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Abstract

The (classical) problem of characterizing and enumerating permutations that can be
sorted using two stacks connected in series is still largely open. In the present paper we
address a related problem, in which we impose restrictions both on the procedure and on
the stacks. More precisely, we consider a greedy algorithm where we perform the rightmost
legal operation. Moreover, the first stack is required to be σ-avoiding, for some permutation
σ, meaning that the elements maintained in the stack avoid the pattern σ when read from top
to bottom. Since the set of permutations which can be sorted by such a device, which we call
a σ-machine, is not always a class, it would be interesting to understand when it happens.
We prove that the set of σ-machines whose associated sortable permutations are not a class
is counted by Catalan numbers. Moreover, we analyze two specific σ-machines in full detail
(namely σ = 321 and σ = 123), providing for each of them a complete characterization and
enumeration of the sortable permutations.

1 Introduction

The birth of stack sorting disciplines can be traced back to a series of exercises proposed by
Knuth [6]. Consider the problem of sorting a permutation π = π1π2 · · ·πn using a stack. More
specifically, scan the permutation from left to right and, when πi is read, either push πi onto the
stack or pop the top entry of the stack into the output (at the first available position). Call the
two operations S and O, respectively. Knuth has showed that there is an optimal algorithm,
called Stacksort, which is able to sort every sortable permutation. It consists of performing S
whenever πi is smaller than the current top of the stack, otherwise performing O (see Listing 1).

It is easy to realize that Stacksort has two key properties:

1. The stack is increasing ; the elements inside the stack are maintained in increasing order,
from top to bottom.

2. The algorithm is right greedy ; it always chooses to perform S as long as the stack remains
increasing. Here the expression “right greedy” refers to the usual pictorial representation,
in which the input permutation is on the right, the stack is in the middle and the output
permutation is on the left (see Figure 1).

Using Stacksort, it can be shown that the sortable permutations are precisely those avoiding
the pattern 231; and it is well known that 231-avoiding permutations of length n are counted
by Catalan numbers.
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Algorithm 1: Stacksort (Stack is the stack, TOP (Stack) is the current top of the stack,
π = π1 · · ·πn is the input permutation).

Stack := ∅;
i := 1;
while i ≤ n do

if Stack = ∅ or πi < TOP (Stack) then
execute S;
i := i+ 1;

end
else

execute O;
end

end
while Stack 6= ∅ do

execute O;
end

Though the above problem is rather simple, things become considerably more complicated
if one allows more stacks connected in series. For the machine consisting of just two stacks in
series we know at present very few results. We know, for instance, that sortable permutations
can be characterized in terms of an infinite set of avoided patterns, but we do not have any
explicit description of such a set; see Murphy [8]. The enumeration of sortable permutations is
also unknown.

Since the general problem of sorting with two stacks is too difficult, several special cases
have been considered. The so-called West-2-stack-sortable permutations (see West [11]) are
those permutations which can be sorted by making two passes through a stack. Equivalently,
they are the permutations that can be sorted by 2 stacks connected in series using a right greedy
algorithm. West-2-stack-sortable permutations do not form a class, nevertheless it is possible
to characterize them using some kind of generalized patterns (called barred patterns).

Another possible variation on the two-stacks problem is to impose some restrictions on the
content of the stack. Note that to obtain the identity permutation it is necessary for the second
stack to be increasing. Atkinson, Murphy and Ruškuc [1] studied the case in which the first
stack is also required to be increasing. They characterized the sortable permutations in terms
of avoiding an infinite set of patterns. They also proved that a left greedy algorithm is optimal
in this case and derived a generating function for the number of sortable permutations.

Smith [10] studied the case in which the first stack is required to be decreasing. She described
an optimal sorting algorithm, thanks to which she was able to completely characterize (in terms
of two avoided patterns) and enumerate the sortable permutations.

In the present paper we will deal with similar sorting machines consisting of two stacks
connected in series (see Figure 1).

Recalling the key properties of the Stacksort algorithm, we will consider machines obeying
certain constraints, which are described below.

1. The stacks must obey some restrictions, which are expressed by saying that, at each step
of the execution, the elements into each stack (read from top to bottom) must avoid
certain forbidden configurations. In particular, in analogy with Stacksort, we require the
second stack to be increasing. Notice that this can be equivalently expressed as follows:
at every step, the sequence of numbers contained in the stack (read from top to bottom)
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output input

SO
π1 . . . πn

⌊
2
1

⌋

output input

σ

⌊
2
1

⌋

π1 . . . πn

SσO SI

Figure 1: Sorting with one stack (on the left) and sorting with two stacks, where the first one
is σ-restricted (on the right).

has to avoid the pattern 21. We will express this by saying that the stack is b 21 c-avoiding.
Moreover, we will be interested in machines in which the first stack is σ-avoiding, for some
pattern σ.

2. The algorithm we perform on the two stacks connected in series is right greedy. As already
observed, this is equivalent to making two passes through a stack, performing the right
greedy algorithm at each pass. However, due to the restriction described above, during
the first pass the stack is σ-avoiding, whereas during the second pass it is b 21 c-avoiding.

We will use the term σ-machine to refer to the right greedy algorithm performed on two
stacks in series, such that the first stack is σ-avoiding and the second stack is b 21 c-avoiding.
Formally, the algorithm we are going to analyze is described in Listing 2.

