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DEALING WITH UNCERTAINTIES IN STRUCTURAL DYNAMIC
IDENTIFICATION AND DAMAGE DETECTION ON CABLE STAYED

FOOTBRIDGES

The theory of probabilities is at bottom nothing but common sense reduced to calculus;
it enables us to appreciate with exactness that which accurate minds feel
with a sort of instinct for which of times they are unable to account.

P.S. Laplace, Introduction to Théorie Analytique des Probabilitiés
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Abstract

Structural identification is a very important task especially in all those countries charac-
terized by significant historical and architectural patrimony and strongly vulnerable infras-
tructures, subjected to inherent degradation with time and to natural hazards e.g. seismic
loads. Within this context the combined use of experimental tests, monitoring systems
and numerical finite element procedures can provide useful information to improve the
reliability of the estimated structural parameters.
Structural response of existing constructions is usually estimated using suitable numerical
models which are driven by a set of geometrical and/or mechanical parameters that are
mainly unknown and/or affected by different levels of uncertainties. Some of these infor-
mation can be obtained by experimental tests but it is practically impossible to have all the
required data to have reliable response estimations. For these reasons it is current practice
to calibrate some of the significant unknown and/or uncertain geometrical and mechanical
parameters using measurements of the actual response (static and/or dynamic) and solving
an inverse structural problem. Model calibration is also affected by uncertainties due to
the quality (e.g. signal to noise ratio, random properties) of the measured data and to
the algorithms used to estimate structural parameters (e.g. Operational Modal Analysis –
OMA).
As an example, the identification of structural dynamic characteristics (e.g. natural fre-
quencies, mode shapes and damping ratios) based on monitoring data provided by Ambient
Vibration Tests (AVT) are of long-standing interest especially for seismic protection of ex-
isting buildings and for monitoring the safety and serviceability of structures. Ambient
vibration sources include wind, seismic micro tremors, pedestrian and traffic, which are
not deterministic and can be only described by random processes. In the OMA technique
this input excitation is not measured and it is assumed to be a stationary white noise.
Nevertheless these ambient vibrations can be very far to be stationary as it happens when
seismic induced vibrations are recorded. Tools are therefore needed to take into account
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all these sources of uncertainties in order to have quantitative information on the level of
accuracy of the estimated structural parameters.
In this thesis a new robust framework to be used in structural identification is proposed
in order to have a reliable numerical model that can be used both for random response
estimation and for structural health monitoring (SHM). First a parametric numerical model
(FEM) of the existing structural system is developed and updated using probabilistic
Bayesian framework. Second, virtual samples of the structural response affected by random
loads are evaluated. Third, this virtual samples are used as “virtual experimental response”
in order to analyze the uncertainties on the main modal parameters varying the number
and time length of samples, the identification technique and the target response. Finally,
the information given by the measurement uncertainties are used to assess the capability
of vibration based damage identification method.
The obtained results will be crucial to follow the structural performance and reliability in
- time (SHM) and to develop suitable damage detection procedures to be used in a early
warning framework
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Chapter 1

Introduction

1.1 Introduction and motivations

Cable-stayed footbridges and bridges are gaining worldwide interest because of some in-
herent features that determine the reduction of deck bending moment and deformations
under live loads if compared to suspension bridges. These structures are now built in
more unusual styles for both structural and aesthetic reasons. Despite their advantages,
cable-stayed bridges and footbridges pose serious concerns regarding the high sensitivity
to dynamic loads - such as wind or earthquakes - and the structural performance of the
structure.
In the past decades several attention has been posed on long - span bridges [1]. Further-
more, recent failures of pedestrian bridges lead to increased care in design and construction
of this kind of structures for both practitioner and researchers. Footbridges are subjected
to the simultaneous actions of groups of pedestrian and because of their slender structure
and particular shape it is expected that a wide range of frequency components can be in-
duced by pedestrians. The careful assessment of pedestrian bridges modal characteristics
in operating conditions is crucial to reduce the risk and/or avoid accidents.
Within this context it is of utmost to develop effective tools in order to characterize both
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the significant structural parameters and the modal characteristics. The modal character-
istics of a structure include its natural frequencies, mode shapes and associated damping
ratios. Knowing the natural frequencies of a structure can avoid the occurrence of reso-
nance phenomenon causing serious damage and risk. Mode shapes reflect the distribution
of stiffness and mass as well as boundary conditions and, moreover, affect the nature and
the spatial distribution of vibrations. Damping is another important quantity related to
vibration level and energy dissipation of structures. A reliable dynamic - based assessment
is based on the combined use of experimental analysis provided by data during full - scale
measurements and Finite Element Analysis (FEA) predictions [2].
A possible way to assess the vibration characteristics of a structural system is by means
of different kinds of vibration tests such as: forced and ambient vibration tests.
In the forced vibration tests some known input loads are artificially applied to the struc-
ture using a shaker mass or a sledge hammer. The input force and the response output
time histories are used together for modal identification. When sufficient excitation power
is applied, force vibration tests provide an accurate estimation of the modal properties
especially for damping ratio. However, this kind of tests is really expensive and special
equipment is required. Furthermore, if the excitation is not controlled properly, unexpected
damage can occur.
Ambient vibration tests (AVT) are the most popular and convenient. In this kind of
tests, dynamic data (e.g. structural acceleration and/or displacement time histories) are
recorded when a structure is subjected to an unknown but statistically random loading
having white noise characteristics. The data can be processed using Operational Modal
Analysis (OMA) algorithms on frequency and/or time domain. The fundamental idea of
OMA techniques is that the structure to be tested is subjected to some type of excitation
that have approximately white noise characteristics. Actually, structures are subjected to
natural excitations such as wind, traffic, tremors earthquake that are non - white. For this
reason loading is modeled as the output of an imaginary loading filter that is loaded by
white noise. The reliability of the results obtained from the measurements is related to
the validity of this specific assumption. Even though the identified modal characteristics
have lower precision than their counterparts from forced vibration tests, AVT have became
very popular since they do not interfere with the normal use of structure/infrastructure
and have the strong advantage of being very practical and economical.
The main disadvantages and limitations of AVT are due to the lack of information about
the input excitation. A number of different kind of loads can occur during each mea-
surement together with changes in temperature, humidity and level of excitation itself,
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Fig. 1.1: Number of articles about Structural Health Monitoring from 1998 to November
2018.

especially when wind is blowing during the test. All of these uncertain factors lead to
different estimations of the modal properties for each data set.
In OMA the obtained modal properties are strongly dependent also on the data used for
dynamic identification. Uncertainties due to the limited data can arise. The amount of
data is finite in terms of monitored Degree of Freedoms (DOFs). This aspect can be
faced using a significant number of sensors or by means of multiple setups combining the
time histories recorded in different time and with different time length. Also the sampling
rate and the time length of the signals have significant influence on the results especially
on damping ratio and finally measurement errors due to noise, transmission system and
data processing cannot be neglected. Therefore, one first research question needs to be
answered:

• Is it possible to reduce the uncertainties related to the modal parameter estimates and
due to different operating conditions occurring during the tests and signal processing
parameters?

This is an obvious problem when single measurement campaign are requested and carried
out for structural identification and/or damage identification and in continuous Structural
Health Monitoring (SHM). SHM is the process of equipping a structure with sensors and
then extracting features (e.g modal or model parameters) for the main purpose of damage
detection and structural performance assessment. The main idea at the base of SHM is
that the modal parameters are related to the structural properties and that any change in
the structural properties cause changes in modal properties. The vibration based damage
assessment represents a powerful instrument since it does not require visual, complicated
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and expensive inspections. For this reason dynamic SHM has gained a lot of attention in
the last few years with increasing number of articles as shown in Figure 1.1 with a lot of
practical applications to historic masonry structure, buildings and bridges or footbridges.
One of the most interesting recent application is the single ambient vibration measurement
campaign on the "Viadotto Polcevera" - so called "Morandi bridge" - in Genova (Italy)
collapsed last August. As shown in the inspection final document (Figure 1.2 [3]) published
by "Italian Transport and Infrastructures Minister", the bridge has been the object of a
single measurement campaign carried out in 2017 by the researchers and engineerings of
the Department of Architecture, Built, Environment and Construction Engineering of Mi-
lan University. Results showed that the pre stressed concrete stays were characterized by a
non symmetric longitudinal and transversal behavior and further analysis were suggested
for better understanding the structural performance of the stays.
In SHM field, the detection of damage presence, localization and severity is still a chal-

Fig. 1.2: Results of the experimental measurement campaign carried out for the dynamic
identification of "Morandi Bridge" as shown in the final inspection document published by
"Italian Transport and Infrastructures Minister".

lenge, especially in complex redundant structure such as cable-stayed footbridge. There-
fore, a second main research question needs to be answered:

• Is it possible to identify the existence, the localization and the severity of damage by
means of global quantities such as the modal parameters? Which are the most suitable
damage indicators to be used?
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The experimental results are of paramount importance to calibrate suitable finite element
numerical models that can accurately describe the structural response. Many uncertain-
ties arise also in model calibration because of several factors such as simplifications, ide-
alized connections, internal constraints, uncertain material properties and geometry as
well as boundary conditions. These uncertainties can cause large difference between the
experimental estimations and the corresponding numerical model computations. These
differences can be reduced through calibration using suitable updating procedures in de-
terministic or stochastic setting.
In the deterministic approach the structural parameters (mainly the stiffnesses of the whole
structural members) are estimated using an iterative procedure: the numerical model pa-
rameters are tuned minimizing the difference between the modal parameters estimated from
the measurements and from the Finite Element Model (FEM). This procedure leads to a
constrained optimization problem that is often ill - posed since the consequent minimiza-
tion function is multimodal and non-differantiable. Moreover this fitting-based approach
provides for just a single point solution and uncertainties related to measurements and
model are completely neglected. For this reason in the last few years probabilistic model
updating procedures gained growing interest in the scientific community. A review of the
probabilistic approaches that take into account uncertainties can be found in [4] , [5] and
[6]. This kind of techniques can be grouped in two main classes: classical probabilistic
approaches and Bayesian methods.
The classical methods are based on the evaluation of the statistics of parameters such that
the statistics of the model output response correspond to the statistics of the observed
data, while Bayesian methods are founded on the very well known Bayes’ theorem [7].
A complete Bayesian framework relies on the knowledge of the prior uncertain parameters
probability density functions (PDFs) and takes explicitly into account all the sources of
errors involved in the process, including measurement errors and modeling errors to obtain
updated probability estimates for the uncertain parameters in terms of joint, or marginal,
PDFs and/or confidence intervals.
Beck and Katafygiotis [8] were among the first to introduce the Bayesian approach in struc-
tural dynamics in 1998. They defined a comprehensive general statistical framework for
system identification through the concept of model identifiability using dynamic test data
and providing a quantitative assessment of the accuracy of the model output prediction
when a large amount of measurement data points are available. Vanik et Al. [9] and Yuen
[10] were among the first to apply the Bayesian statistical system identification framework
to SHM. Important reference works were developed by Katafygiotis et Al. [11], Beck [12]

5



Chapter 1 Introduction

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018

Year

0
10
20
30
40
50
60
70
80
90

100

N
um

be
r 

of
 A

rt
ic

le
s

Fig. 1.3: Number of articles about Bayesian inference in structural identification from 1998
to November 2018.

and Box and Tiao [13].
The necessity to improve the accuracy of the system response prediction to different dy-
namic actions made this approach of particular interest and a vast amount of literature is
available: Figure 1.3 shows the increasing number of articles about Bayesian inference in
structural identification from 1998 to November 2018.
It is quite popular to use the identified modal characteristics to update the model pa-
rameters within the Bayesian approach. However direct mode shape matching is typically
required in the most bayesian updating approaches using modal data and when incomplete
measurements of mode shapes are only available, direct mode matching is not an easy task.
In addition, including the measured mode shape in the reference data is a further chal-
lenge since the eigenvectors are very sensitive to measurement operating conditions. Mode
matching due to local loss of stiffness from damage may affect some modal frequencies
more than others making the case even worse. For all these reasons in most of practical
applications the updating is carried out by means of modal parameters extracted from
simulated data or using only the system modal frequencies as reference and the modal
vectors as constraints for ensuring mode matching.
Another important issue in the Bayesian updating framework is the characterization of
the so called posterior distribution since only simple problems can be solved through an
analytical solutions. In most of practical case the posterior evaluation is carried out by
means of very demanding procedure, especially in civil, mechanical and aerospace engi-
neering practical applications.
The Bayesian updating framework represents one of the most powerful and interesting
tool for the estimation of the main structural parameters accounting for measurements/-
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modeling uncertainties but its use in continuous monitoring and vibration based damage
detection applications is limited for the high time consuming computational costs. There-
fore, a final research question needs to be answered:

• Is it possible to overcome the limitations of the Bayesian updating framework speeding
up the posterior evaluation by means of suitable and reliable procedures?

1.2 Summary of the main contributions

This dissertation deals with uncertainties in structural, dynamic and damage identifica-
tion. According to the three research questions the obtained results offer an interesting
approach for evaluating structural and dynamic response of a very complex structure in
presence of multiple uncertainties, over the existing methods.
The first part of the thesis is focused on the Bayesian framework selected as a useful tool for
numerical model updating by means of global quantities (elastic moduli) able to consider
both model and measurement uncertainties.
The classical Bayesian updating procedure has been improved by means of reliable surro-
gate model based on Polynomial Chaos Expansion Methods for reducing the high compu-
tational costs related to the solution of the inverse problem.
The robustness of the Bayesian analysis with respect to the likelihood function formulation
is improved. In this sense two main intermediate contributions can be recognized.
Firstly, the use of real experimental modal parameters as reference (e.g natural frequen-
cies and vibration modes) in the updating framework is a challenge. When output only
dynamic identification technique are used for the dynamic characterization of a complex
structure, the main hypotheses introduced for modeling the dynamics of a structure are not
complied and complex eigenvectors are obtained. Furthermore, when dealing with complex
structure measurements of partial mode shapes at a limited number of monitored DoFs
are available. For all these reasons in most of practical applications the updating is carried
out by means of modal parameters extracted from simulated data or using as reference
only the system modal frequencies. In this sense a suitable formulation for the likelihood
function able to consider the degree of correlation between two modal vectors is proposed
and applied by means of Modal Assurance Criterion. The prediction error is thus defined
as "a measure of the distance from perfect correlation" between pairs of experimental and
numerical modal vectors.
The second addressed issue is represented by the role of the prediction error parameters. In
the most of practical applications the prediction error parameters are treated as constant
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values even if uncertain prediction errors play a crucial role in the likelihood function for-
mulation and in the solution of the Bayesian inverse problem. For this reason the proposed
procedure treats the prediction error variances as additional uncertain parameters.
The role of uncertainty in dynamic identification is also pointed out in the second part of
the thesis. A best experimental setup to be used for data processing in output-only based
dynamic identification in frequency domain is assessed through a parametric sensitivity
analysis carried out for the evaluation of the effects of different operating conditions (e.g.
base excitation amplitude) and signal sampling parameters on the structural system eigen-
properties with special reference to the damping estimates.
Finally, the role of uncertainty in damage detection is assessed. Pseudo experimental re-
sponse data of the parametric numerical model of a cable stayed footbridge with damage in
cables are simulated under different operating conditions (different amplitude of excitation
and changing temperature) and the effectiveness of the vibration based damage detection
method, in terms of damage existence, localization and quantification is assessed. Artificial
damage and artificial dynamic measurements are also used for assessing the most suitable
modal parameter to be used as damage indicator.

1.3 Structure of the thesis

The thesis is organized as follows: Chapter 1 defines the general framework and the main
objectives and contributions of this work. Chapter 2,3 and 4 review the state of the
art respectively in the output - only dynamic identification technique, in the uncertainty
quantification methods and in the Bayesian approach to the stochastic inverse problem.
Chapter 5 and 6 illustrates the main applications and they represent the most original part
of this work. In particular:

• In Chapter 1 a general overview of the research topics is presented and the moti-
vations that make the topics an interesting research area are highlighted. The main
contributions of the research activities are briefly introduced.

• In Chapter 2 the basic concepts on the characterization of the structural dynamic
response by means of output - only dynamic identification techniques are reported
together with some basic concepts of random vibrations analysis and classical dynam-
ics. A brief literature overview about damage detection using continuous monitoring
is provided and the main sources of variability in the modal characteristics of struc-
tures are analyzed.
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• Chapter 3 starts with basic introductions and some fundamentals of uncertainty
quantification problem for characterizing the dynamic model response given input
parameter distributions. A special focus is posed on polynomial chaos expansion
method for developing reliable surrogate models to be used in the Bayesian inverse
problem and to perform a robust global sensitivity analysis based on Sobol’ indices.

• Chapter 4 reports the main concepts of Bayesian updating framework: the defi-
nition of the prior distribution, the formulation of the likelihood function and the
computational methods for the evaluation of the posterior distribution. Attention is
especially drawn on the formulation of the likelihood function when noisy dynamic
data (natural frequencies and modal parameters) are used as well as on the role of
prediction error variances. Finally, the advantages of spectral expansion method in
Bayesian inference are presented and discussed.

• In Chapter 5 the results of a single ambient vibration measurement campaign on
a cable stayed footbridge are firstly presented together with the development of the
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Fig. 1.4: Scheme of the thesis.
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finite element numerical model. An in depth sensitivity analysis is performed in order
to select the main mechanical parameters affecting natural frequencies and mode
shapes to be used for model updating using Bayes’ theorem. Finally, the posterior
probability distributions of all the selected updating parameters is estimated and
the importance of using a proper informative reference data set is addressed by a
quantitative assessment of the model uncertainty remaining after the updating.

• The calibrated cable stayed footbridge numerical model is used in Chapter 6 for
the measurement uncertainty analysis when Enhanced Frequency Domain Decom-
position system identification is used on virtual data. Under the main hypothesis
of base excitation having white noise characteristics and that the structure is lightly
damped the effect of different sources of uncertainties has been assessed by numer-
ical simulations. Parametric numerical analyses are carried out for the evaluation
of temperature and damage effects on the modal parameters in order to discuss the
effectiveness and the capability of vibration based damage detection procedure when
uncertainties are taken into account.
A full - scheme of the proposed procedure is reported in Figure 1.4

• Chapter 7 collects the main conclusion of the PhD research activities.
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Chapter 2

System identification using
Operational Modal Analysis

2.1 Introduction

The identification of the structural dynamic characteristics is of great importance in many
fields of applications. In structural engineering it concerns the identification of the natural
frequencies, the mode shapes and the damping ratios of existing structures using measured
dynamic data (e.g. acceleration and/or displacements time histories). There has been a
huge research activities on both numerical and experimental techniques aimed to identify
the dynamic properties of structures.
Early research in modal testing resulted in an approach called Experimental Modal Analy-
sis (EMA) [14]. In EMA, the tested structure is excited by a known input force - by means
of shaking hammer or mechanical shaker - and the modal parameters are extracted from
the recorded measurements. This method has been widely used over the years and it is
well-established in literature. The main disadvantage is represented by the fact that the
execution of the experimental tests is expensive, impracticable and not suitable for large
and complex structures that cannot be isolated from their environmental conditions.
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These reasons motivate researchers to study effective tools in order to identify the dynamic
characteristics of structures considering just the dynamic responses under unknown input
loads (output-only procedures). These kind of procedures are gathered under the name of
Operational Modal Analysis (OMA) and primary results were obtained at the beginning
of 1990. Nowadays OMA represents the most effective tool for modal identification with
several applications to bridges and footbridges [15] [16] [17] historical structures [18] [19],
platforms [20] and wind turbines [21] [22].
In contrast to EMA, OMA testing does not require any known excitation and the response
of the structure is measured in operating conditions under the main hypothesis that the
nature of the input load is stochastic, smooth and broadband. OMA testing techniques
are so much attractive due to their relatively low cost and simplicity.
The main disadvantages and limitations of AVT are due to the lack of information about
the input excitation. A number of different kind of loads can occur during each mea-
surement together with changes in temperature, humidity and level of excitation itself,
especially when wind is blowing during the test. All of these uncertain factors lead to
different estimations of the modal properties for each data set. In fact the identified modal
properties only reflect their values at ambient vibration level and this is particularly true
for the vibration modes and the damping ratios that are amplitude dependent. Therefore,
regardless the OMA identification procedure used, the modal properties cannot be iden-
tified with perfect precision from a given set of data. The source of uncertainties in fact
cannot be reduced and the potential model error in the interpretations of the results needs
to be considered.
OMA procedures can be divided into two main groups:

• Time Domain Methods They are based on the analysis of response time histories
and the estimation of correlation functions. Natural Excitation Technique (NexT) is
one of the earliest algorithms of OMA in time domain presented in 1995 [23]. Other
examples of time domain OMA algorithm are the Auto Regressive Moving Average
(ARMA) methods and the most recent Stochastic Subspace Identification (SSI) [24]
and [25]. This latter represents a data driven method having the main advantage to
use directly the response data, avoiding the computation of the covariances between
the outputs and allowing the identification of close natural frequencies.

• Frequency Domain Methods In this dissertation the focus of interest is posed on the
OMA algorithms in frequency domain that are based on the processing of time-
correlated signals through a Discrete Fourier Transform (DFT) procedure, with the
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purpose of evaluating the Power Spectral Density (PSD) functions of the structural
system responses. The Basic Frequency Domain (BFT) is the first and most sim-
ple frequency domain method applied in the modal identification of a single degree
of freedom structure [14]. The BFD is based on the fact that the frequencies can
be identified directly from the peaks of the PSD matrix computed for the time his-
tories recorded at the measurement points. This method has been widely used for
many years together with its implementation basing on the averaged normalized PSD
(ANSPSDs). This technique is suitable for low damping structures and very well
separated modes. The Frequency Domain Decomposition (FDD) was introduced by
Brincker et Al [26] and it represents one of the most popular OMA algorithm remov-
ing some of the shortcoming of the BFT. The modal frequencies and the vibration
modes are evaluated by means of a singular value decomposition (SVD) of the output
PSD matrix. Later Brincker [27] introduced the Enhanced Frequency Domain De-
composition (EFDD) technique allowing to evaluate also the modal damping ratios.

The estimated modal parameters are usually not the final objective of the tests. They are
often used for numerical model calibration/updating ensuring a more accurate prediction
of the structural model to extreme and complex excitation (e.g. wind and seismic events),
for damage detection or Structural Health Monitoring (SHM). The numerical model cali-
bration/updating problem will be deeply discussed in the following chapters.
Vibration based damage detection is one of the most relevant fields of application of the
identification of modal parameters. It relies on the changes in dynamic properties of the
structure caused by damage. In fact, the integrity of a structure can be assessed by com-
paring the modal parameters estimates with those obtained in healthy conditions. The
vibration based damage assessment has received a lot of attention from the researchers: an
extensive literature review can be found in [28]. The main limitation of damage detection
technique is represented by the fact that changes in modal properties can be due not only
to damage but also to the environmental conditions especially temperature, humidity and
level of excitation. In the recent years a number of techniques able to remove the effect of
the environmental factors have been developed [29] [30].
In sections 2.2 and 2.3 some basic mathematical concepts in random vibration analysis and
classical dynamics are presented. The main concepts, merits and limitations of the output
only frequency domain decomposition methods are addressed in sections 2.4 and 2.5 for
discussing the accuracy of the experimental modal parameters with special reference to
damping estimates. Finally, a general overview concerning vibration-based methods for
structural health monitoring and damage detection with particular reference to its appli-

13



Chapter 2 System identification using Operational Modal Analysis

cation on bridge structures is discussed in section 2.6. In section 2.7 a special attention
is posed on the main sources of variability in the modal characteristics of the structural
system (e.g wind, temperature).

2.2 Mathematical tools in random vibrations analysis

2.2.1 Background definitions of probability theory

Let us a consider a Random Variable (RV)X : Ω→ R defined according to some probability
space (Ω,F ,P), where Ω is the probability space, F is the σ−field and P is the probability
measure. The PDF p(x) is related to the the probability that X is in the small interval
[x, x+ dx] as in the following equation:

Pr
[
X ∈ [x, x+ dx]

]
= p(x)dx (2.1)

Since the probability Pr
[
X ∈ [−∞,+∞]

]
= 1, the PDF must fulfill the condition:∫

Ω
p(x)dx = 1 (2.2)

In a similar way in the presence of two RVsX : Ω→ R and Y : Ω→ R, the joint probability
distribution function can be defined as the probability that the RVs are in a small area
dxdy in the xy plane and it can be estimated by generalizing Eq. 2.1 :

Pr
[
X ∈ [x, x+ dx]andY ∈ [y, y + dy]

]
= pxy(x, y)dxdy (2.3)

The marginal density of the RVs X and Y is evaluated by integrating over the other
variable:

px(x) =

∫
Ω
pxy(x, y)dy and py(y) =

∫
Ω
pxy(x, y)dx (2.4)

Two RVs are said statistically independent if:

p(x, y) = p(x)p(y) (2.5)

When a RV X assumes values in the range (−∞,∞) its mean µX and variance σ2
X can be

easily estimated as follow:

E[X] =

∫ +∞

−∞
xp(x)dx = µX E[(X − µX)2] =

∫ +∞

−∞
(x− µX)2p(x)dx = σ2

X (2.6)
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The covariance matrix of two random variables X and Y provides a simple measure of the
dependence between two variables and is defined as:

E[(X − µX)(Y − µY )] =

∫ +∞

−∞

∫ +∞

−∞
(x− µX)(y − µY )p(x, y)dxdy = CXY (2.7)

The correlation coefficient can be thus introduced as a measure of the correlation between
two RVs and is defined as:

ρXY =
CXY
σXσY

(2.8)

It is noteworthy that the correlation coefficient assumes value equal to +1 and -1 when
X and Y are perfectly correlated; it assumes value equal to zero when the two RVs are
uncorrelated.

