inhibitory effect on PTP1B, known as a negative regulator of insulin receptors. 

The aqueous extracts (LG1–LG4) at a final concentration of 125 mg/mL and schaftoside, as 

main flavonoid, at a final concentration of 0.15 mg/mL, were tested adding different 

amount of extracts (Figure 1.3.2.4).  

 

Figure 1.3.2.4 Residual activity of PTP1B enzyme (in vitro %); schaftoside standard (Sca) and 

Lisosan
®
 G extracts (LG1–LG4) were tested at two concentrations: (a) 10 µL/mL corresponding to 

2.7 µM for schaftoside and 1.25 mg/mL for Lisosan
® 

G extracts; (b) 50 µL/mL corresponding to 

13.5 µM for schaftoside and 6.25 mg/mL for Lisosan
® 

G extracts.  

Ctrl for control (see experimental section). 

 

The choice of testing schaftoside was also due to the inhibitory activity already showed by 

flavonoids on PTP1B enzyme as reported by literature (Jiang et al., 2012). The results 

pointed out that the whole extracts and the schaftoside were not able to inhibit the enzyme 

in diluted (10 µL/mL) and in concentrate (50 µL/mL) solutions. On the contrary, pure 

schaftoside showed a complete inhibition of the enzyme in a concentration of 13.5 µM 

(Figure 1.3.2.4b) and an IC50 value of 6.4 µM (Figure 1.3.2.5a). Considering that the 

extracts, containing the corresponding amount of schaftoside, resulted not active in the 

                                        

                                        

                                        

                                        

                                        

                                        

0

20

40

60

80

100

120

140

160

LG
4

LG
3

LG
2

LG
1

ScaCtr  

R
e

s
id

u
a

l 
a

c
ti
v
it
y
 (

%
) 10 L/mL

                                        

                                        

                                        

                                        

                                        

                                        

0

20

40

60

80

100

120

140

160

180

200

220

240

LG
4

LG
3

LG
2

LG
1

ScaCtr

R
e
s
id

u
a
l 
a
c
ti
v
it
y
 (

%
) 50 L/mL

(b)(a)



110 

 

enzymatic assay, we could speculate that other compounds present in Lisosan
®
 G could act 

as antagonists of schaftoside, presumably hindering its interaction with PTP1B enzyme. 

This hypothesis was verified by using a myricetin standard added to the LG1 and LG2 

extracts. The choice of myricetin was due to the fact that this flavonol previously showed 

an IC50 of 0.47 µM on PTP1B enzyme (data not shown). Analogously to what observed for 

the schaftoside, the results in Figure 1.3.2.5 pointed out that the addition of myricetin in 

the Lisosan
®
 G extracts reduced the inhibitory activity of the molecule alone. In light with 

these findings, we can conclude that Lisosan
®
 G contains unknown molecules that impede 

the interaction with the enzyme. These results agrees with recent evidence that confirmed 

the presence of different allosteric sites on the enzyme surface involved in the regulation of 

the enzyme activity (Hjortness et al., 2018). Furthermore, it was possible to affirm that the 

cinnamic components alone were not responsible for such higher inhibitory activity; in fact 

from literature, ferulic acid in high concentration (100 μM) only exerted a weak inhibition 

(15%) on PTP1B (Adisakwattana et al., 2013). Further analyses will be conducted to better 

define the inhibitory mechanism of schaftoside and the relationship with the applied dose.  
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a) 

 

b) 

 

Figure 1.3.2.5 (a) IC50 of schaftoside. (b) Residual activity of PTP1B enzyme (in vitro %) of: Ctrl 

for control (see experimental section), myricetin standard (Myr), Lisosan
®
 G extracts alone (LG1–

LG2), and added with myricetin (LG1+Myr; LG2+Myr). The extracts were tested at 10 µL/mL 

corresponding to 0.5 µM for myricetin and 1.25 mg/mL for Lisosan
® 

G extracts. 
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Microbial Composition of Lisosan
®

 G 

Bacteriological analysis firstly excluded the presence of microbial contaminants typical of 

food specimens, such as coliforms and staphylococci (Figure 1.3.2.6). 

 

Figure 1.3.2.6 Lisosan
®
 G (LG1) was tested for presence of coliforms and staphylococci in (a) 

McConkey III agar medium and (b) mannitol salt agar medium, respectively. A total of 500 mg of 

Lisosan
®
 G was plated. No Colony Forming Unit (CFU) were observed. In (B) the medium turned 

pink to yellow due to the low pH of the fermented product. 

 

Since the microbial composition of Lisosan
®
 G is unknown, quantification of specific 

bacterial species of interest by Real-Time PCR or q-PCR was not applied. Next-generation 

sequencing was chosen as suitable tool to perform the qualitative characterization of 

bacterial composition. The 16S rRNA gene sequencing was applied to identify the 

microbial composition of Lisosan
®
 G (Table 1.3.2.3) with Lactobacillus (45.4%), 

Enterococcus (28%), and Pediococcus (17%) as the main bacterial genera. 

 

a) b) 
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Table 1.3.2.3 Microbial composition of Lisosan
®
 G (LG1). Number of sequenced reads and amount 

(%) of identified taxa were reported. 

 

By BLAST alignment we found that the best hits for species identification (99% of 

identity) were Lactobacillus fermentum, Enterococcus faecium, and Pediococcus 

acidiliacti. Generally, numerous fermenting bacteria, especially lactic acid bacteria (LAB), 

have been identified in sourdoughs, including Lactobacillus and Pediococcus spp. In 

addition to acidification, the proteolytic activity of LAB allows release of compounds 

which can promote growth or inhibition and metabolic activities of other microorganisms, 

as well as organoleptic characteristics. Enterococcus genus includes known probiotic 

strains and was considered a good candidate for co-culture in food fermentation processes 

(Vuyst et al., 2003). 

Activity on Lactobacillus reuteri 

Lactobacillus reuteri is a common component of the microbiota of human and animal 

intestine and it is widely used in probiotic formulations targeted to infants and adults to 

reduce the incidence and severity of diarrhea, prevent colics and necrotic enterocolitis, and 

maintain a functional mucosal barrier (Urbańska et al., 2014). As shown in Figure 1.3.2.7, 

Lisosan
®
 G was capable of stimulating the growth of L. reuteri DSM 17,938 by more than 

1 Log (from 6.7 to 7.8) after 48 h of incubation; even if growth was significantly lower (p 

< 0.05) with respect to that on glucose. The ability to increase the growth of this 

     
N. Reads Amount (%) 

Phylum Class Order Family Genus  
 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 47,344 45.4% 

Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 29,195 28.0% 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus 17,711 17.0% 

Firmicutes Bacilli Lactobacillales Unclassified Unclassified 3863 3.7% 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Unclassified 3391 3.3% 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 1218 1.2% 

Unclassified 
 

Unclassified Unclassified Unclassified 918 0.9% 

    
Others 637 0.6% 

    Total  104,277  

 

a b 
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microorganism is certainly of interest for this fermented matrix characterized by the 

presence of probiotic strains and phenolic compounds potentially able to exert growth 

inhibition of harmful bacteria. The reason for the lack of difference in growth potential 

when Lisosan
®
 G was tested at different concentrations (0.5 and 1%) may also be related to 

the copresence of different molecules and a broad spectrum of action of this complex 

product. The beneficial effects of Lisosan
®
 G on human health have already been 

demonstrated, but prebiotic effects have not been described yet.  

 

 

Figure 1.3.2.7 Ability of Lisosan
® 

G (LG1) tested at different concentration (0.5 and 1%) in 

stimulating the growth of L.reuteri. 
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1.3.2.4 Conclusions 

This work improves knowledge on the composition and properties of this fermented grain, 

and it is the first report to focus on the content of free and bound phenolic compounds in 

Lisosan
®
 G. Contrary to what reported in literature, the bound phenols remained high 

(more than 80%), although Lisosan
®
 G was obtained after a fermentation process, usually 

described as able to increase hydrolytic processes and to strongly reduce the aliquot of 

bound phenols in cereals. Again, despite some data in the literature, the acidic hydrolysis 

was able to extract the highest amount of cinnamic derivatives, without degradation of the 

pool of C-glycosylated flavonoids. It was demonstrated that applying both soft basic and 

acidic hydrolysis on the whole flour it was possible to recover free and bound phenols 

through only one extractive step with higher yields compared to those obtained with the 

stronger basic hydrolysis suggested in the literature to date. Regarding the microbial 

characterization, it showed the presence of bacterial genera with fermentative capability 

such as Lactobacillus, Pediococcus, and Enterococcus, generally recognized as safe and 

used in the production of fermented food. The proteolytic activity of these bacteria can 

contribute to the release of compounds, such as phenols, growth of beneficial bacteria as L. 

reuteri, and inhibition of harmful bacteria. For the first time, a prebiotic effect on L. reuteri 

strain, widely used in probiotic formulation targeted to infants, was highlighted. This 

fermented wheat resulted not able to inhibit the PTP1B enzyme in vitro, however, the pure 

schaftoside, a main C-flavonoid of Lisosan
®
 G, showed a strong inhibitory activity. 

Schaftoside was tested for the first time on PTP1B enzyme and was active as inhibitor at 

µM concentration (13.5 µM). Our findings open new perspectives to investigate on the role 

played by this C-glycosylated flavonoid and its analogous, typically present in wheat and 

in other cereals. Further studies are desirable to clarify the mechanism linked to the action 

of schaftoside and to test also other similar C-flavonoids on PTP1B enzyme. The 
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International Diabetes Federation announced that the global population of diabetics in 

2015 was close to 400 million, and this number could rise to 600 million in 2040. In this 

context, research on new functional foods that can help stem the onset of this disease in the 

near future is recognized as strategic. Overall, our results provide further insights on the 

nutraceutical potential of this fermented food, whose beneficial effects were previously 

demonstrated by recent in vivo and ex vivo experiments.  
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Chapter 2 

 Pomegranate 

 

2.1 Introduction 

Pomegranate (Punica granatum L.) belongs to the Punicaceae family, is classified among 

the top seven fruits with the highest beneficial properties for human health (Sreekumar et 

al., 2014; Pereira et al., 2016). Its scientific name derives from the Latin pomuni (apple) 

granatus (grainy) meaning seeded apple. Pomegranate is native to central Asia, notably 

Iran, but since the tree is highly adaptive to a wide range of climates and soil conditions, it 

is grown in many different geographical regions including the Mediterranean, Asia, and 

California (Holland et al., 2009). The pomegranate and its usage are deeply embedded in 

human history and its use, as food and medical remedy, has been found in many ancient 

human cultures. Despite this fact, cultivation of pomegranate has always been restricted 

and it has generally been considered a minor crop. The pomegranate tree requires a long, 

hot and dry season in order to produce good yield of high-quality fruit (Hussein et al., 

2018). Pomegranate fruit is a fleshy berry (6.25 to 12.5 cm wide with a weight range of 

200-650 g) with varying color from reddish yellow to green with reddish zones. Its skin 

covers white, spongy membranes that form a number of cells, each packed full of angular 

seeds contained in a juicy pulp sac called arils having bittersweet flavor and color ranging 

from intense ruby to white (Hussein et al., 2018). Differences are established according to 

potential market and consumer preference, taking into account important parameters such 

as fruit size, husk and aril colors, seed hardness, maturity, juice content, acidity, sweetness 

and astringency. The most common pomegranate variants and regions where they are 

recognized are: “Wonderful” throughout Europe, “Molar de Elche/Valenciana” in Spain, 
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“Ahmar/Aswad/Halva” in Iraq, “Mangulati” in Saudi Arabia, “Red Loufani/Ras el Bahgl” 

in Israel and Palestine, and “Apaseo/Apaseo tardía” in Mexico (Hussein et al., 2018).  

 

Figure 2.1.1 Pomegranate varieties 

Nowadays scientific interest in the chemical characterization of pomegranate fruits is 

focused not only on the edible parts (arils), but also on the inedible ones such as the peel.  

Pomegranate peel represents 40-50% of the whole fresh fruit weight and is the main by-

product obtained after juice extraction. The peel contains high percentages of water 

(around 70–75%) and high organic matter contents (around 96% of total solids), but it is 

also a good source of phenolic compounds (10–20%), polysaccharides (10–15%) and 

sugars (30–35%) (Pereira et al., 2016). Under European regulations these characteristics 

mean that pomegranate waste should not be disposed in landfills as it presents a significant 

risk to local watercourses and leads to uncontrolled greenhouse gas production The use of 

such residues for production of multiple value-added products will promote innovation in 

agro waste bio-refineries and serve the agro-processing sector by making it more resource 

efficient and sustainable, enhancing agribusiness opportunities and supporting rural 

livelihoods (Talekar et al., 2018; Zhai et al., 2018).  
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2.1.1 Phenolic composition  

Pomegranate fruits are a good source of phenolic compounds such as phenolic acids 

(hydroxycinnamic and hydroxybenzoic acids), hydrolysable tannins (ellagitannins, 

gallotannins) and flavonoids, all present both in the arils and peel at different percentages 

(Singh et al., 2018). The major phenolic compounds identified in pomegranate are gallic 

acid (a), caffeic acid (b), chlorogenic acid (c), ellagic acid (d) (phenolic acids), apigenin 

(e), quercetin (f), pelargonidin (g), cyanidin (h) (flavonoids), punicalin (i), punicalagin (j), 

granatin A (k) and granatin B (l) (ellagitannins) (Figure 2.1.2).   

 

Figure 2.1.2 Chemical structures of the major phenolic compounds identified in pomegranate peel: 

gallic acid (a), caffeic acid (b), chlorogenic acid (c), ellagic acid (d), apigenin (e), quercetin (f), 

pelargonidin (g), cyanidin (h), punicalin (i), punicalagin (j), granatin A (k) and granatin B (l). 

 

Phenolic composition usually varies among pomegranate cultivars depending on 

environmental conditions, for example geographic location, fruit stage of maturity, and 

peel and aril color. For this reason, there is a wide range in terms of phenolic content 

among different pomegranate varieties, both from a qualitative and quantitative point of 

view (Table 2.2.1). 
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Table 2.1.1 Total phenolic, flavonoid, anthocyanin and hydrolysable tannins reported in pomegranate peel from different regions (Singh et al., 2018) 
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Despite pomegranate consumption is mainly in the form of fresh fruits or juices, several 

studies reported in literature demonstrated that the highest amount of phenolic compounds 

is actually present in pomegranate peel (mesocarp+exocarp) (Fischer et al., 2011). Indeed, 

pomegranate peel possesses significant free radical scavenging, anti-microbial, 

antiatherogenic and antimutagenic properties and it is reported to produce ameliorating 

effects against many critical maladies. Unfortunately, functional foods containing 

pomegranate peel are not in general well accepted by consumers because of their relatively 

reduced sensory features (Akhtar et al., 2015). Considering pomegranate phenolic 

compounds as beneficial properties on human health, it is necessary to underline that only 

5-10% of the total ingested phenols get absorbed in the small intestine. Among these, 

phenolic acids are maximally absorbed in the small intestine, while ellagitannins and 

flavonoids are reduced into smaller molecules or metabolized by gut microbiota 

(Santhakumar et al.,  2018). Urolithins from ellagitannins and ellagic acid are considered 

the more interesting pomegranate metabolites produced by gut microbiota (Tom et al.,  

2017). 

 

Figure 2.1.3 Punicalagin metabolism 
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Recently, human subjects have been categorized into three urolithins phenotypes or 

metabotypes, depending on the qualitative and quantitative proportions of urolithins 

produced: metabotype A, B and 0. This inter-individual variability, associated with 

differences in intestinal microbiota, might contribute to the large individual variation 

observed in the health benefits associated to urolithins (Tom et al., 2017). Urolithins’ 

ability to inhibit cancer cell proliferation on a range of human cell lines representing colon, 

kidney and liver models has been highlighted (Varghese et al., 2017; Núñez-Sánchez et al., 

2016). Significantly higher anti-proliferative cancer activities (about 10 fold) against breast 

(MCF-7) and prostate (LNCaP) cancer cell lines were observed in peel of fifteen Israeli 

pomegranate varieties in comparison to the edible tissues of fruit as a result of higher 

levels of ellagitannins, punicalagin, ellagic and gallic acids (Orgil et al., 2014). 

Furthermore, a mixture of ellagitannins and polysaccharides in the form of a decoction 

demonstrated the ability to counteract initial, intermediate and late stages of colon 

carcinogenesis in rats highlighting a synergic effect of both main pomegranate classes of 

molecules, suggesting a possible use of the decoction in primary and secondary prevention 

of human colon cancer (Tortora et al., 2018). In addition, urolithins were demonstrated to 

be valid antinflammatory agents, reducing the key molecules involved in the regulation of 

inflammation (Tom et al., 2017). The capability of pomegranate phenols and metabolites 

in reducing the oxidative stress that induced degenerative diseases such as Alzheimer's 

dementia has also been recently pointed out. Punicalagin was demonstrated in vitro and in 

vivo to reduce the oxidative state and concentration of oxidized homocysteine and 

advanced glycation end-products recognized as risk factors for Alzheimer's disease. Oral 

administration of punicalagins in mice also inhibits NF-kB activation and 

neuroinflammatory response in the lipopolysaccharide-induced brain (Kim et al., 2017). 