The set of permutations which are sortable by the σ-machine is denoted Sort(σ) and its
elements are the σ-sortable permutations. The set of σ-sortable permutations of length n is de-
noted Sortn(σ). In the present paper we initiate the study of the combinatorics of σ-machines.
In particular, we aim at characterizing and enumerating σ-sortable permutations. After neces-
sary preliminaries (contained in Section 2), we see that the set of σ-sortable permutations is a
permutation class for some choices of σ, while it is not a permutation class for other choices of
σ. In Section 3 we find an explicit characterization of those σ such that σ-sortable permutations
constitute a class. We prove the striking fact that σ-machines whose σ-sortable permutations
are not a class are counted by Catalan numbers with respect to the length of σ. Then we focus
on a couple of specific σ-machines: Section 4 studies the 321-machine, giving a complete char-
acterization and enumeration of sortable permutations, which happen to constitute a class. Our
result is actually stronger, being stated for a decreasing permutation σ of any length. Section 5
is devoted to the analysis of the 123-machine. Also in this (considerably more challenging) case
we are able to provide complete structural and enumerative results for sortable permutations
(which do not form a class), describing in particular a bijection with a set of pattern-avoiding
Schröder paths. The last section suggests some directions for further research.

2 Preliminaries and notations

Given a permutation π = π1π2 · · ·πn of length n, the k-inflation of π at πi is the permutation
of length n+ (k − 1) obtained from π by replacing πi with the consecutive increasing sequence
πi(πi + 1) · · · (πi + (k − 1)) and suitably rescaling the remaining elements. For instance, the
3-inflation of the permutation 45132 at 3 is 6713452.

The element πi of π is called a left-to-right maximum (briefly, LTR maximum) when it
is bigger than all the elements preceding it, i.e. πi > max(π1, . . . , πi−1). The permutation
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Algorithm 2: The σ-machine (Stackσ is the σ-avoiding stack, StackI is the increasing
stack, Sσ means pushing into Stackσ, SI means pushing into StackI , O means moving
TOP (StackI) into the output, ◦ is the concatenation operation).

StackI := ∅;
Stackσ := ∅;
i := 1;
while i ≤ n do

if σ � Stackσ ◦ πi then
execute Sσ;
i := i+ 1;

end
else if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then

execute SI ;
end
execute O;

end
while Stackσ 6= ∅ do

if StackI = ∅ or TOP (Stackσ) < TOP (StackI) then
execute SI ;

else
execute O;

end

end
while StackI 6= ∅ do

execute O;
end

4



315762498 has four LTR maxima, which are the elements underlined.
The symmetries of a permutation are the reverse, inverse, and complement operations as

well as compositions of these operations. Given π = π1π2 · · ·πn, we define its reverse πr =
πnπn−1 · · ·π1, its complement πc = (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn) and its inverse π−1

as the usual group-theoretic inverse.
A Dyck path is a path in the discrete plane Z×Z starting at the origin of a fixed Cartesian

coordinate system, ending on the x-axis, never falling below the x-axis and using two kinds of
steps (of length 1), namely up steps U = (1, 1) and down steps D = (1,−1). The length of a
Dyck path is its final abscissa, which coincides with the total number of its steps. For instance,
UUDUUDDDUD is a Dyck path of length 10. According to their semilength, Dyck paths are counted
by Catalan numbers (sequence A000108 in [9]). The n-th Catalan number is Cn = 1

n+1

(
2n
n

)
and

the associated generating function is C(x) = (1−
√

1− 4x)/(2x).
There is a well known bijection between 213-avoiding permutations (of length k) and Dyck

paths (of semilength k), which can be succinctly described as follows: given a Dyck path P of
semilength k, label its down steps from right to left with positive integers 1 to k in increasing
way, then label each up step with the same label as the down step it is matched with, finally
read the labels of the up steps from left to right, so to obtain a 213-avoiding permutation. For
instance, the above Dyck path UUDUUDDDUD corresponds to the permutation 25341, which in fact
avoids 213 (see Figure 2). Krattenthaler [7] gives an equivalent version of the above bijection
using 132-avoiding permutations.

•

•

•

•

•

•

•

•

•

•

•
2

5 3

4

15

4

3

2 1

Figure 2: A Dyck path and its associated 213-avoiding permutation (read the bold labels from
left to right).

Another classical family of lattice paths is that of Schröder paths. A Schröder path is defined
exactly like a Dyck path, except that it uses one more kind of step, namely a double horizontal
step H2 = (2, 0). The length of a Schröder path does not coincide with the number of its steps;
it can be rather obtained as the sum of the number of its up steps and down steps with twice
the number of its double horizontal steps. As an example, UH2UDDH2UD is a Schröder path of
length 10 .

Our main goal is to study the sorting power of σ-machines. We remark that, due to the
specificity of our setting, a permutation π is σ-sortable if and only if the output sσ(π) resulting
from the first pass (through the σ-avoiding stack) avoids 231. This fact (as well as the notation
sσ(π)) will be frequently used throughout the paper, especially in Section 5.

We close this section by analyzing the σ-machine when σ has length 2. If σ = 21, the
σ-machine is precisely West’s right greedy algorithm performed on two stacks in series, sbao
we refer to [11]. If σ = 12, we have the following result, which completely characterize and
enumerate 12-sortable permutations. We remark that the 12-machine is different from the one
considered in [10]; Smith’s device does not require the use of a right greedy algorithm.