2.2.2 Correlation functions

A structural system is vibrating if it is shaking or trembling in some way. If this motion is
unpredictable then the system is said to be in random vibration and the observed vibration
responses x(t) represent data about the quantity X as a function of time. Taking into
account that a random process is the collection of all possible physical realizations of a
random phenomenon and that a sample function is a single time history representing the
random process, the observed vibration time history x(t) is the sample function of the
random process X(t).
Recognizing that the exact behavior of the quantity X(t) may be unknown, X(t) can be
completely described by its probability density function (PDF), the first and the second
statistic moments. It is noteworthy that the focus on the first and second order statistics
is justified by the central limit theorem since in output-only identification methods the
vibration responses are approximately Gaussian independently from the distribution of
the input loads.
In the following, attention is focused on stationary random process and, in particular, on
ergodic stationary random process. A random process X(t) is said to be stationary if its
probability distribution is not a function of time and consequently its mean and variance
also do not change over time. A random process is said to be ergodic if its statistical
properties can be deduced from a single, sufficiently long, random sample of the process.
Assuming that a signal is known in the time interval [0, T ] and that the time length of the
considered sample function x(t) is long enough, the mean µx and the variance σx of the
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sample function can be estimated using time averaging:

µx = E[x(t)] =
1

T

∫ T

0
x(t)dt σ2

x = E[(x(t)− µx)2] =
1

T

∫ T

0
(x(t)− µx)2dt (2.9)

In a similar way, the covariance function can be computed directly from the two sample
functions x(t) and y(t):

Cxy(t) = E[x(t)y(t)] =
1

T

∫ T

0
x(t)y(t)dt (2.10)

or, analogously, the correlation function Rxy:

Rxy(t) = E[(x(t)− µx)(y(t)− µy)] =
1

T

∫ T

0
(x(t)− µx)(y(t)− µy)dt (2.11)

The concept of correlation is a key issue in the output-only dynamic identification proce-
dures. It is noteworthy that the correlation is defined in the same way as the covariance
but with mean values removed from the signal. Since in random vibration applications the
mean is removed from the recorded data at the beginning of signal analysis, the covariance
and the correlation represent the same quantitiy.
When dealing with a single time varying ergodic process the autocorrelation function Rxx
is used in order to assess the relationship between the two adjacent points x(t) and x(t+τ),
with a separation time τ in between them. By taking y(t) as x(t+ τ) Eq 2.11 becomes:

Rxx(τ) = E[(x(t)x(t+ τ)] =
1

T

∫ T

0
x(t)x(t+ τ)dt (2.12)

Within the hypothesis of stationary ergodic and zero mean random process, it is possible
to explicit some useful properties of autocorrelation functions [31]:

• The autocorrelation function is equal to the variance σ2
x when τ is equal to zero;

• For τ →∞ the two variables in Eq. 2.12 become independent and Rxx(τ) approaches
to zero;

• If the signal x(τ) is stationary the density function does not depend on time as well
as all the expectations. The correlation function does not depend on the time t and
for any shift time -specifically for −τ - it is possible to obtain the symmetry relation:
Rxx(τ) = Rxx(−τ).
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The crosscorrelation is simply defined by generalizing Eq. 2.12 to two random processes:

Rxy(τ) = E[(x(t)y(t+ τ)] =
1

T

∫ T

0
x(t)y(t+ τ)dt (2.13)

Ryx(τ) = E[(y(t)x(t+ τ)] =
1

T

∫ T

0
y(t)x(t+ τ)dt (2.14)

Under the same hypothesis of stationary and ergodic signal also the cross correlation func-
tion is characterized by symmetry relation for a time shift equal to −τ . In general Rxy(τ)

and Ryx(τ) are not the same and, unlike the autocorrelation function, they are not even
in τ .
In practical applications of output-only dynamic identification the dynamic response of a
structural system is usually recorded at several positions. Normally the N recorded vibra-
tion time histories are recorded and gathered in a response vector y(t) = {y1(t), y2(t), ..., yN (t)}.
The autocorrelation and the crosscorrelation functions can be thus gathered in a correlation
matrix R(τ) having diagonal elements equal to autocorrelation functions and off-diagonal
elements equal to cross-correlation functions as:

R(τ) = E[y(t)y(t+ τ)T ] =
1

T

∫ T

0
y(t)y(t+ τ)Tdt = R(−τ) (2.15)

2.2.3 Spectral Density Functions

The Power Spectral Density (PSD) function Gxx(ω) for a time series x(t) shows the distri-
bution of the spectral frequencies as a function of frequency and is defined as the Fourier
transform of the correlation function Rxx(τ) in Eq. 2.12 [31]:

Gxx(ω) =
1

2π

∫ ∞
−∞

Rxx(τ)e−iωτdτ (2.16)

Inversely, the autocorrelation function can be derived as the inverse Fourier Transform of
the PSD:

Rxx(τ) =

∫ ∞
−∞

Gxx(ω)eiωτdω (2.17)

Eqs. 2.16 and 2.17 are also known as the Wiener-Khintchine relations [31] [32]. Within the
main hypothesis of zero mean sample function x(t) as in practical application of output-
only identification methods the autocorrelation function at the initial value τ = 0 becomes:

Rxx(0) = E[x(t)2] = σ2
x =

∫ ∞
−∞

Gxx(ω)dω (2.18)
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Eq. 2.18 is the mathematical representation of the Parseval theorem meaning that the
area under the spectral density equals the second moment of the stochastic process X(t).
It is easy to see that if X(t) is bandpass filtered so that only the frequency content of the
signal from ω1 to ω2 is considered, the variance of the band filtered signal σxbf is given by:

σ2
xbf = 2

∫ ω2

ω1

Gxx(ω)dω (2.19)

In a similar way the cross spectral density function for two time series x(t) and y(t) is
defined as the Fourier transform of the cross correlation Rxy(τ) in Eq. 2.13:

Gxy(ω) =
1

2π

∫ ∞
−∞

Rxy(τ)e−iωτdτ (2.20)

And, inversely, the cross correlation function can be defined as:

Rxy(τ) =

∫ ∞
−∞

Gxy(τ)eiωτdτ (2.21)

The Parseval theorem in this case provides the relation:

Rxy(0) = E[xy] = Cxy =

∫ ∞
−∞

Gxy(ω)dω (2.22)

and the area under the cross density spectrum equals the covariance Cxy.
Using the definition of the PSD and the time reversal properties of the Fourier transform,
it is easy to observe that the spectral density matrix G(ω) has similar symmetric properties
of the correlation function matrix. Furthermore, it is always Hermitian meaning that is
always equal to the complex conjugate transpose:

G(ω)H = G(ω) (2.23)

In practical applications PSDs can be obtained by computing first the correlation functions
and then the Fourier transforming them. This approach is also known as Blackman-
Tukey method. A less demanding procedure also known as Welch procedure is instead
based on direct computation of the Fast Fourier Transform (FFT) of the records. In fact
given a time series x(t) the one sided auto spectral density function can be estimated by
dividing the record into ns continuous segments each of length T = NFL∆T and then
Fourier transforming each segment. The auto spectral density is thus computed through
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an averaging operation over all the segments:

Ĝxx(ω) =
2

nsNFL∆t

ns∑
i=1

|Xi(ω)| (2.24)

where Xi(ω) is the Fourier transform of the time series:

Xi(ω) =

∫ T

0
x(t)e−i2πωtdt (2.25)

and NFL is the number of data values in each data segment able to determine the frequency
resolution of the resulting estimates. Even if the Welch procedure is advantageous from
a computational point of view, specific procedures are required to avoid the occurrence
of unpredictable errors arising from the fact the record has a finite length. A time series
can be seen as the product between an unlimited record and a rectangular time window
assuming value equal to 1 when 0 ≤ t ≤ T ond 0 elsewhere. As a consequence the Fourier
transform of the time series is given by the convolution of the Fourier transform of both
the unlimited record and the rectangular time window.
The Fourier transform of a rectangular time window is basically a sinc function with side
lobes characterized by a fairly large amplitude with respect to the main lobe. This large
side lobes allow the energy at a certain frequency to spread to nearby the frequency causing
large error. This phenomena is called leakage and it may introduce significant distortions
of the estimated spectra. This phenomena is avoided when the analyzed data are periodic
with a period equal to the time length meaning that the discrete frequency values are
equally spaced at ∆ω = 1

T . In such case the discrete frequency value corresponds to
the zero of the spectral window in the frequency domain with the only exception of the
frequency line in the main lobe. There are a lot of commonly employed window and the
most common one is the Hanning window.

2.3 Basics of classical dynamics

The dynamic behavior of a structure can be represented by a set of differential equations
in time domain, or by a set of differential equations in frequency domain. Let us consider a
N multiple degree of freedoms system. The governing equations of motion in time domain
are given by:

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (2.26)
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where M is the [N × N ] mass matrix, C is the [N × N ] damping matrix and K is the
[N ×N ] stiffness matrix of the structural system; the responses are gathered in the vector
y(t) and x(t) is the input force. This system of equations is based on the main assumptions
of linear, time invariant and observable system.
Under the hypothesis of proportional damping any general response can be expressed as a
linear combinations of the eigenvectors Φn:

y(t) =
N∑
n=1

Φnqn(t) = [Φn]q(t) (2.27)

where [Φn] is the mode shape matrix and q is the column vector of the modal coordinates
as a function of time. Substituting Eq. 2.27 into Eq. 2.26, premultiplying both sides of
equation by the transpose of the eigenvectors Φn and taking into account the orthogonality
conditions of the normal modes yields to:

mnq̈(t) + cnq̇(t) + knq(t) = pn(t) (2.28)

where the term pn(t) represents the modal load and is given by:

pn(t) = ΦT
nx(t) (2.29)

In this way the system of second order differential equations in Eq 2.26 is decoupled into a
set of N independent single degree of freedom (SDOF) differential equations. The general
solution can be found by determining the modal loads using Eq. 2.29, solving the SDOF
equation of motion given by Eq. 2.28 and then adding the modal solutions together using
Eq. 2.27.
As for an SDOF solution the modal coordinates can be found by taking the Laplace
transform of both sides of Eq. 2.28 as follow:

(mns
2 + cns+ kn)Qn(s) = Pn(s) (2.30)

where s is the the complex variable s = σ + iω and qn(t)↔ Qn(s) and pn(t)↔ Pn(s) are
Laplace transform pairs.
The mass scaled modal transfer function Hn(s) of the mode n can be thus found as the
ratio between the Laplace transform of the output Qn(s) and the Laplace transform of the
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input Pn(s):
Qn(s)

Pn(s)
= Hn(s) =

1

(mns2 + cns+ kn)
(2.31)

Using the poles of the system and combining the the mass, stiffness and damping values
Eq.2.31 can be further modified. The poles represent the resonant frequencies of the
vibrating system or, in other words, the frequency values at which the input is amplified.
Let us define respectively ω0n and ζn as the undamped angular frequency of vibration ωn
and the damping ratio ζn of the nth mode:

ω0n =

√
kn
mn

and ζn =
cn

2
√
mnkn

(2.32)

It is noteworthy that the undamped natural frequency depends only on the mass and the
stiffness and it is independent from the damping of the system; the damping ratio depends
on all those quantities defining the physical behavior of the whole system. Therefore the
poles can be written as:

λn = −ζnω0n + iω0n

√
1− ζ2

n and λ∗n = −ζnω0n − iω0n

√
1− ζ2

n (2.33)

The quantity in the imaginary term ωnd = ω0n

√
1− ζ2

n is called the damped natural
frequency. Using this term the poles in Eq.2.33 can be rewritten obtaining:

λn = −ζnω0n + iωdn and λ∗n = −ζnω0n − iωdn (2.34)

The mass scaled transfer function can be defined as:

Hn(s) =
1

mn(s− λn)(s− λ∗n)
(2.35)

where ∗ denotes complex conjugate. The mass scaled modal transfer matrix for a N DOFs
system can be thus obtained by taking the Laplace transform of Eq. 2.27:

y(s) =

N∑
n=1

ΦnQn(s) = [Φn]q(s) (2.36)

where y(t)↔ y(s) and q(t)↔ q(s) are Laplace transform pairs. Eq. 2.31 leads to:

y(s) =

N∑
n=1

ΦnHn(s)Pn(s) (2.37)
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where Pn(s) is the Laplace transform of the modal load in Eq. 2.29 . Therefore:

y(s) =
N∑
n=1

ΦnHn(s)ΦT
nx(s) (2.38)

where x(t)↔ x(s) is a Laplace transform pair.
Finally Eq 2.38 leads directly to the input-response relation stating that in the Laplace
domain the solution of the differential equations of motion is just the product between the
force and the transfer function:

y(s) = H(s)x(s) (2.39)

Furthermore, using matrix notation the summation in the above equation can be rewritten
obtaining:

N∑
n=1

ΦnHn(s)ΦT
n = [Φn][Hn(s)][ΦT

n ] (2.40)

where [Hn(s)] is a diagonal matrix having elements equal to the modal transfer functions.
The transfer function matrix can be thus defined as:

H(s) = Φn[Hn(s)]ΦT
n (2.41)

Realizing the partial factor expansion [14] [33]:

1

(s− λn)(s− λ∗n)
=

1

λn − λ∗n

( 1

s− λn
− 1

s− λ∗n

)
(2.42)

and using Eq. 2.33 getting λn − λ∗n = 2iωdn the modal transfer function can be rewritten
obtaining:

Hn(s) =
1

2iωdnmn

1

s− λn
+

1

2(−i)ωdnmn

1

s− λ∗n
(2.43)

Let us define the residue matrix Rn:

Rn =
ΦnΦ

T
n

2iωdnmn
(2.44)

Eq.2.41 can be further rewritten obtaining:

H(s) =
N∑
n=1

( Rn

s− λn
+

R∗n
s− λ∗n

)
(2.45)
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The mass scaled Frequency Response Function FRF can be defined as the mass scaled
modal transfer function calculated at the imaginary axis s = iω and in physical terms it
represents the amplitude and the phase of the steady state response of a viscous damped
SDOF system subjected to an harmonic force of unit amplitude and frequency ω. Therefore
the corresponding FRF matrix is given by:

H(ω) = [Φn][Hn(ω)][Φn]T =
N∑
n=1

( Rn

iω − λn
+

R∗n
iω − λ∗n

)
(2.46)

Since the mass, stiffness and damping are symmetric matrices both the transfer function
and the the FRF matrices are symmetric. Furthermore Eq. 2.46 shows that every element
of the FRF matrix has the same denominator and it shows that each mode gives a contri-
bution to the response of the system at any frequency.
The solution of the differential equilibrium equations can be thus expressed in terms of
mass scaled FRF. Using the convolution property of the Fourier transform, y(ω) can be
obtained as the product between the Fourier transform of the input forces x(ω) and the
FRF matrix, as follow:

y(ω) = H(ω)x(ω) (2.47)

where x(t)↔ x(ω) and y(t)↔ y(ω) are Fourier transform pairs. This result states that in
frequency domain the solution of the differential equation of motion is the product between
the input force and the FRF. Manipulating Eq. 2.47 and taking into account the definition
of the PSD the fundamental equation of OMA is obtained [31]:

Gyy(ω) = H(ω)∗Gxx(ω)H(ω)T (2.48)

where Gyy is the matrix of output PSD and Gxx is the matrix of input force PSD and ∗

and T denotes complex conjugate and transpose respectively.

2.4 Frequency Domain Decomposition

The Frequency Domain Decomposition (FDD) method was firstly derived by Brincker in
[26], [34] and later by Brincker and Zhang [35].
Let us consider the recorded response time histories arranged in a vector y(t) as a function
of modal coordinates and normal modes as in Eq. 2.27. Substituting Eq. 2.46 in Eq. 2.48
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it is possible to obtain the PSD matrix of the responses Gyy(ω) in the form:

Gyy(ω) =

[ N∑
n=1

( Rn

iω − λn
+

R∗n
iω − λ∗n

)]∗
Gxx(ω)

[ N∑
s=1

( Rs

iω − λs
+

R∗s
iω − λ∗s

)]H
(2.49)

where the superscript H denotes complex conjugate and transpose. Assuming that the
input load is zero mean Gaussian white noise (i.e. the PSD matrix of the input Gxx(ω) is
a constant matrix C) the output PSD can be expressed in the same residue form:

Gyy(ω) =

[ N∑
n=1

( Rn

iω − λn
+

R∗n
iω − λ∗n

)]∗
C

[ N∑
n=1

( Rs

iω − λs
+

R∗s
iω − λ∗s

)]H
(2.50)

In Eq. 2.50, the poles contains the information about the natural frequencies and the
damping ratios while the residue holds information about the mode shapes. Introducing
the modal participation vector γn associated to the n-th mode, the residue in Eq. 2.44
assumes the form:

Rn = Φnγ
T
n (2.51)

Multiplying the two partial fraction factors in Eq. 2.49, after some mathematical manip-
ulations the output PSD can be reduced to [36]:

Gyy(ω) =

N∑
n=1

An

iω − λn
+

A∗n
iω − λ∗n

+
Bn

−iω − λn
+

B∗n
−iω − λ∗n

(2.52)

where An are the n-th residue hermitian matrix of the output PSD corresponding to the
n-th pole λn given by:

An = RnC
( N∑
s=1

R∗Ts
iω − λs

+
RT
s

iω − λ∗s

)
(2.53)

Eq.2.52 shows that the output PSD matrix provides four poles in complex conjugate pairs
(λn, λ∗n,−λn,−λ∗n). The contribution to the residue from the n-th mode is given by:

An =
RnCR∗Tn

2αn
(2.54)

where αn is minus the real part of the pole λn = −αn+ iωn. Under the main hypothesis of
lightly damped structure (i.e. ζn << 1) and considering that at a certain frequency ω only
a limited number of modes will contribute significantly, the residue becomes proportional
to the mode shape vector and the response spectral density matrix can be written in the
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final following form:

Gyy(ω) =
∑

n∈Sub(ω)

dnΦnΦ
T
n

iω − λn
+
d∗nΦ

∗
nΦ
∗T
n

iω − λ∗n
(2.55)

where dn is a scalar quantity and Sub(ω) the set of the modes that contribute at the certain
frequency.
The decomposition of the spectral matrix can also be seen as a result of uncorrelated modal
coordinates. In fact the correlation matrix of the response Ryy can be estimated by means
of Eq. 2.15:

Ryy(τ) = E[y(t)y(t+ τ)T ] = [Φ]Rqq(τ)[Φ]T (2.56)

where Rqq(τ) is the correlation function matrix of the modal coordinates. The PSD matrix
of the output response can be thus obtained by taking the Fourier transform of Eq. 2.56
according to Eq. 2.16:

Gyy(ω) = [Φ]Gqq(ω)[Φ]H (2.57)

Assuming that the modal coordinates are uncorrelated, that is the off-diagonal elements
of the modal coordinates correlation function matrix Rqq(τ) are equal to zero, the modal
coordinates spectral density matrix Gqq(ω) is diagonal and positive valued.
The Singular Value Decomposition (SVD) of the spectral density matrix of the output
response at a certain frequency ω leads to:

Gyy(ω) = UΣVH UVH = 1 (2.58)

where Σ is the matrix of singular values arranged in a descending order and U and V

are respectively the unitary matrices of left and right singular vectors. Since the spectral
density matrix is positive definite and Hermitian U = V and the decomposition can be
rewritten obtaining:

Gyy(ω) = UΣUH (2.59)

Eqs. 2.59 and 2.57 have got the same form and they identify a one-to-one relationship
between singular vectors and mode shapes as well as between singular values and modal
response. Using the singular value decomposition, the response of the MDOF system under
investigation is thus decoupled into the spectra of equivalent SDOF systems. In fact, as-
suming that only one mode is dominant at the frequency ω and that the selected frequency
is associated to the peak of resonance of the k-th mode, the PSD matrix approximates to
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a rank one matrix:
Gyy(ω) = σ1u1u

H
1 UUH = 1 (2.60)

The first singular vector u1 represents an estimate of the mode shape of the k-th mode and
the corresponding singular value σ1 belongs to the auto PSD function of the equivalent
SDOF system corresponding to the mode of interest.
It is noteworthy that unlike the BFD, FDD method allows for the identification of closely
spaced modes or even coincident modes since the number of non zero elements in Σ equals
the rank of the PSD matrix at the considered frequency. However, it is worth pointing
out that the mode shape estimates could be biased. In fact, since the SVD forces the
singular vectors to be orthogonal, if the experimental mode shapes are also orthogonal, the
obtained estimates are unbiased. On the contrary, if the mode shapes are not geometrically
orthogonal, the mode shape estimates for the closely spaced modes are biased. The bias
depends on the difference between the first and second singular value: the larger this
difference, the smaller the error. Thus, the mode shape estimates should be obtained from
singular vectors at frequencies characterized by the largest difference between the first and
second singular value.

2.5 Enhanced Frequency Domain Decomposition

The EFDD method was firstly derived by Brincker [27] to estimate not only natural fre-
quencies and mode shapes but also modal damping ratios. In this method the equivalent
SDOF PSD function is identified as the set of singular values and corresponding singular
vectors around a peak on the singular value curves. The comparison of the mode shape Φ̄k

at the peak of the singular values and the singular vectors associated to each frequency line
around the selected peak leads to the identification of the singular values whose singular
vectors show a correlation higher than a threshold value. This threshold value is defined
by the Modal Assurance Criterion (MAC) coefficient [37].
The MAC allows to obtain information about the correlation between two modal vectors
assuming values between 0 (no correlation) and 1 (good correlation) and it is defined by
Eq. 2.61:

MAC =
|ΦTΨ |2

ΦTΦΨTΨ
(2.61)

where Φ and Ψ are two modal vectors. In general, the MAC coefficient is used in order
to compare the numerical and experimental vibration modes or to compare the vibration
modes obtained from the measurements with themselves for assessing the quality of the
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measurement results. In this latter case the MAC coefficient is called the AutoMAC.
In the estimation of natural frequencies and damping ratios using EFDD method, the MAC
is used in order to define the set of singular values around the peak and Eq. 2.61 becomes:

MAC =
|Φ̄k

T
uj |2

Φ̄k
T
Φ̄ku

T
j uj

(2.62)

where uj is the generic singular vector in the vicinity of the peak in the singular value plots
corresponding to the k-th mode. It is evident that the lower is the MAC the larger is the
number of singular values and corresponding singular vectors used for the estimation of
both natural frequencies and damping ratios. The equivalent SDOF correlation function
is computed by taking back the selected set of singular values to the time domain through
an Inverse Discrete Fourier Transform (IDFT). Thus an estimate of the natural frequency
independent of the frequency resolution can be obtained through a linear regression on the
zero crossing times of the equivalent SDOF system correlation function.
In a similar way damping ratio can be estimated as the logarithmic decrement δ of the free
decay time domain function according to::

ζ =
δ√

δ2 + 4π2
(2.63)

where δ is given by:

δ =
2

k
ln

ro
|rk|

(2.64)

and r0 is the initial value of the correlation function and rk is the kth extreme. Unlike
the natural frequencies the damping ratios estimates are strictly dependent on the selected
spectral bell, on the time window fixed for autocorrelation function and on the frequency
resolution that is defined by Eq.2.65:

∆f =
fν

NFL/2
(2.65)

where fν is the Nyquist frequency and NFL is the number of data points in the data
segment considered in the PSD. The dependency on frequency resolution was found to
be due to the leakage bias introduced with the estimation of PSD using Welch method,
as discussed in previous section. The assumption that all individual data segments are
periodic is not fulfilled in case of real data and the resulting distortion of the shape of the
PSD can cause serious errors in damping ratios estimation. Therefore the bias error on
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damping ζb can be defined [38] as a function of the dimensionless natural frequency ωn of
the mode n:

ζb =
2fν

πωkNFL
(2.66)

It is evident that the bias error on damping converges to zero with an high frequency
resolution and therefore the number of data segments has to be chosen accurately. It is
well known that the bias errors depends on both the natural frequency and damping ratios:
the smaller is the natural frequency and the damping ratio the greater is the bias error.
Moreover damping ratio estimates can be affected by errors due to signal noise and signal
processing since in output-only dynamic identification technique the lack of knowledge
about the input results in a lack of knowledge about the spectral distribution of its energy.