Pomegranate powder and extract have enormous medical potential: they have been 
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observed to be effective against diabetes. The crude methanol extract of pomegranate peel 

demonstrated promising antidiabetic activity which might be related to α-glucosidase 

inhibition and an enhanced uptake of glucose. Oral administration in normal and diabetic 

rats reduced the concentration of glucose, triglycerides, cholesterol, LDL cholesterol, and 

very low density lipoprotein (VLDL) cholesterol and raised high density lipoprotein 

(HDL) cholesterol and haemoglobin levels (Radhika et al., 2011). Moreover, it has been 

demonstrated that pomegranate powder might be used as skin repairing and whitening 

agent as it inhibited UV-induced skin pigmentation in brownish guinea pigs by inhibiting 

the proliferation of melanocytes (Hayouni et al., 2011). Pomegranate powder is also a good 

source of antimicrobial compounds against Streptococcus mutans, S. sanguis, S. mitis and 

yeast (Candida albicans) commonly found in oral infections (Vasconcelos et al., 2006). 

The health benefits of pomegranate’s phenolic compounds  are summarized in Table 2.1.2 
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Table 2.1.2 Health properties of pomegranate peel (Singh et al., 2018).
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2.1.2 Polysaccharides composition  

Pomegranate peel is a good source of polysaccharides, mainly pectin, with amounts 

ranging from 10% to 12% of fruit dry weight (
b
Khatib et al., 2017). Knowledge about the 

composition and structure of polysaccharides of pomegranate fruits is limited to date, 

despite the relevance and economic importance of this raw material; most of the published 

articles are focused on phenolic compound distribution and their healthy properties 

(Shakhmatov et al., 2019). Pectin polysaccharides are vital structural components of plant 

cell walls, associated with other polysaccharides such as cellulose and hemicellulose 

(Dranca et al., 2018). Pectin is mainly present in the primary cell wall and in the middle 

lamella of plants and is one of the gelling agents added to food products to achieve desired 

texture or consistency, particularly in the manufacturing of jam and jelly. As hydrocolloid 

molecules, they are widely used in food, cosmetic and pharmaceutical industries (Talekar 

et al., 2018). The diverse structural and macromolecular properties of pectins, their 

composition of neutral sugars and molecular weight are strictly dependent on their source. 

The chain structure of pectins mainly consists of α-(1-4)-D-galacturonic acid units forming 

long homogalacturonic chains interspersed by rhamnogalacturonan sections, where 

rhamnose and galacturonic acid residues alternate. Neutral sugar units are attached to the 

backbone and concentrated in highly branched ‘‘hairy” regions (Figure 2.1.3). 

Galacturonic acid comprises approximately 70% of pectin, and all the pectic 

polysaccharides can be divided into four main structures: homogalacturonan with a linear 

chain of 25-100 units of D-galacturonic acid linked with α(1→ 4) bonds; xylogalacturonan, 

a homogalacturonan substituted at O-3 with xylose (the 3-linked xylose has occasionally 

been found to be further substituted at O-4 with an additional linked xylose); 

rhamnogalacturonan I, containing a backbone of the disaccharide repeat [-α-D-GalA-1,2-α-

L-Rha-1-4-]n with 20 and 80% of side chains, in the rhamnosyl residues, containing 
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individual, linear, or branched α-L-Araf and β-D-Galp residues; rhamnogalacturonan II, 

with an HG backbone of at least eight (and most probably more) 1,4-linked α-D-GalA 

residues decorated with side branches (α–d) consisting of 12 different types of sugars in 

over 20 different linkages (Mohnen et al., 2008).  

 

Figure 2.1.4 Schematic structure of pectin showing the four pectic polysaccharides 

homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RG-I) 

and rhamnogalacturonan II (RG-II) linked to each other (Mohnen, 2008). 

 

Part of the carboxylic groups in the galacturonic chain are present in methyl ester form. 

The degree of methylation (DM) divides pectin into the high-methoxyl (HM) form, in 

which more than 50% of the carboxyl groups are methylated, and the low-methoxyl (LM), 

in which less than 50% are methylated. The degree of methylation is crucial for the gel 

formation of pectin. Low methoxyl (LM) pectins are often used in low-sugar products due 

to their gel-forming properties without or with a small amount of sugar and in the presence 

of Ca
2+

.
 
Esterification of carboxyl groups can also influence pectin solubility in water, 

which decreases with the increase of esterification degree (Abid et al., 2017). Some 
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outstanding therapeutic effects of pectins have recently been reported, such as their anti-

obesity characters through the entrapment of food components and/or catalytic enzymes 

(Samout et al., 2016), anti-apoptotic activity in kidney toxicity induced by octylphenol 

(Koriem et al., 2014), reductant ability in cholesterol accumulation by enhancing bile acids 

synthesis in the liver (Zhu et al., 2017), and improvement of Bifidobacterium growth in the 

human colon resulting in higher digestion and lower inflammation (Olano-Martin et al., 

2002). Furthermore, a polysaccharide from pomegranate was reported as exerting an anti-

tumor and hepatoprotective effect (Varghese et al., 2017; Zhai et al., 2018).   

 

 

Table 2.1.3 Beneficial properties of pectin from natural sources and from pomegranate. 

         

Pectin from natural sources 

Beneficial effects  References 

Improvement in Bifidobacterium growth Olano-Martin et al., 2002 

Anti-apoptotic in kidney toxicity Koriem et al., 2014 

Anti-obesity Samout et al., 2016 

Reductant ability in cholesterol accumulation Zhu et al., 2017 

Pectin and polysaccharides from pomegranate 

Beneficial effects  References 

Antiglycation and tyrosinase inhibition Rout et al., 2007 

Prebiotic Marotti et al., 2012 

Antioxidant effects Joseph et al., 2013 

Prebiotic Di Gioia et al., 2014 

Prebiotic  Khatib et al., 2017 

Anti tumor Varghese et al., 2017 

Immunomodulatory Gavlighi et al., 2018 

Antiinflamamtory Gavlighi et al., 2018 

Hepatoprotection Zhai et al., 2018 

Reduced chemotherapy-induced immunosuppresion Wu et al., 2019 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bile-acid-synthesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bile-acid-synthesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bifidobacterium
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       Pomegranate pectins are gaining scientific interest thanks to their antioxidant effects 

(Joseph et al., 2013), antiglycation and tyrosinase inhibition properties (Rout et al., 

2007), immunomodulatory and anti-inflammatory effects (Gavlighi et al., 2018).  It 

has recently been demonstrated that pomegranate polysaccharides can be used to 

lessen chemotherapy-induced immunosuppression and as immunostimulants in food 

and pharmaceutical industries (Wu et al., 2019). Furthermore, pectin, as part of 

soluble fermentable dietary fiber, can exhibit prebiotic activity by stimulating the 

growth of beneficial bacteria in the colon and contributing to the healthy status of the 

gut (Di Gioia et al., 2014; Marotti et al., 2012). In a recent work, developed by 

b
Khatib et al., (2017) pomegranate polysaccharides were tested to verify the ability of 

Bifidobacteria and Lactobacilli to use them as carbon source compared to their 

growth on glucose. The study revealed that both the bacterial lineages grew well on 

pomegranate polysaccharides with results comparable to their growing on glucose 

(Table 2.1.3). In light of these interesting results, pomegranate could be considered an 

inexpensive potential source of pectins and a valid alternative to commercial pectin 

which are usually extracted from apple and citrus (Grassino et al., 2018). Only few 

studies have investigated pomegranate pectin structure and composition in depth, 

highlighting differences among cultivars or with respect to other vegetable sources 

(Shakhmatov et al., 2019). Looking to the future, a better characterization of 

pomegranate peel in terms of its polysaccharides structures, could be useful to add 

value to a by product that has already become a resource. 
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2.2 Results  
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Abstract 

 

Purple Queen
®
 is an early ripening pomegranate cultivar growing well in soilless 

cultivation and appreciated for its nutraceutical properties. Plant substrates have direct 

effects on plant development and, due to progressive peatland exhaustion, the request for 

new materials suitable for plant growth and production is high.  

The objective of this work was to verify the effects of a new potential substrate obtained 

from the remediation of marine port sediments on the nutraceutical profile of Purple 

Queen
®
 fruits, using 50% and 100% of reclaimed sediment. The study was carried out 

determining ellagitannins and polysaccharides obtained from peel after decoction and 

anthocyanins in aril juice. The phenolic and polysaccharides compositions were evaluated. 

Compared to a peat-based commercial substrate (control), the remediated port sediment 

preserved ellagitannin content and improved the nutraceutical profile, increasing the 

anthocyanin amount (up to 40% higher) and polysaccharide content up to 340 mg/g on dry 

fruit.  
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2.2.1.1 State of the art and aims of the work 

Purple Queen
®
 is a pomegranate cultivar greatly appreciated for its productivity and early 

ripening (second half of August in Alicante and Murcia, Spain). These peculiarities are 

notably functional for economic and marketing strategies since they broaden the 

availability of pomegranate fruits for both fresh consumption and processing. Registration 

has been requested for this cultivar in key countries outside the European Union, especially 

in the southern hemisphere to respond to the demand for pomegranate fruit, which has 

strongly increased over recent years. A characteristic of Purple Queen
®
 is its suitability for 

growth also in soilless systems (i.e. in pots). 

Peat is one of the main components of substrates used in agriculture. However, due to the 

progressive exhaustion of peatland, the demand for alternative and innovative substrates 

with suitable physico-chemical properties is increasing. To meet sustainability criteria in 

the plant nursery industry, attention is currently focused on the reutilization of waste-

derived substrates. Among these, dredged remediated sediments have already been 

proposed as soilless growing media for the cultivation of ornamental and food crops (Tozzi 

et al., 2019;
 
Mattei et al., 2017).  

Dredging, normally performed to guarantee river and harbor navigability, involves the 

excavation of sediment from the bottom of water basins and its reallocation in another 

place (DelValls et al., 2004). This process generates a huge volume of dredged spoils 

which must be appropriately managed following national regulations. Unpolluted 

sediments are generally re-used for beach nourishment and embankments while 

contaminated sediments, being classified as waste, are placed in landfill. Phytoremediation 

has proven to be a sustainable technology for reclaiming highly-polluted sediments (Bert et 

al., 2009) and to increase their biological activities, converting sediment into a “techno-

soil” able to support vegetation (Masciandaro et al., 2014;
, 
Doni et al., 2015). Hence, the 
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potential reallocation of remediated dredged materials in agriculture could provide an 

alternative solution to the disposal in landfills and, at the same time, reduce the intensive 

use of raw material as in the case of the requested peat. As reported by Mattei et al., 

(2018), the cultivation of an ornamental crop in remediated sediments showed a 

significantly lower environmental impact with respect to the use of traditional peat. 

Recently, dredged sediments were used as growing media for soilless cultivation of Purple 

Queen
®
; plant productivity and the main nutritional characteristic of the juice were 

evaluated (Melgarejo et al., 2019). The authors observed that fruit yield was partially 

reduced due to the high sediment bulk density which limited overall plant development. At 

the same time, fruits cultivated on sediment showed a significant increase of soluble solids, 

fructose and glucose content in the arils, indicating that the presence of sediment promoted 

greater dry matter accumulation in this tissue. The present study was focused on the 

characterization and quantification of the bioactive components of whole fruits (aryls and 

peel) obtained from Purple Queen
®
 trees cultivated as described by Melgarejo et al., 

(2019) for two agronomic seasons, partially or totally substituting the peat with dredged 

sediments. Evaluation of the nutraceutical quality of the fruit was carried out determining a 

pool of components, namely anthocyanins in juice as well as polysaccharides and 

ellagitannins in peel. To the best of our knowledge, this is the first study investigating the 

effect of innovative substrates on the main nutritional components of the arils and peel 

from pomegranate fruits obtained in soilless cultivation. 
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2.2.1.2 Materials and methods 

 

Experimental design and fruit sampling 

 

Purple Queen
®
 plants were cultivated in a remediated dredged sediment as described by 

Melgarejo et al. (2019). Briefly, the sediments were dredged from the Livorno, Italy, port 

and were subjected to three years of phytoremediation as described by Masciandaro et al. 

(2014). Afterwards, the sediment underwent three months of landfarming, a 

bioremediation consisting in periodic aeration and irrigation of the sediment in order to 

homogenize the matrix. The remediated sediment was used to prepare two growing 

substrates: PQ-100 (PQ2017-100 and PQ2018-100 samples), the remediated sediment 

alone, and PQ-50 (PQ2017-50 and PQ2018-50 samples) derived from the remediated 

sediment mixed with a traditional peat-based commercial substrate (1:1, v/v). The same 

peat-based commercial substrate present in PQ-0 was used as control treatment (PQ2017-0 

and PQ2018-0 samples). Moreover, a sample of Purple Queen
®
 fruits purchased in local 

markets in 2018 were also analyzed (PQ-C) as further control sample. The main physico-

chemical parameters of the substrates are presented in Table 2.2.1.1. 
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Table 2.2.1.1 Main chemical parameters of the commercial peat substrate (0), mixture sediments: 

peat v/v 1:1 (50), and remediated sediment used as pure (100). The values are the mean and 

standard deviation (n=3).  

 

The fruit samples used in this experiment were harvested at full ripening at the end of two 

growing seasons (2017 and 2018). All plants (PQ-0, PQ-50 and PQ-100)  received a 

complete Hoagland nutrient solution, composed of KNO3, NH4NO3, K2SO4, HNO3, 

H3PO4, and a complex mix of microelements (Melgarejo et al., 2019). The arils and peel 

(mesocarp+esocarp) used for the analyses are presented in Table 2.2.1.2. 

Parameters 0 50 100 

pH 6,2 7.9 (±0.2) 8.21 (±0.3) 

EC (µs cm
-1

) 1129 (±7) 596 (±14) 352 (±16) 

NH3 (mg l
-1

) 1.03 (±0.19) 0.25 (±0.03) 0.08 (±0.03) 

NO3
-
 (mg l

-1
) 304 (±1) 190 (±18) 26 (±0.1) 

TN (%) 1.3 (±0.2) 0.29 (±0.01) 0.12 (0.02) 

PO4 (mg l
-1

) 16.8 (±0.2) 0.4 (±0.0) 0.4 (±0.0) 

Chloride (mg kg
-1

) 20.5 (±0.2) 12.4 (±2.1) 11.4 (±0.5) 

K (mg kg
-1

) 65 (±5) 19 (±0.5) 9 (±0.1) 

Mg (mg kg
-1

) 22.1 (±0.3) 11.4 (±0.2) 8.4 (±1.5) 

Ca (mg kg
-1

) 114 (±1) 67 (±2) 31 (±4) 

Cu (mg kg
-1

) 14.1 (±0.3) 43.7 (±0.9) 55.4 (±1.2) 

Zn (mg kg
-1

) 13 (±1) 170 (±8) 194 (±7) 

Ni (mg kg
-1

) 0.2 (±0.0) 35 (±2) 39 (±2) 

Pb (mg kg
-1

) 1.4 (±0.0) 34 (±3) 38 (±6) 
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Table 2.2.1.2 Weight of the different tissues of fruits from Purple Queen
®
 grown on different 

substrates. Values are the mean of 10 fruits (n=10) and standard deviation (in brackets). 

 

Standards and reagents 

All solvents were of analytical HPLC grade from Sigma Aldrich (St. Louis, Missouri, 

USA). Ultrapure water was obtained by the Milli-Q-system (Millipore SA, Molsheim, 

France). Ellagic acid (purity ≥ 95%) and punicalagin (purity≥ 98%) were purchased from 

Sigma Chemical Co. (St. Louis, MO, USA). Oenin chloride (purity ≥ 95%) was purchased 

from Extrasynthese (Genay, France). Dextrans at different molecular weights (2000, 1100, 

410, 150, and 50 kDa) and sucrose (360 Da) used for SEC analyses were from Sigma-

Aldrich, USA. The ellagitannins were quantified according to their maximum absorption at 

either 380 nm using a five-point calibration curve of a racemic mixture of α- and β-

punicalagins (purity ≥ 99%, linearity range 2 - 5 µg, R
2
=1.000) or 370 nm using a five-

point calibration curve of ellagic acid (purity 95%) (linearity range 0-1.7 µg, R
2
=1.000). 

The anthocyanins were quantified at 520 nm with a four-point calibration curve of oenin 

chloride (purity ≥ 95%; linearity range 0-2.6 µg, R
2
=0.999).  