Theorem 2.1. A permutation π is 12-sortable if and only if π ∈ Av(213). As a consequence,
|Sortn(12)| = Cn, the n-th Catalan number.
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Proof. Write π as π = L1R, where L is the prefix of π preceding 1 and R is the suffix of π
following 1. It is easy to see that s12(π) = s12(L1R) = s12(L)s12(R)1. This is because 1 enters
the stack only when the stack itself is empty, and exits the stack only at the end. Now, using
induction on the length of π and a simple case by case analysis, it is not difficult to show that,
if π contains 213, then s12(π) contains 231, and so π is not sortable.

On the other hand, suppose that π is not sortable, and so that s12(π) contains an occurrence
of 231. Let b, c be the first two elements of this occurrence. Then necessarily b comes before
c also in π (since a non-inversion in the output necessarily comes from a non-inversion in the
input). However, b exits the stack before c enters it, and this must be due to the presence of an
element x, located between b and c in π, which is smaller than b. The three elements b, x and
c are thus an occurrence of 213 in π.

The above results implies that Sort(21) is not a class, whereas Sort(12) is.

3 Classes and nonclasses of σ-sortable permutations

Given a permutation σ, it is natural to ask if σ-sortable permutations constitute a permu-
tation class. Concerning permutations of length 2, as we have already observed, 12-sortable
permutations are a class, whereas 21-sortable permutations are not. Concerning permutations
of length 3, some computations suggest that 321-sortable permutations might be a class, whereas
in the five remaining cases σ-sortable permutations are not a class, as can be deduced from the
table below:

σ σ-sortable permutation non-σ-sortable pattern

123 4132 132

132 2413 132

213 4132 132

231 361425 1324

312 3142 132

Looking at more data, by taking longer permutations, suggests a rather surprising conjec-
ture: the number of permutations σ such that σ-sortable permutations are not a class is the
n-th Catalan number! The rest of this section is devoted mainly to prove this conjecture, as
well as to provide some related results.

We start by showing how the sortability of a permutation is affected by its connections with
the pattern defining the constraint of the stack.

Lemma 3.1. Let σ = σ1σ2 · · ·σk and suppose we use the σ-machine on the permutation π.

1. If π ∈ Av(σr), then the output of the first stack is πr. Therefore π is σ-sortable if and
only if π ∈ Av(132).

2. If π contains the pattern σr, then the output of the first stack contains the pattern σ̂ =
σ2σ1σ3σ4 · · ·σk, obtained by interchanging the first two elements of σ. Therefore, if σ̂
contains the pattern 231, then π is not σ-sortable.

Proof. 1. If π ∈ Av(σr), then the restriction of the first stack never triggers, so it outputs
πr. Therefore π is sortable if and only if it avoids 132.
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2. Suppose that π contains σr. Let sksk−1 · · · s1 be the (lexicographically) leftmost occur-
rence of σr in π. Then every element of π is pushed into the first stack until s1 is scanned.
Before pushing s1 into the stack, the element s2 has to be popped out due to the σ-
restriction. Moreover, the element s3 is not popped before s1 enters the stack, otherwise
in π there would be an occurrence of σr to the left of sksk−1 · · · s1, which is a contradiction.
Therefore s1 is pushed into the first stack when s3 is still inside: this is enough to conclude
that the output of the first stack will contain s2s1s3 · · · sk, which is an occurrence of σ̂.
Therefore, if σ̂ contains 231, then π is not σ-sortable.

Theorem 3.2. Let σ = σ1σ2 · · ·σk and σ̂ as in the above lemma. If σ̂ contains the pattern 231,
then Sort(σ) = Av(132, σr). In such a case, Sort(σ) is a class with basis either {132, σr} (if
σr ∈ Av(132)) or {132} (otherwise).

Proof. Given any permutation π, suppose that π contains σr. Then the previous lemma implies
that the output of the first stack contains σ̂. Since σ̂ contains 231 by hypothesis, π is not
σ-sortable. Now suppose that π avoids σr, but that it contains 132. Again as a consequence of
the previous lemma, the output of the first stack is then πr, and πr contains 231, so π is not
σ-sortable. We have thus proved that Sort(σ) ⊆ Av(132, σr).

Conversely, suppose that π avoids both 132 and σr. Then the previous lemma implies
that the output of the first stack is πr, which avoids 132r = 231 by hypothesis, therefore π is
σ-sortable. Thus we also have that Av(132, σr) ⊆ Sort(σ), and so the equality holds.

Corollary 3.3. For all k ≥ 3, Sort(k(k − 1) · · · 1) = Av(132, 12 · · · k). In particular, the set of
321-sortable permutations is a class.

Theorem 3.2 provides a sufficient condition for a permutation σ in order to have that Sort(σ)
is a class. It turns out that this condition is also necessary.

Theorem 3.4. If σ̂ avoids the pattern 231, then Sort(σ) is not a permutation class.

Proof. The above corollary and the table at the beginning of this section tells that, if σ has
length at most 3, the theorem holds.

Now suppose that σ has length at least 4. It is not hard to realize that the permutation
132 is not σ-sortable, since the output of the first stack is 231. We now show that, if σ̂ avoids
231, then it is always possible to construct a permutation α such that α contains 132 and α is
σ-sortable, thus proving that Sort(σ) is not a class. Suppose, as usual, that σ = σ1σ2 · · ·σk.
We distinguish two cases, depending on the relative order of the elements σ1 and σ2.

1. If σ1 < σ2, define α = σ′kσ
′
k−1 · · ·σ′3 z σ′2σ′1, where

• z = σ1,

• σ′i =

{
σi, if σi < σ1;

σi + 1, otherwise.