2.6 Vibration based damage detection and structural health
monitoring

The most relevant field of application of vibration tests and dynamic identification pro-
cedures is the damage detection. Damage can be defined as any change introduced in a
system intentionally or unintentionally affecting the actual state and the future perfor-
mance of that system [39]. Most currently used damage identification methods include
visual inspection or local experiment such as acoustic, ultrasonic or thermal tests. How-
ever all of these methods require the "a priori" knowledge of the presence of damage and
the need to develop effective tool for damage identification and detection has gradually
gained the attention of the researchers.
The main idea at the base of SHM is that the modal parameters (natural frequencies,
mode shapes and modal damping) are related to the structural properties. Variations in
the structural properties (stiffness of components) due to a damage can cause change in
modal properties. For this reason developments of non-destructive techniques based on
changes in the structural vibration parameters have been extensively studied. For several
years this approach has been widely criticized for two main reasons. The first one is the
misleading idea that global quantities (such as natural frequencies) are not able to catch
local phenomena; the second one is that the local nature of damage can be well captured
by higher frequency modes that are the most difficulty to identify using vibration tests and
output only identification technique.
Many techniques incorporating modal parameters have been proposed for damage detec-
tion, developed and expanded upon over the years, several of which are detailed in the
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following review papers [39] [40] [41]. Based on the available scientific literature, many
different classification can be promoted concerning vibration based SHM techniques. A
first common categorization of damage assessment techniques can be fulfilled defining 4
level of damage diagnosis [42]:

1. Determination of the presence of damage;

2. Determination of the damage location in the structure;

3. Determination of the damage severity ;

4. Prediction of the remaining service life of the structure;

The first two levels can be performed by the so called data driven method since are essen-
tially based on measurements not requiring structural model. On the contrary, the fourth
and, partially, the third levels make use of numerical models (model driven methods).
Another common classification is made on the the basis of the effect of damage on the
structure and on types of data available in the measurements of vibrations. More specifi-
cally:

• Linear approaches are used when the structure is modeled as a linear-elastic system
before and after damage occurrence allowing the use of linear equations of motion;

• Non linear approaches are used to guarantee a more performing damage identification
if a structural anomaly occurrence provides non-linear effects on system behavior.

In this dissertation the attention is posed on the first three level of damage diagnosis
(presence, location and severity of damages) by means of a linear approach with a special
focus on the modal parameter to use as damage indicator. In literature, the natural
frequency shifts are usually used to discern damage. However it is important to point
out that the global nature of modal frequencies may not allow the damage localization in
complex structures [43]. In this sense the use of mode shapes becomes very attractive since
they are the only quantities that contain explicitly a spatial description of the resonance.
Some literature works presents successful applications in damage detection by means of
MAC coefficients quantifying the correlation between damaged and undamaged state [44]
on very simple structural system and in laboratory experiments. However mode shapes are
dependent on the spatial distribution of sensors and a great number of measurement points
is usually required for a proper mode shape definition. Furthermore they are very sensitive
to level of excitation and to measurement noise. Modal damping has been investigated
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as a possible damage sensitive feature with some interesting results [45]. Actually the
identification of modal damping using output-only dynamic identification technique is a
challenge and its use as a reliable damage indicator is not recommended.

2.7 Sources of variability in the modal characteristics of struc-
tures

The relevance of a proper estimation of the modal characteristics of the structures has
received a lot of attention by the researchers since structural dynamic identification has
been revealed an effective tool for damage detection. The main problem to face in case
of dynamic measurements on structures concerns the reliability of the evaluated modal
parameters since they are significantly affected by environmental and operating conditions
and, on the contrary, not so much sensitive to damage.
External factors always produce effects on the modal characteristics of structures. Among
them the most relevant one is the temperature whose effects is therefore one of the most
investigated in literature [46]. Temperature fluctuations can cause daily frequency shifts
of 5% and seasonal shifts greater than 10% [47] [48] leading to mistakes in damage identi-
fication.
In case of suspension or cable stayed bridges and footbridges temperature increases cause
an equivalent reduction of the steel elastic modulus and an elongation of the cables corre-
sponding to a tension loss and to a reduction of the geometric stiffness. Many researchers
pointed out the important role of temperature in influencing the dynamic response of this
kind of structures [47] [49], observing, in most of cases, an essentially linear correlation
among natural frequencies and temperature even if temperature effect are potentially un-
predictable. Therefore statistical approaches are used for the extraction of temperature
effects on natural frequencies using regression methods, e.g. principal components analysis
[30] [50].
In the field of bridge and footbridge vibration based damage identification one of the most
significant environmental factor is the wind action. Increasing and decreasing eigenfre-
quencies can be observed as a function of wind speed and variations are comparable to
those produced by other environmental factors. Changes in the eigenproperties can be due
to the aerodynamic properties of the considered bridges and footbridges [51], but also to
variations in the geometry of the cables and large displacements [52]. Daily eigenfrequency
fluctuations are due also to the operational conditions and, in particular, to traffic loads
[53], to pedestrian or to any other kind of excitation in operating conditions [54].
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Finally, the data collection and the measurement noise effects on modal parameters need
to be considered. This is actually an open field in literature since the effect of measurement
errors is unpredictable and depends on many factors such as the kind of devices adopted for
monitoring, type of digital/analogic converter and system of communication of the recorded
data (wireless devices or wiring). In practical applications a significant variability of modal
parameters is also observed when data set different for time length and amplitude of input
excitations are used. In this sense another important topic is represented by the signal
processing, which includes such methods as Fourier analysis, time-frequency analysis and
wavelet analysis. Different sampling frequency, frequency resolution and filters can cause
variability in the eigenproperties of the same order of magnitude of damage, temperature
and excitations.
In general, the modal characteristics variability is also due to the fact that all the OMA
procedures in frequency and time domain are based on the main hypothesis of input Gaus-
sian stationary white noise and proportional damping, e.g lightly damping structures. For
some applications the hypothesis on the input load distribution is reasonable. However
in a vast amount of situations, the analyzed structure is subject to harmonic forces, tran-
sient inputs (such as wave on dam or wind on bridges) or to tremors and micro tremors.
Numerous methods and research has enabled to develop methods that are robust to such
harmonic contributions [55] [56]. The assumption of proportional damping, instead, is not
the most realistic representation of how the system dissipates energy when it vibrates and
actually the extension of OMA procedures to general damping is another open issue.
The verification of all these limitations and the study of their effects on the modal char-
acteristics is a crucial task in both single measurement campaign and continuous SHM.
Single measurement campaigns are usually carried out for finite element correlation anal-
yses, finite element updating and validation or the experimental evaluation of structural
effects under different types of dynamic load. Assessing the reliability and the level of ac-
curacy/ confidence in system identification when different signal time length or parameters
used in data processing may represents a useful tool for an accurate definition of a baseline
set of dynamic properties that may be subsequently used for the application of vibration
based damage detection techniques and the automatic integration of output only modal
identification technique.

31



Chapter 3

Uncertainty quantification with
stochastic finite elements

3.1 Introduction

Every numerical prediction model is characterized by several kind of model uncertainty.
Modeling uncertainty can arise from the concept of model itself, from the input parameters
and from modeling assumptions and simplifications due to the inherent lack of knowledge.
The investigation and the categorization of different sources and level of uncertainty is a
crucial issue.
Uncertainty on the model parameters, for example, can be due to a lack of knowledge
about the main input parameters and to their inherent randomness nature. In structural
identification this kind of uncertainty may regard the unknown material properties, the
geometric characteristics, the load characteristics and the actions from the surrounding
environment.
Uncertainty on the model structure arises from modeling assumptions, simplifications and
idealizations that can be due to a lack of knowledge about the real behavior or to a
wrong interpretation of reality. Furthermore, the numerical model to update is always
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a simplification of a real structure and due to the complexity of the latter the induced
modeling error often is not negligible. This kind of uncertainty may regard, instead, the
main hypothesis on the boundary condition or the governing physical and mathematical
equations and the discrete approximation of the continuous system. According to [57] it is
possible to distinguish the uncertainty into two groups:

• Aleatoric uncertainty : This kind of uncertainty concerns those phenomena whose
occurrence is intrinsically stochastic. By their nature these uncertainties cannot be
reduced;

• Epistemic uncertainty : This kind of uncertainty refers to an incomplete knowledge
of parameters and phenomena. Such lack of knowledge can arise from incomplete
or inconsistent experimental data or from model approximations and simplifications.
Objectively this kind of uncertainty can be reduced even though this may be non
practical and not possible.

The different kind of uncertainties are addressed in different ways by the two main schools
of probability interpretation: frequentist and Bayesian interpretation. According to the
frequency definition, the probability is defined only when dealing with well-defined ran-
dom experiments (or random samples). The relative frequency of occurrence of an event
observed in a number of repetitions of the experiment is a measure of the probability of
that event. In the frequentist context no assumptions on the main hypothesis governing the
problem are required and the observed data are samples from that distribution. Bayesian
inference models the uncertainty by a probability distribution over an hypothesis and up-
dates the initial knowledge about the unknown parameters with information from data
even when a random process is not involved. Therefore on one hand probabilities express
objective frequencies; on the other hand probabilities represent an individual’s degree of
belief in a statement or in an hypothesis.
While the fundamental of uncertainty quantification are well - established in principle, the
actual challenge is the complexity of the modern engineering system. Uncertainty analysis
and sensitivity analysis are essential parts of a proper analysis of complex systems.
The main target of the uncertainty quantification is to construct effective tools in order
to study the output responses of a system with uncertain characteristics and with random
inputs. The typical framework (Fig. 3.1) for uncertainty quantification analysis can be
divided into the forward problem, aimed to characterized the model output, and the inverse
problem aimed to obtain useful information about the model inputs.
In structural engineering applications, uncertainty quantification problems deal with the

33



Chapter 3 Uncertainty quantification with stochastic finite elements
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Fig. 3.1: Schematic representation of the uncertainty quantification framework.

characterization of the model/system output response given the uncertain input random
variable/random vector with proper probability distribution.
The statistics values like means, variances or moments and the complete probability dis-
tribution of the outputs can be assessed using many different probabilistic methods [58]:

• Sampling based methods: Methods based on the selection of a subset of observations
from a statistical population to estimate the characteristics of the whole population.
Monte Carlo and Quasi Monte Carlo simulations or Latin Hypercube sampling belong
to this category;

• Functional expansions - based methods: Methods based on a functional representa-
tion of the input/output of a model/system such as Karhunen - Loeve expansion,
polynomial chaos representation and generalized polynomial chaos expansion;

• Model order reduction Methods aimed to a simplification of the model maintaining
a reasonable accuracy;

• Surrogate models: Methods aimed to an approximation of the real model cheaper to
evaluate such as response surface methods, meta models or proxy models.

These methods are used for different objectives and they have got limitations. The sim-
ulation based methods and the functional expansion based methods allow the evaluation
of the statistic moments of the output responses together with the probability density
function. The simulation based methods requires an high computational cost since the
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uncertainties of the model’s outputs are quantified by randomly generating independent
realizations of the inputs according to their probability distribution. With this approach
the deterministic solution is evaluated through a large amount of simulations. Moreover
the convergence is reached slowly requiring a substantial number of individual determin-
istic realization (typically of the order of 104 to 105) for an acceptable accuracy of the
system performance.
Today, with the important advancements in numerical modeling and with the increase
computer powers highly accurate simulations of complex physical phenomena can be ob-
tained, but in the most of cases, prohibitive computational costs are required. Moreover,
the computational burden can increase when several solution evaluations with different
configurations or different parameters are needed, for example in (stochastic) design op-
timization, Bayesian inference, uncertainty quantification and propagation or global sen-
sitivity analysis. In order to reduce the computational effort a surrogate (proxy) model
of the simulator can be developed in order to represent the original model’s behavior. A
proxy model can be built starting from a functional representation of the input random
variables/random vectors in a mathematical form. Many types of surrogate models exist
such as gaussian process models, artificial neural network and polynomial chaos represen-
tation based model. In the following just the latter are treated in details.
The use of proxy models and polynomial chaos representation is a topic of continued re-
search for their capability to provide a reliable framework particularly useful for high cost
computational simulation.
This chapter is organized as follow: fundamental of uncertainty quantification are reviewed
in section 3.2 and 3.3. Global surrogate model based on orthogonal polynomials are deeply
discussed in section 3.4 with a brief review on all those methods aimed at the evalua-
tion of the deterministic coefficients. Finally, a suitable and accurate method for a global
sensitivity analysis based on Sobol’ coefficient is reviewed in section 3.5.

3.2 Engineering model in abstract setting

In the uncertainty quantification (UQ) context, a model of an engineering system/struc-
ture is a mathematical representation of the physical system. Consider a computational
mechanical model M characterized by an input random vector Θ = {Θ1, ...,ΘN} ∈ RN

consisting in N independent random parameters defined according to some probability
space {Ω,F ,P} where Ω is the probability space, F is the σ−field and P is the probability
measure. Each Θi is described by a probability density function (PDF) π(θi) so that the
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joint PDF is given by the product of the N densities. Let the relation between the vector
Θ and the associated output response quantities u = {u1, ..., uM} ∈ RM given by the
forward problemM:

u =M(Θ) (3.1)

andM : RN → RM . It is assumed that selecting a given set of parameters θ = {θ1, ..., θN},
i.e. a realization of Θ, the corresponding deterministic solution is unique and will not
change if the model is ran again with the same input. The model is therefore treated as
a deterministic uncertain black box and the only requirement is that it is available in an
executable form. It is important to observe that the operator M may be linear or non
linear but in both cases since the operator is uncertain even a linear problem becomes non
linear.
The input random vector Θ is uncertain and it can be characterized through its mean
vector µΘ and its covariance matrix ΣΘ:

µΘ = E[Θ] =

∫
Ω

ΘπΘdΘ (3.2)

ΣΘ = E[Θ− µu)(Θ− µΘ)T ] =

∫
Ω

(Θ− µΘ)(Θ− µΘ)TπΘdΘ (3.3)

where πΘ is the density function of the input distribution. The main objective of UQ
problems is to quantify the distribution of the model outputs that results from the ran-
domness of the input. Starting from Eq. 3.1 the output can be defined again through its
mean vector µuand its covariance matrix Σu:

µu = E[M(Θ)] =

∫
Ω
M(Θ)πΘdΘ (3.4)

Σu = E[(M(Θ)− µu)(M(Θ)− µu)T ] =

∫
Ω

(M(Θ)− µu)(M(Θ)− µu)TπΘdΘ (3.5)

For complex problem the full characterization of the input and the output requires also
the definition of the higher moments such as Skewness or Kurtosis.

3.3 Direct integration methods

The main goal of a UQ framework is to characterize the statistics of the model output.
Different methods can be used. A recent overview on computational approach can be found
in [58] and [59].
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Let us consider a Lebesgue integrable function f(x). The expectation E[f(x)] can be
computed using different approximation methods:

• Probability Densities The probability distribution (mainly the PDF) of f(x) is
described by a system of high dimensional equations. The PDF of a random state
vector of a random system can be computed directly using the Fokker Planck Equa-
tions [60];

• Direct Integration The expectation of the function f(x) can be expressed as an
integral over the probability space;

• Galerkin Methods This kind of methods are based on the transformation of a
continuous operator problem into a discrete problem. The integral is computed
through an approximation by minimizing the weighted residual [61].

In the following just the direct integration methods are deeply discussed. The key idea is
that any statistics or any function of the Quantity of Interest (QoI) can be calculated as
an integral over the probability space as in Eqs. 3.4 and 3.5.
The integral can be approximated by taking samples θz ∈ RZ according to the joint
probability density πΘ and evaluating the solution of the mathematical model in each set
of realizations θz. The expected value of the QoI can be then estimating as follow:

µu =

∫
Ω
M(Θ)πΘdΘ ∼

Z∑
z=1

wzM(θz) (3.6)

where wz are the weights. The sampling points can be selected according to different cri-
teria and different methods can be distinguished basing on how the integration points are
chosen. Note that when the mathematical model is complex or computationally demand-
ing the computation of the expectation becomes costly since the deterministic solution is
required for all the sampling points. As a result, the reduction of the computational costs
becomes a crucial issue in UQ problems.

3.3.1 Monte Carlo methods

Monte Carlo (MC) provides a direct robust method for performing simulation and inte-
gration. A complete overview of this method can be found in [62] [63]. This method is
suitable for integrands with small variances and when low level of accuracy is required.
In MC methods the ZMC integration points are selected by randomly generating indepen-
dent samples from the input distribution. The weights wz are taken constant and equal to
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wz = 1
ZMC

. Therefore Eq. 3.6 can be written as:

µu =

∫
Ω
M(Θ)πΘdΘ ∼

1

ZMC

ZMC∑
z=1

M(θz) (3.7)

The main advantage of the MC method is represented by the fact that both the model
response u and the error due to the approximation are random vectors. The law of large
number and the central limit theorem ensure that the MC approximation converges for
ZMC → ∞. Moreover, for large ZMC the error is approximately Gaussian with variance
||µu||2L2
ZMC

and L2Θ-norm is the standard deviation of the integrand.
The standard deviation of the exact responses represents in practice the deviation from
the target mean implying that the convergence rate O(

||µu||L2√
ZMC

) is independent from the
dimension N of the input random vector. However since the deterministic solution of the
mathematical model needs to be evaluated for a great number of independent realizations,
the convergence is very slow and often an excessive computational burden is required. As
a result different methods such as Quasi Monte Carlo (QMC) [62] and Latin Hypercube
(LH) [64] sampling are used for improving the convergence rate.

3.3.2 Gaussian quadrature rule

The quadrature rule can be a useful tool for the evaluation of the integral in Eq. 3.4.
The key idea of this method is to interpolate the integrand by a functional approximation
whose integral is known analytically.
For sake of simplicity restricting the problem to a one dimensional space, the one dimen-
sional integral QZQ

in the form
∫

Ω u(θ)πΘ(θ)dθ can be approximated with the evaluation
of the deterministic solution in the ZQ quadrature points, using the form:

QZQ
=

ZQ∑
z=1

M(θz)w(θz) (3.8)

The sampling points θz corresponds to the z-th root of orthogonal polynomials with the
weighting function πΘ. This relation establishes a correspondence between type of proba-
bility distribution πΘ and the Gauss quadrature formula. For example if πΘ is a Gaussian
distribution Gauss Hermite quadrature should be used; instead, if πΘ is a uniform distribu-
tion Gauss - Legendre quadrature should be used. Moreover common weighting functions
include w(θ) = 1 for the Gauss Legendre or w(θ) = 1√

1−θ2 for the Gauss - Chebyshev and
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w(θ) = e−θ
2 for the Gauss Hermite quadrature. Such integration scheme has a degree of

polynomial exactness equal to 2ZQ − 1.
The extension to the N-dimensional integration can be constructed by the tensorization of
the one dimensional quadrature formula according to:

QNZQ
= ⊗Nj=1QZQ

=

ZQ∑
j1=1

· · ·
ZQ∑
jN=1

wj1,ZQ
· · ·wjN,ZQ

u(θj1,ZQ
, ..., θjN,ZQ

) (3.9)

This full tensor grid quadrature evaluates the integrand on a regular mesh of ZN points. It
is evident that the number of sampling points where the solution of the deterministic solver
needs to be evaluated exponentially increase with the number of input parameter space.
For high dimensional problem a Smolyak quadrature formula [65] can be constructed. The
grids of sampling points is then developed combining quadrature formula of high order in
only some dimensions with formulas of lower order in other dimensions.

3.4 Surrogate Model

Surrogate models are frequently used tools for the analysis of complex systems behavior.
These systems are usually computationally demanding and therefore difficult to explore
over the whole domain of input parameters. Ideally, a surrogate model should be able to
give a good representation of the QoI reducing as much as possible the error between the
approximate and the exact response. The problem of building a cheap proxy model able to
give an accurate approximation of the real system is not easy to solve especially for an high
number of input random parameters. In typical engineering problems the computational
model M is not known or however uncertain. Using the same notation of Eq. 3.1, a
surrogate model M̃ is a mathematical function defined as follow:

ũ = M̃(Θ) (3.10)

Building a proxy model requires an experimental design (ED) meaning that training data
consisting in a set of support points needs to be properly identified and the responses of
the original model in these points need to be evaluated. A measure of the accuracy for
the surrogate model is the generalized error ErrG [66], which represents the mean square
of the relative error ε = u − ũ computed at a sufficiently large set of points in the input
space:

ErrG = E[ε2] = E[(u− ũ)2] (3.11)
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A suitable proxy model can be built up using several techniques. A common approach
allowing for the evaluation of the main statistic moments of the output distribution is
to construct a global surrogate model of the mathematical operator in terms of response
surface [67] [68]. On the other hand a widespread class of proxy models is based on Poly-
nomial Chaos (PC) expansion [69] [70], Polynomial Decomposition (PD) [71], Artificial
Neural (AN) network [72] and Kriging [73] [74]. The latter two methods have their roots
in machine learning but today their applications have become of particularly interest espe-
cially when a lot of data needs to be managed. In the following just the PC based surrogate
models are deeply discussed.

3.4.1 Polynomial chaos expansion

The so called polynomial chaos representation was introduced in 1938 by N. Weiner [75]
for turbulence modeling with input Gaussian random variables using Hermite polynomials.
Ghanem and Spanos [61] were among the first to apply the PC expansion to the FE method
for the uncertainty quantification in solid - mechanics. This Stochastic Finite Elements
Method (SFEM) has found a lot of applications including structural mechanics and thermo
fluid system. Xiu et Al. [69] extended the Hermite PC based to the Wiener - Askey based
PC (or generalized Polynomial Chaos Expansion (gPCE)) for the representation of random
processes with inputs of different probability distributions.
In the last decades the literature on the use of PC in SFEM is significantly increased thanks
to the recent research developments providing a suitable framework for computational
simulation. Complete reviews can be found on Sudret et Al. [76] and Kaintura et Al. [77].
The key idea of PC expansion is to represent the model response into an appropriate
basis made of orthonormal multivariate polynomials obtained as the the tensor product
of polynomials in each of the input parameter. In this way each RV/random vector is
represented in a mathematical series form and both stochastic input and output can be
very well approximated as a truncated series of orthogonal random polynomials [78] [79].
Both the PDF and the statistic moments of the model outputs can be directly estimated
from the properties of orthogonal polynomials. Moreover a surrogate model can be easily
developed facilitating all those procedure such as Bayesian model updating, sensitivity
analysis and design and control of structures.
An important feature of the PC expansion method is that the deterministic coefficients
of the truncated series needs to be calculated once during the solution process unlike MC
or QMC methods. The size of the obtained coupled deterministic system of equations
depends on the terms of PC expansions used for the approximation, the type of orthogonal
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polynomial used as basis and the number of input RVs.

3.4.1.1 Mathematical Setting

The most general mathematical setting for characterizing all those problems where random
uncertainties are defined by a finite number of RVs with arbitrary probability distribution
is discussed in the following. A general stochastic system is modeled as a non linear trans-
formation of a finite set of basic RVs defined over a suitable probability space. The finite
dimensional character of the basic RVs allows for the extension of the standard Wiener
chaos decomposition to the second order RVs with arbitrary probability measure.
Consider the class of non Gaussian RN - valued RVs, Θ, defined according to some prob-
ability space (Ω,F ,P) having independent components so that the joint distribution is
simply the product of the marginal distributions {πΘi}Ni=1 i.e.

Θ = g(ξ) (3.12)

where g is a deterministic non linear function, g : RK → RN , ξ ∼ N(0, I) is a RK- valued
vector of K independent and identically distributed, zero mean, unit variance Gaussian
RVs and I denotes the identity matrix having dimension (K ×K). Thus without loss in
generality the following analysis is carried out for normalized RVs.
The solution of the physical model in Eq. 3.1 can be written as:

u =M(ξ) (3.13)

assuming that u is a second order random vector such that:

E{||M(ξ1, · · · , ξK)||2} <∞ (3.14)

and considering first the case of univariate input (ξi), i.e. K = 1, and a univariate output,
i.e. M = 1, the series in Eq. 3.15

u =
∑
α>0

ûαΨα(ξi) (3.15)

is convergent in L2 according to Cameron - Martin theorem [80] and constitutes the PC
expansion for the model response. Here {ûα}∞α=1 are the deterministic coefficients that
must be determined and {Ψα(ξi)}∞α=1 are one dimensional orthogonal polynomials. Eq
3.15 constitutes a spectral representation of the random response u.
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Let us consider the Hilbert space Hi of square integrable real valued functions of ξi. For
any two elements φ1 and φ2 it is possible to write the following inner product:

〈φ1, φ2〉Hi =

∫
Rk

φ1(ξ)φ2(ξ)πξi(ξ)dξi (3.16)

where πξi denotes the marginal PDF of ξi.
The r.h.s. of Eq. 3.16 is the expectation E[φ1(ξi)φ2(ξi)] with respect to the marginal
distribution πξi . Two such functions are said orthogonal with respect to the probability
measure P(dξ) = πξi(ξ)dξ if E[φ1(ξi)φ2(ξi)] = 0.
The PC representation of the RV u can be obtained by representing the modelM on an
Hilbertian basis that is a complete orthonormal family of functions of the Hilbert space of
the model solution. Using the classical algebra notation a family of complete orthogonal
polynomials {γki , k ∈ N} where k is the degree of polynomial, can be built up as:

〈γ(i)
j , γ

(i)
k 〉Hi = E[γ

(i)
j (ξi)γ

(i)
k (ξi)] =

∫
γ

(i)
j (ξ)γ

(i)
k (ξ)πξi(ξ)dξ = aijδjk, j, k ∈ N0 (3.17)

where δjk is the Kronecker symbol equal to 1 when j = k and 0 otherwise and a(i)
j is the

normalizing factor defined as the squared norm of γij i.e:

a
(i)
j = E[γj(ξi)

2] = 〈γ(i)
j , γ

(i)
j 〉Hi (3.18)

The obtained family is usually not orthonormal. By enforcing the normalization an or-
thonormal family {ψ(i)

j }∞j=1can be obtained using Eqs. 3.17 and 3.18:

ψ
(i)
j =

γij√
a

(i)
j

(3.19)

Eq. 3.17 assesses a correspondence between the distributions and the associated family of
orthogonal polynomials. In particular, for a standard normal distribution with zero mean
value and unit standard deviation the resulting family is that of Hermite polynomials.
The families associated to standard distributions are summarized in Table 3.1. Further
mathematical details and a complete review of the mathematical formulation can be found
in Soize et Al. [81].
Let us extend the formulation to a multivariate input consisting in the random vector ξ.
The spectral decomposition can be constructed as an Hilbertian basis of the Hilbert space
of the model solution H, taking into account the tensorized structure of this vector space.
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Table 3.1: Correspondence between the orthogonal polynomials and their underlying random
variables [69].