Anthocyanins from arils 

Samples Year 
Fruit total 

weight (g) 

Aril total 

weight (g) 

Peel total 

weight (g) 

PQ-0 

2017 302.6 (±37) 139.1 (±45.8) 163.5 (±23) 

2018 293.5 (±27) 125.2 (±42.6) 168.3 (±17) 

PQ-50 

2017 250.4 (±29) 108.5 (±43.3) 141.9 (±24) 

2018 264.6 (±35) 112.3 (±42.44) 152.3 (±19) 

PQ-100 

2017 207.3 (±31) 86.8 (±41.9) 120.5 (±23) 

2018 216.7 (±25) 88.1 (±40.7) 128.6 (±16) 

PQ-C 2018 303.1 (±39) 132.8 (±43.8) 170.3 (±27) 
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Arils from PQ2018 (0; 50; 100) and Purple Queen
®
 commercial sample (PQ-C) were used 

for the preparation of juices using a domestic Hurom extractor which guarantees the 

preparation of juices through a rapid process at low temperatures. The arils derived from 

fruits collected from the different soils were divided into three aliquots and each treated 

separately to obtain a triplicate. Each juice was diluted (1:1 v/v) with ethanol (2% 

HCOOH) to better stabilize the solution before analysis. The samples were then 

centrifuged at 14000 rpm for 5 min. The supernatant was recovered and analyzed by 

HPLC-DAD-MS. 

 

Ellagitannins and polysaccharides from peel 

The peel and arils from fruits (n = 9) were manually separated, weighted and freeze-dried 

until constant weight was reached. The freeze-dried peel (5 g) was boiled in 200 mL of 

ultrapure water, for 1 h as per 
b
Khatib et al., (2017). The supernatant was recovered after 

cooling and centrifugation (4500 rpm, 8 min, 4 °C) and taken to a final volume of 200 mL 

with ultrapure water. Ten mL were used for the analysis of ellagitannins. The remaining 

amount of supernatant was treated with 300 mL of ethanol and kept at 0° C to induce 

polysaccharides precipitation. After centrifugation (4500 rpm, 8 min, 4 °C) the recovered 

polysaccharides were freeze-dried and weighed to calculate the yield.  

 

HPLC-DAD analysis of phenolic extracts  

The ellagitannins in peel and juice and the anthocyanins in juice were analyzed using a HP 

1200L liquid chromatograph equipped with a DAD detector (Agilent Technologies, Palo 

Alto, CA, USA) after removing suspended solids by centrifugation at 14,000 rpm for 10 

min. A Kinetex, 100, EC-C18 (30 x 3 mm, 2.6 µm, Agilent, USA) column was used to 

determine the two phenolic subclasses by a single chromatographic run; solvent A was 
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CH3CN and solvent B was H2O acidified by HCOOH (3% v/v). The following linear 

gradient was applied: solvent A varied from 5% to 25% in 8 min, then was kept for 10 min 

at A 25%, in 2 min it reached 95%, and finally was kept in this condition for 6 min. Total 

time of analysis was 28 min, equilibration time 10 min, and flow rate 0.4 mL/min. 

Injection volume: 2 μL for ellagitannins extracts (decoction) and 10 μL for anthocyanins 

extracts (centrifuged juices). Chromatograms were recorded at 370 nm, 380 nm and 520 

nm. 

 

MS analysis  

The extracts from decoction and juices from arils were analyzed on a quadrupole ionic trap 

LTQ (Thermo Finnigan) coupled to an HPLC (Thermo Finnigan Surveyor, San Jose, CA, 

USA); the HPLC conditions were the same as reported in paragraph 2.5. The analyses were 

conducted with the following ESI parameters (electrospray ionization): Sheath Gas Flow 

Rate: 35; Aux Gas Flow Rate: 10; Sweep Gas Flow Rate: 7; Spray Voltage: 4.20 V; 

Capillary temperatures: 280 °C; Capillary Voltage: -23 V; Tube Lens: -53. Acquisition for 

mass analysis was performed in negative and positive ions in full spectrum scan in the 

range of m/z from 100 to 1800. 

 

Size Exclusion Chromatography (SEC) for polysaccharides  

The samples containing the total polysaccharides were analyzed by SEC to determine the 

apparent molecular weight of the main constituents. Briefly, after freeze drying the 

samples were dissolved in distilled water at a final concentration close to 0.5 mg mL
-1

. The 

samples were analyzed according to as Chamizo et al., (2018) using a ProStar HPLC 

Chromatograph (Varian USA) equipped with a refractive index detector (mod 355), using 

two columns, PolySep-GFC-P 6000 and PolySep-GFC-P 4000 from Phenomenex, USA, 
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connected in series. The columns (700 mm length and 7.8 mm internal diameter) had 

separation ranges of 100 kDa to 15 MDa and 0.3 to 400 kDa. HPLC-grade water was used 

for the isocratic elution, with a flow of 0.6 mL min
-1

, and total time of 70 min. Blue-

dextrans at various molecular weights ranging from 50kDa to 2000 kDa were used as 

internal standards to determine the hydrodynamic volume. 

 

Sugars analysis  

The two samples (PQ-C and PQ2018-100) were dialysed (cut-off 12–14 kDa), freeze-dried 

and treated according to Nunes et al., (2001) for the determination of neutral sugars after 

acid hydrolysis (H2SO4 72%) and conversion to the corresponding alditol acetates. Gas 

chromatography was performed using a Hewlett-Packard 5890 with a split injector (split 

ratio 1:60) and FID detector. A 25-m column CP-Sil-43 CB (Chrompack, Holland) with 

0.15 mm i.d. and 0.20-μm film thickness was used. With the injector and detector 

operating at 220 °C, the following temperature program was used:  180 °C for 5 min and 

200 °C for 20 min, with a rate of 0.5 °C/min; linear velocity of the carrier gas (H2) was set 

at 50 cm/s at 200 °C. In addition, uronic acids were colorimetrically determined using m-

phenylphenol as previously reported  (Nunes et al., 2001).  

 

Statistics  

Each experiment was performed in triplicate and the results were expressed as mean ± SD 

using EXCEL software (version 2013) in-house routines. One-way ANOVA and F-test (p 

< 0.05) by Microsoft Excel statistical software and Fisher’s LSD (DSAASTAT software v. 

1.1, Onofri, Pisa, 2007) were used to point out significant differences between quantitative 

data for anthocyanins in juice and ellagitannins in peel. 
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2.2.1.3 Results and Discussion 

This work focused on Purple Queen
®

, a pomegranate cultivar widespread in southern 

Spain and characterized by an early ripening time (between mid-August and late 

September) when other widely commercial varieties such as Wonderful are not available 

on the market. Specifically, we wanted to verify the effects induced on the nutraceutical 

profile of the fruits when the plants were cultivated in pots with different percentages of 

remediated port sediments. 

With the aim of evaluating the effect of sediments on fruit quality, three main classes of 

molecules were investigated: anthocyanins in arils and ellagitannins and polysaccharides in 

peel. These latter were gravimetrically evaluated and analyzed to determine the sugar 

composition and apparent molecular weight by Size Exclusion Chromatography (SEC).  

 

Morphological characteristics of Purple Queen
®

 fruits  

As reported in Table 1, all the fruits showed a similar mean weight for both 2017 and 

2018; control fruits (PQ-0), although the plants were cultivated in pots, showed a mean 

weight of 298.05 g which was comparable to that of the commercial fruits (PQ-C) at 303.1 

g. The presence of sediments in both the tested percentages negatively affected fruit size. 

Whole fruits, arils and peel total weight followed a common trend with PQ-0>PQ-50>PQ-

100 in both the years. These findings clearly indicate that the physical and chemical 

composition of the sediments (Table 2.2.1.1), different from peat, induced plant stress 

resulting in a lower plant productivity as previously highlighted by Melgarejo et al., 

(2019).  
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Anthocyanins in juice  

In order to highlight specific differences in the amount of single anthocyanins in this study, 

the qualitative and quantitative evaluation of anthocyanins was carried out by HPLC-DAD. 

The anthocyanin chromatographic profiles of fruits collected in 2017 showed similar 

patterns for the produced juices independently from the substrate (data not shown). In light 

of these preliminary findings, the fruits collected in 2018 were used also to carry out a 

quantitative evaluation. As expected, the anthocyanin fingerprints were similar to those 

found in Purple Queen
®

 from 2017 and to profiles reported in the literature for other 

varieties (Figure 2.2.1.1a) (Fischer et al., 2011).  

         a) 

 

       b) 

 

Figure 2.2.1.1 HPLC-DAD profiles of Purple Queen sample, 2018 fruits. 

(a) Anthocyanins from juice (b) Ellagitannins from decoction. 
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The most abundant components were cyanidin-3,5-diglucoside, delphinidin-3,5-

diglucoside and cyanidin-3- glucoside (Figure 2.2.1.1a).  

The absence of α and β punicalagins in our samples is linked to the method applied to 

obtain the juices from arils only, unlike most commercial pomegranate juices which are 

usually made by pressing half of the whole fruit, meaning a co-extraction of some 

ellagitannins from peel (Fischer et al., 2011). The identified anthocyanins are summarized 

in Table 2.2.1.3. 

 

Analytes rt [MH]-
 Identified compounds 

3 3.9 1083 alpha-punicalagin 

4 5.9 1083 beta-punicalagin 

7 10.4 301 ellagic acid 

Anthocyanins rt [M]+ Identified compounds 

AX 6.1 627 delphinidin-3,5- diglucoside 

A1 6.8 611 cyanidin-3,5-diglucoside 

A2 7.5 465 delphinidin-3-glucoside 

A3 
8.1 

 
449 cyanidin-3-glucoside 

A4 8.8 433 pelargonidin-3- glucoside 

 

Table 2.2.1.3 Main identified compounds in pomegranate samples. 

 

The use of the sediments particularly influenced the concentration of cyanidin-3,5- 

diglucoside which showed the highest values (140 mg/L) in the PQ2018-100 sample; the 

control (PQ2018-0) showed the lowest value (90 mg/L). Moreover, Figure 2.2.1.2a shows 

that also cyanidin-3-glucoside was significantly increased in 2018 fruits cultivated on 

sediment-based media (100% and 50%) with respect to the control (PQ2018-0) and 

commercial fruit (PQ-C). It should be pointed out that an environmental factor, such as the 

growing media, positively affected the content of cyanidin, an important molecule with 
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beneficial qualities such as neuroprotective, antioxidant and antidiabetic properties 

(Cásedas et al., 2019). An opposite trend was observed for delphinidin-3,5-diglucoside 

with resulted statistically higher in control fruit compared to the other treatments, although 

with slight differences (Figure 2.2.1.2a). The total anthocyanins ranged from 171 to 233 

mg/L in PQ2018-0 and PQ2018-100, respectively (Figure 2.2.1.2b). 

a)  

 

b) 

 

 

Figure 2.2.1.2 Anthocyanins in juices obtained from fruits collected in 2018: a) distribution of the 

main compounds, and b) total anthocyanins content. The data are expressed as mg/L as a mean of 

triplicates. Error bars represent the standard deviation (n=3). 

 Different letters mean statistically significant differences (p< 0.05). 
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It is noteworthy that both PQ-100 and PQ-50 from 2018 samples were richer in 

anthocyanins than the control and commercial fruit (PQ2018-0 and PQ-C respectively). 

Based on these results, plants PQ2018-100 and PQ2018-50 synthetized a higher 

anthocyanins content in response to a greater stress, presumably caused by the sediment. 

Previous data regarding anthocyanins content in PQ grown under the same reclaimed 

sediment did not evidence significant variations, probably due to different extraction and 

analytical methods (Melgarejo et al., 2019).  

Findings from fruits of fifteen Iranian varieties of pomegranate indicated 252.2 mg/L as the 

highest anthocyanin content determined by HPLC-DAD (Alighourchi et al., 2008). 

Comparing these results with the amount measured in Purple Queen
®
, it turns out that this 

variety is a good source of anthocyanins, with values comparable to those of the richest 

Iranian varieties even when grown under only remediated dredged sediments (PQ2018-

100). 

Anthocyanins are well-known to have a strong positive impact on human  health
 
(Fischer 

et al.,2011) and, although there are no fixed values for anthocyanins intake, in 2013 the 

Chinese Nutrition Society, suggested providing a daily intake of at least 50 mg. Taking into 

account that red pomegranate juice is the main or only part of the fruit usually consumed 

fresh, the importance of finding new substrates for cultivation suitable to maintaining or 

even better to improving the phenolic expression, in particular of the anthocyanins, is 

certainly of great interest.  

 

Ellagitannins from peel  

The peel is known to be as the richest tissue of pomegranate fruit in terms of ellagitannins 

and polysaccharides, two classes of bioactive compounds that are well soluble and 

chemically stable in hot water (
a
Khatib et al., 2017). Due to these properties, in our work 
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peel extraction was carried out by applying a decoction because this procedure resulted 

suitable to efficiently recover both ellagitannins and polysaccharides with high yields. The 

possibility of using only water as extractive solvent can be strategic to facilitate the 

valorization of this by-product obtained in large quantities during the production of juice 

(Joseph et al., 2013). Applying this process, it is also possible to propose the use of the dry 

decoction, almost representing the 70% of the dry weight, as a new functional ingredient to 

enrich different foods with ellagitannins and pomegranate polysaccharides. 

The components detected in Purple Queen
®

 decoction were the same as those previously 

found in other varieties (Fischer et al., 2011) (Table 2.2.1.3), with α+β punicalin (2), α 

punicalagin (3), β punicalagin (4), and ellagic acid (8) resulting as the principal 

ellagitannins (Table 2.2.1.4). All the chromatographic profiles related to the ellagitannins 

found in peel grown in 2017 and 2018 in the different substrates resulted very similar and 

almost completely superimposable (Figure 2.2.1.1b). It can be said that the presence of 

remediated dredged sediments did not induce changes in the biosynthetic pathways of 

these phenolic compounds. The ellagitannins content in the fruits harvested in the two 

seasons showed a similar trend: the presence of sediment mixed with peat (i.e. PQ-50) 

determined the maximum increase in both years, with a more pronounced effect on the 

fruits of 2018. The highest concentration of ellagitannins was found in the commercial 

sample (PQ-C). The amount of α and β punicalagins in Purple Queen
®
, cited as major 

ellagitannins responsible for the majority of the biological properties of pomegranate, 

ranged from 54% to 60% of total phenols for all the fruits grown in pots, while the 

percentage increased in the commercial sample (PQ-C) with approximately 70% of the 

total content (Table 2.2.1.4).  
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Table 2.2.1.4 Ellagitannins in the decoction of peel of Purple Queen
®
 (PQ) samples collected in 

2017 and 2018 grown in pots in different conditions (PQ-0; PQ-50; PQ-100);  PQ-C was a 

commercial sample from 2018. Data (mg/g of dry weight) are means of the triplicates; the values of 

relative standard deviation (RSD) were below <5% for all the components. 

 

The values reported in the literature for total ellagitannins in pomegranate peel range from 

67 mg/g to 262 mg/g DW depending on the different varieties, geographical and 

environmental factors (Fischer et al., 2011; 
a
Khatib et al., 2017; Singh et al., 2018). 

Findings from a previous work on Wonderful and Laffan varieties showed that the total 

ellagitannins extracted with a hydroalcoholic medium (ethanol 70 %) and hot water gave 

very similar amounts (
a
Khatib et al, 2017). 

In our samples, the mean values for total ellagitannins extracted by decoction ranged from 

38 to 85 mg/g dry peel (Figure 2.2.1.3) confirming that Purple Queen
®
 is a variety with a 

medium content of ellagitannins. To the best of our knowledge, this is the first study to 

evaluate ellagitannins in peel of the Purple Queen
®
 variety and compare the content 

obtained from pomegranate plants grown in pots on different substrates grounds containing 

peat and remediated dredged sediments. 

         Ellagitannins 

 PQ-0 PQ-50 PQ-100 PQ-C 

Compounds 2017 2018 2017 2018 2017 2018 2018 

ellagitannin der. (1) 1.8 0.8 2.1 2.6 2.6 2.2 1.9 

α+β punicalin (2) 12.5 7.1 18.6 22.5 19.1 22.5 19.3 

α punicalagin (3) 8.0 7.2 11.6 11.7 8.8 9.0 17.5 

β punicalagin (4) 21.9 14.7 27.9 27.5 24.5 23.9 39.2 

ellagitannin der.(5) 1.2 0.7 0.7 1.3 0.6 0.5 1.9 

ellagic acid hexoside(6) 1.5 0.9 0.9 1.5 0.7 0.8 2.0 

ellagic acid pentoside (7) 1.1 2.3 1.4 1.7 1.4 1.4 1.3 

ellagic acid(8) 1.8 3.9 4.7 3.3 3.8 3.9 2.2 

ellagic acid der.(9) 0.1 0.7 0.1 0.2 0.1 0.1 0.2 

ellagic acid der.(10) 0.1 0.1 0.1 0.2 0.1 0.1 0.3 
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Figure 2.2.1.3 Total ellagitannins in decoction of peel: samples from 2017 and 2018 

grown with different media (sediments % of 0; 50; 100) compared to Purple Queen
® 

 

commercial sample (PQ-C). Data (mg/g dry weight) are means of a triplicate. Different 

letters indicate statistically significant differences (p<0.05). 