Note that zσ′2σ
′
1 is an occurrence of 132. We will show that α is σ-sortable by means

of a detailed analysis of the behavior of the σ-machine on input α. The elements of α
are pushed into the first stack until σ′1 is scanned (it is the first element that triggers the
restriction Av(σ)). In particular, both the additional element z and σ′2 can be pushed into
the stack, because σ′2z · · ·σ′k−1σ′k is not an occurrence of σ (since σ1 < σ2 and σ′2 > z).
Now, before σ′1 enters the first stack, the element σ′2 is extracted and pushed into the
second stack. At this point, σ′1 can enter without violating the restriction, again because
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σ2 > σ1, whereas z < σ′1, so that σ′1zσ
′
3 · · ·σ′k is not an occurrence of σ. As a result, the

output of the first stack is out = σ′2σ
′
1zσ
′
3 · · ·σ′k, so it will be enough to show that out

does not contain an occurrence of the pattern 231. Since σ̂ avoids 231 by hypothesis, a
potential occurrence of 231 necessarily involves the new element z. In particular, it is easy
to observe that z can be neither the smallest nor the biggest element of such a pattern,
because z < σ′1 < σ′2 and z is the third element of out. Finally, if z were the first element
of an occurrence z σ′j σ

′
l of 231 in out, then σ1 σj σl would be an occurrence of 231 in σ̂,

against the hypothesis.

2. If σ1 > σ2, define α = σ′kσ
′
k−1 · · ·σ′3σ′2σ′1 z, where

• z = σ2 + 1.

• σ′i =

{
σi, if σi ≤ σ2;
σi + 1, otherwise.

Observe that σ′2σ
′
1z is an occurrence of 132. As for the previous case, we now describe

what happens when α is processed by the σ-machine. The first element that cannot be
pushed into the first stack is σ′1, which forces σ′2 to be extracted. Successively both σ′1 and
z can enter the first stack, since zσ′1σ

′
3 · · ·σ′k is not an occurrence of σ (indeed σ1 > σ2

and z < σ′1). Therefore the output of the first stack is out = σ′2zσ
′
1σ
′
3 · · ·σ′k, and again a

potential occurrence of 231 in out must involve the new element z. However z cannot be
the smallest element of a pattern 231, because it is the second element of out. Moreover,
if z were the first element of a 231, then σ2 would be the first element of an occurrence
of 231 in σ̂, which is forbidden. Finally, if z were the largest element of a 231, then σ′2
would be the first element of such an occurrence, so also σ′1, which is greater than both
σ′2 and z, would be the largest element of an occurrence of 231 which does not involve z,
giving again a contradiction. Thus we have showed that out does not contain the pattern
231, which means that α is σ-sortable.

Corollary 3.5. For every permutation σ, the set Sort(σ) of the permutations sortable using
the σ-machine is not a permutation class if and only if σ̂ avoids the pattern 231.

Corollary 3.6. The permutations σ for which Sort(σ) is not a permutation class are enumerated
by Catalan numbers.

Proof. Such permutations are in bijection with Av(231), which is known to be enumerated by
Catalan numbers.

We have thus shown that Sort(σ) is a permutation class if and only if σ̂ contains the pattern
231. In this case, Sort(σ) = Av(132, σr), hence the basis of Sort(σ) has exactly two elements
if and only if σ avoids 231 and |σ| > 2. We next give exact enumerative results concerning
Sort(σ) when its basis has two elements.

Proposition 3.7. Suppose that σr avoids the pattern 132. Then σ̂ contains the pattern 231 if
and only if σ1σ2σ3 is an occurrence of the pattern 321.

Proof. By hypothesis, σ avoids 231. If σ̂ = σ2σ1σ3 · · ·σk contains the pattern 231, then there
can be only one occurrence of 231 and it has to involve both σ1 and σ2, respectively as the
first and the second element of the pattern, with σ2 < σ1. Let σ2σ1σi be such an occurrence,
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with i ≥ 3. If σ3 > σ2, then i ≥ 4, and σ2σ3σi would be an occurrence of 231 in σ, which is
impossible. Therefore it must be σ3 < σ2, hence σ1 > σ2 > σ3, as desired.

Conversely, if σ1σ2σ3 is an occurrence of the pattern 321, then clearly σ2σ1σ3 is an occurrence
of 231 in σ̂.

Proposition 3.8. Let an = | {π ∈ Avn(231) |π1π2π3 ' 321} |; then, for each n ≥ 2, we have
an = Cn − 2Cn−1. In particular, the generating function of the sequence (an)n≥0 is

A(x) =
1− 4x+ 2x2 − (1− 2x)

√
1− 4x

2x
.

Proof. Suppose that n ≥ 2. It is well known that |Avn(231)| = Cn, hence we have an =
Cn − (fn + gn), where

{
Fn = {π ∈ Avn(231) |π1 < π2} , fn = |Fn|;
Gn = {π ∈ Avn(231) |π1 > π2, π2 < π3} , gn = |Gn|.

We now show that fn = gn = Cn−1 by explicitly finding bijections between Fn and
Avn−1(231) as well as between Gn and Avn−1(231), thus obtaining the desired enumeration.

• If π ∈ Fn, then it must be π1 = 1, otherwise π1π21 would be an occurrence of 231 in π.
Thus we can define f : Fn → Avn−1(231) such that f(π) is obtained from π by removing
π1 = 1 and rescaling the remaining elements. It is clear that f(π) ∈ Avn(231) and that
f is an injection. Moreover, if τ ∈ Avn−1(231), then adding a new minimum at the
beginning cannot create any occurrence of 231, so f is also surjective.