Distribution Corresponding polynomials Support

Uniform U(a, b) Legendre (P) [a,b]
Normal N(µ, σ2) Hermite (H, He) [−∞,+∞]

Gamma Laguerre ( L(α)) [0,+∞]

Beta (α, β) Jacobi/hypergeometric (P(α,β)) [a,b]

The Hilbert space H of the square integrable real valued functions of ξ is equipped with
the inner product:

〈φ1, φ2〉H =

∫
Rk

φ1(ξ)φ2(ξ)πξ(ξ)dξ (3.20)

Under the assumption that the components of the random vector ξ are independent the
Hilbert space H is isomorphic with the Hilbert space H̄ defined by the tensor product
H̄ = ⊗Ki=1Hi and equipped with the inner product:

〈φ1, φ2〉H̄ =

∫
Rk

φ1(ξ1, · · · , ξK)φ2(ξ1, · · · , ξK)πξ1(ξ1), · · · , πξK (ξK)dξ1 · · · dξK (3.21)

Then the Hilbertian basis in the Hilbert space H can be obtained as the tensor product of
the Hilbertian bases associated with the single basic RVs. Having univariate polynomials
{ψα(ξi)}∞α=1 for each RV ξi multivariate polynomials in ξ are constructed via tensorization.
For this purpose let us define α = (α1, ..., αN ) ∈ NK as a multi index with |α| = α1 + ...+

αK . Then the multivariate polynomial can be written as the products of the univariate
polynomials

{
ψij , j ∈ N

}
defined according to the i-th distribution as following :

Ψα(ξ) =
K∏
i=1

ψ(i)
αi

(ξi) (3.22)

where the univariate polynomials are defined according to the k-th marginal distribution.
Following Eqs. 3.17 and 3.21 the multivariate polynomials in the input vector ξ are also
orthonormal:

E[Ψi(ξ)Ψj(ξ)] =

∫
Ψi(ξ)Ψj(ξ)πξ(ξ)dξ = δαβ, α,β ∈ NK (3.23)
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where δαβ is the Kronecker symbol which is equal to 1 if α = β and zero otherwise. With
this notation and consider Eq. 3.15 it is possible to write:

u =M(ξ) =
∑
α∈NK

ûαΨα(ξ) (3.24)

Note that the set of the multivariate polynomials in the input random vector ξ forms a
basis of the Hilbert space in which u is to be represented. The obtained Eq 3.24 can be
interpreted as an intrinsic representation of u in an abstract space through an orthonormal
basis and coefficients that are the coordinates of u in this basis.

3.4.1.2 Truncation scheme

The representation of the random response in Eq. 3.24 is exact when an infinite series is
considered, but the computation of infinite terms is impossible. In practice, an appropriate
truncation scheme needs to be developed.
Let us define the total degree of a multivariate polynomials Ψα by:

|α| =
K∑
i=1

αi (3.25)

where K is the number of the independent standard normal distributed input RVs ξi.
Let us define p as the maximum polynomial degree. The response in Eq. 3.24 may be
approximated by all the K-dimensional Hermite polynomials of degree not exceeding p
(i.e. {α ∈ NK : |α| ≤ p}) as follows:

u ∼ ũ = M̃(ξ) =

NP−1∑
α≥0

ûαΨα(ξ) (3.26)

where M̃(ξ) represents the surrogate model. In this case the number of unknown (vector)
coefficients in the summation is given by:

NP =

(
K + p

p

)
=

(K + p)!

K!p!
(3.27)

The polynomial order has to be chosen to guarantee results accuracy. As an example, in
SFEM applications it is common to choose p between 3 and 5. A suitable convergence
analysis needs to be carried out to determine the optimal PC expansion order.
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The PC expansion was initially formulated using standard Gaussian random input param-
eters and Hermite polynomials [75] but it is in general possible to model input system
parameters with any non-Gaussian distribution using suitable mapping with isoprobabilis-
tic transformations. However, it is worth noting some limitations of PC expansion: the
rate of convergence of the PC approximation may be slow; accuracy improvements can not
be achieved even if adding terms; moments higher than two calculated from PC approx-
imation can be not accurate; PC approximations for stationary non-Gaussian stochastic
process might not be stationary [82].

3.4.1.3 Computation of the deterministic coefficient

The computation of the deterministic coefficient ûα in Eq. 3.26 can be carried out us-
ing different approaches: Galerkin projection, orthogonal projection and regression [58].
These three approaches can be distinguished in intrusive or non intrusive methods. In
particular, a method is intrusive if the deterministic solver has to be modified in order
to obtain the stochastic solution (e.g. Stochastic Galerkin); while a non intrusive method
in based on the deterministic solutions of the input realizations (regression and orthogo-
nal projection). A basic overview of these computational approach is given in the following.

Stochastic Galerkin Using a truncated PC expansion means to obtain a residual er-
ror equal to the difference between the real model solution M(ξ) and the approximated
solution M̃(ξ).Using Galerkin projection the residual error has to be orthogonal to the
space of the basis function used in the expansion [83]. This means that the inner product
in Eq. 3.28 is equal to zero.

〈M̃(ξ),Ψα(ξ)〉 = 0 α = 0, ..., NP − 1 (3.28)

The solutions of this linear system of coupled equations can be obtained modifying the
numerical code of the mathematical system. For this reason often Stochastic-Galerkin
method is not practically useful.

Orthogonal Projection The projection method is based on the orthogonality of PC.
Each PC coefficient can be computed orthogonally projecting the random response M̃(ξ)

into the corresponding basis function Ψα(ξ) [84] [85]. Pre multiplying the Eq. 3.26 and
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taking the expected value, it comes:

〈M̃(ξ),Ψα(ξ)〉 = E[M̃(ξ),Ψα(ξ] = E
[NP−1∑
β≥0

ûβΨβ(ξ)Ψα(ξ)

]
= ûαE[Ψα(ξ)2] (3.29)

where ûα is the orthogonal projection of the random response ũ into the corresponding
basis function.
Rearranging the equation the coefficients ûα can be expressed using the form:

ûα =
E[M̃(ξ),Ψα(ξ)]

E[Ψα(ξ)2]
(3.30)

In this expression the denominator is known analytically. The numerator can be obtained
solving the following the multidimensional integral:

E[M̃(ξ),Ψα(ξ)] =

∫
u(ξ)Ψαπξ(ξ)dξ (3.31)

Unfortunately the integral cannot be directly estimated as the dependence between u and
Θ is not known. In fact the realizations of g(ξ) are available only in the form of runs of the
deterministic solver; therefore the functional form of g(ξ) is not known and the integral
cannot be solved in a close form.
The estimation of the numerical value of the deterministic coefficient may be computed
using MC or LH simulation. However the number of samples required for a sufficient
accuracy should be large enough. When the mathematical model is complex and com-
putationally demanding this approach becomes practically not applicable. An alternative
approach is the use of Gaussian quadrature rule allowing for the evaluation of the multi-
dimensional integral with a small number of deterministic solver running at selected points.

Least square minimization The least square minimization method originally introduced
by Choi et Al. [86] is used in this dissertation and it is based on the minimization of the
mean square error in the response approximation. To this aim, the random response of the
model is written as:

M(ξ) =

NP−1∑
α≥0

ûαΨα(ξ) + ε (3.32)

in which the residual error ε collects the truncated PC terms. The regression approach
consists in finding the set of coefficient û = {û0, ..., ûNP−1}T which minimizes the variance
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of the residual error giving the best approximation of the mathematical modelM(ξ):

û = arg min

{
E
[(
M(ξ)−

NP−1∑
α≥0

ûαΨα(ξ)

)2]}
(3.33)

The discretized version of the continuous problem in Eq. 3.33 is based on a set of NR > NP

regression points gathered in the vector X = {ξ1, ..., ξNR}, called ED. For each of these
points a set of NR realizations of the input vector Θ can be evaluated according to Eq.
3.12.
The least square minimization problem can therefore be solved by minimizing the mean
square truncation error:

û = arg min
1

NR

NR∑
i=1

{
M(ξi)−

NP−1∑
α≥0

ûαΨα(ξi)

}2

(3.34)

Eq. 3.34 is equivalent to the linear system of equations:
ψ0(ξ1) ψ1(ξ1) · · · ψNP−1(ξ1)

ψ0(ξ2) ψ1(ξ2) · · · ψNP−1(ξ2)
...

...
. . .

...
ψ0(ξNR) ψ1(ξNR) · · · ψNP−1(ξNR)




û0

û1

...
ûNP−1

 =


M(ξ1)

M(ξ2)
...

M(ξNR)

 (3.35)

with the design matrix A defined as follow:

A =


ψ0(ξ1) ψ1(ξ1) · · · ψNP−1(ξ1)

ψ0(ξ2) ψ1(ξ2) · · · ψNP−1(ξ2)
...

...
. . .

...
ψ0(ξNR) ψ1(ξNR) · · · ψNP−1(ξNR)

 (3.36)

Is it important observe that the design matrix A is a Vandermonde like matrix and it is
evident that the problem is well defined if A is not singular, i.e. ATA is positive definite
and invertible.
Gathering the numerical model responses M(ξi) in the selected regression points into
the vector Y = {M(ξ1), ...,M(ξNR)}, the vector û can be then estimated through the
following expression written in a matrix form:

û = (ATA)−1ATY (3.37)
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Regression has become a popular technique to evaluate the PC deterministic coefficients
since it allows for accurate results in an easy manner. However the choice of the regression
points highly influence the accuracy of the results. From a theoretical point of view the
optimal design of sampling points is given by the roots of the Hermite polynomials [87].
Let us consider a random input consists of a single RV and p is the degree of the polyno-
mials. The optimal design point is given by a vector {h1, ..., hp+1}. If the input random
vector consists in N independent components an optimal design is obtained by the tensor
product of the unidimensional design. Therefore the model solution needs to be evaluated
in (p+ 1)M different points. The choice of the N-uplets of roots are exactly the integration
points used in Gauss - Hermite quadrature. This approach is not practically affordable
when the number of input RVs and the degree of polynomials increase.
For this reason various criteria have been proposed in literature. The increase in the com-
putational cost was deeply investigated by Sudret et Al. [76] leading to an approach based
on the selection of a subset of all the possible combinations of the N-uplets choosing regres-
sion points that are closest to the origin. The authors select a number of optimal points
equal to NR = 2(NP + 1). Efficient optimal approach have been proposed by Zein et Al.
[88] using an optimization algorithm of the design matrix able to couple genetic algorithms
and the Fedovov exchange algorithm. A comparison between random, LH and Hemmers-
ley sampling methods have been carried out by Hosder et. Al [89] showing that statistics
obtained with Hammersley and LH exhibit a much smoother convergence compared to the
cases obtained with random sampling and that the optimal number of regression points is
twice more than the minimum number required. Other efficient methods have been built
upon the assumption that the PC representation is sparse based on the fact that some
parameters may contribute less than others to the model output responses. This assump-
tion leads to the recently developed sparse regression method of Blatman and Sudret [90]
allowing for an identification of the most relevant basis functions in the PC expansion from
only few samples selected using a suitable criterion.
The regression approach is comparable to the so called response surface method used in
many fields of science and engineering [87]. In this dissertation the algorithm followed for
the evaluation of the deterministic coefficients is summarized in Algorithm 1:

3.4.2 Validation of the PCE based surrogate model

The surrogate model obtained in Eq. 3.26 needs to be validated in order to assess if the
maximal degree in the selected truncation scheme is suitable for minimizing the error be-
tween the real model solution and the approximated ones. An error estimator is represented
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Data: Specify the basis ψα which forms an orthogonal basis with the distribution
of the set of input parameters

Determine: The norms of the ψα basis function
Get: Integration points and corresponding weights
Solve: Deterministic Eq. 3.35 at the regression points
Evaluate: Basis function ψα at all the integration points
Evaluate: PC coefficients
Result: Statistic moments of the output

Algorithm 1: Algorithm for the estimation of the deterministic coefficients using re-
gression.

by the global error in Eq. 3.11 requiring the computation of the deterministic solution in
a large number of sampling points. Usually the computation of the global error is carried
out through MC simulations, but when PC is used the main objective becomes to reduce
the computational cost and the number of real model evaluations. As a result the points
used in the experimental design X can be directly used in the convergence analysis leading
to the estimation of the empirical error defined as [76]:

ERRE =
1

NR

NR∑
i=1

{
M(ξi)−

NP−1∑
α≥0

ûαΨα(ξi)

}2

(3.38)

The accuracy of the PC surrogate model can be assessed using the quantity:

ERRPC =
M(ξi)− ˜M(ξi)

M(ξi)
(3.39)

The first two statistical moments estimated using the PC expansion can be used as a sort
of error indicator. The relative error on mean ERRMPC and the relative error on variance
ERRVPCcan be assessed using respectively:

ERRMPC =
E[M(ξi)]− E[ ˜M(ξi)]

E[M(ξi)]
ERRvarPC =

var[M(ξi)]− var[ ˜M(ξi)]

var[M(ξi)]
(3.40)

3.4.3 Moment analysis

Given the orthogonality conditions of the PC expansion basis the output response statistics
can be estimated from the deterministic coefficients. In particular, the mean value µũ and
the variance σ2

ũ of the surrogate model response ũ can be obtained by
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µũ = E[M̃(ξ)] = E
[NP−1∑
α≥0

ûαΨα(ξ)

]
= û0 (3.41)

σ2
ũ = E[(M̃(ξ)− û0)2] =

∑
α 6=0

û2
α (3.42)

where Ψ0 = 1 and E[Ψα(ξ)] = 0,∀α 6= 0.

3.4.4 Extension to a multivariate output

The multivariate output in Eq. 3.13 consists in the random vector u = {u1, ..., uM}. The
operatorM maps inputs Θ - or referring to the germ distribution ξ - to multiple outputs
such that each component ui can be predicted as ui = Mi(ξ) where Mi : RN → R.
Accordingly for i = 1, ...,M one can represent and approximate each M̃i(ξ) separately
with the theory discussed above.

3.5 Sensitivity Analysis

The sensitivity analysis is a method for quantifying the impact of input parameters into
the output QoI. In practice, input factors are considered unessential when they have no
effect on the output variability. The identification of unessential input parameters can lead
to a significant reduction of the problem dimension. This aspect is crucial especially when
dealing with probabilistic design problem or Bayesian updating for the estimation of input
parameters. Methods of sensitivity analysis are usually divided into two categories:

• Local Sensitivity Analysis (LSA) This method is aimed to determine the local
effect of input parameters on the model basing on the computation of the gradient
of the response;

• Global Sensitivity Analysis (GSA) This method tries to quantify the output
uncertainty due to the uncertainty on the main input parameters taken alone or in
combination with the others.

Various methods have been developed for an accurate analysis of the latter topic. A deep
review can be found in [91].
The most common GSA method is based on the variance decomposition of the output as
a sum of contributions of each input RVs. It was originally investigated by Sobol[92] [93].
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3.5.1 Variance based method and Sobol’ decomposition

Let us consider a mathematical model defined as in Eq. 3.1. The Sobol’ decomposition
states that any square integrable function M with respect to a probability measure as-
sociated with a joint PDF πΘ(θ) =

∏N
i=1 πΘi(θi) may be expressed using the following

summation of constantM0, univariate {Mi(Θi)} and bivariate functions {Mij(Θi,Θj)} :

MΘ =M0 +
N∑
i=1

Mi(Θi) +
N∑
i<j

Mij(Θi,Θj) + · · ·+M1,2,··· ,M (Θ1,Θ2, · · · ,ΘN ) (3.43)

in which, the termM0 is the mean value of the output:

M0 = E[M(Θ)] (3.44)

The other summands are given by:

Mi(Θi) = E[M(Θ)|Θi]−M0 (3.45)

Mij(Θi,Θj) = E[M(Θ)|Θi,Θj ]−Mi(Θi)−Mj(Θj)−M0 (3.46)

where E[M(Θ)|Θi] is the conditional expectation ofM(Θ) when Θi is set and E[M(Θ)|Θi,Θj ]

is the conditional expectation ofM(Θ) when Θi,Θi are set.
The decomposition in Eq. 3.43 exists and is unique when the integral of each summand
over any of its independent RVs is zero, i.e.:∫

RN

Mi1,··· ,is(Θi1, · · · ,Θis)dΘik = 0 for 1 < k < s s < N (3.47)

Eq. 3.47 represents the orthogonality condition between each summands for any function
M square integrable in RM . Accordingly the functional decomposition in Eq. 3.43 may
be squared and integrated obtaining:

∫
RN

M(Θ)2 −M2
0dΘ =

N∑
s=1

N∑
i1<···<is

∫
RN

M2
i1<···<isdΘi1 · · · dΘis (3.48)

The l.h.s of this equation is equal to the total variance of the response u while the r.h.s
are defined as partial variances terms.
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This leads to the decomposition of the total variance:

Var[M(Θ)] =

N∑
i=1

Vi +

N∑
i<j

Vi,j + · · ·+ V1,2,··· ,N (3.49)

where:

Vi = VarΘi(EΘ˜i [M(Θ)|Θi]) (3.50)

Vij = VarΘij (EΘ˜ij [M(Θ)|Θi,Θj ])− Vi − Vj (3.51)

The notation Θ˜iindicates the set of all variables except Θi. It is evident that the total
variance of the model output can be decomposed into a summation of terms depending on
each input RV taken alone and on the interactions between them.

3.5.2 Sobol’ indices

Starting from Eq. 3.49 and dividing all terms for Var[M(Θ)] it is possible to obtain the
following relation:

1 =
N∑
i=1

Si +
N∑
i<j

Si,j + · · ·+ S1,2,··· ,N (3.52)

Where Si is used to indicate the so-called Sobol’ indices. Thus, each index is a sensitivity
measure describing which amount of total variance is due to the uncertainties related to
the input. The first order indices Si = V ar[Vi]

V ar[M(Θ)] corresponding to the i-th RV are used to
quantify the influence of each input parameter taken alone; while the higher order indices
Si =

V ar[Vij ]
V ar[M(Θ)]are used to account for the influence of all possible combination of input

RVs.
The computation of the Sobol’ indices is usually carried out through MC simulation esti-
mating the mean value, the total and partial variance of the output. In order to obtain
a significant level of accuracy for the computation of the 2M integrals, MC requires a lot
of simulations making the problem not practically affordable when high dimension and
complex systems are object of study.
In order to bypass the problem Sudret [76] has proposed a sensitivity analysis based on PC
expansion. Starting from the two equations 3.41 and 3.42 it is evident that any functional
of the output of a model can be expressed by combinations of the deterministic coefficients.
Let us define Gi1,··· ,is the set of α tuples such that only the indices i1, · · · , is are non zero.
In this way each Gi corresponds to the polynomials depending only on parameter Θi and
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the NP − 1 terms in Eq. 3.26 can be gathered according to the parameters they depend
on.
The Sobol’ sensitivity indices can be easily obtained as:

Si1,...,is =

∑
α∈Gi1,··· ,is

û2
αE[Ψα]∑

α 6=0 û
2
α

(3.53)

Although the mathematical settings is quite burden, the computation of the Sobol’ indices
using the PC expansion can be carried out as simply a combination of the expansion
coefficients gathered according to the dependency of each basis polynomial, square summed
and normalized.

53



Chapter 4

Bayesian inference for parameter
estimation using incomplete noisy
modal data

4.1 Introduction

Model updating problems are inverse problems aiming to invert the standard forward re-
lation between the unknown/uncertain parameters and the predicted response of a model.
A physical model may be described by a forward problem, which predicts some quantities
of interest of the system given a set of unknown/uncertain input set of parameters. The
corresponding inverse problem consists in estimating the set of these parameters from a set
of measured/observed data, taking into account that in realistic applications the data are
noisy, incomplete and characterized by a significant level of uncertainty. Classical inverse
problem are studied in many fields including social, medicine, physics and structural and
mechanical engineering. In particular, a classical inverse problem in structural engineering
is finite element model updating.
Usually the inverse problem is solved through a deterministic approach such that the best
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correspondence between the model output and the observed data is obtained. The problem
can be formulated using a constrained optimization minimization problem that, in many
case, is ill posed since the existence and the uniqueness of the solution can be not fulfilled.
Moreover using the deterministic method uncertainty related to measurement and to model
are completely neglected.
The role of uncertainty in model updating is crucial and suitable procedures needs to be
considered for both assessing the effect of the uncertainty on the model input/output and
for evaluating uncertainties on the model response prediction. Uncertainty can be treated
using two different methods: probabilistic and non-probabilistic fuzzy approach [94] [95]
[96]. Among the probability method the two main school of frequentist and Bayesian in-
terpretation of probabilities needs to be separately treated.
In this dissertation a Bayesian framework is proposed as an effective robust tool for us-
ing incomplete noisy modal data to update the initial knowledge of the structural model
allowing for treating simultaneously measurement and modeling uncertainty. The popu-
larity of the Bayesian approach is due to its power to quantify and reduce the uncertainty
related to complex problem. In the Bayesian setting the inverse problem becomes well
posed since the solution is not a single point/value but a probability distribution able to
summarize all the information about the adjustable parameters. Generally speaking the
unknown parameters are taken to be uncertain and modeled as random variables with a
proper probabilistic distribution. The prior probability density function which reflects the
uncertainty on the prior information is transformed into the posterior probability density
function which reflects the uncertainty on the prior information and on both model and
measurements. The transformation is carried out through the so-called likelihood function
which reflects how well the model can explain the measurements. The likelihood function
can be computed using proper probabilistic model for the prediction error. A schematic
representation of the Bayesian approach for the stochastic inverse problem is resumed in
Figure 4.1. Contrary to the forward uncertainty quantification problem the epistemic un-
certainty of the unknown/uncertain parameters are reduced including the measurement
uncertainty in the whole framework.
The computation of the posterior distribution requires the solution of a multidimensional
integral which may be computed using asymptotic or sampling methods. Besides classical
approximations methods (Monte Carlo, quadrature and cubature) attention is drawn on
the use of Markov Chain Monte Carlo (MCMC) methods, the most feasible ones especially
for high dimensional distributions. All of these methods requires the solution of the de-
terministic forward problem at many values of the input parameters taking the posterior

55



Chapter 4 Bayesian inference for parameter estimation

from the asymptotic one. For MCMC simulations - requiring 105 or 106 samples - and for
complex forward problem the total cost of all the simulations is quite prohibitive.
In the proposed Bayesian method the stochastic spectral expansion is introduced for speed-
ing up the evaluation of the posterior distribution. Expanding the dynamic responses of
the mathematical model loaded by uncertain/unknown input parameters into the poly-
nomial chaos representation/approximation allows for both quantifying the uncertainty of
the output of a system given uncertain input parameters and to facilitate the identification
procedure when measurement of the model prediction are available.
The foundations of a full Bayesian framework for the estimation of the parameters of a
finite element numerical model is presented in section 4.2 and 4.3 with special attention
to the formulation of the prior distribution, the likelihood function and the probabilistic
model on the prediction error. In section 4.4 the application of polynomial chaos expan-
sion method for speeding up the evaluation of the posterior distribution is deeply discussed
together with the concept of surrogate model.