 

Polysaccharides from peel  

Pomegranate peel has been recognized to be a good source of polysaccharides, 

representing approximately 10-12% of the fruit dry weight and being mainly present as 

pectin (Gavlighi et al., 2018; 
b
Khatib et al., 2017; 

 
Joseph et al., 2013; Singh et al., 2018; 

Shakhmatov et al., 2019). Several biological properties concerning the polysaccharides of 

pomegranate have been recently highlighted in the literature: immunomodulatory and 

scavenging properties, an ability to reduce the growth of tumors in mice in combination 

with doxorubicin, and in vitro prebiotic activity contributing to maintain the health of 

human microbiota (Joseph et al., 2013; Tortora et al., 2018). 

In
 
light of these studies, although polysaccharides of pomegranate can be considered a part 

of the bioactive molecules of the fruit, scarce data are available on their structure and no 

information is available on Purple Queen
®

 till now. In this study, initially, the yields in 
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total polysaccharides were gravimetrically evaluated after precipitation induced by ethanol 

from decoction. As shown in Figure 2.2.1.4, similar values were obtained for the 2017 and 

2018 samples: the increased content of polysaccharides resulted proportional to the 

percentage of remediated sediment in the substrate. The amount of polysaccharides found 

in fruits of plants cultivated only in remediated sediment (PQ-100) showed a strong 

increment in both years with respect to the values measured for the commercial sample 

(PQ-C). The total percentage of polysaccharides expressed in the dry weight of peel ranged 

from approximately 12% in PQ2017-0 to a maximum of 32% in PQ2017-100. These 

results are clearly greater with respect to other pomegranate varieties (
b
Khatib et al., 2017). 

In general, the increase of polysaccharides production in plants has been associated to 

abiotic stresses, like water deficit, however no data are available regarding the effect of 

reclaimed sediment. A greater accumulation of total soluble solids has been observed also 

in other fruits (strawberries and pomegranates) from plants grown on the same reclaimed 

sediment (Tozzi et al., 2019; Melgarejo et al., 2019), associated to the stress induced by 

the sediment with unsuitable physical characteristics, such as high bulk density and low 

porosity. Therefore, the increase of polysaccharides may contribute to the enhanced 

accumulation of dry matter within the fruit peel.  
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Figure 2.2.1.4 Total polysaccharides in Purple Queen
®
 fruit samples collected in 2017 and 2018 

from the three treatments compared with a commercial sample (PQ-C). Data (mg/g DM) are the 

mean of a triplicate. Different letters indicate statistically significant differences (p<0.05). 

 

To evaluate possible changes in the apparent molecular weight (hydrodynamic volume) of 

the main polysaccharides, the samples were analyzed by SEC, using a pool of dextrans to 

determine the hydrodynamic volume of the main polysaccharides recovered after decoction 

from the peel of Purple Queen
®
 samples. Figure 2.2.1.5, in reference to the two samples of 

2017 and 2018 without the presence of sediment (PQ-0), shows very similar profiles with 

about 50% constituted by oligosaccharides (white column, <0.36 kDa) and approximately 

the other 50% by polysaccharides at high molecular weight (black column) with values > 

2000 kDa. On the other hand, the samples grown on 100% remediated dredged sediment 

show different profiles, particularly for the fruits of 2017 compared to those of 2018. These 

latter samples have a similar polysaccharides distribution for all pot-grown plants with an 

almost superimposable profile compared to the commercial sample (PQ-C). In other 

words, the major changes in terms of molecular weight distribution were observed for the 
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younger plants of pomegranate (samples from 2017), while the older plants were less 

susceptible to the effect of the sediment. 

 

Figure 2.2.1.5 Distribution of the apparent molecular weight determined by SEC for the whole 

polysaccharide fractions recovered after decoction by ethanol addition; data are expressed as peak 

area % on total areas. H-MW: High molecular weight; L-MW: Low molecular weight 

 

To further investigate the sugar composition, the total polysaccharide fractions of PQ-C 

and PQ2018-100 were dialysed and subjected to acidic hydrolysis. We wanted to verify if 

the similarity in their profiles after SEC could also be confirmed in terms of sugar 

composition. Our findings highlighted the presence of glucose as major neutral sugar: 45% 

and 52% in PQ-C and PQ2018-100, respectively (Figure 2.2.1.6). This result was 

predictable because of the presence of cellulose, which is reported as close to 20% of the 

total dietary fiber in pomegranate (Hasnaoui et al., 2014). Galacturonic acid was 35% and 

31% in PQ-C and PQ2018-100, respectively: galacturonic acid reported as the main 

polysaccharides in pomegranate (Abid et al., 2017; Shakhmatov, et al., 2019; Zhai et al., 

2018) is linked to pectin structure.  
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Figure 2.2.1.6 Sugars composition of Purple Queen
®
 commercial (PQ-C) and Purple Queen

®
 2018 

with 100% of sediment (PQ2018-100).  

The results are expressed in µmol% as a mean of a duplicate. 

  

In our case, the percentage of galacturonic acid was lower than previous values obtained 

for other varieties in the literature (
b
Khatib et al., 2017)  and it could be related to the fact 

that the analysis was carried out on the total crude polysaccharides and not on a purified 

extract containing only pectin. Furthermore, according to previous data on the absence or a 

very low content of starch in pomegranate fruit (Gupta et al., 2015), the presence of 

glucose cannot be ascribable to the presence of starch. Other sugars, such as rhamnose, 

fucose, xylose, arabinose and galactose, are present in smaller quantities, less than 10% in 

both the samples.  

In light of these findings, we concluded that the two fruit samples presented a similar sugar 

pattern, confirming that the use of dredged sediments did not influence the polysaccharides 

composition. So far, there are no data in the literature about the factors affecting the 

content of polysaccharides in pomegranate peel nor in other organs of the plants. Our 

results can be a starting point for planning future experiments to better clarify the 

mechanisms behind this effect.  
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2.2.1.4 Conclusions 

 

In this work, the nutraceutical profile of pomegranate fruits from trees cultivated on 

reclaimed dredged sediments was studied for the first time by assessing the phenolic 

composition of arils and peel and the polysaccharides in peel. We attempted to evaluate if 

this innovative soilless substrate is suitable for growing Purple Queen
®

 plants in pots. The 

presence of the sediment had a detrimental effect on fruit size and weight due to its 

unsuitable physical-chemical characteristics, as also observed in a previous study. 

However, this negative effect has been reduced by limiting the percentage of sediments 

added to the soil of older plants already adapted to growth on this new mixture of peat and 

sediment. Conversely, fruits from plants cultivated only on sediment or in a mixture with 

peat showed significant increases of bioactive compounds both in arils and in peel in the 

two consecutive seasons studied. The juice and peel showed higher concentrations of 

anthocyanins and ellagitannins, respectively. A similar trend was also found for the 

polysaccharide fraction, which was notably increased proportionally to the percentage of 

the remediated sediment. 

Further studies are needed to better elucidate the physiological mechanisms behind the 

synthesis of these important bioactive compounds in pomegranate fruits in relation to the 

use of sediment in cultivation. 
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2.2.2 A comparative study on the whole fruit of fifteen varieties of Punica granatum L.: a 

focus on anthocyanins, ellagitannins and polysaccharides. 
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Abstract 

 

The pomegranate plant is the subject of a renewed commercial and scientific interest, 

therefore a deeper knowledge of the chemical composition of the fruits of new and little 

studied varieties is increasingly required. The purpose of this work was to characterize 15 

varieties harvested in the same nursery by studying the composition of arils and peel. The 

juices were prepared only from the arils, whereas the mesocarp and exocarp were used to 

recover ellagitannins and polysaccharides by decoction. Juices and decoctions were 

submitted to HPLC-DAD, spectrophotometric and colorimetric CIEL*a*b* analyses, as 

well as to antioxidant and enzymatic tests. Furthermore, through successive additions of 

ethanol to the decoction different polysaccharide fractions were collected from each 

variety. Juices and decoctions were used to determine antioxidant, antiradical and metal 

chelating properties and the inhibitory activity against tyrosinase and alfa-amylase 

enzymes. Despite the morphological differences, all these varieties presented the same 

main phenols: four ellagitannins, including alpha and beta punicalagin, and five 

anthocyanins. According to HPLC-DAD and spectrophotometric data, the total amounts of 

anthocyanins and ellagitannins were widely variable among the varieties. 

Concerning the anthocyanins in juices, a discrete correlation was obtained between hab and 

the ratio delphinidin/cyaniding (both expressed as sum of all the glycosides). All the 
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decoctions were poor in anthocyanins but rich in ellagitannins, with the greatest quantities 

in the Black, Provenza Francia and Acco varieties. The richest anthocyanin juice came 

from the Wonderful variety. The polysaccharides amounts ranged from 3% to 12% and the 

greatest contents were found in Acco, Ariana, Black and Grossa di Faenza varieties. After 

the analysis by size exclusion chromatography of four of the fifteen samples, which were 

selected due to their very different morphological characters, only a main polysaccharide 

of ca. 2 million Dalton was detected in all samples. Each decoction regardless of the 

variety showed better antioxidant and chelating properties than juices. Independently from 

the variety, juices and decoctions showed similar inhibitory capacity against the enzyme α-

amylase. 
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2.2.2.1 State of the art and aims of the work 

Pomegranate (Punica granatum L.) is a very widespread plant thanks to its tolerance to 

almost all soil types and great adaptability to arid regions. Nowadays, within the main 

producers are Iran and India, but also North and South America and Europe, particularly 

with the Mediterranean regions (Hussein et al., 2018; Holland et al., 2009). There are 

around 500 pomegranate cultivars all over the world with differences both from a 

morphological and a nutraceutical point of view. Among the peculiarities characterizing 

each variety or cultivar, useful to define the quality of the fruit, are certainly included the 

pleasant taste of juice and its anthocyanin content. Concerning the bioactive compounds as 

polysaccharides and ellagitannins, their increase in pomegranate peel can be considered an 

added value. Among the methods selected to characterize foods is included the reflectance 

colorimetry. The possibility to analyze food matrices as such (jellies or homogenates, 

turbid juices, solid form) without any treatment, represents an undoubtable advantage to 

understand what could alter the labile pigment component. Color expressed by a foodstuff 

is undoubtedly associated to its genuineness, other than the specific chemical profile 

which, in turn, depends by ripening stage, and cultivar. Color measurement plays a crucial 

role in functional foods, such as pomegranate, in which bioactive molecules are intensely 

colored. The possibility to evaluate this organoleptic character, without any treatment and 

with a very simple, fast and cheap method can give us a lot if information to match with 

those deriving from the quali-quantitative analysis carried out by chromatographic 

methods. The external part of pomegranate fruit is generally discarded during the juice 

production, so the knowledge of the chemical constituents extractable from exocarp and 

mesocarp is desirable to valorize also this by-product. According to the increased interest 

in search for beneficial phytochemicals present in fruit peels and utilize them in food, 

pharmaceutical and cosmetic industry (Singh et al., 2018). Aim of this work was the 
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characterization of fifteen different pomegranate varieties grown in the same hatchery to 

shed light on the composition of the fruits. To avoid environmental interferences, all 

pomegranate samples were grown in the same year and the fruits collected at completed 

maturation. Anthocyanins and ellagitannins from arils and polysaccharides and 

ellagitannins from peel were evaluated. Part of the polysaccharides were characterized by 

Size Exclusion Chromatography and sugars analysis. In this work we also applied the 

reflectance colorimetry to investigate on the differences among decoctions and juices 

obtained by the fruit varieties.  

Furthermore, the antioxidant properties were evaluated for aril juices and peel decoctions 

by a pool of in vitro tests. Finally, juices and decoctions were used to study their biological 

properties by measuring the inhibition of the two enzymes, alpha-amylase and tyrosinase. 

 

2.2.2.2 Material and Methods 

The pomegranate fruits were purchased from the same hatchery (Latina, Italy).  All the 

samples with their abbreviations, are listed in Table 2.2.2.1. The whole fruits were divided 

into aryls and peel (mesocarp + exocarp). The fresh tissues were stored at -22°C until the 

extractive procedures and the juice preparation had not been performed.  
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Table 2.2.2.1 Composition of the fresh fruits of the analyzed varieties of Punica granatum L.; each 

variety is identified by a code (second column in the Table), the same used in all the others Figures 

and Tables. 

 

Reagents 

All Ultrapure water was from Milli-Q-system (Millipore SA, Molsheim, France), solvents 

were from Sigma Aldrich (St. Louis, Missouri, USA), all of analytical HPLC grade. 

Ellagic acid (purity ≥ 95%) and punicalagin (purity≥ 98%) were purchased from Sigma 

Chemical Co. (St. Louis, MO, USA), and oenin chloride (purity ≥ 95%) was from 

Extrasynthese (Genay, France). Dextrans at different molecular weights (MWs: 2000, 

1100, 410, 150, 50 kDa) and sucrose (360 Da) used for SEC were from Sigma-Aldrich, 

USA. 

 

 

 

Variety Code 
Arils Mesocarp + exocarp 

(%) (%) 

Acco AC 55.1 44.9 

Ariana AR 55.0 45.0 

Austin AU 58.4 41.6 

Black BL 52.5 47.5 

Desertnyi DE 50.2 49.8 

Grossa di Faenza GF 45.3 54.7 

Mollar de Elche ME 64.5 35.5 

Medovyi Vahsha MV 49.2 50.8 

Parfianka PA 54.0 46.0 

Provenza Francia PF 54.1 48.6 

Sirenevyi SI 51.0 49.0 

Soft seed Maule ® 116/17 SM 47.2 52.8 

Shirin Zigar SZ 32.0 68.0 

Vkusnyi VK 55.2 44.8 

Wonderful WO 55.3 44.7 
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Juice production. 

The arils of each sample were divided in three portions and each treated separately by the 

Hurom extractor (HU-700) through a rapid process at low temperatures to obtain triplicates 

of juices. Each sample was diluted (1:1 v/v) with ethanol (2% HCOOH) than centrifuged at 

14000 rpm for 5 minutes and the supernatant recovered was analyzed by HPLC-DAD-MS. 

 

Decoction from peel (mesocarp+exocarp) 

The fresh mesocarp and exocarp were used to prepare a decoction according to 
b
Khatib et 

al., 2017: briefly 5 g of pomegranate peel in 200 mL were boiled for 1 h. The sample was 

cooled and centrifuged (4500 rpm, for 8 min, at 4°C) and the supernatant was taken to a 

volume of 200 mL with distilled water. 10 mL were withdrawn and used for the analysis of 

ellagitannins by HPLC-DAD, for the colorimetric measurements, the spectrophotometric 

determinations and the enzymatic tests. 

Polysaccharides precipitation was performed by adding different aliquots of ethanol (100 

mL each). The precipitation was completed after three aliquots of the alcohol. After 

centrifugation (4500 rpm, 8 min, 4 °C) the recovered fractions containing polysaccharides 

were collected, freeze-dried and weighted for calculating the yield.  

 

HPLC-DAD analyses of juices and decoctions  

Ellagitannins and anthocyanins were analyzed using a HP 1200L liquid chromatographic 

system (Agilent Technologies, Palo Alto, CA, USA). The same column, Kinetex, 100, EC-

C18 (30 x 3 mm, 2.6 µm, Agilent, USA) and the same elution methods were applied to 

determine all the phenolic compounds; solvent A was CH3CN and solvent B was H2O 

acidified by HCOOH (3% v/v). A linear gradient was applied as follows: A varied from 

5% to 25% in 8 min, then 10 min remained at 25%; in 2 min, A reached 95%, and was kept 
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in this condition for 6 min with  total time of analysis 28 min, equilibration time 10 min, 

and flow rate 0.4 mL/min. The injection volumes were 2 μL for ellagitannins extracts 

(decoction) and 10 μL for anthocyanins extracts (centrifuged juices).  

The ellagitannins were quantified according to their maximum of absorption using five 

points calibration curves. The racemic mixture of α- and β-punicalagins at 380 nm (purity 

≥ 99%), linearity range 2-5 µg (R2=1.0); ellagic acid (purity 95%) at 370 nm, linearity 

range 0-1.7 µg, (R2=1.0). The anthocyanins were quantified at 520 nm with the calibration 

curve of oenin chloride (purity ≥ 95%), linearity range 0-2.6 µg (R
2
= 0.999). 