• If π ∈ Gn, then it must be π2 = 1, otherwise the elements π2π31 would form an occurrence
of 231 in π. We thus define g : Fn → Avn−1(231) such that g(π) is obtained from π
by removing π2 = 1 and rescaling the remaining elements. Again it is clear that g(π) ∈
Avn(231) and that g is an injection. Finally, if τ ∈ Avn−1(231), then the permutation π
obtained from τ by adding a new minimum in the second position avoids 231, because a
potential occurrence of 231 in π should involve the added element π2, and so π2 would be
either the first or the second element of such an occurrence, which cannot be since π2 = 1.
Therefore g is a bijection between Fn and Avn−1(231), as desired.

We can now compute the generating function A(x) =
∑

n≥0 anx
n as follows:

A(x) =
∑

n≥0
an+2x

n+2 =
∑

n≥0
Cn+2x

n+2 − 2x
∑

n≥0
Cn+1x

n+1

= C(x)− x− 1− 2x(C(x)− 1) = C(x)(1− 2x) + x− 1,

from which we get A(x) = (1− 4x+ 2x2 − (1− 2x)
√

1− 4x)/(2x), as desired.

Sequence (an)n≥0 starts 0, 0, 1, 4, 14, 48, 165, 572, 2002, . . . and is recorded as sequence
A002057 in [9] (with offset 2). Observe that A(x) = x2C(x)4, a fact for which we do not
have a combinatorial explanation.

In Figure 3 we report some enumerative results concerning classes of σ-sortable permutations
with basis of cardinality 2. Each case can be proved with a direct combinatorial argument.
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length Pattern σ G.F. Sequence OEIS

3 321 1−x
1−2x 1,1,2,4,8,16,32,64,128,256,512,. . . A000079

4 3214
4213 1−2x

1−3x+x2 1,1,2,5,13,34,89,233,610,1597,4181,. . . A001519

4312
4321

5 32145 −3x4+9x3−12x2+6x−1
(x−1)(x2−3x+1)2

1,2,5,14,41,121,355,1032,2973,8496,. . . A116845

52134 (1−x)(2x−1)2
x4−9x3+12x2−6x+1

1,2,5,14,41,121,355,1033,2986,8594,. . . not in [9]

54123 1−4x+5x2−3x3
x4−6x3+8x2−5x+1

1,2,5,14,41,121,356,1044,3057,8948, . . . not in [9]

32154
42135
43125
43215
52143

53124 x2−3x+1
3x2−4x+1

1,2,5,14,41,122,365,1094,3281,9842,. . . A124302

53214
54132
54213
54312
54321

Figure 3: Classes of σ-sortable permutations whose basis has two elements.
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4 The 321-machine

Let ρk = k(k − 1) · · · 21 be the reverse of the identity permutation of length k. Recall from
Corollary 3.3 that Sort(ρk) = Av(12 · · · k, 132). For small values of k, we have the following
table, where the row labelled k records the number of permutations of length n sortable by the
ρk-machine:

k \ n 0 1 2 3 4 5 6 7 8 9 10 11 OEIS

3 1 1 2 4 8 16 32 64 128 256 512 1024 A011782

4 1 1 2 5 13 34 89 233 610 1597 4181 10946 A001519

5 1 1 2 5 14 41 122 365 1094 3281 9842 29525 A124302

6 1 1 2 5 14 42 131 417 1341 4334 14041 45542 A080937

7 1 1 2 5 14 42 132 428 1416 4744 16016 54320 A024175

Since |Avn(132)| = Cn, it is clear that the rows tend to the sequence of Catalan numbers.
For k = 3, we have that |Sortn(321)| = 2n−1 (for n ≥ 1); this is sequence A011782 in the
OEIS [9]. Looking at the OEIS references (reported in the above table), we observe that, for
any given k, the associated sequence counts the number of Dyck paths of height at most k− 1.
This can be proved by using the mentioned bijection between Dyck paths and 132-avoiding
permutations described in [7], observing that the maximum length of an increasing sequence
corresponds to the height of the path. Dyck paths of bounded height are rather well studied
objects, see for example Bousquet-Mélou [2] or Gessel and Xin [5].

Exploiting this connection, we can give a description of the generating function of the
sequence recorded in the k-th row. Using the usual “first-return” decomposition of Dyck paths,
it is possible to find a recursive description of the generating function Fk(x) of Dyck paths of
height at most k with respect to the semilength: F0(x) = 1 and, for k ≥ 1,

Fk(x) = 1 + xFk−1(x)Fk(x).

From the above recurrence it is immediate to see that Fk(x) is rational, for all k; more
specifically, we have Fk(x) = Gk(x)/Gk+1(x), where Gk(x) satisfies the recurrence Gk+1(x) =
Gk(x) − xGk−1(x), with initial conditions G0(x) = G1(x) = 1. Solving this recurrence yields
Gk(x) =

∑
i≥0
(
n−i
i

)
(−x)i. The polynomials Gk(x) are sometimes called Catalan polynomi-

als, see for instance Clapperton, Larcombe and Fennessey [4]; the table of their coefficients is
sequence A115139 in [9].

5 The 123-machine

Now suppose that the first stack is
⌊
1
2
3

⌋
-avoiding. This machine is considerably more chal-

lenging than the previous one. The first thing we observe is that, unlike the previous case, the
set of 123-sortable permutation is not a class, as we already knew. For instance, the permutation
4132 is 123-sortable, whereas its pattern 132 is not.

First, we show that a necessary condition for a permutation to be 123-sortable is that the
first two elements do not form a large ascent.