PRIOR 
DISTRIBUTION 

π(Θ) 

POSTERIOR 
DISTRIBUTION 

π(Θ|D) 

MODEL 
NOISY 
DATA 

OUTPUT RESPONSE 
Natural Frequencies 

Mode Shapes 

DATA SET D 
Natural Frequencies 

Vibration Modes 

PREDICTION ERROR 
Measurement/Model Error 

LIKELIHOOD FUNCTION 
π(D|Θ) 

FORWARD PROBLEM DYNAMIC 
IDENTIFICATION 

BAYESIAN INVERSE PROBLEM 

Fig. 4.1: Schematic representation of the Bayesian approach to the stochastic inverse problem.
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4.2 The Bayes’ Theorem

The Bayes’ theorem follows the axiom of conditional probability. Let us consider a sequence
of events {Ai} with i = 1, .., n - mutually exclusive and mutually exhaustive - partition of
the sample space Ω. Suppose an event B occurs with P (B) > 0 and P (B|Ai) is known for
each Ai. Using the theorem of total probability and for any event B:

P (Ai|B) =
P (B|Ai)P (Ai)∑n
i=1 P (B|Ai)P (Ai)

(4.1)

The general form of Bayes’ theorem was presented by Laplace in [97] by late 18th century
introducing for the first time the concept of inverse problem.
Specifying the prior distribution f(θ) of the random parameter Θ the posterior distribution
should be proportional to what we now call likelihood of the data (x1, x2, ..., xn):

f(θ|x1, x2, ..., xn) ∝ f(x1, x2, ..., xn|θ) (4.2)

The Bayes’ theorem incorporates the information or prior beliefs for the parameter and
takes into account the observed data and makes inference. For the case where the parameter
Θ is continuous the posterior distribution can be obtained according to Eq. 4.3:

f(θ|x1, x2, ..., xn) =
f(x1, x2, ..., xn|θ)f(θ)∫
f(x1, x2, ..., xn|θ)f(θ)dθ

(4.3)

The integral at the denominator is called marginal likelihood or evidence and it is the
distribution of the observed data marginalized over the parameters.
By parameterizing the space of parameters the initial belief in the parameters can be up-
dated using single step when new data becomes available. It is evident that this represents
the main advance in Bayesian inference with respect to the frequentist approach which
provide for a fixed point prediction finding an optimum point estimate of the parame-
ters underestimating the variance of the predictive distribution. In Bayesian inference the
model and the measurement uncertainty can be taken into account explicitly using a proper
probabilistic model on the prediction errors which represent the differences between the
observed data and the prediction system/model response.
Within this context Bayesian updating becomes a useful tool for the analysis of a sequence
of dynamic data and for this reason has found a lot of applications in a wide range of
activities including structural identification using dynamic/static noisy data.
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4.3 Bayesian Inference for parameter estimation using noisy
incomplete modal data

In recent years Bayesian model updating techniques based on measured dynamic data have
been applied to structural [98] and modal identification [99]. In this section the specifics of
the application of Bayesian inference for uncertainty quantification in FEM updating are
presented.
For the complexity of the real systems and the modeling hypotheses on mechanical and
physical properties as well as on boundary conditions, a numerical model cannot predict
the exact reality. Modal measurements (eigenvalues and eigenvectors) may be used in order
to update the structural parameters by minimizing a measure of the distance between the
modal frequencies and modal vectors measured in dynamic tests and those estimated from
analytical model of structure.
This procedure has to be carried out taking into account that the model updating problem
is ill posed and there may be more than one optimal model. Moreover only some of DOFs
of the model are used and so the solution is estimated using incomplete modal data.
In Bayesian inference there are no "true models" and both the measured data and the
uncertain model parameters are considered as RVs. In the Bayesian approach the updated
probabilities of the unknown/uncertain parameters gathered in a real valued random vector
Θ = {Θ1,Θ2, ...,ΘN} ∈ RN and characterizing a model class M when data D becomes
available is quantified by a joint PDF which is known as posterior distribution and it is
expressed through Eq. 4.4:

p(Θ|D,M) = c−1p(D|Θ,M)p(Θ|M) (4.4)

The term p(D|Θ,M) - called likelihood function - expresses the probability of the data
conditional to the unknown/adjustable vector Θ. The term p(Θ|M) is the prior distri-
bution, which quantifies the initial plausibility of vector of parameters Θ associated with
the model class M . The normalizing constant c is actually the p(D|M) and is called the
evidence of model class M. The evidence is used for the integration of a posterior PDF over
the parameter space become unitary. This normalization makes the integration over the
parameter space of the posterior PDF in Eq. 4.4 equal to one. The c constant is given by
the multidimensional integration over the parameter space:

c = p(D|M) =

∫
p(D|Θ,M)p(Θ|M)dΘ (4.5)
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The evidence for model class M plays a determinant role in Bayesian model class selection
[100], [101].
The Bayesian approach is herein used in order to update the parameter values for better
representing the structural behavior, but the updating process is directed from the prior
information and from the information about the measurements. Two different kind of un-
certainties, that affect both experimental and numerical predictions, have to be properly
taken into account.
The most obvious source of uncertainty comes from the recorded data. In FEM updating
the experimental data are the system modal characteristics extracted from recorded acceler-
ation/displacements time histories using different kind of dynamic identification technique.
In all these methods the excited true system is approximated by a mathematical model.
Uncertainty can arise from both measurements noise, the finite number of data sampling
used, the data filtering and on the source of excitation.
The experimental data D may consists ofNs different tests D = {ω̂1,j ...ω̂m,j , Φ̂1,j ...Φ̂m,j}Ns

j=1,
composed of Nm modal frequencies ω̂r,j and Nm incomplete mode shape vectors Φ̂r,j .
Measurements errors determine a difference between the observed structural behavior D

and the actual response D. For this reason measurements uncertainties are taken into
account defining the modal prediction error as:

e = D−D (4.6)

Model uncertainties are due to lack of knowledge on the mechanical and geometrical prop-
erties, materials, boundary conditions, construction process and type of coupling between
the structural components. An inevitable systematic error may arise also from the difficulty
of modeling damping in all structural dynamics models. Hence the prediction error e is
used to provide information about the differences between the numerical model prediction
vectorM(Θ) and the actual structural behavior D:

e = D−M(Θ) or D =M(Θ) + e (4.7)

Both model and modal errors need to be considered in order to improve the matching
between the numerical model and the data estimations. The sum of the measurement and
the modeling errors can be obtained by Eqs. 4.6 and (4.7)

e + e = D−M(Θ) (4.8)
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which represents the main equation for the whole UQ problem, avoiding to explicitly
consider the unknown structural response D.
Without loss of generality, the explicit dependency to the model class M can be omitted
and the likelihood function can be obtained from the convolution of the measurement and
modeling errors PDFs [102]:

p(D|Θ) =

∫
pD(D|Θ,D)pD(D|Θ)dD (4.9)

=

∫
pe(D−D|Θ,D)pe(D−M(Θ)|Θ)dD (4.10)

where pe(D − D|Θ,D) is the probability of obtaining a measurement error e when the
model is driven by a set of parameters Θ and the selected data set D, while pe(D −
M(Θ)|Θ) is the probability of obtaining the modeling error e given the same set of pa-
rameters Θ.
Using the notation in Eq. 4.10 the Bayes’ theorem in Eq 4.4 can be expressed as follow:

p(Θ|D) =

∫
pe(D−D|Θ,D)pe(D−M(Θ)|Θ)dD p(Θ)∫

p(D|Θ)p(Θ)dΘ
(4.11)

4.3.1 The prior distribution

The prior density reflects the probability of the model parameters when no evidence/infor-
mation are taken into account and its definition is of utmost importance in Bayesian infer-
ence. When dealing with parameter estimation from noisy data the prior PDF expresses
the degree of belief that a certain value of the input parameters can be representative for
the numerical model. It is important to note that the prior PDF is used in order to model
the epistemic uncertainty related to the values of the parameters.
When a large amount of observations such as previous experiments or measurements are
available the prior PDF can be obtained as a density from the series of observations by
constructing an histogram. The role of the "population of the parameters" becomes cru-
cial since samples of the collected data can be non representative of the complete density
distribution and sampling errors can occur.
A very general a classification of the Bayesian priors can be carried out according to the
way they are selected and/or the contained information and/or the function they perform.
Firstly one may distinguish between subjective and objective priors. The subjective priors
are chosen based on expert judgment, i.e. on the basis of personal belief. Within this ap-
proach the problem of a subjective choice is relevant since different results of the Bayesian
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updating framework may be obtained when the data set used is small or not proper in-
formative. For this reason the Bayesian approach has been often criticized as a fragile
approach and a lot of literature works are dedicated to the definition of suitable prior
distributions able to reflect situation when little a priori information are known. Objective
priors instead can be constructed according to some formal rules. In this sense the most
useful and widely used method for definition of prior distributions is based on the principle
of maximum entropy, introduced in the Bayesian method by Jaynes in [103] [104]. En-
tropy measures the amount of uncertainty related to a probability distribution and it has
a direct relationship to information theory. The principle of maximum entropy states that
the probability distribution which best represents the current state of knowledge is the one
which results in the largest information entropy. This method determines the PDF that
maximizes the Shannon information entropy with respect to the restrictions imposed by
the known information in the form of known moments of the distribution and its support.
Another distinction can be carried out in terms of informative and non informative priors.
These terms are used in order to characterize the priors with respect to their information
contents. In the last decades a lot of methods aimed to define theoretically non informative
robust prior PDF has been developed. The main idea behind this kind of approach is that
an ideal situation occurs when the choice of the prior had minimal influence on the results
of the Bayesian updating. The non informative family of prior distributions includes the
Jeffreys’ prior [105], defined as the square root of the determinant of the Fisher information
matrix, and the reference prior distributions introduced by Bernardo [106] and developed
by Berger [107]. The latter method consists in maximizing the Kullback − Leibler distance
between the prior distribution and the posterior with respect to the prior.
Another kind of priors can be chosen for mathematical convenience and regularization
properties. One of the most widely used approach is that of conjugate priors introduced
by Raiffa and Schlaifer [108]. A family of prior distributions is conditionally conjugate
(for the likelihood function) if the conditional posterior distribution is also in that class
[109] [110]. For example, choosing a Gaussian prior over the mean will ensure that the
posterior distribution is also Gaussian. The main advantage of the conjugate priors is that
it facilitates the computation of the posterior. In fact by choosing a particular functional
form for the prior distribution, given the form of the likelihood, the posterior distribution
has the same form and parameters are updated by sampling the information without the
estimation of the normalizing factor (or evidence of the model class).
In structural engineering practice uniform distributions may be chosen for parameters that
are bounded from above and below; Gaussian and Lognormal distributions are often used
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for parameters that are strictly positive or however unbounded.

4.3.2 The likelihood function

The likelihood function represents the contribution of the measured data in the definition
of the posterior distribution and practically reflects how likely the measurements can be
explained from the model when a particular set of parameters is defined. According to
Eqs. 4.4 and 4.11 the formulation of the likelihood function has to be carried out taking
into account all the uncertainties involved in the estimation of both modal parameters
(measurement errors) and discrepancies between the model output and the dynamic iden-
tification results (modeling errors). Formulation of the likelihood function depends on the
type of available data/observations.
Contrary to the prior PDF the construction of the likelihood function has not received
a lot of attention from the researchers even though it has a significant influence on the
main results of the Bayesian framework. This is mainly due to the fact that often not
so much information are available on the measurement and/or on the model error and
different assumptions for the probabilistic model has to be set up. When a lot of data are
available - such as acceleration time histories recorded in continuous and for a long period
- a realistic estimate of the measurement error can be made considering the statistic series
of the observed data evaluating a density. Same procedure can be used for the modeling
errors when a lot of measurements are available such as results of experimental investiga-
tions on the elastic modulus of the material used or the effect of boundary conditions with
proper experimental campaign carried out in order to determine the main characteristics
on the soil for the characterization of soil-structure interaction behavior. Often this kind
of information are not available and suitable assumptions and hypotheses need to be set
up basing on subjective expert judgment and taking into account that the probabilistic
model on the prediction error plays a crucial role the Bayesian updating framework.
Considering the general formulation of Eq. 4.4 and dropping the dependency on the model
classM , the likelihood function p(D|Θ) can be derived according to [9] within the hypoth-
esis that the user’s uncertainties in the n-th modal Data Set when a structural model is
specified by the parameters Θ are not influenced by the previous modal Data Set:

p(D|Θ) = p(D1|Θ)p(D2|Θ) · · · p(DNs |Θ) =

Ns∏
n=1

p(Dn|Θ) (4.12)
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where Dn ∈ RNm is the nth data test. The PDF of p(Dn|Θ) in Eq. 4.12 represents the
distribution of a single modal data set given the model parameters.
The modal parameters are then assumed to be independently distributed from mode to
mode and from frequency to mode shape obtaining:

p(Dn|Θ) =

Nm∏
r=1

p(ω̂r|Θ)p(Φ̂r|Θ) (4.13)

where ω̂r and Φ̂r are the identified eigenvalues and eigenvectors respectively; p(ω̂r|Θ) and
p(Φ̂r|Θ) are the distribution of the rth natural frequency and the rth mode shape, given
the unknown parameters Θ.
The PDF of the natural frequencies prediction error is derived basing on the difference
rf between the natural frequencies identified from the measurements and those computed
with the FE numerical model with respect to the rth dynamic mode and defined as:

rrf (Θ,Dn) = ωr(Θ)− ω̂nr , r = 1, · · · , Nm n = 1, · · · , Ns (4.14)

where ω̂nr is used for the measured natural frequency in the n-th Data Set and ωr(Θ) is
the corresponding model predicted natural frequency. A Gaussian model with zero mean
and variance equal to k2

f is set up for the description of the prediction error on natural
frequencies as suggested by the principle of of maximum entropy. The likelihood function
can be written as:

p(rrf |Θ) =
1√

2πkr
2

f

exp

[
− 1

2kr
2

f

rrf (Θ)

]
(4.15)

The same procedure is carried out for the formulation of the likelihood function using mode
shapes. Each mode shape vector is composed by a number of modal displacements equal
to the number of monitored DOFs N0. Therefore the error between the measured mode
shape Φ̂n

r and the numerically computed one Φr(Θ) needs to be estimated with respect
to the rth dynamic mode in the nth dataset as:

rms
r(Θ,Dn) = MSSF

(
Φ̂n
r

Φ̂n
r,d

,Φr(Θ)

)
Φr(Θ)− Φ̂n

r

Φ̂n
r,d

, r = 1, · · · , Nm n = 1, · · · , Ns

(4.16)

where Φ̂n
r,d denotes a particular reference DOF of mode shape Φ̂n

r andMSSF

(
Φ̂n

r

Φ̂n
r,d

,Φr(Θ)

)
is a mode shape scaling factor to be used in order to compare the model predicted and
the observed mode shapes. Since the mode shapes are defined up to a constant, a scaling
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factor is used in order to change the scale of the computed mode shapes Φr(Θ) minimizing
the difference between both vectors with respect to the least square perspective [111] [112].
The MSSF can be defined as Φr(Θ)T Φ̂n

r
|Φr(Θ)|2 , where |.| is used for the Euclidean norm.

In rms
r the experimental mode shapes are scaled to 1 in a reference component Φ̂n

r,d –
which is the component with larger amplitude – and the numerical mode shapes are fitted
to the experimental ones in a least-squares sense.
When dealing with real data and complex structures the eigenvectors derived from the mea-
surements are not real and neglecting the imaginary part in the estimation of the residual
vector means to obtain not reliable results. Usually complex eigenvectors are associated
to a significant level of noise in the measurements and to non proportional distribution of
damping within the structure. Complex eigenvectors can arise when the damping system
matrix is not symmetric occurring typically when vibration of the structure involves rota-
tion about two axes simultaneously. The complexity can be due also to a significant level of
excitation (e.g. wind component): an additional damping is provided by the aerodynamic
forces and the effect is to split a real mode shape into a double complex mode shape.
For this reason a different formulation needs to be developed in order to define the residual
of mode shapes. The percentage error between the measured and the calculated mode
shapes can be expressed using MAC coefficient defined in Eq. 2.61 denoting the degree
of consistency between the measured Φ̂r and the computed Φr(Θ) mode shapes. Taking
into account that MAC coefficient assumes values between 1 and 0 respectively for perfect
match and no correlation between mode shapes, its complement 1-MAC can be considered
as the residual error for mode shapes as follow:

rrms =

[
1− |Φ̂T

r Φr(Θ)|2

(Φ̂T
r Φ̂r)(ΦT

r (Θ)Φr(Θ))

]
(4.17)

Assuming again that the variances kms are equal for all the Nm mode shapes and that
the percentage error follows a zero mean Gaussian distribution, the likelihood function for
mode shapes can be expressed using:

p(rrms|Θ) =
1√

2πkr2ms
exp

[
− 1

2kr2ms
rrms(Θ)

]
(4.18)

where kr2ms is the variance of the mode shape with respect to the rth dynamic mode.
The error standard deviations krf and krms can be assumed on the basis of statistical mea-
surements of the identified natural frequencies and mode shapes. As pointed out by Au
in a recent work [113], a proper error standard deviation can be also selected considering
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the posterior variance of the natural frequencies and the posterior covariances of the mode
shapes estimated by means of the Bayesian Operational Modal Analysis (BayOMA) for
the recorded data.
Usually it is assumed that the errors in natural frequencies and mode shapes for all the
dynamic modes have the same variances k2 providing:

p(D|Θ) =
1√

2πk2
exp

[
− 1

2k2
(rrf (Θ))

]
exp

[
− 1

2k2
(rrmsΘ))

]
(4.19)

The formulation of the likelihood function in Eq. 4.19 can be further modified within the
main hypothesis that both modal frequencies and mode shapes are independent and then
the PDF for all modal parameters of all the dynamic modes can be estimated multiplying
the PDFs of each mode:

p(D|Θ) =

Nm∏
r=1

Ns∏
n=1

p(rrf )p(rrms) = exp

(
−1

2
J (Θ)

) Nm∏
r=1

Ns∏
n=1

1

2πk2
(4.20)

where J (Θ) is the objective (measure-of-fit) function defined as the difference between the
measured and the model predicted natural frequencies and mode shapes. Obviously when
real experimental modal data are considered in the reference Data Set D a proper mode
shape pairing needs to be considered in the whole framework, meaning that the differences
between the modal properties obtained from the measurements and from the numerical
model are considered only if they correspond to the same dynamic mode. In most of prac-
tical applications the mode shape matching is ensuring by considering the MAC as a soft
constraint.
The assumption of uncorrelated zero mean Gaussian model for the prediction error is sup-
ported by the principle of maximum entropy maximizing the entropy with respect to the
sum of measurement and model errors even though the magnitude of the errors remains
unknown. The hypothesis of uncorrelated errors may have a significant influence on the
results of Bayesian updating solution since data and prediction errors can be spatial and/or
temporal correlated. Simoen at Al. [114] demonstrate that the assumption of uncorrelated
prediction error does not guarantee the highest posterior uncertainty on the parameter
estimates and that, if a suspected correlation between data is present, it has to be taken
properly into account.
Different approaches can be used for avoiding incorrect or unsuitable assumptions. One
of the most widely used approach is deeply discussed in [115] and [116] and it consists
in a hierarchical formulation of the Bayesian updating scheme by including the variance
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parameters of uncorrelated zero - mean Gaussian models σ2 in the updating scheme. In
fact the observed noisy data depend strictly from the environmental conditions (e.g. tem-
perature, humidity), from the loading excitation characteristics (e.g. presence of wind) or
change in stiffness of the structure itself due to damage or to a significant modification of
the boundary conditions. The hierarchical Bayesian approach allows to evaluate the total
uncertainty of the updating model parameters and their variability and the Bayes’ theorem
in Eq. 4.4 is modified:

p(Θ, σ2|D) ∝ p(D|Θ, σ2)p(Θ, σ2) (4.21)

where p(D|Θ, σ2) is the likelihood function and p(Θ, σ2) is the prior probability. The
hierarchical formulation is particularly useful when system reliability analysis is under
investigations since it allows an increase confidence in results reducing the influence of the
assumptions regarding the statistical structure of the prior information.
Other similar approaches try to estimate the random error identifying additive terms to fit
the model to the observed data by means of auxiliary functions [117]. Let us consider the
set of N unknown/uncertain parameters gathered in the random vector Θ and one single
set of data (Ns = 1) consisting in Nm modal frequencies and Nm vibration modes. The
mathematical formulation can be easily extended to Ns 6= 1. According to Eq. 4.17 and
considering 1−MAC as a measure of the distance between the analytical model and the
experimental results, the set of measures used in Bayesian framework consists in a vector
of 2Nm elements and the 2Nm-variate probabilistic model can be written as follow:

Mk(Θ, ck,Σ) = m̂k(Θ) + γk(Θ, ck) + σkεk k = 1, ..., 2Nm (4.22)

whereMk(Θ, ck,Σ) is a 2Nm×1 vector of independent observations and m̂k(Θ) is a 2Nm×1

vector of the selected deterministic model output response; the function γk(Θ, ck) is a
correction term for the bias inherent in the deterministic model that can be expressed as a
function of the input random parameters Θ and parameters ck. The term εk is a 2Nm×1

vector of normal RVs having zero mean and unit variance; σk represents the standard
deviation of the model errors. When dealing with a multivariate probabilistic model, Σ

denotes the covariance matrix of the variables σkεk and it includes 2Nm unknown variances
and 2Nm(2Nm−1)

2 unknown correlation coefficients.
Particular attention is required for the correcting function γk(Θ, ck) that is unknown since
the deterministic model usually involves approximations and idealizations. In order to
estimate the bias a suitable set of p explanatory functions hk,j and combination coefficients
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collected in the vector ck,j are used as follow :

γk(Θ, ck) =

p∑
j=1

ck,jhk,j(Θ) (4.23)

By examining the posterior statistics of the unknown parameters it is possible to identify
these explanatory functions that are significant in describing the bias in the deterministic
model.
In assessing the model the different kind of uncertainty may be explicitly treated. The
aleatoric uncertainties are present in the variables ck and partly in the error term εk;
the epistemic uncertainties are instead present in the set of the unknown parameters and
partly in the error term. Therefore the model uncertainties gathered in the term γk(Θ, ck)

provide a correction for the deterministic model able to consider model inexactness.
The corrected probabilistic model is valid when the following assumptions are satisfied:

• Homoskedasticity assumption: the model standard deviation is independent in Θ;

• Normality Assumption: the model error is normally distributed;

The uncertain parameters can be then gathered in the vector {Θ,X}T withX = {c,Σ}T .
Therefore the Bayesian framework is applied in order to update the prior distribution
p(Θ,X).
The prior distribution of the main unknown parameters Θ can be selected on the basis of
expert judgment or considering the results of investigation campaigns and past observa-
tions. When no information are available such as in the case of the combination coefficients
and the global error covariance matrix the main objective becomes to choose non informa-
tive priors able to minimize the effect of the priors choice on the posterior distributions. For
this reason it is generally assumed that c and Σ are independent so that p(X) ' p(c)p(Σ).
As shown in Box and Tiao [13] the non informative priors for the unknown/uncertain pa-
rameters is locally uniform so that p(X) ' p(Σ) leading to the non informative Jeffrey’s
priors. Furthermore since the uncertain parameters are the standard deviation σi and the
correlation coefficients ρij of the global model error, the non informative priors for the
elements Σi,j takes the following form defined in [118] and [119]:

p(Σ) ∝ |R|−
(2Nm)+1

2

2Nm∏
i=1

1

σi
(4.24)
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where |.| denotes the determinant and R is the correlation matrix.
The problem of formulating the likelihood function for a set of 2Nm-variate observations
can be easily solved maximizing the bias and gathering all the residuals term in the vector
r having components rk in the form:

rk(Θ) = σkεk =Mk − m̂k(Θ) (4.25)

Substituiting Eqs. 4.14 and 4.17 in Eq. 4.25, the residual vector takes the form:

r(Θ) =

[
rf

rms

]
(4.26)

and the likelihood function can be expressed as:

P (D|Θ,Σ) = (2π)
2Nm

2 |Σ|exp(−1

2
rTΣ−1r) (4.27)

When a Ns set of data is considered Eq. 4.27 is modified considering the joint distribution
of the Ns sets of data:

P (D|Θ,Σ) = (2π)
2Nm

2 |Σ|exp(
Ns∑
n=1

−1

2
rTnΣ−1rn) (4.28)

A practical issue in this approach is to guarantee the respect of homoskedastic model.
Considering the non negative nature of the QoIs in Bayesian inference based on dynamic
data (natural frequencies and vibration modes to be take in the form of distance between
perfect correlation) a logarithmic transformation can be used. The residual vector rn can
be therefore estimated by taking the logarithmic transform of Eqs. 4.14 and 4.17.
This method is not widespread in practical applications even though it allows to consider
the prediction errors as further noisy parameter. In this dissertation it is used and imple-
mented for the estimation of the uncertain/unknown structural parameters (in terms of
elasticity moduli) using real experimental dynamic data.
It is important to point out that the use of real data in Bayesian structural dynamic iden-
tification field represents an important newly element. In fact in most of literature works
the use of artificial data is often preferred since the use of modal parameters, especially
modal vectors, in the reference Data Set D poses further challenges. As already pointed
out in Chapter 2, the frequency domain dynamic identification technique is based on the
fundamental hypotheses: (i) the structure to be tested is subjected to some kind of excita-
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tion having white noise characteristics; (ii) the structure to be tested is lightly damped and
that the mass, stiffness, damping matrices are positive, symmetric and diagonalizable in
some basis. When these hypotheses are not complied each pole of the system is associated
to a complex eigenvector. Neglecting the imaginary part of the eigenvector components
as it is usually done in practice can cause significant errors. Furthermore if the prediction
error modal vector is expressed in terms of distance from the perfect correlation by means
of MAC matrix, the multivariate problem can be reduced to a sum of univariate problems
making the whole procedure fast, easy and computationally advantageous.