 

Size Exclusion Chromatography (SEC) for polysaccharides  

Polysaccharides of four selected samples, Acco, Black, Wonderful and Mollar de Elche, 

were analysed by SEC to determine the apparent molecular weight of the main 

constituents. Briefly, the samples after freeze drying were dissolved in distilled water at a 

final concentration close to 0.5 mg mL
-1

. The samples were analysed according to 

Chamizo et al., (2018) by a ProStar HPLC Chromatograph (Varian USA) equipped with a 

refractive index detector (mod 355), using two columns, PolySep-GFC-P 6000 and 

PolySep-GFC-P 4000 from Phenomenex, USA, connected in series. The columns (700 mm 

length and 7.8 mm internal diameter) had separation ranges of 100 kDa to 15 MDa and 0.3 

to 400 kDa. HPLC-grade water was used as eluent with a flow of 0.6 mL min
-1

, and total 

time of 70 min. As internal standars to determine the hydrodynamic volume were used 

blue-dextrans at various molecular weights (50-2000 kDa). 
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Sugars analysis  

The Black and Wonderful fractions 2 were dialysed (cut-off 12–14 kDa), freeze-dried and 

treated according to Nunes et al., (2001) for the determination of neutral sugars, after acid 

hydrolysis and conversion to the corresponding alditol acetates. Gas chromatography was 

performed using a Hewlett-Packard 5890 with a split injector (split ratio 1:60) and a FID 

detector. A 25-m column CP-Sil-43 CB (Chrompack, Holland) with 0.15 mm i.d. and 0.20-

μm film thickness was used. With the injector and detector operating at 220° C, the 

following temperature program was used:  180 °C for 5 min and 200 °C for 20 min, with a 

rate of 0.5 °C/min; linear velocity of the carrier gas (H2) was set at 50 cm/s at 200° C. 

Furthermore, uronic acids were colorimetrically determined using m-phenylphenol as 

previously reported (Nunes et al., 2001).  

 

Colorimetric CIELAB analysis of juices and decoctions 

CIEL*a*b* parameters (L*, a*, b*, C*ab and hab) were determined on pomegranate 

extracts and decoctions using a colorimeter X-Rite SP-62 (X-Rite Europe GmbH, 

Regensdorf, Switzerland), equipped with a D65 illuminant and an observer angle of 10°. 

Colour description is based on three parameters as defined by the “Commission 

Internationale del l’Eclairage” (CIE): L* that defines the lightness and varies between 0 

(absolute black) and 100 (absolute white), a* that measures the greenness (-a*) or the 

redness (+a*) and b* that measures the blueness (-b*) and the yellowness (+b*). C*ab 

(chroma, saturation) expresses a measure of colour intensity and hab (hue, colour angle) is 

the attribute of appearance by which a colour is identified according to its resemblance to 

red, yellow, green, or blue, or a combination of two of these attributes in sequence. 

Cylindrical coordinates C*ab and hab are calculated from the parameters a* and b* using 

the equations C*ab = (a*
2
 + b*

2
)
½ 

  and hab = tan
-1

 (b*/a*) (Patsilinakos et al., 2018). 
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The results are expressed as the mean value and RSD%. Each value registered by the 

instrument is the median of ten measurements performed randomly on the surface of the 

cell. Samples of pomegranate extracts and decoctions obtained as previously described, 

were used as such to re-fill the quartz cell for fluid measurements. Each experiment was 

performed four times and the results are expressed as the mean value ± standard deviation 

(SD). 

 

Total phenolic content (TPC) 

The TPC was determined using the Folin–Ciocâlteu method according to the modified 

method by Mocan et al., (2016). A SPECTROstar Nano Multi—Detection Microplate 

Reader with 96-well plates (BMG Labtech, Ortenberg, Germany) was used. Briefly, a 

mixture solution consisting of 20 µL of extract, 100 µL of Folin-Ciocâlteu reagent and 80 

µL of sodium carbonate (Na2CO3, 7.5% w/v) was homogenized and incubated at room 

temperature in the dark for 30 min. Afterwards, the absorbance of the samples was 

measured at 760 nm. Gallic acid was used as a reference standard, and the TPC was 

expressed as gallic acid equivalents (GAE) in mg/g dry weight (dw) of plant material. 

 

Total flavonoid content (TFC) 

The total flavonoid content (TFC) was calculated and expressed as quercetin equivalents 

using a method previously described by Mocan et al., (2014). Briefly, a 100 µL aliquot of 

2% AlCl3 aqueous solution was mixed with 100 µL of juice or decoction samples. After an 

incubation time of 15 min, the absorbance of the sample was measured at 420 nm. 

Quercetin was used as a reference standard, and the TFC was expressed as quercetin 

equivalents (QE) in mg/g dry weight (dw) of plant material. 
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DPPH radical scavenging assay 

The scavenge capacity of the free radical DPPH, monitored according to the method 

described by Martins et al., (2015) with some modifications, was performed by using a 

SPECTROstar Nano microplate reader (BMG Labtech, Offenburg, Germany). The reaction 

mixture in each of the 96-wells consisted of 30 µL of sample solution (appropriately 

diluted) and a 0.004% methanolic solution of DPPH. The mixture was incubated for 30 

min in the dark, and the DPPH radical reduction was determined by measuring the 

absorption difference at 515 nm. Trolox was used as a standard reference and the results 

were expressed as Trolox equivalents per g of dry weight herbal extract (mmol TE/g dw 

herbal extract). 

 

Trolox equivalent antioxidant capacity (TEAC) assay 

The radical scavenging activity shown of  juices and decoctions, against the stable 

synthetic ABTS radical cation, was measured using the method previously described by 

Mocan et al., (2016). A Trolox calibration curve was plotted as a function of the 

percentage of ABTS radical scavenging activity. The final results were expressed as 

milligrams of Trolox equivalents (TE) per gram of dry herbal extract (mg TE/g dw 

extract). 

 

FRAP assay 

In FRAP assay, the reduction of Fe
3+

-TPTZ to blue-colored Fe
2+

-TPTZ complex was 

monitored by the method described by Damiano et al., (2017) with slight modifications. 

The FRAP reagent was prepared by mixing ten volumes of acetate buffer (300 mM, pH 

3.6), one volume of TPTZ solution (10 mM TPTZ in 40 mM HCl) and one volume of 

FeCl3 solution (20 mM FeCl3·6 H2O in 40 mM HCl). Reaction mixture (25 µL sample and 
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175 µL FRAP reagent) was incubated for 30 min in the dark at room temperature and the 

absorbance of each solution was measured at 593 nm using a SPECTROstar Nano Multi-

Detection Microplate Reader with 96-well plates (BMG Labtech, Ortenberg, Germany). A 

Trolox calibration curve (0.01-0.10 mg/mL) was plotted as a function of blue-colored Fe
2+

-

TPTZ complex formation, and the results were expressed as milligrams of Trolox 

equivalents (TE) per milligram of extract (mg TE/mg extract). 

 

α-Amylase inhibitory activity 

Samples were added to 150 μL of phosphate buffer (0.2 M, pH 6.8) containing 17 mM 

NaCl. The reaction was started with adding 10 μL of porcine pancreatic α-amylase 

(https://www.sciencedirect.com/topics/medicine-and-dentistry/alpha-amylase-pancreas-

isoenzyme) solution (25 unit/mL) and after incubation at 37 °C for 30 min stopped by 

addition of 20 μL NaOH (2 N) and 20 μL color reagent comprising 44 μM of 3,5-

dinitrosalisylic acid, 106 μM of potassium sodium tartrate tetrahydrate and 40 μM of 

NaOH. The reaction mixture was incubated at 100 °C for 20 min and finally the 

absorbance was measured at 540 nm. 

 

Tyrosinase inhibitory activity 

Tyrosinase inhibitory activity of ecah sample was determined by method previously 

described by Masuda et al., (2005), using a SPECTROstar Nano Multi-Detection 

Microplate Reader with 96-well plates (BMG Labtech, Ortenberg, Germany). Samples 

were dissolved in water containing 5% DMSO; for each sample four wells, designated as 

A, B, C, D, contained reaction mixtures (200 µL) as follows: (A) 140 µL of 66 mM 

phosphate buffer solution (pH=6.6) (PBS), 40 µL of mushroom tyrosinase in PBS (23 

U/mL) (Tyr), (B) 160 µL PBS, (C) 80 µL PBS, 40 µL Tyr, 40 µL juice or decotion sample 

https://www.sciencedirect.com/topics/medicine-and-dentistry/alpha-amylase-pancreas-isoenzyme
https://www.sciencedirect.com/topics/medicine-and-dentistry/alpha-amylase-pancreas-isoenzyme
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and 80 µL PBS and (D) 120 µL PBS and 40 µL sample. The plate was then incubated for 

10 min at room temperature; after incubation, 40 µL of 2.5 mM L-DOPA in PBS solution 

were added in each well and the mixtures were incubated again for 20 min at room 

temperature. The absorbance of each well was measured at 475 nm and the inhibition 

percentage of the tyrosinase activity was calculated by the following equation, using as 

positive control a kojic acid solution (0.10 mg/mL): 

%𝑰 =
(𝑨 − 𝑩) − (𝑪 − 𝑫)

(𝑨 − 𝑩)
 𝒙 𝟏𝟎𝟎 

The results were also expressed as mg kojic acid equivalents per gram of dry weight of 

extract (mg KAE/g extract) using a calibration curve between 0.01-0.10 mg kojic acid/mL 

of solution. 

 

2.2.2.3 Results and Discussion 

 

Juices and Decoction 

One of the aims of the work was to use the same chromatographic method to determine 

both the main ellagitannins and anthocyanins in juices and decoctions, in order to provide a 

simple and easily applicable elution method for the quality control of the samples.  

All the pomegranate samples presented superimposable HPLC-DAD profiles both for the 

decoctions and for the juices with only negligible differences mainly regarding the minor 

compounds. As example in Figure 2.2.2.1 the profiles obtained for Black variety are 

shown. The main identified molecules were nine compounds including ellagitannins, such 

as α and β punicalagins and ellagic acid, and five different anthocyanins, according to the 

previous literature on pomegranate (Fisher et al., 2011) (Table 2.2.2.2). 
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Figure 2.2.2.1 HPLC-DAD profiles at 380, 370 and 520 nm of the decoction from Black 

and juice from Wonderful varieties 
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Table 2.2.2.2 Main identified molecules in pomegranate samples 

 

On the contrary, large differences were observed between the phenolic content of the 

different decoctions, as well as the amount of phenols detected in the juices of the fifteen 

varieties. The decoctions had greater amount of ellagitannins and a lower concentration of 

anthocyanins, with only few exceptions represented by those cultivars characterized by a 

darker skin color as Black, Austin and Soft Seed Maule
®
 116/17 (Figure 2.2.2.2).  

 

 

Ellagitannins rt [MH]- Identified compounds 

3 3.9 1083 α-punicalagin 

4 5.9 1083 β-punicalagin 

7 10.4 301 ellagic acid 

Anthocyanins rt [M]+ Identified compounds 

Anthox  6.1 627 delphinidin-3,5-O-diglucoside 

Antho1 6.8 611 cyanidin-3,5-O-diglucoside 

Antho2 7.5 465 delphinidin-3-O-glucoside 

Antho3 8.1 449 cyanidin-3-O-glucoside 

Antho4 8.8 433 pelargonidin-3-O-glucoside 
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Figure 2.2.2.2 Ellagitannins (A) and Anthocyanins (B) from decoctions.  

The mean RSD value evaluated on the triplicates of three varieties was < 5%    

 

On the other side, juices were poor in ellagitannins and rich in anthocyanins, with the 

highest content in 116/117 sample and in Wonderful, both with values close to 600 mg/L. 

This result is not unexpected because the production of the juices was not obtained by 

pressing the whole fruit but using only the arils that are not recognized as a rich source of 

ellagitannins. Black was the unique variety with white arils, therefore characterized by the 

absence of anthocyanins (Figure 2.2.2.3) but with an appreciable quantity of ellagitannins, 

about ten times higher than the average value measured for the other varieties. Finally, we 

must take into account the fact that the ellagitannins in the juices can determine an 

unpleasant taste when the concentration is too high, due to the interactions with the 

salivary proteins typical also of other tannins. 
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Figure 2.2.2.3 Ellagitannins (A) and Anthocyanins (B) from juices 

 

Concerning the polysaccharides, in Table 2.2.2.3 are reported for each fractions the % 

yields on dry peel. 
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Table 2.2.2.3 Yields in polysaccharides determined after precipitation by ethanol: % of polysaccharides in each sub-fraction (D-P1, D-P2 and D-P3) and 

total polysaccharides %. 

 

 

     

 

 

Fraction 
Sample 

AC AR AU BL DE GF ME MV PA PF SI SM SZ VK WO 

D-P1 (%) 0.43 0.28 0.60 2.61 0.54 1.80 0.40 1.21 2.02 1.23 0.31 1.09 0.28 0.97 2.00 

D-P2 (%) 8.80 8.81 4.60 8.91 3.84 6.18 3.35 2.04 2.38 1.50 6.96 5.73 1.37 5.25 6.26 

D-P3 (%) 1.98 1.47 1.65 0.83 2.40 2.34 4.62 4.75 3.48 1.04 1.11 1.54 1.60 1.06 0.60 

Total 11.21 10.56 6.85 12.35 6.78 10.32 8.37 8.00 7.88 3.77 8.38 8.36 3.25 7.28 8.86 
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As reported in Table 2.2.2.3, fractions 2 contained the greatest amount of polysaccharides in 

almost all varieties, while the sum of the three fractions ranged from 3% to 12% on the dry 

weight of the skin. A certain variability was found between the samples, with amount in 

Wonderful comparable to the previous literature (
b
Khatib et al., 2017). Only four samples 

(Acco, Black, Wonderful and Mollar de Elche) within the fifteen varieties were selected to 

further investigate on the apparent molecular size of polysaccharides. The choice was 

determined because the fruits were characterized by the greatest morphological differences, 

but also because these varieties produce most of the fresh fruits for the market. 

 

Size Exclusion Chromatography and sugar analysis 

Preliminary results from SEC indicated an apparent molecular weight of approx. 2 million 

Dalton for the principal polysaccharides in Acco, Black, Wonderful and Mollar de Elche 

(Figure 2.2.2.4). 
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Figure 2.2.2.4 Hydrodynamic volume determined by SEC of total polysaccharides (T) in four 

varieties: Acco, Wonderful, Black and Mollar de Elche 

 

 

The presence of high molecular weight polysaccharides as predominant molecules was also 

confirmed by SEC analysis also for each fraction: low percentages of oligosaccharides which 

presumably remained trapped in the polymer structure during precipitation after the addition 

of ethanol were pointed out (Figure 2.2.2.5). 
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Figure 2.2.2.5 Size Exclusion Chromatography on Acco, Sicily Wonderful, Wonderful, Black, Mollar 

de Elche fractions D-P1,D-P2, D-P3. 

Furthermore, the sugars composition was preliminarily determined only for the main fraction 

of the Wonderful and Black varieties. Consequently, Fraction 2 of both the varieties was 

preliminary dialyzed, and then hydrolyzed to determine the neutral sugars and galacturonic 

acid content. Despite the great morphological differences between the fruits of these two 

varieties, the results highlighted a similar sugars composition with galacturonic acidic and 

glucose as main sugars. Galacturonic acid, when reached more than 50% of the total sugar 

amount can confirm the presence of pectin. Furthermore, the absence of rhamnose allowed to 

exclude the presence of pectin belonging to the group of rhamnogalacturonan I and II (Figure 

2.2.2.6).  
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Figure 2.2.2.6 Sugars composition of the main polysaccharide fraction of Black and Wonderful 

varieties. Data are expressed in µmol% as a mean of a triplicate 

 

 

This result concerning the sugar composition of the polysaccharide in Fraction 2, although 

preliminary, suggests that varieties so different in terms of shape and morphological aspect of 

the fruit, are characterized by the presence of similar pectin structures. Further studies must 

clarify the chemical structure of pectin in pomegranate fruits and evaluate their properties and 

suitability for specific technological purposes in the formulation of foods or for cosmetic 

applications. 
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Colorimetric CIEL*a*b* analysis 

As well known, different pigments deeply characterize pomegranate fruits components. In 

fact, anthocyanins are contained in arils conferring them a red brilliant color, as well as yellow 

ellagitannins are represented both in the fruit pulp and peels contributing or determining their 

color. Historically, natural colorants were extracted from agricultural residues and 

pomegranate husks, in particular, represented a matrix largely used as natural dying for its 

good properties of fastness and color strength and depth (Kumar et al., 2011). More recently 

an increasing and renewed interest was addressed to the pigment content of fruit and 

vegetables, for its implication in healthy process (Rymbai et al., 2011).  

So color, in addition to being the first character that consumers evaluate when they choose any 

product, represents a real fingerprint of a sum of chemical properties exerted by a foodstuff. 

In the present work the pomegranate juices and decoctions, obtained and analyzed as 

described above, were submitted to colorimetric CIEL*a*b* analysis to evaluate how the 

different varieties could influence the final expressed color and if some conclusion could be 

drawn about the correlation among colorimetric and HPLC data. The CIEL*a*b* system is 

based on three parameters: L* (luminance), a* (greenness for negative values and redness for 

positive values) and b* (blueness for negative value and yellowness for positive values). The 

combination between a* and b* values will give the same color saturation (C*ab) and tonality 

(hab) whereas the perceived color will depend also by the expressed luminance.  