Lemma 5.1. If π = π1π2 · · ·πn is 123-sortable, then π2 ≤ π1 + 1.

Proof. Suppose that π2 ≥ π1 + 2. This implies that there exists an index i ∈ {3, 4, . . . , n} such
that π2 > πi > π1. During the sorting process, the first two elements π1 and π2 enters the stack
and reach the output only when the stack is emptied at the end of the process (since π1 < π2).
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Thus the three elements πi, π2 and π1 show an occurrence of 231 in s123(π), hence π is not
123-sortable.

As a consequence of the above lemma, we can partition the set of 123-sortable permutations
into two classes: Those starting with an ascent consisting of two consecutive values and those
starting with a descent. We now wish to show that, given a 123-sortable permutation, we can
add in front of it an arbitrary number of consecutive ascents and the resulting permutation is
still 123-sortable.

Lemma 5.2. Let π = π1π2 · · ·πn and let π′ the permutation (of length n+ 1) obtained from π
by 2-inflating its first element π1. Then π is 123-sortable if and only if π′ is 123-sortable.

Proof. Observe that, by hypothesis, the first two elements of π′ are consecutive in value (x
and x+ 1, say) and the first one is smaller than the second one. Therefore, during the sorting
process, such two elements remain at the bottom of the stack (with x+ 1 above x) until all the
other elements of the input permutations have exited the stack. Moreover, the behavior of the
stack is not affected by the presence of x + 1, meaning that x and x + 1 can be considered as
a single element. As a consequence, the last two elements of s123(π

′) are x+ 1 and x, and then
that s123(π) contains 231 if and only s123(π

′) contains 231.

Corollary 5.3. Given π ∈ Sn, let π′ be obtained from π by k-inflating the first element of π
(with k ≥ 1). Then π is 123-sortable if and only if π′ is 123-sortable.

The above results tell us that, up to “deflating” the prefix of consecutive ascents (if there is
one), we can restrict to investigate sortability of permutations starting with a descent. Denote
by Sort↓n(123) this subset of Sortn(123); that is, Sort↓n(123) = {π ∈ Sortn(123) |π1 > π2}. Our
goal is now to characterize and enumerate Sort↓n(123).

Lemma 5.4. Let π ∈ Sort↓n(123), with π1 = k. Then we have s123(π) = n(n− 1) · · · (k+ 1)(k−
1) · · · 21k.

Proof. Let γ = s123(π) = γ1γ2 · · · γn. Clearly γn = k. Now suppose that the two elements x
and y constitute an ascent in γ, with x < y and y 6= k.

We first show that y comes before x in π. Suppose in fact that this is not the case, and
focus on the instant when x exits the first stack. We distinguish two cases.

• x exits the first stack because it is the second element of a pattern 321 in π. More
specifically, there is an element c in the stack such that c > x and the next element a of
π is such that x > a. This implies, in particular, that a 6= y, and so that y follows a in π.
Therefore s123(π) contains either the subword xay, which is impossible since x and y are
supposed to be consecutive in s123(π), or the subword xya, which is impossible too since
otherwise s123(π) would contain the pattern 231.

• x exits the first stack because the next element a of π is smaller than two elements b and
c in the stack, with b < c and c deeper than b. In this case, s123(π) would contain the
subword xby, which is impossible, again because x and y would not be consecutive.

Thus we can write π as π = kπ2 · · · y · · ·x · · · . Since x and y are consecutive in s123(π), x
must enter the stack just above y. This implies, in particular, that y ≥ π1, otherwise π1, y and
x would constitute a forbidden pattern inside the stack.

We also notice that, when x enters the first stack, at the bottom of the stack there is at
least one element w < π1 just above π1. Indeed, either π2 is still in the stack (and in this case
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w = π2) or π2 has been forced to exit the stack by an element w̃ < π2 < π1; in this case, w̃
replaces π2 just above π1. Iterating this argument, we get the desired property.

Summing up, when x enters the first stack, the stack itself contains the elements (from
bottom to top) π1, w, y, x. Now, we have that x > w, otherwise π1, w and x would constitute
a forbidden pattern in the stack. Hence s123(π) must contain the subword xyw, which is
isomorphic to the pattern 231; this means that π is not 123-sortable.

Corollary 5.5. Let π ∈ Sort↓n(123) and suppose that π1 6= n. Also, suppose that πi = n. Then
either πi−1 = n− 1 (if π1 6= n− 1) or πi−1 = n− 2 (if π1 = n− 1).

Proof. Notice that i ∈ {3, 4, . . . , n} (indeed i 6= 1 by hypothesis and i 6= 2 since π starts with
a descent). The element n enters the first stack immediately above πi−1, since pushing n into
the stack can never generate a forbidden pattern. Moreover, n and πi−1 exit the stack together,
since n cannot play the role of the second element in a forbidden pattern inside the stack.
Therefore, s123(π) contains the factor nπi−1. By Lemma 5.4, this implies the result.

Corollary 5.6. The set of permutations of Sort↓n(123) starting with n is the set of 213-avoiding
permutations of length n starting with n, for all n ≥ 2.

Proof. Let π ∈ Sort↓n(123), and suppose that π starts with n. As soon as n enters the stack,
it makes the stack act as a b 12 c-avoiding stack for the rest of the permutation. Therefore, by
Theorem 2.1, π is 123-sortable if and only if the permutation obtained from π by removing the
first element avoids 213, which is in turn equivalent to the fact that π avoids 213.