4.3.3 The posterior distribution

Once the prior PDF and the likelihood function are defined, experimental observations
and Eq. 4.11 allows for the parameter estimation with Bayesian framework from noisy
experimental data. Multidimensional integration are involved in the computation of the
marginal posterior PDF of the parameters to update. If the number of parameters and the
data space dimension becomes large, the multidimensional integrations in Eq. 4.11 cannot
be solved with analytical approaches.
One solution is the Laplace’s method for asymptotic approximation of a general integral
[97]. The main goal is to find a Gaussian approximation of the marginal posterior PDF
that is centered on a moment of the target distribution. This procedure requires only the
computation of global maximum of the posterior density in a logarithmic form and the
local second order partial derivatives. It yields to a good approximation of the posterior
distributions when they are unimodal and symmetric but this assumption might be not
proper correct and reasonable in most of cases. One can say that Laplace’s method can be
applied to a restricted simple distribution only and/or as a first posterior approximation
that can be refined via importance sampling.
Standard Monte Carlo (MC) can be applied to evaluate the integration in Eq. 4.11. Gener-
ating independent and identically distributed samples of the prior PDF, the posterior PDF
can be evaluating using asymptotic approximation according to the law of large number
and the central limit theory. Obviously this method requires the solution of the deter-
ministic problem for each sample and for this reason it is not so attractive in Bayesian
inference especially when a lot of parameters need to be updated using a large amount of
observations.
The most recent and used procedure for posterior sampling is the Markov Chain Monte
Carlo (MCMC) [120]. The term MCMC refers to all procedures that are based on random
sequences of samples (so called Markov Chain) which are in equilibrium with the target
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posterior PDF. Each step of the procedure depends on the previous steps. It follows that
the PDF can be estimated by targeting a posterior PDF without knowing the scaling factor
c in Eq. 4.5. Examples of MCMC algorithms are the Metropolis Hastings (MH) [121] and
the Gibbs Sampling (GS)[122] [123].
The first application of MCMC MH in Bayesian inference is in [124]. The MH algorithm is
introduced in order to face the problem of unidentifiable case occurring when asymptotic
approximation is used to solve the Bayesian framework. When a large number of model
parameters is updated and a small number of observations are used as effective constraints,
the bayesian optimization problem is non convex. The MH method is based on the simula-
tion of samples that are special Markov Chain. A random walk in the space of probability
is performed and using a proper rejection mechanism the PDF corresponding to the generic
Markov Chain sample tends to the target PDF.
Assuming that P (Θ) is the prior PDF and P (D|Θ) is the likelihood function, the solution
of the Bayesian updating problem up to a normalizing constant can be obtain by sampling
directly the posterior PDF P (Θ|D) through the definition of a proposal distribution used
in order to generate a random vector Θ, given the value at the previous step of the chain.
The MH procedure can be summarized as in Algorithm 2. In practice, the value of the new
samples Θt is generated with the help of the proposal distribution, also known as transi-
tion kernel. The proposal p is in general a normal distribution centered at the previous
state for respecting the symmetric construction such that p(Θ∗|Θt) = p(Θt|(Θ∗). Once
new candidate sample Θ∗ is drawn, it has a probability min{1, ρ(Θ∗,Θt)} to be accepted
and a probability 1−min{1, ρ(Θ∗,Θt)} to be rejected. If accepted the sample Θ∗ will be
taken as the next state of the chain Θt+1 = Θ∗, otherwise the current state is taken as the
next step of the chain Θt+1 = Θt. The process is repeated until N Markov chain samples
have been simulated and the specification of the acceptance probability ρ(Θ∗,Θt) allows
generating a Markov chain with desired target density.
The convergences to the target distribution is obtained only when Markov chain is aperi-
odic and positive recurrent. Factors that mainly affect the efficiency of the algorithm are
the choice of the initial values and the spread of the proposal distribution. The tuning
of the proposal distribution is a crucial issue often involving errors and a lot of trials.
Moreover MCMC MH is characterized by a serial correlation of the obtained posterior
samples associated to a low efficiency when compared to independent sampling. Finally,
the convergence rate plays an important role and needs to be properly fixed in order to
speed up the convergency avoiding wrong results.
Computationally the MH MCMC is a very demanding procedure because the deterministic
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Data: Initiate the algorithm with a value Θ0

for Each t = 1→ N do
Draw Θ∗ from the proposal probability distribution density p(Θ∗|Θt)
Compute the acceptance rate ρ(Θ∗,Θt)
Draw u from a uniform distribution u∼U(0, 1)
if u < ρ(Θ∗,Θt) then

Accept the state Θt+1 = Θ∗

else
Reject the state Θt+1 = Θt

end
end

Algorithm 2: Metropolis Hastings (MH) MCMC.

solution of numerical needs to be evaluated for each new proposed sample and this is the
major limitation of this kind of approach, efficient only for low dimension problems.
For this reason Beck proposed a new approach based on GS [125]. The basic idea is to
decompose the model parameters into different groups so that exact sampling of one group
of parameters is possible when conditional on the other groups. Markov chain needs to be
constructed but the target PDF is obtained with no need of assumptions on the acceptance
rate, since no rejection sampling is required.
In recent years a vast amount of methods have been developed in order to improve the
convergence speed of the classical MH MCMC. The most commonly used is the adaptive
MH MCMC [126](AMH MCMC) where the Gaussian proposal distribution is updated us-
ing the information obtained in the covariance at the previous steps fulfilling the ergodic
properties of the algorithm. The acceptance rate of each step is then defined basing on
what happens at the previous state of the chain and not fixed by the user.
Other methods are introduced for dealing with high-dimensional problem such as the
Hamiltonian (or hybrid) MCMC (HMC) [127]. Within the HMC the correlation between
successive sampled states is reduced by using a Hamiltonian dynamic evolution between
states improving the speed of convergency. Another kind of algorithm is the transitional
MCMC (TMCMC) [128] introduced in order to avoid the problem of sampling from difficult
target probability density functions (PDFs). It is based on the construction of intermediate
PDFs that converge to the posterior (target) PDF but easier to sample. The parallelized
TMCMC is introduced in order to overcome the issue of high computational cost. Also
algorithm involving a sequential sampling strategy belongs to the most popular methods
such as the enhanced MCMC developed by Au et Al. in [129]. The sampling process, in
this case, is divided into multiple levels using auxiliary bridge PDFs at each level of the
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chain. The samples move smoothly and the target PDF can be evaluated.

4.4 Spectral expansion for Bayesian inference using an im-
proved version of MCMC MH method

In order to obtain a significant reduction of the computational burden for the evaluation
of the Bayesian integral in Eq. 4.11 described in the previous Section, an effective method
is presented in this Section. In particular a newly approach proposed by Matthies et Al.
[130] [131] [119] is presented, modified and discussed in order to speed up the computation
of Bayesian integrals reducing the cost related to the computation of the numerical model
solution required at each step of the chain in MCMC-MH.
The main idea is to decompose the forward model response into polynomial terms that are
orthogonal with respect to a weight function identified as a probability density. In this way
the likelihood function can be computed using an indirect method based on a surrogate
solution of the forward model.
To this end a non intrusive spectral methods is used to replace the governing equations and
the output responses of the numerical model. The PC expansion in Eq. 3.26 is constructed
for each QoI according to the prior probability distributions of the unknown parameters
Θ. The deterministic coefficients gathered in the vector û are evaluated using least square
minimization method as in Eq. 3.34. At each step of the MCMC MH the solution of the
forward problem is estimated using the PC approximation. The use of the least square
minimization is often criticized since it does not guarantee accuracy of the results with re-
spect to other methods e.g. stochastic Galerkin or orthogonal projection. In the analyzed
case study it is demonstrated that the least square minimization methods together with
the Gaussian quadrature direct integration methods is a reliable mean in the Bayesian
updating framework.
The Bayesian framework for the estimation of parameters using noisy data is easily re-
formulated. Knowing the prior density of the parameters contained in the random vector
Θ and mapping the prior PDFs to the germ distribution ξ it is possible to construct the
corresponding PCE for each considered univariate output:

M̃(ξ) =

NP−1∑
α=0

ûαΨα(ξ) (4.29)
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where ξ ∼ N(0, I) is defined as a RK- valued vector of independent and identically dis-
tributed, zero mean, unit variance Gaussian RVs and I denotes the identity matrix having
dimension (K ×K) and introduced in Eq. 3.12. The extension to a multivariate output
has been already discussed in the previous chapter. Eq. 4.11 is modified obtaining:

p(ξ|D) =

∫
pe(D−D|ξ,D)pe(D− M̃(ξ)|ξ)dD p(ξ)∫

p(D|ξ)p(ξ)dξ
(4.30)

The essence of this approach is that the likelihood function becomes a function of ξ instead
of Θ and the posterior distributions are evaluated by replacing direct evaluation of the
likelihood P (D|Θ) with a likelihood written in terms of M̃(ξ) by sampling directly from
the ξ space.
A suitable choice for the operator g in Eq. 3.12 becomes crucial depending on the chosen
PC basis and the polynomial order. Indeed, errors due to functional approximation of the
surrogate model responses may cause fallacious results of the Bayesian updating framework
caused by further significant errors not captured in the model and measurement prediction
errors. The errors due to the use of PC based surrogate models can be defined according
to Eq. 3.11 as the difference between the PC expansion of the forward surrogate model
solution and the exact solution of the deterministic numerical model. The error may
become negligible when a sufficient polynomial order is used or when a suitable number of
ED points is chosen. The validation of the surrogate model is therefore an important step
of the whole procedure that needs to be carefully carried out.
When dealing with dynamic data a surrogate model for each QoIs is developed. As just
discussed, the likelihood function can be written in terms of MAC matrix in order to
include the experimental modal vectors in the reference Data Set D. However the MAC
coefficients are global quantities particularly sensitive to large eigenvector components. For
this reason it is useful to develop a PC based surrogate model for each component of each
eigenvector in the Data Set D.
The updating process can cause misleading results when experimental modal data are
used as reference because of possible frequency matching associated to different mode
shapes. To overcome this problem the main idea is to use the MAC coefficient in order to
measure the correlation rate between the experimental and numerical mode shapes. MAC
coefficient assumes values ranging from 0 to 1, when the two modes have zero or perfect
correlation, respectively. The classical MCMC MH algorithm is thus modified using the
MAC coefficients as soft constraint so that the total error in Eq. 4.26 at each step of the
chain is computed as the difference between the model predicted and the observed natural
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Data: Initiate the algorithm with a value Θ0

for Each t = 1→ N do
Draw Θ∗ from the proposal probability distribution density p(Θ∗|Θt)
Estimate the surrogate model solution for M̃(x,θ∗)
Compute the MAC matrix
Reorder the natural frequencies
Compute the residual vector rt in Eq. (4.26)
Compute the acceptance rate ρ(Θ∗,Θt)
Draw u from a uniform distribution u∼U(0, 1)
if u < ρ(Θ∗,Θt) then

Accept the state Θt+1 = Θ∗

else
Reject the state Θt+1 = Θt

end
end

Algorithm 3: Surrogate model based improved Metropolis Hastings (MH) MCMC
algorithm.

frequencies only when they correspond to the same mode shape.
Starting from the results of the previous chapter, this procedure allows also a robust GSA
for assessing which are the most sensitive modal vectors to variations in the uncertain
parameters needed to update.
Therefore, the main advantage of the surrogate model based MCMC MH method is that,
if an accurate approximation M̃(Θ) is obtained, the posterior density p(Θ|D) can be
evaluated for a large number of samples, without computationally demanding simulations
of the forward problem. This is the answer to one of the main research question at the
the basis of this dissertation. Moreover, accounting for the constraint used in the random
walk to ensure that the residual vector is estimated as the difference between the model
predicted and the observed natural frequencies only when they correspond to the same
mode shape, an improved version of the classical MCMC MH algorithm based on the
surrogate model is obtained and reported in Algorithm 3.
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Chapter 5

The role of uncertainties on
structural identification of a cable
stayed footbridge

5.1 Introduction

In this chapter a probabilistic robust framework for the calibration of a finite element
model of a complex structure is presented. The method is discussed with special reference
to a relevant case study: a cable-stayed footbridge in Umbria Region (Central Italy). The
proposed methodology is based on surrogate models and dynamic measurements of the
global system response integrated with Bayesian inference.
The aim of the model updating based on Bayesian approach is to reduce the uncertain-
ties related to the physical and the mechanical characteristics of the main parameters and
to provide an alternative use of the dynamic identification results allowing to introduce
all the uncertainties related to the measurements in the updating framework. After an
investigation on technical information about the footbridge (e.g. technical drawings and
photograph) an initial numerical model is set up. Different modal analysis are carried out
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by varying the mechanical properties and the boundary conditions of the numerical model
in order to identify the main parameters influencing the dynamic response in terms of nat-
ural frequencies and associated mode shapes. On the other side a full-scale measurement
campaign is carried out in order to measure the structural response in terms of modal pa-
rameters. Natural frequencies and associated vibration modes have been estimated using
acceleration time histories in operating conditions by means of operational modal analysis
algorithm in frequency domain.
Having developed the preliminary phase the first step of the Bayesian inverse problem is to
appoint the PDFs for all the uncertain parameters reflecting the degree of belief of the op-
erator judgment about the input parameters. The prior PDFs of the uncertain parameters
are transformed into the posterior marginal PDFs through the likelihood function using
suitable probabilistic model on the prediction error reflecting the discrepancy between the
results of numerical model and the measurements.
First the stochastic forward problem is solved by means of procedures based on functional
approximation of the system response in terms of natural frequencies and associated mode
shapes with polynomial chaos representation. The response surface of each quantity of
interest is then developed providing a collection of input/output pairs.
The Bayesian inverse problem is then solved by Markov Chain Monte Carlo Metropolis
Hastings algorithm replacing at each step the solution of the deterministic numerical model
with the solution of the surrogate model reducing significantly the computational costs.
The complete framework can be summarized as follow:

1. Define and validate the polynomial surrogate models;

2. Assess a robust global sensitivity analysis;

3. Compute the posterior distribution of the unknown parameters.

In particular, three cases are herein considered in Bayesian inverse problem in order to
assess the importance of use an informative Data Set in the reliability of the results. The
first, reported as Case1 considers a Data Set used for the updating consisting in just the
first natural frequency of the structure identified from the measurements. The second, Case
2 considers a Data Set consisting in the first six natural frequencies and finally a complete
Data Set consisting in the first six natural frequencies and corresponding vibration modes
is considered in Case 3.
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5.2 Cable-stayed footbridge description

The footbridge "Umbria Gateway" is located in Terni - Umbria Region - 100 Km away
from Rome. The footbridge has a total length of 180 m consisting of two main parts: a
curved shape main part with a total length of 120 m sustained by an asymmetric array of
cables attached to a pair of rings and to a 60 m tall inverted tripod tower. The remaining
60 m section is supported by a structural system having the form of two bowstring arches
with a 3.89 m height. Figure 5.1 shows a schematic representation of the bridge with plan
and elevation.
The cable-stayed deck spans (Figure 5.2) are made of 3.50 m length and composite

Fig. 5.1: Schematic representation of the footbridge. Plan and elevation [132].

modules with three steel girders: the central one has a circular hollow section with 800
mm external diameter and 30 mm thickness; the two lateral girders are circular hollow
sections with 219 mm external diameter and 12.5 mm thickness. The stringers are non -
prismatic elements with variable H-type cross section having a maximum 670 mm height
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in the deck center. Double-T beams are welded to the stringers in order to sustain the
wooden boards of the floor surface. X-bracings consisting of circular cross - section with
40 mm diameter are used in order to increase the horizontal stiffness.
The main tower has the form of tripod erected on a concrete triangular basement. The
lower part of the pylons, up to just below the level of the deck, is made of variable diameter
steel circular hollow section, which are filled with concrete. The middle part of the pylons,
up to the connection with the higher ring, is made of steel circular hollow section with
constant diameter while the upper part is realized with steel perforated conical section
with 10 mm thickness. The pylons are connected to the deck with tubular elements K-
bracings shaped used in order to limit the box girder deformation.
The vertical vertical deck support is made of a double order of full locked coil strands with
30 mm diameter that are connected to the deck stringers using welded plates forming a
box shape.

Fig. 5.2: Schematic representation of the typical cross section of composite deck [132].

5.3 FE model of the structure

A detailed initial three-dimensional FEM to be used for the numerical modal analysis of
the cable-stayed footbridge has been developed using SAP 2000 ([133]). The numerical
model geometry is carefully defined on the basis of available technical drawings and pho-
tographs.
The FE model has 395 frame elements, 28 cable elements, 112 shell elements and 429
nodes. The three steel girders, the stringers and the bracings are described by beam ele-
ments having three translational DOFs and three rotational DOFs at each node. The deck
is modeled by quadrilateral shell elements neglecting the shear deformation and the stress
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Table 5.1: Properties of structural members.

Material E(GPa) Mass density (KN/m3)

Steel S355 210 78
Cables 160 77

Concrete C32/40 33.345 25

in the thickness direction. Thirty eight elements of this type are used in the current model.
Each stay is modeled with a nonlinear element describing both tension-stiffening and large
deflection so that an iterative procedure is required to compute the solution. Different
mechanical characteristics are selected for the structural components (Table 5.1).
The tower is modeled considering the variable cross section by means of three different

elements: one for the lower level, one for the upper level and one for the end part.
The modeling of footbridge boundary conditions is an important issue in the modal analy-
sis. The connection at the piers and at the base of the tripod needs to be analyzed taking
into account the soil-pier interaction. In the initial FE model, the soil–structure interaction
is not included in the analysis.
The tower base consists in a basement of diaphragms over a deep foundation made up by
10 piles,. Indeed, the tower bases are considered fixed in all the DOFs. The connections of
the deck to the piers at the support 1,2, 3 and 5 - referring to the Figure 5.1 - are realized
with a concrete reinforced diaphragm. The longitudinal translation is considered to be free
at the pier connections, while vertical translation is considered to be fixed. Different kind
of bearings are used. The constructed three - dimensional FE model of the cable - stayed
footbridge is shown in Figure 5.3.
Several authors [134] [135] have investigated the significance of the nonlinear behavior

of this class of bridge mainly due to cable sag and large deflection. Cable sag is usually
the most significant feature since the cable stiffness increases with cable tension. For this
reason the dynamic characteristics have been estimated performing two types of modal
analysis:

• Ordinary modal analysis The initial configuration is the unloaded one;

• Pre-stress modal analysis The initial configuration is the deformed equilibrium con-
figuration under dead load and cable pre-tension. Large displacements non linear
static analysis is performed and the stiffness matrix updated by means of 200 incre-
mental steps. The equilibrium is reached at each step using the Newton-Raphson
method.
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Fig. 5.3: Three-dimensional FEM of the cable-stayed footbridge.

To see the effect of the cable pre-tension and the dead load, the natural frequencies ob-
tained from the deformed position are compared to those obtained from the non-deformed
position in Table 5.2. As expected, the cable pretension cause increased footbridge natural
frequencies. Although the differences are very small, the reference deformed configuration
is crucial to estimate the dynamic response to wind and/or earthquake loads.
Depending on the amplitudes of the mode shapes, modes can be classified into different

groups: longitudinal modes are those dominated by a shift of the deck in longitudinal
direction; vertical modes are those dominated by the vertical bending of the deck; lateral
modes are those dominated by the lateral sliding of the deck while the torsional modes are
those dominated by the rotation of the deck along the longitudinal axis. Figure 5.5 shows
the typical vertical, horizontal and torsional mode shapes obtained from the pre - stressed
modal analysis in the considered range of frequency of interest 0-3.5 Hz. The first mode
shape is the out of plane mode shape of the pylon (Figure 5.4a) while the second mode
shape is a longitudinal mode (Figure 5.4b). These first two mode shapes cannot be used
for the comparison with the results of the dynamic identification since the setup used in
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Table 5.2: Comparison of natural frequencies (Hz) without and with pre - stress effect.

Mode Ordinary Modal Analysis Pre Stress Modal Analysis Difference %

1 1.025 1.030 0.49
2 1.491 1.514 1.52
3 1.766 1.774 0.45
4 2.180 2.184 0.18
5 2.306 2.365 2.49
6 2.977 2.982 0.17
7 3.151 3.153 0.06
8 3.419 3.423 0.12

the measurement campaign regards just the deck monitoring.
Then, fourth vertical mode shapes (in Figures 5.5a, 5.5f, 5.5g and 5.5h), one lateral (in
Figure 5.5b), one torsional (in Figure 5.5c) and two mixed mode shapes (in Figures 5.5e
and 5.5d) are identified. It is worth noting that some dominant modes have frequencies
really close to each other.

(a) OOP Pylon f = 0.588 Hz (b) LM f = 0.746 Hz

Fig. 5.4: Out of plane mode shape of the pylon (a) and longitudinal mode shape of the deck
(b) obtained from the numerical analysis.

5.4 Dynamic Identification using EFDD

The footbridge dynamic characterization in terms of natural frequencies, corresponding
modal shapes and damping was obtained by means of full - scale measurements in operat-
ing conditions using classical contact measurements in order to provide useful information
to properly design tuned mass dampers to mitigate pedestrian - induced vibration. Accel-
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(a) MFEM
1 : fFEM

1 = 1.030 Hz (b) MFEM
2 : fFEM

2 = 1.514 Hz (c) MFEM
3 : fFEM

3 = 1.774 Hz

(d) MFEM
4 : fFEM

4 = 2.184 Hz (e) MFEM
5 : fFEM

5 = 2.305 Hz (f) MFEM
6 : fFEM

6 = 2.982 Hz

(g) MFEM
7 : fFEM

7 = 3.153 Hz (h) MFEM
8 : fFEM

8 = 3.423 Hz

Fig. 5.5: Mode shapes obtained from the numerical analysis.

eration time histories in operating conditions were recorded and used in order to estimate
modal characteristics of the footbridge using Enhanced Frequency Domain Decomposition
method.
The dynamic response of the cable stayed spans was measured using fourteen uni-axial
accelerometers (10V/g sensitivity) located in the five cross - sections A, B, C, D and E of
the bridge deck (Figure 5.6). The obtained acceleration time histories were used to identify
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vertical, horizontal and torsional vibration modes. Pairs of accelerometers were installed
using specific metallic supports attached to the steel frame of the barriers, which were
inclined of about 15 ° from the vertical direction in the cross - section plane. Two sensors
used as references were located at section C (Figure 5.6) on both sides of the footbridge.
The testing methodology consisted in two different measurements lasting 710 s (Data Set-
1) and 926 s (Data Set -2) respectively with a sampling rate of 400 Hz. The two considered
measurements started at 11 a.m. and 3.30 p.m on November 15th and 16th 2016.
Before selecting the most suitable signal processing parameters a visual inspection of the
acceleration time histories and corresponding PDF was performed. The mean value and
any possible linear trends were removed. Figures 5.7a and 5.7b show the plots of accelera-
tion time histories and the corresponding PDFs in a decimal and a logarithmic scale for a
vertical and an horizontal recording channel respectively. Same procedure was carried out
for all the recording channels showing that the estimated PDFs are not properly Gaussian
since the values on the tails are widespread and the Kurtosis coefficient assumes values
lower than 3.
Since the frequency range of interest is very low, different parameters have been chosen for
signal processing. Data were downsampled with order of decimation 30 and high - pass
filtered in order to remove offsets and drifts. After decimation, the data had a sampling
frequency of 13,33 Hz and a Nyquist frequency of 6.67 Hz. Furthermore, different values
of the frequency resolution are considered changing the number of frequency lines in the
spectral density spectrum. Reliability of results is checked using different order of deci-
mation and different type of filters. The obtained singular value curves are presented in

S1 S2 S3 

S4 

Vertical		
Vertical, transversal		
Vertical, transversal, longitudinal		

A B C 
D 

E 
A B C D E

Fig. 5.6: Measurement locations on the cable - stayed spans.

Figure 5.8 for the two recorded data sets. Natural frequencies are estimated from the local
maxima of the singular value curves.
A singular value plot is dependent on the estimated output PSDs. In particular, the PSD is
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Fig. 5.7: Plots of vertical (a) and horizontal (b) acceleration and estimated PDFs in a decimal
and a logarithmic scale .

estimated using Welch method. It can be seen that 8 modes are clearly identified with the
Data Set-2, whose frequencies are highlighted with the vertical dash-dotted lines. Seven
modes are clearly identified from the Data Set-1 ( i.e. the fourth natural frequency fEXP4

cannot be identified). Table 5.3 summarizes the minimum and the the maximum value of
the identified natural frequencies considering both data sets, different frequency resolution
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and order of decimatio: 20 and 40.
The associated identified mode shapes are presented in polar plots in the two Figures
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Fig. 5.8: Non zero singular value plots for Data Set-1 (a) and Data Set-2 (b) .

Table 5.3: Maximum and minimum value of natural frequencies (Hz) identified using different
signal processing parameters for the two considered Data Sets.