Results obtained for pomegranate decoction (Table 2.2.2.4) showed L* values between 40.18 

and 47.64 in a quite narrow range, whereas a* falls between 0.7 and 10.62 and b* between 

2.54 and 23.48, showing significant differences among samples, which color ranges between 

yellow and brown. 
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Table 2.2.2.4 Colorimetric data from CIEL*a*b* measurement of the pomegranate juices and 

decoctions  

 

Actually, it is not possible to match the obtained colorimetric data with those deriving from 

the yellow ellagitannins quantification, both for the presence of a residue red component, 

which should be considered. A partial simplification could come from the sample filtration 

Decoctions L* a* b* C*ab hab 

D-AC 44.67 ± 0.10 1.57 ± 0.03 9.92 ± 0.09 10.04 ± 0.09 81.02 ± 0.10 

D-AR 43.96 ± 0.63 2.11 ± 0.38 8.47 ± 0.87 8.73 ± 0.93 76.08 ± 1.03 

D-AU 40.29 ± 0.10 7.60 ± 0.21 14.34 ± 0.36 16.23 ± 0.42 62.08 ± 0.10 

D-BL 40.18 ± 1.46 2.98 ± 0.64 2.54 ± 0.24 3.92 ± 0.65 40.87 ± 3.56 

D-DE 46.37 ± 0.52 1.30 ± 0.38 8.81 ± 1.53 8.90 ± 1.57 81.73 ± 1.13 

D-GF 46.92 ± 0.20 0.70 ± 0.12 8.70 ± 0.63 8.73 ± 0.63 85.42 ± 0.45 

D-ME 43.51 ± 0.17 6.41 ± 0.19 23.48 ± 0.50 24.34 ± 0.53 74.72 ± 0.13 

D-MV 45.71 ± 0.21 1.22 ± 0.18 9.85 ± 0.91 9.93 ± 0.93 82.96 ± 0.39 

D-PA 43.94 ± 0.51 4.41 ± 0.22 19.35 ± 0.73 19.84 ± 0.76 77.15 ± 0.16 

D-PF 47.64 ± 0.66 1.61 ± 0.21 22.21 ± 1.14 22.27 ± 1.15 85.87 ± 0.32 

D-SI 45.11 ± 0.49 5.04 ± 0.34 23.22 ± 1.02 23.76 ± 1.07 77.76 ± 0.30 

D-SM 43.55 ± 0.19 10.92 ± 0.07 18.17 ± 0.09 21.20 ± 0.10 58.49 ± 0.45 

D-SZ 42.31 ± 0.22 3.62 ± 0.15 14.17 ± 0.45 14.62 ± 0.47 75.66 ± 0.22 

D-VK 46.85 ± 1.15 4.69 ± 0.21 21.53 ± 0.53 22.04 ± 0.55 77.72 ± 0.28 

D-WO 44.73 ± 0.01 5.81 ± 0.08 19.94 ± 0.18 20.78 ± 0.19 73.74 ± 0.09 

Juices L* a* b* C*ab hab 

J-AC 40.91 ± 0.83 2.37 ± 0.18 3.28 ± 0.14 4.05 ± 0.22 54.19 ± 0.98 

J-AR 35.02 ± 0.95 4.90 ± 0.23 1.49 ± 0.08 5.12 ± 0.25 16.92 ± 0.21 

J-AU 38.28 ± 1.65 4.69 ± 0.69 3.55 ± 0.24 5.89 ± 0.69 37.32 ± 2.17 

J-BL 45.96 ± 0.19 4.43 ± 0.10 5.00 ± 0.08 6.68 ± 0.13 48.47 ± 0.28 

J-DE 37.02 ± 1.86 11.19 ± 0.96 1.65 ± 0.07 11.32 ± 0.96 8.44 ± 0.55 

J-GF 49.31 ± 0.10 6.20 ± 0.10 5.51 ± 0.09 8.30 ± 0.14 41.60 ± 0.17 

J-ME 35.02 ± 0.11 4.84 ± 0.13 4.77 ± 0.12 6.76 ± 0.14 44.35 ± 0.34 

J-MV 39.47 ± 0.69 4.94 ± 0.34 1.37 ± 0.05 5.12 ± 0.34 15.56 ± 0.69 

J-PA 36.53 ± 1.22 8.12 ± 0.77 1.77 ± 0.04 8.31 ± 0.76 12.36 ± 0.85 

J-PF 44.65 ± 0.13 10.19 ± 0.14 5.79 ± 0.10 11.72 ± 0.17 29.63 ± 0.14 

J-SI 47.34 ± 0.98 4.33 ± 0.54 2.04 ± 0.11 4.79 ± 0.49 25.46 ± 2.84 

J-SM 29.74 ± 0.29 13.76 ± 0.35 2.57 ± 0.21 14.00 ± 0.38 10.56 ± 0.59 

J-SZ 38.40 ± 1.28 2.55 ± 0.37 4.23 ± 0.34 4.94 ± 0.48 59.98 ± 1.73 

J-VK 30.86 ± 0.13 8.02 ± 0.08 1.28 ± 0.08 8.13 ± 0.08 9.04 ± 0.48 

J-WO 42.05 ± 1.63 6.98 ± 0.91 1.65 ± 0.09 7.18 ± 0.91 13.38 ± 0.84 
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before performing the colorimetric analysis, here not adopted. Anyway, this step is not 

considered sufficient to explain the complexity of the obtained data. 

On the contrary, with regards to data monitored for juices (Table 2.2.2.4) L* values fall 

between 29.74 and 47.34, denoting a very wide range of lightness, maybe not only ascribable 

to contribute of anthocyanins and ellagitannins, but also accounting for the sample turbidity. 

Anyway, the smallest L* value corresponds to the highest a* found. This second parameter, 

which ranges between 2.37 and 13.76, shows very high differences in the redness of the 

analyzed juices. Finally, the b* parameters falls between 1.28 and 5,79. So, when the ratio 

a*/b* is higher than 4 (DE, VK, SN, PA, WO), samples are perceived as basically red, when it 

is about 1-2 the perceived color is a red-orange and for ratio a*/b*<1 it appears orange-yellow.  

The attempt to match these results to the quantitative data obtained for anthocyanins and 

ellagitannins, returns a discrete correlation between hab and the ratio delphinidin/cyanidin 

expressed as sum of all the quantified glycosides (Figure 2.2.2.7).  

 

 

Figure 2.2.2.7 Total anthocyanins content in the fresh juices; the data are expressed as mean of three 

independent measurements  

 

y = -0,3592x + 52,601 
R² = 0,8845 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

h
ab

 

Del/Cya 



176 

 

To our best knowledge, only some papers were published about the use of pomegranate husks 

as natural mordant for dying (Rather et al., 2016; Mahmud-Ali et al., (2012) and some other 

papers deal with the CIEL*a*b* analysis of pomegranate fruit, external peels and arils 

(Todaro et al., 2016) whereas no literature is available regarding the CIEL*a*b* analysis of 

pomegranate decoction. If our previous results (Cesa et al., 2017; Patsilinakos et al., 2018) 

indicated that a correlation could be found between CIEL*a*b* parameters and bioactive 

compounds content of blueberry and goji berries, in which one only color component largely 

predominates, further studies are needed to better clarify if this fast, chip and simple method 

could be used to predict the quali-quantitative content of bioactive molecules in juices and 

decoctions obtained by pomegranate. In these juices, in fact, two different components 

contribute in a quite different manner to the color development, whereas in decoctions, 

browning and precipitation processes could take place during the sample storage.  

 

Spectrophotometric determinations on juices and decoction 

Collectively, decoction of pomegranate samples led to a high recovery of phenolic and 

flavonoid compounds compared to pomegranate juices. Values for TPC (Total Phenolic 

Content) and TFC (Total Flavonoid Content) reported as mg of gallic acid equivalents 

(mgGAE) or rutin equivalents (mgRE) per gram of extract ranged from 106.34 ± 0.42 to 

263.05 ± 3.64 mgGAE/g after decoction of these varieties, whereas those of TFC varied from 

18.63 ± 0.20 to 93.97 ± 0.39 mgRE/g. D-MV was the pomegranate decoction with both the 

lowest results registered. Conversely, the pomegranate decoctions of the other varieties 

characterized by high values of TPC also displayed comparable values of TFC. 

Pomegranate juices showed TPC and TFC data about 20- and 300-fold inferior than 

decoctions. This trend was confirmed by their low antioxidant and chelating properties as 



177 

 

assessed by six in vitro spectrophotometric assays. On the contrary, each decoction, 

disregarding the variety, possessed better antioxidant and chelating abilities with respect to 

juices being D-MV the less interesting and D-SI the most potent. The latter was also 

characterized by high TPC and TFC values. Moreover, it can be extrapolated that pomegranate 

juices had limited anti-oxidative characteristics directly related to their low amount of phenols. 

Also in this case, J-MV was one of the poorest varieties and J-SI was one of the best-in-class 

extracts. This general trend could account for the relatively inferior stability of this processed 

food (Table 2.2.2.5). 
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Table 2.2.2.5 Total Phenolic content (TPC), Total Flavonoid content (TFC), DPPH, ABTS, CUPRAC, 

FRAP, Metal chelating and Phosphomolibdenum of all juices and decoction, 

*
Values are reported mean ± SD of three parallel experiments. GAE: Gallic acid equivalent; RE: Rutin 

equivalent; TE: Trolox equivalent; EDTAE: EDTA equivalent; na: not active

Decoctions 

Total phenolic 

content 

(mgGAE/g) 

Total 

flavonoid 

content 

(mgRE/g) 

DPPH 

(mmolTE/g) 

ABTS 

(mmolTE/g) 

CUPRAC 

(mmolTE/g) 

FRAP 

(mmolTE/g) 

Metal 

chelating 

(mgEDTAE/g) 

Phosphomolybdenum 

(mmolTE) 

D-AC 259.14±0.47 93.97±0.39 3.91±0.01 4.79±0.10 7.63±0.30 6.93±0.10 31.22±1.93 5.79±0.13 

D-AR 213.22±1.45 61.15±0.07 3.68±0.04 3.45±0.01 5.24±0.04 4.60±0.02 13.07±2.81 4.31±0.26 

D-AU 242.79±1.81 66.51±0.72 3.88±0.01 4.26±0.23 6.03±0.013 5.38±0.06 21.08±0.90 5.30±0.13 

D-BL 254.91±1.19 80.53±1.52 3.89±0.01 4.78±0.14 7.33±0.09 6.16±0.09 16.61±2.64 6.53±0.18 

D-DE 231.19±1.40 52.11±0.30 3.82±0.01 4.31±0.12 5.90±0.10 4.73±0.04 16.24±1.95 5.35±0.17 

D-GF 251.84±0.30 77.32±0.61 3.89±0.01 4.73±0.19 7.13±0.05 5.97±0.08 17.58±4.37 6.28±0.25 

D-ME 258.26±4.03 74.22±0.50 3.88±0.02 4.84±0.10 7.83±0.04 6.17±0.08 34.69±0.96 7.32±0.19 

D-MV 106.34±0.42 18.63±0.20 1.46±0.01 1.41±0.06 2.08±0.02 3.19±0.01 20.71±1.82 4.20±0.18 

D-PA 129.27±0.41 39.87±0.71 1.43±0.02 1.37±0.11 2.57±0.03 2.58±0.03 2.98±0.16 3.65±0.15 

D-PF 226.43±1.37 52.67±0.16 3.74±0.02 3.49±0.30 5.72±0.01 4.44±0.13 15.88±2.65 5.48±0.11 

D-SI 263.05±3.64 83.63±0.21 3.89±0.01 4.61±0.16 8.09±0.10 6.75±0.08 28.24±1.19 7.78±0.16 

D-SM 148.14±2.14 31.69±0.06 1.83±0.06 1.43±0.18 3.01±0.05 2.49±0.01 10.27±0.81 3.60±0.11 

D-SZ 233.75±1.66 52.61±0.71 3.83±0.02 4.20±0.11 6.20±0.07 4.64±0.04 16.50±2.80 5.08±0.11 

D-VK 147.92±0.51 36.05±0.42 1.91±0.01 2.05±0.07 3.06±0.02 2.32±0.01 12.54±3.20 3.54±0.12 

D-WO 248.93±2.98 61.42±0.45 3.91±0.01 4.02±0.31 7.30±0.21 5.71±0.08 14.16±0.43 6.44±0.06 

Juices 

Total phenolic 

content 

(mgGAE/g) 

Total 

flavonoid 

content 

(mgRE/g) 

DPPH 

(mmolTE/g) 

ABTS 

(mmolTE/g) 

CUPRAC 

(mmolTE/g) 

FRAP 

(mmolTE/g) 

Metal 

chelating 

(mgEDTAE/g) 

Phosphomolybdenum 

(mmolTE) 

J-AC 11.56±0.01 0.38±0.04 0.05±0.01 0.09±0.01 0.20±0.01 0.13±0.01 4.04±0.89 1.15±0.07 

J-AR 16.30±0.17 0.52±0.08 0.12±0.01 0.14±0.01 0.26±0.01 0.24±0.01 na 1.06±0.03 

J-AU 18.01±0.07 0.36±0.04 0.11±0.01 0.17±0.01 0.28±0.01 0.23±0.01 3.14±0.08 0.88±0.13 

J-BL 14.77±0.019 0.63±0.02 0.15±0.01 0.14±0.01 0.27±0.01 0.34±0.01 na 0.28±0.03 

J-DE 17.83±0.01 0.61±0.02 0.13±0.01 0.15±0.01 0.29±0.01 0.28±0.01 4.89±0.34 0.71±0.08 

J-GF 18.44±0.16 0.32±0.05 0.07±0.01 0.11±0.01 0.26±0.01 0.21±0.01 2.13±0.45 0.88±0.05 

J-ME 8.20±0.06 0.22±0.01 0.02±0.01 0.05±0.01 0.16±0.01 0.10±0.01 1.71±0.30 1.55±0.16 

J-MV 12.73±0.08 0.32±0.07 0.07±0.01 0.10±0.01 0.22±0.01 0.16±0.01 2.48±0.02 1.46±0.02 

J-PA 14.88±0.05 0.33±0.03 0.10±0.01 0.13±0.01 0.26±0.01 0.22±0.01 4.40±0.46 1.04±0.09 

J-PF 14.06±0.52 0.44±0.04 0.12±0.01 0.12±0.01 0.24±0.01 0.24±0.01 4.27±1.25 0.59±0.04 

J-SI 13.88±0.08 0.34±0.07 0.09±0.01 0.12±0.01 0.24±0.01 0.15±0.01 5.69±0.63 1.34±0.04 

J-SM 12.66±0.13 0.33±0.08 0.10±0.01 0.11±0.01 0.23±0.01 0.17±0.01 na 0.83±0.03 

J-SZ 16.52±0.08 0.44±0.03 0.12±0.01 0.16±0.01 0.28±0.01 0.19±0.01 19.67±1.34 0.48±0.02 

J-VK 23.54±0.22 0.28±0.09 0.22±0.01 0.20±0.01 0.37±0.01 0.28±0.01 3.15±0.05 0.86±0.05 

J-WO 18.31±0.23 0.35±0.02 0.20±0.01 0.18±0.01 0.31±0.01 0.27±0.01 4.17±0.71 1.05±0.07 
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Enzymatic assays 

Analyzing the data regarding tyrosinase inhibition (expressed in terms of mg of kojic acid 

equivalents for gram of extract) it is possible to confirm the better potency of decoctions over 

juices; it should be noted that the D-MV sample, previously described as a low source of 

phenols and flavonoids, proved to be the most powerful among the juices. Pomegranate 

decoctions displayed tyrosinase inhibition spanning from 24.44 ± 1.45 to 118.50 ± 0.81 

mgKAE/g, whereas pomegranate juices hardly reached 16.56 ± 0.85 mgKAE/g, being half of 

the considered varieties not active against this enzyme. These results highlighted the presence 

of other bioactive components beyond ellagitannins to exert such an inhibitory activity of 

decoction (Table 2.2.2.6). 