Since it is well known that 213-avoiding permutations are counted by Catalan numbers,
an immediate consequence of the previous corollary is that the number of permutations of
Sort↓n(123) starting with n is the (n− 1)-th Catalan number Cn−1.

In order to completely characterize the set Sort↓n(123), what we need to do is to analyze
the subset of Sort↓n(123) consisting of permutations which do not start with n. In other words,
these are the permutations of Sort↓n(123) having at least two LTR maxima. Denote this set by
Sort↓n(≥2; 123). Moreover, the set of permutations of Sort↓n(123) having precisely i LTR maxima
will be denoted Sort↓n(i; 123).

Theorem 5.7. Let n ≥ 3. There exists a bijection ϕ : Sort↓n−1(123) → Sort↓n(≥2, 123).

Moreover, the restriction of ϕ to Sort↓n−1(i; 123) is a bijection between Sort↓n−1(i; 123) and

Sort↓n(i+ 1; 123).

Proof. Let π = π1 · · ·πn−1 ∈ Sort↓n−1(123). Let ϕ(π) = π̃ be obtained from π by inserting n:

• either after n− 1, if π1 6= n− 1, or

• after n− 2, if π1 = n− 1.

First we show that ϕ is well defined, i.e. that π̃ ∈ Sort↓n(≥2; 123). We analyze the two cases
in the definition of ϕ separately.

If π ∈ Sort↓n−1(1; 123) (that is π1 = n − 1), then, by Lemma 5.4, s123(π) = (n − 2)(n −
3) · · · 1(n − 1). Now we analyze what happens with input π̃ after the first pass through the
(restricted) stack. Remember that the first element of π̃ is n−1 and that n immediately follows
n− 2; moreover, suppose that n− 2 is the i-th element of π̃. Therefore, the first i elements of π
and π̃ are equal, and so they are processed exactly in the same way by the stack. In particular,
since n− 2 is the first element of s123(π), when n− 2 enters the stack, all the previous elements
of π̃ are still inside the stack. Immediately after n − 2 enters the stack, n enters the stack as
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well, since it cannot produce a forbidden pattern inside the stack. Now we claim that n and
n−2 exit the stack together. In fact, if n is not the last element of π̃, consider the next element
πi+1. Such an element cannot enter the stack, otherwise n − 1 (which is at the bottom of the
stack), n − 2 and πi+1 would constitute a forbidden pattern. Thus n − 2 must exit the stack
before πi−1 enters it, and this forces n to exit as well. As a consequence of this fact, we have
that s123(π̃) = n(n−2)(n−3) · · · 1(n−1), and such a permutation does not contain the pattern
231. Hence π̃ is 123-sortable.

If π ∈ Sort↓n−1(≥2; 123) (that is π1 = k 6= n−1), then s123(π) = (n−1)(n−2) · · · (k+1)(k−
1) · · · 21k, and an analogous argument proves that s123(π̃) = n(n − 1)(n − 2) · · · (k + 1)(k −
1) · · · 21k, and so that π̃ is 123-sortable.

To complete the proof we now have to show that ϕ is a bijection. The fact that ϕ is injective
is trivial. To show that ϕ is surjective, consider the map ψ : Sort↓n(≥2; 123) → Sort↓n−1(123)

which removes n from α = α1α2 · · ·αn ∈ Sort↓n(≥2; 123). Set ψ(α) = α̂. Let i ∈ {3, 4, . . . n} such
that αi = n. From Corollary 5.5 we have that either αi−1 = n−1 (if α1 6= n−1) or αi−1 = n−2
(if α1 = n− 1). Moreover, Lemma 5.4 implies that s123(π) = n(n− 1) · · · (k + 1)(k − 1) · · · 21k,
with k = α1 ≥ 2. Therefore, when n enters the stack, all the previous elements are still inside
the stack. In particular, at the top of the stack there are n and αi−1. Now notice that, if n
is forced to exit the stack, this is due to the fact that there exist j, h, l, with j < h ≤ i and
l > i, such that αj , αh and αl form an occurrence of 321. However, it cannot be h = i, since n
cannot play the role of the 2 in a 321. Similarly, it cannot be h = i− 1: in fact, if αi−1 = n− 1,
then n and n− 1 are consecutive in the stack and so they play the same role in any pattern; if
instead αi−1 = n − 2, then α1 = n − 1 is at the bottom of the stack, and so n and n − 2 play
the same role in any forbidden pattern. As a consequence, h < i − 1, and so n and αi−1 are
forced to leave the stack together. This means that basically n does not modify the behavior of
the machine, and so s123(α̂) = (n− 1)(n− 2) · · · (k+ 1)(k− 1) · · · 21k, that is α̂ is 123-sortable,
as desired.

Corollary 5.8. For all n ≥ 3, |Sort↓n(≥2; 123)| = |Sort↓n−1(123)|.

What we have proved so far, and in particular Corollary 5.3, Corollary 5.6 and Theorem 5.7,
completely determine the structure of 123-sortable permutations. Indeed, any π ∈ Sortn(123)
which is not the identity permutation can be uniquely constructed as follows:

• choose α = α1α2 · · ·αk ∈ Avk(213), with α1 = k ≥ 2;

• add h new maxima, k + 1, . . . k + h, one at a time, using the bijection ϕ of Theorem 5.7;

• add n − k − h consecutive ascents at the beginning, by inflating the first element of the
permutation, according to Corollary 5.3.