Mode Minimum Frequency Maximum Frequency Nature of Vibration Mode

1 0.97 0.97 Vertical Mode
2 1.11 1.13 Vertical Mode
3 1.67 1.69 Lateral Mode
4 1.79 1.80 Torsional Mode
5 2.40 2.47 Mixed Mode
6 2.58 2.59 Mixed Mode
7 3.30 3.31 Vertical Mode
8 3.35 3.40 Vertical Mode

5.9 and 5.10: cyan lines are used for vertical components, while magenta and green lines
are used for transversal and longitudinal components respectively. The representation of
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the complex mode shape in the complex plane provides useful information in order to ver-
ify the degree of non-classical damping characteristics of the considered mode. The more
scattered the mode shape components are in the polar plot, the more the system is not
classically damped in that mode.
In both data set results, the identified mode shapes are mainly along the real axis, albeit
some components for each mode are rotated in the complex plane. This is particularly true
for high frequency vibration modes where the noise increases. The longitudinal component
is rotated with a significant phase angle also for the low frequency mode shapes suggesting
that low level of excitation and high level of noise could be present.
Figures 5.11a and 5.11b show the AutoMAC matrices of the identified mode shapes re-
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Fig. 5.9: Polar plots of the identified mode shapes: Data Set - 1.

spectively for Data Set-1 and Data Set-2. The AutoMAC compares a set of modal vectors
with themselves in order to assess if the number and the location of the monitored DOFs
chosen for the measurement campaign allow to distinguish the modes from each other.
Therefore the AutoMAC is able to provide useful information about the modal vector
consistency representing a useful mean for assessing the quality of the measurement based
dynamic identification results. It is worth to note that for both Data Sets the AutoMAC
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Fig. 5.10: Polar plots of the identified mode shapes: Data Set - 2.

assumes values identical to 1 on the diagonal (each modal vector is paired with itself) and
values really close to zero otherwise.
The AutoMAC value of the pair given by MEXP

1 and MEXP
2 (bending mode shapes with

frequencies below 1.2 Hz) is grater than 0.95. This would indicate high chances to deal with
the same mode shape but the two corresponding peaks on the singular value curves are
clearly separated, being evidence of a sort of mode shape splitting phenomenon. Further-
more, the numerical model presents a single bending mode shape with associated frequency
at 1.03 Hz. Further experimental investigation such as a second experimental measurement
campaign or a continuous monitoring needed to be developed in order to assess the nature
of the these first two modes identified experimentally. This mode shape splitting could be
due to temperature effects and/or to an high amplitude of excitation occurs for example in
presence of significant wind excitation and its typical of all those structure characterized
by non-proportional damping.
Figures 5.11c shows the MAC matrix estimated from the vibration modes identified from
the two Data Sets in order to further validate the obtained results. Obviously, the fourth
mode shape MEXP

4 identified by means of the Data Set-2 is not included in this compar-
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ison procedure. In general, a MAC value greater than 0.80 is considered a good match,
while a MAC value lower than 0.40 is considered not a good match. It is evident that the
level of consistency between the obtained modal vectors is significant: the diagonal MAC
presents values really close to one - or however higher than 0.80 - while the MAC values
off the diagonal are really close to zero. Therefore Data Set-2 is used for the succeeding
analysis ensuring a better level of accuracy.
The tridimensional representation of the identified mode shapes is plotted in Figure 5.12.
The magnitudes of the mode shapes at the sensor locations are identified based on the real
measured data, while the other magnitudes are interpolated using the boundary conditions
and the identified mode shapes at the sensor locations by means of cinematic equations.

5.5 Comparison between analytical and experimental modal
parameters

The comparison between the numerical model and the results of the dynamic identification
is carried out using just the Data Set-2 that is the most representative one. The selection
of the most representative and accurate values of experimental natural frequencies and
mode shapes is a crucial issue in model updating procedure since such results represents
the starting point for all the updating problem.
The natural frequencies identified from the numerical model and from the measurements
are summarized respectively in Tables 5.2 and 5.3. The natural frequencies of the initial
FE model are mostly lower than the identified natural frequencies. This is due to the
modeling errors such as the omission of non structural components, the idealizations of the
connections and to the main hypotheses on the boundary conditions and on the mechanical
properties.
The MAC compares the experimental modal vectors and the numerical modal vectors.
The obtained MAC matrix is shown in Figure 5.11d. The first two modes identified exper-
imentally MEXP

1 and MEXP
2 have a MAC value greater than 0.90 when compared to the

first mode obtained from the numerical analysis MFEM
1 : that is why the diagonal MAC

is translated. The terms in the translated diagonal MAC matrix are greater than 0.80
with the exception of the fourth experimental mode shapeMEXP

4 characterized by a MAC
equal to 0.73 indicating a good correlation between the experimental and the initial FEM
model.
The mode shapes correlation is generally displayed by plotting the MAC matrix while the
natural frequency correspondence is usually checked with a separate plot representing the
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Fig. 5.11: AutoMAC matrix for Data Set-1 (a) and Data Set -2 (b). MAC matrix estimated
for Data Set-1 and Data Set-2(c). MAC matrix estimated for Data Set-2 and Numerical Model
(d).
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Fig. 5.12: Vibration modes obtained from the measurements using EFDD.
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OMA natural frequency versus the numerical natural frequency. F-MAC plot is a use-
ful type of plot proposed in [136] in order to view simultaneously the natural frequency
comparison, the mode shape correlation and the spatial aliasing. A circle with a radius
proportional to the value of the MAC is drawn at the coordinates of each frequency pair.
This is also done for the AutoMAC. Frequency separation lines are used in order to give a
visual scale for the amount of frequency shifting between the OMA and the FEA results.
In Figure 5.13a the MAC is represented by the red filled circles, while the AutoMAC is rep-
resented by the blue circle. The frequency separation is shown by the horizontal shift from
the blue to the red circles. The two dashed lines indicate a ±10% variation of frequency. It
is possible to observe a good agreement between the output of the initial numerical model
and the experimental analysis for each identified mode shape in terms of both natural
frequencies and mode shapes. Natural frequency differences are smaller than 10 % for each
identified mode shapes with the exception of the 4th and the 5th experimental mode shape
(MEXP

4 and MEXP
5 ).
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Fig. 5.13: F-MAC plot (a). Variation of maximum and minimum damping ratio with natural
frequencies (b).

5.6 Damping estimation using operational modal analysis

The damping ratios are determined from equivalent SDOF correlation function around a
resonance peak using Eqs. 2.63 and 2.64. Regression on the logarithmic decrements de-
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termines the damping ratio. Therefore the validation of the damping ratio can be carried
out by controlling the output PSD function, the frequency resolution and the correlation
function.
To investigate the influence of signal processing parameters on the damping ratio the dy-
namic identification procedure has been repeated a lot of time by changing the frequency
resolution and the order of decimation. In particular two different order of decimation are
selected: 40 and 30 while the number of frequency lines in the output PSD spectrum are
set equal to 256, 512, 1024 and 2048. The maximum and minimum values of damping ratio
obtained are summarized in Table 5.4 for each identified mode shape. Figure 5.13b gives a
good representation of the damping ratio estimates versus the corresponding experimental
natural frequencies.
Minimum values of damping are in a range of variation between 0.2 % and 0.4 % and

Table 5.4: Maximum and minimum value of damping ratio (%) identified using different
signal processing parameters for the two considered Data Sets.

Mode Minimum Damping [%] Maximum Damping [%]

1 0.159 1.515
2 0.167 2.160
3 0.167 1.231
4 0.090 1.026
5 0.194 1.382
6 0.090 0.639
7 0.135 0.475
8 0.080 0.560

they can be very well interpolated by a linear polynomial with almost constant gradient.
Maximum values of damping ratio decrease rapidly with the increase of the natural fre-
quencies.They are scattered and they can be interpolated by a second order polynomial.
Figure 5.14a shows that the damping estimation is linearly dependent on frequency resolu-
tion ∆f in Eq. 2.65 with the exception of the 5-th mode shapeMEXP

5 presenting scattered
values. The varying gradient of the first order curves obtained for each mode confirms that
the damping estimation depend also on the natural frequency of each mode shape. Same
result is confirmed by the bias error on damping ζb in eq. 2.66, shown in Figure 5.14b
for each mode shape and for each frequency resolution considered for data analysis. Bias
error on damping decreases with the increase of frequency resolution and the gradient of
each single first order curve decreases with the the increase of natural frequency. Leakage
bias can carry to an estimation of damping values away from the physically present damp-
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ing and frequency resolution has to be chosen such that the influence of leakage can be
minimized.

0 0.003 0.006 0.009 0.012 0.015

Frequency Resolution

0

0.5

1

1.5

2

2.5

D
am

pi
ng

 [
%

]

Mode1
Mode2
Mode3
Mode4
Mode5
Mode6
Mode7
Mode8

(a)

0 0.003 0.006 0.009 0.012 0.015
Frequency Resolution

0

0.5

1

1.5

2

B
ia

s 
E

rr
or

 [
%

]

Mode1
Mode2
Mode3
Mode4
Mode5
Mode6
Mode7
Mode8

(b)

Fig. 5.14: Variation of damping (a) and variation of bias error on damping as a function of
frequency resolution (b).

5.7 Selection of updating parameters

The selection of updating parameters is a key issue in the model updating procedure since
they have to be directly related to the measurement results used as reference data. Usually
this selection depends on expert judgment. A preliminary sensitivity analysis is carried out
in order to have information for an efficient selection. In particular, the sensitivity of the
natural frequencies to variation of model mass density, structural steel and cable Young’s
moduli, cable tension stiffening, stiffness of rotational and translational springs used for
describing soil-structure interaction is evaluated.
The modulus of elasticity of the deck used in the initial model is typical of S355 struc-
tural steel. The sensitivity of the natural frequencies to variations in the model stiffness is
investigated for maximum variations in the Young’s modulus of the structural steel equal
to ±30%. Results are shown in Figure 5.15a. Red continuous line with pentagon mark-
ers shows the experimentally identified natural frequencies, while the magenta dashed line
with triangular markers shows the numerically identified natural frequencies using the me-
chanical properties of the initial model. The other two continuous lines are used for the
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numerically identified natural frequencies for the considered maximum variations of the
modulus of elasticity of ±30%. As expected, the natural frequencies increases when the
stiffness increases.
It is evident that the model is improved by means of a higher steel modulus. The mean
value of the percentage difference ∆f between the FE and measured natural frequencies
decreases from −20.1% to 3.07% with the increase of the elastic moduli. Negative values
of ∆f indicate that the global stiffness of the model is underestimated.
The sensitivity of the eigenvectors to the same variations of the elastic modulus of struc-
tural steel is investigated by means of diagonal MAC values estimated using numerical
and experimental results. Diagonal MAC values obtained are shown in Figure 5.15b. It is
evident that the mode shapes most influenced by the change in stiffness are the torsional
and the mixed ones, corresponding to the natural frequency values in the range of 1.7 -
2.4 Hz.
The sensitivity of the initial model to an increase in structural steel mass density of ±10%

is investigated and results are shown in Figure 5.16a.The mean values of the percentage
difference ∆f between the FE and measured natural frequencies decreases from −10, 51%

to −3, 68% when the model mass density decreases. The use of lower values of mass density
improves the model.
Figure 5.16b shows the results obtained in terms of diagonal MAC values comparing the
numerical and experimental eigenvectors. While the use of lower values of mass density
improves the model in terms of obtained natural frequency comparison, the use of higher
values of mass density improves the model in terms of mode shapes comparison. Moreover,
also in this case variations of model mass density mainly influence the torsional and lateral
mode shapes in the range of frequency 1.7 - 2.4 Hz.
Having established the initial model also the sensitivity of the natural frequencies and

mode shapes is investigated for variations in the elastic moduli and the mean tension of
the cables. A basic elastic modulus of 160 GPa has been used for each cable. The pre
stressed modal analysis allows to take into account for the cable sag. The effect of maxi-
mum variations of ±20% in the cables elastic moduli is investigated and Figure 5.17a shows
the obtained results. The differences between the FE and measured natural frequencies
are slight with a mean difference ∆f decreasing from -6,06 to -5.93 increasing the cables
stiffness.
Also the differences between the FE and the measured natural frequencies obtained chang-
ing the mean tension in each cable are slight. This can be explained by studying the
relation between the equivalent modulus of cables able to account for both the sag effect

94



Chapter 5 Case Study

M1FEM M2FEM M3FEM M4FEM M5FEM M6FEM M7FEM

Mode Number

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ig

en
va

lu
es

 [
H

z]

Esteel=147 GPa
Esteel=210 GPa
Esteel=273 GPa
Oma Results

(a)

M1FEM M2FEM M3FEM M4FEM M5FEM M6FEM M7FEM

Mode Number

0

0.2

0.4

0.6

0.8

1

D
ia

go
na

l M
A

C
 v

al
ue

s [
H

z]
Esteel=273 GPa
Esteel=147 GPa
Esteel=210 GPa

(b)

Fig. 5.15: Variation of the natural frequencies (a) and diagonal MAC coefficients (b) using
results of the different numerical models obtained by changing the modulus of elasticity of the
structural steel.

and the tension [137] that can be expressed as:

Eequivalent =
E

1 + (mgh)2AeE
12T 3

(5.1)

where E is the basic elastic modulus of cable, m is the cable mass per unit length, g is
the acceleration due to gravity, h is the horizontal projected length of cable, Ae is the
effective cross-sectional area of cable and T is the mean cable tension. In order to have
significant change in equivalent modulus of elasticity of cables accounting for sag and non
linear effect, the tensile force has to be increased of an unrealistic quantity.
Figure 5.17b shows the comparison in terms of mode shapes for same variations of the
stiffness of the cables. If natural frequencies of the model are not particularly influenced
by the cables stiffness, MAC values obtained using numerical and experimental results are
subjected to significant changes in values and the most influenced mode shapes are the
torsional and the mixed ones.
Soil structure interaction problem has been considered in order to investigate the effect

of soil deformability on modal characteristics of structure. The system soil - structure
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Fig. 5.16: Variation of the natural frequencies (a) and diagonal MAC coefficients (b) us-
ing results of the different numerical models obtained by changing the mass density of the
structural steel.

has been modeled using elastic equivalent elements for each DoF at the base of the tower.
Translational and rotational springs in all the three directions have been used. A para-
metric analysis changing the stiffness of the springs has been carried out and results are
shown in Figure 5.18a and 5.18b. In particular natural frequencies of the first eight mode
shapes identified numerically are compared to the corresponding mode shapes identified
by means of the FE equipped with the elastic springs highlighting negligible differences for
all the considered values of stiffness. Moreover significant changes in diagonal MAC coef-
ficients such as those plotted in Figure 5.18b occur for values of the spring stiffnesses not
typically used for soils behavior. The results of the sensitivity analysis show clearly that
the most influencing parameters on the model dynamic response are the steel and cables
elastic moduli and the model mass density. In the succeeding analysis it is reasonable to
assume that the mass density of the model does not varying a lot along the deck. Moreover
the mass density and the Young’s modulus of the steel are two correlated quantities as a
function of the Poisson and the isothermal compressibility.
For this reason the vector of the unknown/adjustable parameters Θ = {Θ1,Θ2}T in the
Bayesian updating procedure consists only in two surrogate quantities able to consider the
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Fig. 5.17: Variation of the natural frequencies (a) and diagonal MAC coefficients (b) using
results of the different numerical models obtained by changing the modulus of elasticity of
cables.

uncertainty due to the idealization, simplification, the connections and all the main hy-
pothesis used in the numerical model that are the stiffness of the deck Θ1 and the stiffness
of the cables Θ2. It is noted that these random parameters are assumed as statistically
independent of each other.

5.8 Solution of the forward problem

In this case study, the experimental natural frequencies {fEXPi } and the modal vectors
in terms of MAC are used as reference Data Set D̄ in the Bayesian updating framework
while the first six numerical frequencies {fFEMi } and each component of the first six modal
vectors {MFEM

i } are set as QoIs. The PC expansion method in Eq. 3.26 is used in order
to quantify the uncertainty in the FEM dynamic responses of tested structure and to build
a surrogate model, for each of the selected QoI.
According to the results of the deterministic sensitivity analysis two relevant parameters
are considered as affected by uncertainties: the deck stiffness of the deck Θ1and the cables
stiffness Θ2. No direct data (e.g. information about the mechanical characteristics, the
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Fig. 5.18: Variation of the natural frequencies (a) and diagonal MAC coefficients (b) using
results of the different numerical models obtained by changing the stiffness of the elastic
springs for soil structure interaction problem.

effective mean tension in the cables) are available for the random vector Θ. For this reason
two normal distributions have been selected for the two input RVs since the probability of
the occurrence of very high or very low values is negligible. The nominal value of the two
different materials used for deck and cables in Table 5.1 are used as PDF mean value to
avoid unfeasible samples in the simulation procedure, i.e. the existence of the deformed
equilibrium configuration with dead load and cable pre tension always guaranteed after
the non linear static analysis under dead load and cable pre tension.
Therefore a mean value µΘ1 = 210 GPa and a coefficient of variation (c.o.v) equal to 0.15
are selected for the normal distributions of the stiffness of the deck Θ1; and a mean value
µΘ2 = 160 GPa and a c.o.v equal to 0.20 are selected for the normal distribution of the
stiffness of the cables Θ2. The resulting PDFs are shown in Figures 5.19a and 5.19b.
The distribution of the input random vector Θ is firstly mapped to germ distributions

according to Eq. 3.12 where ξ = {ξ1, ξ2} is a two dimensional random vector. It is worth
noting that in this case g is a linear function. For normally distributed variables the germ
distribution is represented by a standard normal distribution to which Hermite polynomi-
als are associated.

98



Chapter 5 Case Study

0 100 200 300 400 500

1

0

0.005

0.01

0.015

0.02

0.025

0.03

P
D

F

=210 GPa

prior PDF
cov 0.15
mean value 210 GPa

(a)

0 100 200 300 400 500

2

0

0.005

0.01

0.015

0.02

P
D

F

=160 GPa

prior PDF
cov 0.20
mean value 160 GPa

(b)

Fig. 5.19: Prior PDF of the stiffness of the deck Θ1 (a) and the stiffness of the cables Θ2(b).

The deterministic coefficients of the spectral expansion ûα in Eq. 3.26 are estimated using
least square method according to Algorithm 1, minimizing the error due to the missing
terms in the definition of the truncated PC representation: the FE model is considered as
a sort of deterministic black box that computes each QoI as a function of the two input
random parameters ξ1 and ξ2 at the regression points. The accuracy of the stochastic
spectral solution of the forward problem depends on the order of the PC basis used and
on a suitable choice of the regression points. Usually in SFEM applications the typical
polynomials order p is a value between 3 and 5 and the optimal design of sampling points
is given by the roots of the Hermite polynomials. Since two independent RVs are con-
sidered as the input of the numerical model, the solution of the FEM model needs to be
evaluated in just (p + 1)2 pairs of sample {ξ1, ξ2} using a full tensor grid scheme. Figure
5.20 represents the full tensor product grid built for considered two-dimensional problem
with polynomials order equal to 3,4 and 5. Note that for the highest considered order of
polynomials just 36 simulations are required with a significant reduction of computational
costs compared to the most common used simulation methods (e.g. Monte Carlo, Lathyn
Hypercube).
Once that the candidate surrogate models are defined their validation is required in or-

der to determine the maximum order degree of polynomials p and the associated level of
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Fig. 5.20: Full tensor product grid for polynomials order 3 (a), 4 (b) and 5 (c) .

accuracy.
The first two statistic moments of each truncated PC representation are estimated using
Eqs. 3.41, 3.42 and compared to the first two statistic moments of the exact solution pro-
vided directly by the numerical model according to Eq. 3.40. The error on mean and on
variance up to fifth order are evaluated and shown in Figures 5.21a and 5.21b for the first
six considered natural frequencies. It can be observed that the relative error on mean is
negligible and the error on variance decreases increasing the polynomials order p. Further-
more no overfitting phenomena occur increasing the number of sampling points. Figures
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5.21c an 5.21d show the relative error on mean and on variance of the second modal vector
components. Same plots are obtained for each of the first six modal vectors with similar
results.
The selection of the best polynomial order is also pursued by estimating the error vector
(i.e. difference between surrogate model and the numerical model response) outside the
grid used to calibrate the proxy model, driving the simulation of the parameters {θ1, θ2}
in the tail values of the vector Θ joint probability density function. Figure 5.22 shows
the errors, for each of the first six natural frequencies, between the natural frequencies
obtained with the numerical model {fFEMi } and the surrogate model {f̃i

FEM} at two of
the tail samples {θ1, θ2} varying the polynomial order. Order p = 4 seems to give an
accurate solution for all the six proxy models with this selection of the input parameters.
Similar plots can be obtained for different selection of the tail values. Polynomial order
p = 5 was found to be the best selection for all the tested pairs of input parameters.
Figure 5.23 shows the six surrogate models obtained with polynomial order p = 5 in the
ξ space, one for each numerical eigenfrequency {f̃i

FEM}, i = 1, · · · 6, together with the
corresponding {fEXPi } estimated from data (horizontal surface), and the error absolute
value, i.e. |f̃i

FEM −fEXPi |(blue surface). As it was expected from the sensitivity analyses,
the response surfaces show that the natural frequencies are almost constant varying the
cables stiffness ξ2; on the contrary the dependency of the natural frequencies is strongly
non linear on the stiffness of the deck ξ1.
As an example figures 5.24a and 5.24b show the response surfaces obtained for the maxi-
mum vertical and the maximum horizontal eigenvector components in the first and second
numerical mode shape MFEM

1 and MFEM
2 respectively. The eigenvector components are

significantly non linear on both random input parameters. The results of the dynamic iden-
tification procedure are not reported in the two plots since the experimental eigenvector
components are characterized by an imaginary part that cannot be plotted.

5.9 Surrogate model based sensitivity analysis

In order to confirm the results obtained by means of the deterministic sensitivity analysis
carried out in the preliminary phase of the updating framework a robust global sensitivity
analysis based on Sobol’ indices is performed. Probabilistic sensitivity analysis represents
a crucial tool in the uncertainty analysis of systems allowing to understand how the un-
certainty (that can be due to the different sources of uncertainty in the input parameters)
affect the output response. Once the surrogate models are build, it is possible to estimate
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Fig. 5.21: Error in the mean and error in the variance for polynomials order 3, 4 and 5 for
the first six natural frequency (a) and for the components of the second mode shape (b) .
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Fig. 5.22: Difference between numerical and surrogate response for tail samples Θ .

the variance of the NP polynomial coefficients ûα for each QoI. These variances can be
used to estimate for each of the 90 surrogate models the first and the second order Sobol
indices in Eq. 3.53. The first order indices represent the influence of each parameter taken
alone (Θ1 and Θ2); the higher order indices express the sensitivity measures of variance of
the responses due to interaction between the input parameters (Θ1,Θ2).
Figure 5.25 shows that the natural frequencies are mainly influenced by the stiffness of the
deck with Sobol’ first order indices greater than 0.8. The combination of the stiffness of
the deck and the stiffness of the cable does not play a crucial role in the analysis of the
uncertainty related to the natural frequencies.
Same procedure is carried out for each eigenvector components of the 6 numerical mode
shapes and results are shown in Figure 5.26. The eigenvector components are signifi-
cantly influenced by the cables stiffness and by the combination of the cables and the
deck stiffness. This is particularly true for the torsional and the mixed mode shapes
MFEM

3 ,MFEM
4 ,MFEM

5 in the range of frequency 1.7-2.4 Hz, confirming the results ob-
tained with the preliminary deterministic sensitivity analysis.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.23: Response surfaces for the first six natural frequencies as a function of the stiffness
of the deck and the stiffness of the cables.
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(a) (b)

Fig. 5.24: Response surfaces for the maximum vertical (a) and the maximum horizontal (b)
eigenvector component.
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Fig. 5.25: First and second order Sobol’ indices for natural frequencies.

5.10 Bayesian Inverse Problem

The MCMC-based Bayesian updating method has been adopted for the evaluation of the
posterior marginal distributions of the two dimensional random vector Θ. The Metropolis
Hastings algorithm is applied. The procedure is described in detail in Section 4.4.
The prior PDFs of the two independent updating parameters Θ1 and Θ2 are reported
in Figures 5.19a and 5.19b and their joint probability distribution is plotted in Figure
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Fig. 5.26: First and second order Sobol’ indices for eigenvector components of each mode
shape.
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5.27. The prior PDFs are then transformed into the posterior PDFs through the likelihood
function accounting for both modeling and measurement uncertainties using Eqs. 4.24
and 4.27. Since just the results of one measurement campaign are available the initial
uncertainties are represented by zero mean Gaussian distributions with diagonal covariance
matrix.
Three cases of model updating are performed in the following which differ by the type of
Data Set D̄ used as target:

• Case 1 Two different modal data sets are considered each having a single system
frequency, i.e. the first and the second experimental natural frequencies, in order
to assess the effect of the experimental mode shape splitting phenomena already
discussed in Section 5.4:

1. Case 1A: D̄1A = {fEXP1 }

2. Case 1B : D̄1B = {fEXP2 }

• Case 2 The results obtained in Case 1 are used to select a single modal data set
consisting in the first six natural frequencies identified from the measurements:
D̄2 = {fEXPi } i = 2, ..., 7

• Case 3 The results obtained in Case 1 and Case 2 are used to select a single modal
data set consisting in the first six natural frequencies and corresponding vibration
modes identified from the measurements:
D̄3 = {fEXPi ,MEXP

i } i = 2, ..., 7

5.10.1 Case 1

In this case, the first experimental natural frequency is used in order to update the two
main uncertain parameters. It was observed that Figure 5.8b shows two well defined peaks
in the range of frequencies 0.97-1.15 Hz corresponding to two high correlated vertical bend-
ing vibration modes. In the same range of frequency the numerical analysis is able to catch
just one single vertical bending mode shape. As just discussed, this mode shape splitting
phenomena could be due to a significant load excitation or to the interaction between the
cables and the deck. Since the Bayesian updating framework requires mode shapes and
natural frequencies matching, one of the two experimentally identified natural frequencies
needs to be properly selected. Indeed, the Bayesian updating framework is herein used to
have information on the most representative experimental natural frequency to be used in
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Fig. 5.27: Prior joint probability distribution of the random vector Θ.

the Case 2 and Case 3 modal updating.
Two different updating procedures are thus carried out using first the data set D̄1A, con-
sisting in the natural frequency fEXP1 = 0.964 Hz (Case 1A), and then the data set D̄1B,
consisting in the second natural frequency fEXP2 = 1.107 Hz (Case 1B). The obtained
posterior marginal distributions are plotted in Figures 5.28a and 5.28b. The black lines
indicate the prior PDFs, while the blue and the green lines indicate the posterior marginal
PDFs obtained in Case 1A and Case 1B, respectively.
The Θ1 posterior distribution has mean values equal to 191 and 270 GPa, about 0.90 and
1.25 times the mean value of the prior PDF, when data sets D̄1A and D̄1B are used as
target, respectively. Table 5.5 reports the 25th, 50th and 75th percentiles of the prior and
posterior distributions.
The Θ2 posterior marginal distribution is very similar to the prior PDF in both cases.