The inhibitory data against α-amylase, a key enzyme for the availability of diet glucose, were 

almost comparable among the pomegranate varieties for both decoctions and juices. Only 

slight differences have been highlighted, suggesting that pomegranate fruits of different 

varieties can be promising sources of functional ingredients characterized by a healthy panel 

of chemical and biological characteristics. 
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Table 2.2.2.6 Amylase and Tyrosinase inhibition of both juices and decoction 

*
Values are reported mean ± SD of three parallel experiments. ACAE: Acarbose equivalent; KAE: Kojic 

acid equivalent; na: not active

Decoctions 

α-Amylase 

inhibition 

(mgACAE/g) 

Tyrosinase 

inhibition 

(mgKAE/g) 

D-AC 59.17±0.79 51.12±1.59 

D-AR 74.49±0.63 40.99±1.46 

D-AU 77.41±5.94 54.03±0.32 

D-BL 63.73±3.44 76.24±1.25 

D-DE 67.85±1.66 62.86±0.45 

D-GF 75.10±1.22 53.54±1.54 

D-ME 77.15±0.52 79.76±0.81 

D-MV 57.95±0.49 118.50±0.81 

D-PS 77.25±0.66 28.71±1.92 

D-PF 56.70±0.90 48.70±1.06 

D-SI 75.98±3.40 86.06±0.39 

D-SN 54.97±0.78 28.83±1.52 

D-SZ 76.88±0.40 57.53±2.51 

D-VK 52.95±0.41 24.44±1.45 

D-WO 56.64±0.14 70.80±2.31 

Juices 

α-Amylase 

inhibition 

(mgACAE/g) 

Tyrosinase 

inhibition 

(mgKAE/g) 

J-AC 45.17±0.62 na 

J-AR 45.20±0.86 na 

J-AU 47.14±0.78 na 

J-BL 133.64±14.06 na 

J-DE 51.23±0.65 na 

J-GF 49.50±1.54 na 

J-ME 43.47±0.39 na 

J-MV 47.24±1.21 na 

J-PA 48.39±1.12 4.86±0.56 

J-PF 53.06±1.15 7.63±1.37 

J-SI 44.85±0.14 8.41±1.13 

J-SN 51.33±1.04 6.85±1.16 

J-SZ 54.39±1.41 7.35±1.46 

J-VK 77.09±0.96 16.56±0.85 

J-WO 51.07±0.55 5.87±0.70 
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2.2.2.4  Conclusions 

This work compared for the first time fifteen varieties of pomegranate obtained from the same 

hatchery, having fruits with very different morphological characters, with some of them never 

studied so far. The work compared the chemical composition in terms of ellagitannins and 

anthocyanins detected in juices and peel and the content of polysaccharides in peel. The 

chromatographic profiles, both of ellagitannins and anthocyanins, resulted qualitatively very 

similar and, in some cases, almost superimposable. At the same time, according to the 

noticeable morphological differences among the selected varieties, a wide variability in terms 

of total content of ellagitannins, anthocyanins and polysaccharides was highlighted. The 

reflectance colorimetry resulted suitable to analyze the juices as such, showing a good 

correlation with the ratio sum delphinidin glycosides/sum cyanidin glycosides evaluated by 

HPLC-DAD. Concerning the polysaccharides, it was proposed and applied a fractionation 

method to collect three main polysaccharide fractions from each sample. The preliminary 

analysis by size exclusion chromatography applied to four varieties having very different 

morphological characters, pointed out in all the sample a large predominance of 

polysaccharides at high apparent molecular weight close to two million Dalton. Some of the 

varieties with very different morphological characteristics showed polysaccharides with 

similar hydrodynamic volume (apparent molecular weight). Overall, the quantitative results 

indicated a wide variability in terms of total phenols and polysaccharides amount, which was 

also confirmed by the colorimetric analysis. The total polyphenolic content was low in 

pomegranate juices and consistently higher in the decoctions. Applying different in vitro 

methods, it was possible to acquire a more complete description of the antioxidant potency of 

juices and decoctions. Regarding the enzymatic tests, the anti-alfa-amylase activity was quite 
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comparable among all the samples, while decoctions were generally much more active as anti-

tyrosinase agents.  
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2.2.3 An optimized fractionation process to recover and investigate on the polysaccharides 

from pomegranate fruits by-products of the Wonderful and Purple Queen
®
 varieties 

 

 

Diletta Balli, Lorenzo Cecchi, Mohamad Khatib, Pujun Xie, Claudia Nunes, Manuel Coimbra,  
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Abstract 

Polysaccharides recovered from by-products of two widely cultivated pomegranate varieties, 

namely Wonderful and Purple Queen
®
, were studied in this research. Polysaccharides were 

extracted from fruits’ peel by decoction with hot water and fractionated by precipitation with 

ethanol in order to provide different fractions of polysaccharides in a green and easy way, thus 

obtaining three fractions for each sample. Polysaccharides’ yield was higher for the Purple 

Queen
®
 sample (up to 648.9 mg/5g), with fraction 2 as the most abundant one for all samples. 

The different fractions were characterized by size exclusion chromatography (SEC), light 

scattering (LS), 
1
H-NMR, determination of the simple sugars and methylation analysis. The 

SEC analysis, carried out on the dialyzed fractions, showed the presence of structures slightly 

higher than commercial pectin, while LS analysis allowed differentiating between the 

molecular sizes of the different fractions. 
1
H-NMR allowed excluding the presence of 

significant amounts of rhamnogalacturonans, proteins and phenolic compounds; the same 

analysis, carried out after dialysis, highlighted a high level of the methoxyl groups typically 

linked to glucuronic acid in pectin with a high degree of methylation, and lower levels of O-

acetyl groups, with fractions from Apulian Wonderful sample showing different profiles. 

Simple sugar analysis showed that galacturonic acid was approx. 50% in all Fractions 3, 
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confirming the presence of pectin; the high xylose content also pointed out the presence of 

xylogalacturonan in addition to homogalacturonan, while methylation analysis allowed 

pointing out the presence of Arabinoxylan, Xyloglucan and Arabinogalactan, and the presence 

of higher content of cellulose in the Purple Queen sample than in the Wonderful samples 
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2.2.3.1 State of the art and aims of the work 

The interest toward polysaccharides from pomegranate (Punica granatum L.) fruit has 

strongly increased in the last years: they can be included among the bioactive components of 

the fruit along with phenolic compounds (Joseph et al., 2013; Varghese et al., 2017; Wu et al., 

2019). Amounts of polysaccharides range from 10% to 12% on the weight of dried mesocarp 

(
b
Khatib et al., 2017), while, according to other authors, the amounts of total fiber in 12 

Tunisian varieties range from 40% to 60% on the weight of dry peel (Hasnaoui et al., 2014). 

So far, the chemical features of the polysaccharides in the peel have not been fully explored, 

but most of the authors reported pectin as the main constituent (Güzel et al.,2019; Abid et al., 

2016; 
b
Khatib et al., 2017; Abid et al., 2017; Shakhmatov et al., 2019; Pereira et al., 2016). 

Pectins consist of a complex mixture of macromolecules with different structures and 

chemical-physical properties, such as molecular weight, gelling ability and water solubility, 

which are strongly associated to the applied extraction method, as summarized in a recent 

review (Dranca et al., 2018). The authors of this review also reported the application of green 

extraction using hot water to efficiently recover the greatest part of pectin from orange sour 

and durian rinds. Even in the case of pomegranate, hot water was recently proposed to extract 

pectin from the peel (Shakhmatov et al., 2019). At the same time, it was demonstrated that the 

boiling treatment did not affect the polysaccharide profile, particularly the hydrodynamic 

volume associated to the apparent molecular weight determined by size exclusion 

chromatography (
b
Khatib et al., 2017). It has recently been emphasized that pectin has a 

multiplicity of structures (Chan et al., 2017; Dranca et al., 2018). More in general, knowledge 

on the composition and structure of pomegranate’s polysaccharides is so far limited, 

particularly when related to a specific variety. Even a recent study, focusing on the 
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determination of the chemical structure of pectin extracted from pomegranate, was applied to a 

sample obtained from commercial fruits of unknown variety (Shakhmatov et al., 2019).  

Nowadays the pomegranate peel is recognized as one of the most valuable by-product of food 

industry, but it needs to be further investigated regarding the polysaccharide content. The 

collection of useful information on the structural characteristics of polysaccharides such as 

pectin requires the application of different analytical methods, many of which require long 

procedures. (Dranca et al., 2018). To improve the knowledge on natural polysaccharides, the 

possibility to identify and apply more rapid analytical procedures is strongly required. 

So far, the Wonderful variety constitutes the greatest production in North and South America, 

as well as in Israel, or in Mediterranean countries as Italy and Greece. It is characterized by a 

high productivity associated with an adequate average fruit size and a pleasant taste of the 

juice with a sweet/sour note that is widely appreciated (Hussein et al., 2018). Recently, the 

new Purple Queen
® 

variety, originated in the South of Spain, has been proposed on the market; 

it is appreciated for its productivity and early ripening time (half of August) and currently 

requested for registration outside the European Union (Melgarejo et al., 2019). These 

peculiarities of the Purple Queen
® 

variety are functional for the market since they broaden the 

availability of the fruits both for fresh consumption and juice production contributing to 

supply the fruit demand, increased over these last years. 

The aim of this research was to study the polysaccharides of two widely cultivated 

pomegranate varieties, Wonderful and Purple Queen
®
. Decoction was applied as a green 

method to extract these compounds from the peel, then they were fractionated by precipitation 

with different amounts of ethanol. This latter step aimed at proposing a simple method able to 

provide fractions with different polysaccharides composition. The chemical investigation on 

the collected fractions was carried out by means of size exclusion chromatography (SEC), 



187 

 

light scattering (LS), 
1
H-NMR and determination of the simple sugars. As far as we know, this 

approach was applied for the first time to polysaccharides extracted from the peel of 

pomegranate of Wonderful and Purple Queen
®
 varieties. 

 

2.2.3.2 Materials and methods 

Fruits 

Three batches of fruits (approx. 4 kg each) of pomegranate of the varieties Wonderful and 

Purple Queen
®
 were purchased from different producers in the same year (2018). Wonderful 

variety was purchased from different geographical areas of Italy: Apulia (code WoA) and 

Sicily (code WoS, Marsala (TP), Italy); Purple Queen
®
 variety was purchased from Murcia, 

Spain (code PQS). 

Standards and reagents 

All solvents of analytical HPLC grade were from Sigma Aldrich (St. Louis, Missouri, USA). 

Ultrapure water was obtained by the Milli-Q-system (Millipore SA. Molsheim. France). 

Dextrans at different molecular weights (2000, 1100, 410, 150 and 50 KDa) and sucrose (342 

Da) used for the SEC analysis were purchased from Sigma-Aldrich (St. Louis, Missouri, 

USA). The commercial pectin at different degree of esterification (55-70% and >85%) were 

purchased from Merck. The dialysis kit (Spectra/Pro) 12-14 KD was purchased from 

Spectrum Laboratories, Inc. (Breda, The Netherlands). 
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Extraction and fractionation of polysaccharides 

The peel (mesocarp + exocarp) of the fruits was separated from arils and used to prepare a 

decoction. Briefly, the freeze-dried pomegranate peel was boiled in water (5g in 200 mL) for 

1h. The supernatant was recovered after cooling in ice bath and centrifugation (5000 rpm, 15 

min, 4°C), then distilled water was added to reach a total volume of 200 mL of decoction 

(
b
Khatib et al., 2017). Hot water was chosen as extractive medium with the aim of recovering 

the most soluble fraction of fiber, and reducing the co-presence of insoluble fiber, as cellulose 

and lignin.  

Preliminarily, the decoction from the WoA sample was used for defining the fractionation 

method. The sample was dissolved in water, then increasing amounts of ethanol were added, 

keeping the solutions for 3 h at 0°C. The precipitated fractions obtained from each step were 

recovered after centrifugation at 5,000 rpm, at 5°C for 15 min.  

The fractionation procedure defined in the preliminary trial was then applied to the three 

decoctions recovered from the peel of WoA, WoS and PQS samples. Different fractions were 

obtained after 3 consecutive additions of ethanol (100 mL each) in ice bath. The addition of 

the fourth volume of ethanol (100 mL) did not induced any further precipitation, thus a total of 

three polysaccharide fractions were collected from each sample. The fractions were freeze-

dried, weighted, then dialyzed (cut off 10K-14KD) and freeze-dried again. All the obtained 

fractions are listed in Table 2.2.3.1. 

 

1
H-NMR analyses  

The proton spectra were recorded working on the dialyzed fractions dissolved in D2O at a 

concentration ranging from 5 to 6 mg/mL; maleic acid was added as internal standard (0.13 
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mg/mL) for quantitative evaluations applying the protocol previously used for other matrices 

(Khatib et al., 2016) . 

 

Size Exclusion Chromatography (SEC)  

All the freeze-dried samples were dissolved in distilled water at a final concentration of 0.5 

mg/ mL. The obtained solutions were analyzed by a ProStar HPLC Chromatograph (Varian 

USA) equipped with a refractive index detector (mod 355); the two columns PolySep-GFC-P 

6000 and 4000 (Phenomenex, USA) connected in series were used according to a previous 

work (Chamizo et al., 2018). Two columns, PolySep-GFC-P 6000 and PolySep-GFC-P 4000 

(700 mm length and 7.8 mm internal diameter) from Phenomenex, USA, were connected in 

series to obtain separation ranges of 100 kDa - 15 MDa and 0.3- 400 kDa. HPLC-grade water 

was the eluent and the flow was 0.6 mL min-1; total analysis time, 70 min. Blue-dextrans at 

various molecular weights (50-2000 KDa) were used as internal standards to determine the 

hydrodynamic volume. 

 

Size and polydispersity index by Light Scattering (LS)  

The particle sizes of the different fractions (F1-F3) of each variety were measured by DLS, 

Zetasizer Nano series ZS90 (Malvern Instruments, Malvern, UK), with a JDS Uniphase 22 

mW He-Ne laser that worked at l=632.8 mm with an optical fiber-based detector and a digital 

LV/LSE-5003 correlator; the temperature controller (Julabo water bath) set at 25.8 °C (kept 

constant by a Haake temperature controller). Time correlation functions were analyzed to 

obtain the hydrodynamic diameter of the polysaccharides and the size distribution 

(polydispersity index, PdI, or polydispersity, PD) by using the ALV-60X0 software package 

(Malvern, version 7.2). Autocorrelation functions were analyzed by the Cumulants method by 
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fitting a single exponential to the correlation function to obtain the size distribution; 

polydispersity values were calculated for each peak as peak width/mean diameter. Scattering 

was measured in a borosilicate cell of optical quality, 4 mL volume at 908 angle by diluting 

the samples in 10 nm NaCl solution. For all the samples, a mean value of three measurements 

at the stationary level was taken.  

 

Sugar and Linkage analysis 

The third fraction of each pomegranate variety was dialysed (cut-off 12–14 kDa), freeze-dried 

and used for the determination of neutral sugars and linkage analysis according to Nunes et 

al., (2001). Neutral sugars were determined after acid hydrolysis (H2SO4 72% w/w) and 

conversion to the corresponding alditol acetates. Glycosidic linkage analysis was performed 

by methylation of the polysaccharides in order to obtain partially methylated alditol acetates 

that were subsequently analysed by gas chromatography-mass spectrometry (GC–MS). GC 

analysis was performed using a Hewlett-Packard 5890 with a split injector (split ratio 1:60) 

and a FID detector. A 25-m column CP-Sil-43 CB (Chrompack, Holland) with 0.15 mm i.d. 

and 0.20-μm film thickness was used, with the injector and detector operating at 220° C. The 

following temperature program was used: 180°C for 5 min and 200°C for 20 min, with a rate 

of 0.5°C/min; linear velocity of the carrier gas (H2) was set at 50 cm/s at 200°C. Furthermore, 

uronic acids were colorimetrically determined using m-phenylphenol as previously reported 

(Nunes et al., 2001).  
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2.2.3.4 Results and Discussion 

Preliminary fractionation 

Polysaccharide profiles were studied selecting commercial fruits of well-known origin and 

representative of the major productive areas in Italy and Spain. In particular, Apulia and Sicily 

regions, as representative geographical areas in Italy for the production of fresh fruits from 

Wonderful variety, and Alicante and Murcia in the South of Spain to collect fruits of Purple 

Queen
®
 variety, were selected. Purple Queen

®
 variety is a less known cultivar, increasingly 

appreciated  for  its  productivity, early ripening time and pleasant tasty (Melgarejo et al., 

2019). 

A preliminary fractionation process was applied to fruits of the WoA sample to verify if the 

gradual addition of small amounts of ethanol was useful to recover the main polysaccharides 

in a partially purified form. This approach allowed us to recover several fractions. 

Nevertheless, only two of them were obtained in appreciable amounts: P-F5 and P-F7. Both 

these fractions, analyzed after dialysis by SEC, showed only one peak with the same retention 

time, indicating the presence of compounds in a range from 1.1 to 2 MDa, (Figure 2.2.3.1). 

The percentage of the mean peak on the total molecular range (2000 KDa-50KDa), was 89.2% 

and 91.1% for F5 and F7, respectively, highlighting a high degree of purity of these two 

fractions. 
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Figure 2.2.3.1 SEC profiles of the main fractions from the preliminary fractionation process. 

 

Figure 2.2.3.2 Sugars composition of  P-F 5and P-F7 fractions.  

Data are expressed in molar % as a mean of triplicate. 
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Furthermore, both F5 and F7 samples, when analyzed by 
1
H-NMR showed very similar 

spectra (Figure 2.2.3.3).  

 

 

 

 

 

Figure 2.2.3.3 
1
H-NMR spectra of the dialyzed P-F5 (top) and P-F7 (down) fractions. 
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This finding is in agreement with results obtained from analysis of sugars composition, which 

showed only slight differences (Figure 2.2.3.2), and a very low intensity of signal at 1.2 ppm 

in the 
1
HNMR spectra, indicating the rhamnose as a minor sugar in both the samples. The 

major sugars as glucose, galactose and arabinose showed similar concentrations, with 

galacturonic acid reaching percentages higher than 50% of total sugars, confirming both these 

fractions as rich in pectin, in agreement with previous works on pomegranate fruit (
b
Khatib et 

al., 2017; Abid et al., 2017; Pereira et al., 2016; Shakhmatov et al., 2019).  