As an example to illustrate the above construction, consider the permutation π = 567148923.
By deflating the starting consecutive ascents we get the permutation 5146723; we then observe
that the last permutation is obtained by adding two new maxima to the permutation 51423 ∈
Av(213) according to the bijection of Theorem 5.7. Since 51423 starts with its maximum, we
can conclude that π is 123-sortable.

The above construction allows us to enumerate Sortn(123).

Theorem 5.9. For all n ≥ 1,

|Sortn(123)| = 1 +

n−1∑

h=1

(n− h)Ch,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.
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Proof. A permutation π ∈ Sortn(123) is either the identity or it is obtained by choosing a
permutation α of Avk(213) starting with its maximum k (with k ≥ 2) and then (possibly)
adding the remaining n − k elements according to the above construction, i.e. adding new
maxima and/or some consecutive ascents at the beginning. Concerning α, there are Ck−1
possible choices, thanks to the observation following Corollary 5.6. Concerning the remaining
elements, one has to choose, for instance, the number of new maxima to add, which runs from
0 to n− k, so that the total number of choices is n− k + 1. Summing on all possible values of
k, we get:

|Sortn(123)| = 1 +

n∑

k=2

Ck−1 · (n− k + 1) = 1 +

n−1∑

h=1

(n− h)Ch,

as desired.

From the above closed form it is not difficult to find the generating function of |Sortn(123)|.
However, we prefer to use a bijective argument. The integer sequence (|Sortn(123)|)n∈N is
sequence A294790 in [9]. A combinatorial interpretation of this sequence has been given by
Cioni and Ferrari [3]: it counts the number of Schröder paths avoiding the pattern UH2D.

We say that a Schröder path P avoids the pattern UH2D when P does not contain three steps
that, read from left to right, are U, H2 and D, respectively. In [3] it is observed that Schröder

paths avoiding UH2D are precisely those of the form Hα2QH
β
2 , where Q is a Dyck path.

We now describe a bijection f between 123-sortable permutations of length n and UH2D-
avoiding Schröder paths of semilength n−1. Given π ∈ Sortn(123), we decompose it as π = Lw,
where L is the (possibly empty) initial sequence of consecutive ascents of π deprived of the last
element and w is the remaining suffix of π. Suppose that L has length r. Now repeatedly
remove the maximum from w until the remaining word v starts with its maximum. Denote
with s the number of elements removed in this way. The permutation obtained from v after
rescaling is then a 213-avoiding permutation ρ of length k + 1 = n− r − s that starts with its
maximum. Removing the maximum from ρ results in another 213-avoiding permutation σ of
length k. We can now describe the Schröder path f(π) associated with π: it starts with r double
horizontal steps and ends with s double horizontal steps; in the middle, there is the Dyck path of
semilength k associated with the 213-avoiding permutation σ through the bijection described in
Section 2. For instance, referring to the above notations, given the permutation π = 567489132,
we have L = 56, w = 7489132, and so r = s = 2. Moreover, σ = 4132, and so the Dyck
path associated with σ is UDUUDUDD. Finally, we thus have that f(π) = H2H2UDUUDUDDH2H2 (see
Figure 4).

• • •

•

•

•

•

•

•

•

• • •5 6 7
4 1

3 2

4

3 2

1 8 9

Figure 4: A Schröder path avoiding UH2D; the associated permutation is obtained by reading
the bold labels according to the bijection described above.

By exploiting the above bijection we now derive the generating function for the sequence
(|Sortn(123)|)n∈N. Let C(x) be the generating function for the Catalan numbers. A generic
UH2D-avoiding Schröder path either consists of double horizontal steps only (with generating
function (1 − x)−1), or it can be obtained by concatenating an initial sequence of double hor-
izontal steps (having generating function (1 − x)−1) with a nonempty Dyck path (whose gen-
erating function is (C(x)− 1) · x, where the additional factor x takes into account the removal
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of the starting maximum from the permutation ρ above), finally adding a sequence of double
horizontal steps (again with generating function (1− x)−1). Summing up, we get:

∑

n≥0
|Sortn(123)|xn =

1

1− x
+

1

1− x
(
x(C(x)− 1)

) 1

1− x
=

(1− x)2

1− 2x+ xC(x)
.

6 Further work

Our paper just scratches the surface of the subject, and opens the way to the investigation
of sorting permutations using restricted stacks in series, where the restrictions are expressed in
terms of pattern avoidance.

Along the lines of this work, concerning patterns of length 3, there are four cases yet to study
(corresponding to the four nonmonotone patterns). This is something we are presently working
on. We have some data concerning the enumeration of σ-sortable permutations of length n,
for small values of n. In the following table we report our data, including the (conjectured)
references to [9], where applicable.

σ \ n 0 1 2 3 4 5 6 7 8 9 10 11 OEIS

132 1 1 2 5 15 51 188 731 2950 12235 51822 223191 A294790

213 1 1 2 5 16 62 273 1307 6626 35010 190862 1066317 unknown

231 1 1 2 6 23 102 496 2569 13934 78295 452439 2674769 unknown

312 1 1 2 5 15 52 201 843 3764 17659 86245 435492 A202062

Concerning longer patterns, it would be interesting to classify σ-machines in terms of the
number of permutations they sort. This gives rise to a notion of Wilf-equivalence on σ-machines.
This seems to be particularly interesting when the set of σ-sortable permutations constitute a
class. For instance, for patterns of length 4, there are precisely two Wilf-equivalence classes,
corresponding to two types of σ-machines, which depend on the number of sortable permu-
tations: the resulting sequences are Catalan numbers and (essentially) odd-indexed Fibonacci
numbers (sequence A001519 in [9]).
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