Concerning the presence in pomegranate peel of polysaccharides other than pectin, the 

literature reports the absence, or the presence in very low concentrations of starch (USDA 

2011; Gupta et al., 2015), allowing considering as negligible the contribution of starch on the 

recovered polysaccharide fractions. Moreover, a study on the pomegranate peel of twelve 

Tunisian varieties reported a mean content of cellulose close to 20% on dry peel and a ratio 

between soluble and insoluble fiber of approx. 1.0, confirming that the soluble fiber was in a 

comparable amount with respect to the insoluble one (Hasnaoui et al., 2014). Finally, 

according to most of the works dealing with polysaccharides of pomegranate, pectin as the 

main constituent of the soluble fraction of the fiber can be recovered applying different water 

media, as water acidified by nitric acid (Abid et al., 2017), hot water and enzymatic methods 

(Gavlighi et al., 2018) or simply hot water (Shakhmatov et al. ,2019; 
b
Khatib et al., 2017).  

 

Fractionation process applied to all the samples 

After the preliminary analysis, a final simplified fractionation was applied and only three 

fractions were collected from each decoction by adding increasing volumes of ethanol. In 

particular, 0.5:1 v:v to obtain the fractions 1 (F1), 1:1 v:v to recover the fraction 2 (F2) and 

1:1.5 v:v to collect the fractions 3 (F3). The collected fractions are listed in Table 2.2.3.1 Our 
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results expressed on dry peel pointed out that the sum of the total water-soluble 

polysaccharides extracted from the decoction process ranged from 5.8% to 6.5%, with the 

mean yields for each fraction before dialysis, and their sum after dialysis reported in Table 

2.2.3.1. F2 was always the most abundant fraction, and after dialysis similar amounts were 

found for the Purple Queen and Wonderful Apulia samples, not so different from those 

reported by Shakhmatov et al., (2019), which worked on fruits of unknown variety using hot 

water as extractive medium. On the contrary, Wonderful Sicily showed a lower content of 

total polysaccharides after dialysis with a percentage of  2.8%. 
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Table 2.2.3.1 List of the collected polysaccharide fractions and applied analyses after dialysis (cut off 10KDalton); *the yields are expressed in 

mg/5 g as a mean value of three independent precipitations. 

  

 

Samples Acronyms 
Yields before 

dialysis  
(mg/5 g dw) 

Yields* after 
dialysis 

(mg/5 g dw) 

SEC 

(KDalton) 

LS 
size in nm 

(major peak) 

LS 
size in nm 

(minor peak) 

Purple Queen Fraction 1 PQS-F1 112.3±24.2 

260 

2000 - - 

Purple Queen Fraction 2 PQS-F2 402.3±67.8 2000 2099 334 

Purple Queen Fraction 3 PQS-F3 134.3±18.5 2000 1290 - 

Wonderful Apulia Fraction 1 WoA-F1 111.7±31.8 

293 

2000 1438 398 

Wonderful Apulia Fraction 2 WoA-F2 226.3±26.8 2000 953 - 

Wonderful Apulia Fraction 3 WoA-F3 77.0±10.6 2000 1205 - 

Wonderful Sicily Fraction 1 WoS-F1 13.0±4.6 

140 

2000 995 - 

Wonderful Sicily Fraction 2 WoS-F2 230.5±35.9 2000 1013 - 

Wonderful Sicily Fraction 3 WoS-F3 50.0±14.1 2000 2439
 

407 
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The chromatographic profiles obtained by SEC for the dialysed fractions showed in all cases 

only one peak, which according to retention times (24-25 min), suggested the presence of 

structures with similar hydrodynamic volumes. In Figure 2.2.3.4 the profiles obtained for the 

F3 fractions are shown as examples. 

 

 

     Figure 2.2.3.4 Size Exclusion Chromatography profiles of some fractions from PQS, WoA and 

WoS (from the top to the bottom). 
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Noteworthy, both the commercial pectin at different degree of esterification (DE), 55-75% and 

85%, showed only one peak in SEC, with retention times of 26 min and 27.2 min respectively. 

These retention times, higher than those of pomegranate fractions, indicate lower 

hydrodynamic volumes with respect to those observed for the polysaccharides isolated from 

pomegranate.  

 

 
 

 

 
Figure 2.2.3.5 Size Exclusion Chromatography Profiles of two commercial pectin used as reference 

standards with known degree of esterification (up) DE> 85% ; (down) 55% <DE <70% 

 

Despite the ability to discriminate between the commercial pectin, the applied SEC method 

was not able to highlight the differences among the fractions isolated from these pomegranate 

fruits. Consequently, a further investigation on the molecular size and shape of these 

molecules was carried out by light scattering (LS) technique, which proved to be suitable for 

highlighting the differences between the structures of the isolated fractions (Table 2.2.3.1 and 

Figure 2.2.3.6).  
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Figure 2.2.3.6 Light scattering results concerning the fractions isolated from Wonderful Sicily (WoS), Wonderful Apulia (WoA), and Purple 

Queen from Spain (PQS). 

WoS          WoA       PQS 
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Concerning PQS-F2, the LS profile presented one main peak with a size of 2099 nm (76 %) 

and a minor peak with a lower size of 334 nm (24 %), while PQS-F3 presented a lower size 

with a value of 1290 nm. According to Figure 2.2.3.6 concerning WoA, similar mean sizes 

from 953 nm to 1438 nm were obtained for the three fractions.Again, for two WoS fractions 

(F1 and F2) it was possible to find a similar size close to 1000 nm, while F3 fraction presented 

a major component (86 %) with a higher mean size, 2439 nm, and a minor component at 407 

nm (16 %).  

Concerning the two reference polysaccharides, after the LS analysis the pectin with the highest 

DE (85%) showed an average size of 339 nm, the lowest value among all the pomegranate 

fractions and also with respect to the pectin at 55-75% of DE; this latter compound resulted 

with a molecular size more similar to those of pomegranate fractions, with a mean size of  942 

nm (Figure 2.2.3.7). 
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Figure 2.2.3.7 LS analyses of the commercial pectin.  

DE: 55-75% (up) 85% (down) 

 

The findings from LS analyses confirmed the ability of this technique to furnish the mean size 

of these polysaccharides dissolved in water solution in a very rapid way, and it resulted more 

effective that SEC in highlighting some structural differences among the isolated 

polysaccharides from pomegranate. 

 

1
H-NMR analysis 

All fractions were analyzed by 
1
H-NMR after dialysis to evaluate differences or similarities 

through some diagnostic signals and the results were compared with those from the proton 

spectra of the commercial pectin. The presence of diagnostic signals in the proton spectra of 
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pectin can help to recognize some peculiarities in the chemical structure of these compounds. 

The amount of rhamnose can be easily evaluated by the intensity of the signal at approx. 1.2 

ppm, corresponding to the methyl group on carbon C6, helping to confirm or to exclude the 

presence of rhamnogalacturonan structures, typical of several pectin. Analogously, 

information on the amount of the acetyl groups in the molecule can be extrapolated by 

measuring the intensity of the signal close to 2 ppm, corresponding to the singlet of the methyl 

group. Finally, an high percentage of methoxyl groups in the structure of the pectin can be 

pointed out by the presence of an intense singlet close to 3.69 ppm in an crowded area of the 

spectrum, containing most of the proton signals of oligosaccharides and polysaccharides. The 

absence (or presence with low intensities) of signals at values over 5.5 ppm can help to 

exclude the presence of aromatic amino acids belonging to protein structures co-precipitated in 

appreciable amount along with polysaccharides.  

Concerning our fractions, rhamnose resulted almost completely absent or present in traces 

amount only in PQ-F2, WoA-F3 and WoS-F2, confirming the absence of significant amounts 

of rhamnogalacturonan. The proton spectra of the fractions did not show any signal over 5.5 

ppm, indicating the absence of significant amounts of proteins or aromatic compounds such as 

ellagitannins, trapped during the precipitation process. For almost all the fractions, an intense 

signal was observed at 3.69 ppm, indicating the presence of a large number of methoxyl 

groups usually present on galacturonic acid residues and suggesting a high degree of 

methylation (DM). 

Nevertheless, the resolution obtained for the many signals in the range 3.4-4.2 ppm did not 

permit to accurately measure the intensity of the signal of methoxyl group at 3.6-3.7 ppm.  

The fractions from WoS, showed a similar distribution between methoxyl and acetyl groups: 

this information was extrapolated by measuring the ratio between the integral of the signals at 
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3.69 ppm and 1.95 ppm respectively, obtaining values from 6.4 to 7.0. Among the 

polysaccharides from WoA, even if both obtained from the variety Wonderful, only F3 

fraction showed a proton spectrum similar to those of the fractions from WoS. Concerning F2 

fraction, it was characterized by a very intense signal of the methoxyl moiety and a negligible 

signal related to the acylated group, as confirmed by the high ratio between the corresponding 

integrals (14.7). Finally, the F1 fraction presented a very different proton spectrum: the signal 

at 3.69 ppm almost disappeared and two groups of signals with similar intensity appeared at 

3.82 and 3.62 ppm, suggesting the presence of methoxyl groups not linked to the glucuronic 

acid moiety. Furthermore, the presence of an intense signal at 5.29 ppm indicated the presence 

of H1 anomeric protons with alpha-linkage (Cui, 2005). Concerning F1 and F2 fractions from 

PQS, both the samples showed similar proton spectra with the same pattern of signals 

observed for the F1 fraction of WoA. The proton spectrum of Fraction 3 from PQS resulted 

very similar to F3 fractions from WoA and WoS, with only slight differences in the range of 

3.5-4.3 ppm.  

To better investigate the chemical structure of these last samples, all the F3 fractions were 

further analyzed to determine the composition in simple sugars and the main sugar linkages. 

 

Sugars composition  

To better verify if the applied fractionation procedure allowed separating different 

polysaccharide structures, a couple of samples with the higher difference in terms of water 

solubility, was chosen to determine the sugars composition after hydrolysis. To this aim, the 

F1 and F3 fractions from the WoS samples were chosen. The results pointed out similar 

percentages of galacturonic acid, ranging from 53% to 58%, again confirming the presence of 

pectin in the two fractions. It is noticeable the higher amount of glucose in F1 than in F3, 
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passing from 13% to 3%. Together with a lower content of glucose, F3 showed a higher 

percentage of xylose with respect to F1 (Figure 2.2.3.6). Considering that the pomegranate 

peel used as raw material also contains cellulose that could be easily precipitated by the first 

addition of ethanol, the percentage of glucose higher in F1 fraction than in F3 fraction was 

expected. The lower amount of glucose found in F3 fraction (below 5% of total mols), 

confirms the hypothesis that cellulose, because of its low solubility in water, is almost 

completely excluded as component of F3 fraction. 

 

 

Figure 2.2.3.8 Sugars composition in F1 and F3 samples from Wonderful Sicily (WoS). Data are 

expressed in µmol% as a mean of duplicate. 

 

In light of these results, in order to exclude the presence of cellulose in the final fractions, the 

sugar composition was also determined for WoA-F3 and PQS-F3. 

In the two Wonderful varieties, galacturonic acid reached approx. 50%, galactose ranged from 

13% to 15 % and xylose from 27% to 28%, while glucose was present in a very low amount. 

The percentage of xylose higher than the other neutral sugars is in agreement with other 

literature data concerning different pomegranate cultivars (Hasnaoui et al., 2014). Considering 

the high percentage of xylose, the presence of homogalacturonan and xylogalacturonan 
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(included within the typical pectin structures) as main constituents of the F3 fractions from 

Wonderful variety can be confirmed. Furthermore, the absence of significant amounts of 

rhamnogalacturonans of type I or II it was confirmed, also according to 
1
H-NMR data. WoA-

F3 and WoS-F3 showed similar sugars composition and 
1
H-NMR spectra (Figure 2.3.2.8), and 

both were obtained with negligible amount of cellulose. In contrast, PQS-F3, although 

characterized by galacturonic acid as the main sugar (49%) thus confirming the presence of 

pectin, still showed 23% glucose together with a xylose content of 18% (Table 2.2.3.2). 

 

 

Table 2.2.3.2 Sugars composition of PQS, WoA and WoS Fractions 3.  

Data are expressed in µmol% as a mean of duplicate. RSD<5% 

 

In light of these results it can be concluded that the proposed fractionation process applied to 

Purple Queen
®
, was not suitable to avoid cellulose interference in F3 fraction. We can 

hypothesize that such different behaviour is due to a higher amount of cellulose in the peel of 

Purple Queen
®
 than in the peel of Wonderful.   

 

Samples 
Galact.acid 

µmol% 

Arabinose 
µmol% 

Xylose 
µmol% 

Galactose 
µmol% 

Glucose 
µmol% 

PQS-F3 49.1 1.4 17.8 7.8 23.7 

WoA-F3 50.2 1.8 27.3 15.4 5.3 

WoS-F3 53.9 1.4 28.5 13.1 3.1 
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Table 2.2.3.3 Glycosidic linkages of Apulia, Sicilia Wonderful and Purple Queen, Fractions 3. Data 

are expressed as a mean of duplicate in µmol%. RSD<5% 

 

Furthermore, methylation analysis was performed on Fraction 3 of the three samples to define 

the glycosidic linkages in the main polysaccharide chains. The results summarized in Table 

2.2.3.3 allow highlighting the presence of 3 polysaccharides of hemicellulose nature in each 
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fraction. In particular, the two fractions from Wonderful, as expected, present more 

similarities with respect to Purple Queen variety.  

Comparing the total sugars composition obtained after sugars and methylation analyses, 

several differences had been pointed out, mainly related to the inability of methylation 

analysis to identify galacturonic acid. In particular, a significantly higher percentage of 

arabinose was highlighted after methylation analysis with respect to the sugar analysis. Indeed, 

arabinose is the sugar that much more seem to undergo degradation after strong acidic 

condition used in neutral sugars analysis.  

The higher percentage of (1→4) Xyl, (1→3,4) Xyl and (1→3) Araf can be associated to the 

presence of arabinoxylan, already reported in pomegranate peel (Hasnaoui et al., 2014). It is 

possible to observe that, even if there are the same linkages, the two Wonderful samples have 

some differences in the percentage of branches: the higher amount of (1→3,4) Xyl with 

respect to (1→4) Xyl in WoS-F3 can be linked to a more ramified structure, with respect to 

the Apulian sample (WoA). The (1→4) Glc, (1→4,6) Glc, (1→2) Xyl and tXyl linkages can 

be attributed to the xyloglucan structure. Within the two Wonderful samples, the Sicilian one 

presented higher branched structure represented by the higher percentage of (1→4,6) Glc with 

respect to (1→4) Glc linkages. Furthermore, the higher percentage of (1→4) Glc in the Purple 

Queen sample indicates the presence of higher content of cellulose in this variety with respect 

to the Wonderful ones. Moreover, the high percentage values of (1→6) Gal and t Gal can be 

linked to the arabinogalactan structure detected in both the varieties. Such a finding is in 

agreement to the recent work of Shakhmatov et al., (2019), in which similar structures were 

found in pomegranate fruits of unknown variety. 
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2.2.3.4 Conclusions 

Polysaccharides recovered from by-products of two widely cultivated pomegranate varieties, 

namely Wonderful (from Apulia and Sicily) and Purple Queen
®

 (from South of Spain), were 

studied in this research. Polysaccharides were extracted from fruits’ peel using hot water, thus 

obtaining a decoction in a green and easy way. Polysaccharides were then precipitated from 

the decoction and fractionated applying a precipitation process optimized adding the minimum 

amount of ethanol. Three different polysaccharides fractions were obtained for each sample, 

with the highest yields obtained for the medium fraction in all samples. 

Size Exclusion Chromatography allowed pointing out the presence of structures slightly 

higher than commercial pectin in the dialyzed fraction, while Light Scattering has been 

proposed for differentiating between the molecular size of the polysaccharide structures in the 

different fractions. 
1
H-NMR analysis of the dialyzed fractions allowed excluding the presence 

of significant amounts of rhamnogalacturonans, proteins and residual ellagitannins. 

Furthermore, it allowed pointing out a high level of methoxyl groups, typically linked to 

glucuronic acid in pectin structures with a high degree of methylation, and lower levels of O-

acetyl groups. All the fractions showed the presence of signals attributable to pectin structures. 

The high xylose content in last fractions pointed out the presence of xylogalacturonan in 

addition to homogalacturonan, and a very low glucose content in the Wonderful samples. 

Finally, methylation confirmed the presence of arabinoxylan and xyloglucan with different 

percentages of branches; arabinogalactan was only detected in Purple Queen sample with also 

a residual content of cellulose. Fractions without cellulose as interference were obtained only 

for Wonderful variety, while the same result was not obtained for Purple Queen presumably 

due to the high content of cellulose in the peel of this variety. 
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The proposed fractionation method can be applied to differentiate the main polysaccharides in 

pomegranate peel and can help to plan the use of the isolated fractions for biological tests, 

which requires high quantities of samples as those for the in vitro evaluation of the prebiotic 

properties. 
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