This result was expected since the sensitivity analyses showed that the first natural fre-
quency is mainly influenced by Θ1.
The posterior mean values of the random vector Θ are used as the input of the surrogate
models in order to compare the accuracy of the obtained results in terms of natural fre-
quencies and MAC values. Figure 5.29a compares the natural frequencies estimated from
the experimental data to those obtained with the initial numerical model and the updated
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Fig. 5.28: Marginal posteriorPDFs of the stiffness of the deck (a) and the stiffness of the cables
(b) considering two different Data Sets D̄1A and D̄1B consisting in the first two experimentally
identified natural frequencies taken alone.

model using the posterior mean values of Θ in Case 1A and 1B. It is rather clear that
unsatisfactory results are obtained with the Bayesian updating procedure in Case 1A. The
obtained numerical natural frequencies are very similar to those of the initial FEM. The
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Table 5.5: Percentiles of the posterior distribution (GPa) of the stiffness of the deck related
to the considered Data Set.

Percentiles Prior Case 1A Case 1B

25th 189 177 261
50th 210 191 270
75th 231 270 279

relative error mean is equal to 13 % with the maximum relative error occurring for the
mode shapes with higher frequencies. On the contrary, accurate results are obtained in
Case 1B. The relative error mean is about 1.5 % with the maximum relative error occurring
for the 3rd mode shape. Figure 5.29b compares the diagonal MAC values (numerical vs
experimental mode shapes) before and after the two Bayesian updating procedures when
using D̄1A and D̄1B reference data sets. It is worth noting that the diagonal MAC values
obtained after the updating are all lower, with the exception of the 1st, 3rd and 6th modes,
than those obtained with the initial FE in both cases.

M
1
FEM M

2
FEM M

3
FEM M

4
FEM M

5
FEM M

6
FEM

Mode Number

0.5

1

1.5

2

2.5

3

3.5

N
at

ur
al

 F
re

qu
en

cy
 [

H
z]

OMA Results
Updated FEM Case 1A
Updated FEM Case 1B
Initial FEM

(a)

M
1
FEM M

2
FEM M

3
FEM M

4
FEM M

5
FEM M

6
FEM

Mode Number

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
ia

go
na

l M
A

C
 V

al
ue

Updated FEM Case 1A
Updated FEM Case 1B
Initial FEM

(b)

Fig. 5.29: Comparison between the natural frequencies (a) and the diagonal MAC values
(b) obtained from the initial FEM and the updated FEM related to the considered Data Sets
D̄1A and D̄1B .
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5.10.2 Case 2

The data set D̄2 used in this case consists in the first six natural frequencies estimated from
the measurements. Since natural frequency and mode shape matching is required by the al-
gorithm, the choice of using one of the two natural frequencies fEXP1 and fEXP2 as first nat-
ural frequency of the data set used as reference for the updating needs to be properly investi-
gated. The results obtained in Case 1 clearly indicate that the second experimental natural
frequency can be considered the best choice for a reference data set. Therefore, in the fol-
lowing, the results obtained using a data set D̄2 = {fEXP2 , fEXP3 , fEXP4 , fEXP5 , fEXP6 , fEXP7 }T

are shown.
It is important to point out that the updating framework is improved using the MAC coef-
ficients as constraints in order to guarantee the natural frequency/mode shape matching at
each step of the MCMC procedure. Variation in the deck and cables stiffness can cause an
exchange of natural frequencies and mode shapes. Each component of the residual vector
in the likelihood function is computed as the difference between the experimental natural
frequency and the numerical natural frequency corresponding to the same mode shape (i.e.
having the highest MAC coefficient).
The posterior marginal PDF of the two dimensional random vector Θ = {Θ1,Θ2} is herein
computed accounting for the correlation of the total model error at each step of evaluation
according to Algorithm 3. In particular, the MCMC MH algorithm is used in order to
obtain the target posterior PDFs replacing the evaluation of the numerical solution at each
step of the chain with the surrogate solution sampling directly from the ξ space. The initial
covariance matrix of the total error is assumed to be diagonal with component equal to 0.01

Hz2 and the model error matrix components are treated ad additive updating parameters
with non informative prior distributions according to Eq. 4.24 .
The improved MCMCMH algorithm is applied generating 40,000 posterior samples that are
consistent with the unscaled posterior PDF that is proportional to the product between the
likelihood function and the prior PDF. In this simulation the initial state enables Markov
chains to start around high probability region of the prior PDF. These posterior 40,000
samples are the accepted ones, according to the fixed acceptance rate. In this case, the
whole algorithm requires the evaluation of the deterministic solution 150,000 times in order
to ensure the convergency. Since the numerical model takes between 1 and 2 minutes for a
single analysis the updating framework would have required more than 5 months making
the procedure unfeasible. The use of the surrogate models for such complex cases makes
the solution possible reducing the computing time to about 60 minutes.
Figure 5.30a shows pairs of the accepted posterior samples. No significant linear or non lin-
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ear relationships between the updated parameters are evident meaning that no apparently
correlation between the chains is present. Moving means of the samples are calculated to
verify the convergence of the Markov chain stationarity. The moving means associated to
the deck stiffness and the cables stiffness are shown in Figure 5.30b . The y axes corre-
spond to the two updating random parameters in a logarithmic scale. The convergency
is reached after 150,000 steps with a burn-in period of 40,000 steps. The autocorrelation
of both of the chains is investigated too, showing a rapid decrease from 1 to 0 after the
burn-in period.
The results of the updating procedure are shown in Figures 5.31a and 5.31b. The poste-
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Fig. 5.30: Sample points of the posterior target PDF as obtained from MCMC MH (a).
Convergence to stationarity (b): moving averages of the stiffness of the deck (upper panel)
and the stiffness of the cables (lower panel) related to the considered Data Set D̄2.

rior distribution of Θ1 has a mean value equal to 266 GPa, 1.25 times the mean value of
the prior PDF. In terms of percentile results show a significant reduction of the variability
with values very similar to those reported in Table 5.5 for the Case 1B.
The posterior distribution of Θ2 is very similar to the prior PDF indicating that the data
set D̄2 is non informative with respect to this random parameter. This result was expected
since the natural frequencies are mainly influenced by the deck stiffness as shown by the

112



Chapter 5 Case Study

first order Sobol indices in previous section.
The posterior samples generated with the MCMC MH are also used for studying how
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Fig. 5.31: Marginal posterior PDFs of the stiffness of the deck (a) and the stiffness of the
cables (b) considering a Data Set consisting in the first six experimentally identified natural
frequencies D̄2.

the uncertainties of the updated parameters are propagated into the uncertainties of the
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natural frequencies. The surrogate model allows to solve the forward problem related to
the estimation of the first six natural frequencies given each pair of posterior accepted
samples. Figure 5.32 shows the posterior histograms of the natural frequencies and the
corresponding marginal PDFs obtained by the kernel density estimation. Also prior his-
tograms obtained by means of Monte Carlo simulation starting from the prior PDFs of
the random vector Θ, the initial FEM and the measured eigenfrequencies are included in
the figure. It can be seen that due to the incorporation of the information contained in
the modal Data Set D̄2, the prior distributions are shifted towards the measured value
leading to a considerably better matching, with the exception of the third mode shape
MFEM

3 . Moreover c.o.v. of each posterior marginal probability density is calculated and
values between 0.012 and 0.015 are observed. This means that each natural frequency is
sensitive to the perturbation of the updating parameters in a same way.
Also the effects of the model uncertainties on the agreement of the eigenvectors is inves-
tigated and Figure 5.33 shows the posterior histograms and the corresponding marginal
PDFs of the diagonal MAC values used in order to measure the correlation between the
numerical and the experimental modal vectors obtained from the posterior samples. The
prior histograms and the initial FEM result are included in the Figure. A shift of the pos-
terior marginal PDFs towards the perfect correlation can be observed, as well as a strongly
non Gaussian behavior. Just the results related to the numerical mode shape MFEM

3 ,
MFEM

4 and MFEM
5 are shown since the other reference mode shapes are not characterized

by a significant uncertainties reduction meaning that they are not sensitive to the pertur-
bation of the considered updating parameters.
Finally, Tables 5.6 and 5.7 compares the natural frequencies and the mode shapes obtained
from the measurement to those obtained from the initial FEM and the updated numeri-
cal model using the deck and cables stiffness posterior mean values as input parameters
of the surrogate models. The second column of the table shows the value of the natural
frequencies identified experimentally; the third and the fifth columns report the natural
frequencies obtained from the initial FEM and the updated one. The other two columns
gather the relative errors. Before the updating the differences between the experimental
and the numerical natural frequencies were greater than 7% with the only exception of the
3rd numerical mode shape for which the percentage error was lower than 1%. After the
updating these errors are reduced to 1%, with the exception of the 3rd mode shape for
which the percentage error is equal to 8%.
The comparison between the experimental and numerical mode shapes before and after
the updating is carried out also in terms of diagonal MAC values. The initial numerical
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Fig. 5.32: Variation of the natural frequencies of the FEM: histograms and PDFs estimated
by Kernel Density Function related to the considered Data Set D̄2.

mode shapes and the experimental ones are characterized by high values of the MAC num-
ber (i.e. correlated vectors). After the update, the most significant increase of the MAC
values, from 73% to 92%, occurs for the 3rd mode shape (torsional), . On the contrary,
the diagonal MAC value decrease for the 2nd, the 4th and the 5th mode shapes.

5.10.3 Case 3

In this case a data set D̄3 consisting in the first six natural frequencies of the Case 2 and the
corresponding first six vibration modes is considered: D̄3 = {f2, ..., f

EXP
7 ,MEXP

2 , ...,MEXP
7 }T .

The Bayesian updating framework is implemented using the theoretical meaning of the
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Fig. 5.33: Variation of the diagonal MAC coefficients: histograms and PDFs estimated by
Kernel Density Function related to the considered Data Set D̄2.

Table 5.6: Natural frequency values of the FEM before and after Bayesian updating related
to the considered Data Set D̄2 .

Natural Frequencies[Hz]
FEM Mode Experimental Initial FE Relative Error Updated FEM Relative Error

1 1.107 1.030 0.070 1.129 0.019
2 1.693 1.514 0.106 1.685 0.004
3 1.797 1.774 0.011 1.954 0.087
4 2.474 2.184 0.117 2.445 0.011
5 2.591 2.305 0.110 2.552 0.015
6 3.307 2.982 0.098 3.338 0.009

Table 5.7: Diagonal MAC values of the FEM before and after Bayesian updating related to
the considered Data Set D̄2.

MAC Values
FEM Mode Initial FEM Updated FEM

1 0.922 0.945
2 0.886 0.865
3 0.734 0.917
4 0.831 0.785
5 0.811 0.778
6 0.920 0.998
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MAC matrix. A value of the MAC equal to 1 means perfect correlation between the an-
alytical mode shapes and the experimental ones. Therefore the residual vector at each
step of the Markov chains in Eq. 4.26 is estimated as the difference between the measured
and the model predicted natural frequencies and the difference between 1 and the effective
MAC coefficients. This kind of formulation allows to overcome the problem related to the
complex part of the experimental eigenvector being appropriate to complex modes and to
all those situations with few measurements.
The posterior marginal PDF of the random vector Θ = {Θ1,Θ2} is computed using the
same approach of Case 2, i.e. treating all the elements of the total error covariance matrix
Σ in Eq. 4.24 as additive parameters. The initial PDFs of the total error is set equal to
σf = 0.01 Hz2 for the natural frequencies and to σMAC = 0.01 for the MAC value related
to each mode shape.
The MCMC MH algorithm is applied in order to obtain the target posterior PDFs. The
algorithm generates 44,000 posterior samples that are consistent with the unscaled pos-
terior PDF that is proportional to the product between the likelihood function and the
prior PDF. The whole algorithm requires the evaluation of the deterministic solution over
150,000 times in order to ensure the convergency.
Figure 5.34a shows pairs of the accepted posterior samples. No significant linear or non
linear relationships between the updated parameters are evident indicating that no appar-
ently correlation between chain is present. Figure 5.34b shows the moving mean associated
to the stiffness of the deck and the stiffness of the cables in a semilogarithmic scale. The
convergency is reached after 150,000 steps with a burn-in period of 30,000 steps. The
autocorrelation of both of the chains is investigated showing a rapid decrease from 1 to 0
after the burn-in period.
The results of the Bayesian updating are shown in Figures 5.35a and 5.35b and Table

5.8 shows the comparison in terms of percentiles highlighting a significant reduction in the
uncertainties related to both the updated parameters.
The Θ1 posterior distribution has a mean value equal to 273 GPa, about 1.30 times the

Table 5.8: Percentiles of the posterior distribution (GPa) of the stiffness of the deck and the
stiffness of the cables related to the considered Data Set D̄3.

Percentiles Prior Stiffness of the deck [GPa] Prior Stiffness of the cables [GPa]

25th 189 268 138 175
50th 210 273 160 184
75th 231 277 181 193
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Fig. 5.34: Sample points of the posterior target PDF as obtained from MCMC MH (a).
Convergence to stationarity (b): moving averages of the stiffness of the deck (upper panel)
and the stiffness of the cables (lower panel) related to the considered Data Set D̄3.

prior mean value.
The Θ2posterior distribution is characterized by a very well evident maximum point at the
posterior mean. Compared to the prior uncertainties, the posterior uncertainties related
to this parameter are reduced because, in this case, the data set D̄3 is informative with
respect to the cables stiffness Θ2. These result was expected since the eigenvectors are
mainly influenced by the cables stiffness Θ2 as shown from the results of the global sensi-
tivity analysis. The posterior sample generated with MCMC are also used to study how
the uncertainties of the updated parameters are propagated into the uncertainties of the
modal parameters.
The forward problem is solved for each pair of posterior sampling by means of the surro-
gate models. Figure 5.36 shows the posterior histograms of the natural frequencies and the
corresponding posterior marginal PDFs obtained by the kernel density estimation. Also
the prior histograms, the initial FE model and the measured eigenfrequencies are included
in the same figure. It can be observed that due to the information included in the modal
data set D̄3, the natural frequency posterior PDFs are characterized by a well defined
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Fig. 5.35: Marginal posterior PDFs of the stiffness of the deck (a) and the stiffness of the
cables (b) considering a Data Set consisting in the first six experimentally identified natural
frequencies and the first six vibration modes D̄3.

maximum at the value of the measured natural frequency with the exception of the 1st
and the 3rd mode shape. C.o.v. of each estimated posterior PDF is calculated and val-
ues in a range 0.006 - 0.009 are observed, highlighting a significant uncertainty reduction
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with respect to both: the prior PDFs and the the posterior marginal PDFs in Case 2.
Also the effects of the model uncertainty related to the correlation of the numerical and
experimental modal vectors is investigated. Figure 5.37 shows the posterior histograms,
the corresponding PDFs and the prior histograms of the diagonal MAC values. A global
shift of the posterior PDFs towards the perfect correlation is observed. Just the results
related to MFEM

3 , MFEM
4 and MFEM

5 mode shape are shown since the other reference
mode shapes are not characterized by a significant uncertainty reduction.
The discrepancies between the experimental and the model predicted natural frequencies
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Fig. 5.36: Variation of the natural frequencies of the FEM: histograms and PDFs estimated
by Kernel Density Function related to the considered Data Set D̄3.

(in terms of relative errors) before and after model updating are summarized in Table 5.9.
The natural frequencies of the updated numerical model are obtained using the posterior
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Fig. 5.37: Variation of the diagonal MAC coefficients: histograms and PDFs estimated by
Kernel Density Function related to the considered Data Set D̄3.

mean value of the stiffness of the deck and the stiffness of the cables as input parameters
for the surrogate models. It is evident that the initial relative errors are reduced after
the updating process with the exception of the 3rd torsional mode shape, for which the
percentage error increases of about 8.7%. The calculated discrepancies between the ex-
perimental and model predicted mode shapes in terms of diagonal MAC before and after
model updating procedure are also summarized in Table 5.10. It can be observed that the
initial MAC values were greater than 0.8 also before the model updating. However, model
updating fulfills a significant improvement in the diagonal MAC values especially for the
3rd mode shape (from 73% to 93%).

A final comparison between the results of Case 2 and Case 3 is carried out in order to

Table 5.9: Natural frequency values of the FEM before and after Bayesian updating related
to the considered Data Set D̄3.

Natural Frequencies[Hz]
FEM Mode Experimental Initial FEM Relative Error Updated FEM Relative Error

1 1.107 1.030 0.070 1.143 0.032
2 1.693 1.514 0.106 1.690 0.002
3 1.797 1.774 0.011 1.974 0.098
4 2.474 2.184 0.117 2.460 0.006
5 2.591 2.305 0.110 2.576 0.006
6 3.307 2.982 0.098 3.366 0.018
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Table 5.10: Diagonal MAC values of the FEM before and after Bayesian updating related
to the considered Data Set D̄3.

MAC Values
FEM Mode Initial FEM Updated FEM

1 0.922 0.943
2 0.886 0.871
3 0.734 0.928
4 0.831 0.853
5 0.811 0.833
6 0.920 0.958
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Fig. 5.38: Natural frequencies (a) and MAC values (b) obtained from the updated numerical
model related to the considered Data Sets.

assess the importance of choosing a proper informative data set D̄ in the Bayesian updat-
ing procedure.
Figure 5.38a compares the natural frequencies obtained from the measurements to those
obtained with the initial FEM and the updated numerical model using the posterior mean
value of Θ in Case 2 and Case 3 as input parameters. The natural frequencies obtained
at the end of the updating procedure are very similar to the measured ones with relative
errors lower than 3 %, with the exception of the 3rd mode shape. Figure 5.38b compares
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the diagonal MAC values (numerical vs experimental mode shapes) before and after the
two Bayesian updating procedures when using D̄2 and D̄3 reference data sets. It is worth
noting that the diagonal MAC values are all higher, with the exception of the 2nd mode,
than those obtained with the initial FE model after the updating in both cases. Moreover,
the diagonal MAC values obtained in Case 3 are all higher, with the exception of the 1st
and the 6th modes, than those obtained in Case 2. The most significant diagonal MAC
improvement occur for the 3rd mode shape, in both, Case 2 and Case 3.
The importance of using a proper data set is also highlighted from by the 95 % centered
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Fig. 5.39: 95 % confidence intervals for the updated parameters related to the considered
Data Set.

confidence intervals estimated for the two updated parameters and plotted in Figure 5.39
for the Case 1A, Case 1B and Case 2 and Case 3.
After the updating procedure, a global reduction in the uncertainties associated to the deck
stiffness Θ1 is observed. Instead, the uncertainties related to the cables stiffness Θ2 are
significant when D̄1A, D̄2A and D̄2 are used as reference, decreasing when the updating
is carried out using D̄3 as target. Moreover, using the data set D̄1A the Θ1 posterior
mean value is very different from the posterior mean value obtained at the end of the other
updating cases.
The uncertainty propagation problem allows to define and analyze also the uncertainty
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Fig. 5.40: 95 % confidence intervals for the natural frequencies related to the considered
Data Set. 124
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Fig. 5.41: 95 % confidence intervals for the diagonal MAC values related to the considered
Data Set.

related to the natural frequencies and the mode shapes before and after the updating
framework. 95% confidence intervals of the first six natural frequencies are calculated and
shown in Figure 5.40. Blue line shows the mean value of the probability distribution be-
fore and after the updating procedures. At the end of Case 3 a significant reduction of the
uncertainties can be observed. The posterior mean value is shifted towards the measured
eigenfrequencies with the exception of the 3rd mode shape. Same procedure is carried out
for the diagonal MAC starting from the results already shown in Figures 5.33 and 5.37 and
results very similar to those obtained for the natural frequencies are observed.
It is rather evident that this framework allows for an improvement of the numerical model
by incorporating all the information contained in the available modal data. A quantitative
assessment of all the uncertainties that cannot be captured by the model parameters when
different data sets are used as reference is carried out showing how these uncertainties play
a crucial role in the updating Bayesian framework.
These results point out that an improvement of the prior model - that is conditional to
the data set - can be achieved and that the prediction error variance provides a mean for
bridging the gap between the reference data and the computed output.
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Chapter 6

The role of uncertainties on dynamic
modal parameters in damage
detection

6.1 Introduction

In recent years, structural health monitoring has gained increasing interest and attention
from the civil engineering researchers as a useful tool to identify damage or, in other
words, the "health state" of the tested structures. Vibration-based damage identification
procedures may involve continuous monitoring or repeated vibration single measurement
campaign aimed to identify changes in the dynamic characteristics of structures without
the need for more expensive and complicated inspections.
Operational modal analysis is the most suitable dynamic identification technique for esti-
mating modal parameters of structures using output-only data, i.e., without the knowledge
of input excitation. It should be remarked that this technique is based on the strong main
hypothesis that the structure to be test is subjected to an unknown excitation having lo-
cally white noise characteristics. Therefore the accuracy of the identified modal properties
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may strictly depends on the operational condition providing a not consistent dynamic and
damage identification. On the other hand the signal processing sampling parameters (e.g.
decimation and resampling, filtering and frequency resolution) selected in the preliminary
phase of signal analysis play a crucial role in the modal identification procedure. In most
of the cases a distortion of the real signal occur causing variations of the modal parameters
with respect to the real behavior of the tested structure, compared to those obtained in
presence of damage.
This chapter is firstly aimed to investigate systematically the variability of the modal pa-
rameters identified using the Enhanced Frequency Domain Decomposition method due to
the variability of several input factors. The input sources of variability include: the level
of excitation, the data collection in terms of recorded signal time length and the data
processing/analysis. The three dimensional updated numerical model of the tested cable
stayed footbridge - already deeply described in previous chapter - is used as a sort of black
box for simulating dynamic synthetic response time histories to different Gaussian white
noise base excitation. The simulated dynamic data are thus used to estimate the modal
parameters of the structure in its undamaged state by varying the signal processing pa-
rameters in order to assess an optimal time length of the signals and the most suitable
signal processing sampling parameters. These information are of particularly interest in
both single measurement campaign and continuous structural health monitoring.
Using this procedure the ability to use the Enhanced Frequency Domain Decomposition
method for vibration based damage detection is discussed. In fact, in SHM practical ap-
plications the time domain operational modal analysis methods are often preferred to the
frequency domain methods, since they are easier to be automated. On the other side the
Enhanced Frequency Domain Decomposition method is very intuitive and user friendly
and for this reason it could be particularly suitable to be used by different kind of users
(e.g. members of public administration, researchers and professionals) and for different
kind of purposes.
Having addressed the effect of measurement uncertainties, the suitability of vibration based
damage identification is finally assessed. First, a deterministic parametric sensitivity anal-
ysis is carried out in order to separately evaluate the effects induced on modal frequencies
and mode shapes by temperature and different kinds of artificial damage in terms of posi-
tion and severity. Then, starting from the obtained results, the continuous response of the
cable stayed footbridge in its damage state is simulated and the possibility to identify the
existence, the localization and the severity of damage by means of global quantities (natural
frequencies and mode shapes) in a complex redundant structure is deeply discussed.
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6.2 Effects of excitation amplitude and sampling parameters
on the dynamic modal response

The objective of this section is to investigate the variability of the modal parameters
obtained using the EFDD system identification method due to the uncertainty/variability
of the following input factors:

1. excitation amplitude (A);

2. length of structural response records used for system identification (L);

3. number of frequency lines in the output PSD spectrum (NF);

These factors are selected basing on previous works carried out during the PhD practi-
cal experience in system identification of civil structures and structural components [138]
[139].
In particular, the continuous response of the updated FE model is simulated at different
levels of white noise base input excitation. During each dynamic analysis the gravity and
the pretension loads are first applied to the model statically, followed by the base excita-
tion which is applied dynamically. As base excitation three acceleration time histories A1,
A2 and A3 are generated as Gaussian white noises having a standard deviation equal to
(1) 0.03 g, (2) 0.06 g and (3) 0.09 g respectively, where g is the acceleration of gravity.
The levels of excitation have been selected in order to assess the accuracy of the system
identification procedure also in case of moderate tremors and, in general, of high level of
excitation due to wind or to any other extreme operational conditions. It is important to
point out that the OMA methods are based on the main hypothesis that the input exci-
tation is unknown and however broadband. If this assumption is not respected additional
errors in modal parameters may arise. A direct linear modal time history with a step of
1/400 second is used as time scheme and modal damping ratios of 0.01 are assumed in all
the considered first 8 modes obtained from the numerical model in the range of frequency
0-3.5 Hz (i.e. the out of plane mode of the pylon and the longitudinal mode in Figure 5.4
and the modes Mi, i=1,...,6 in Figure 5.5).
Six different lengths of simulated structural dynamic response data are considered in each
of the three cases, namely: (L1) 2 min, (L2) 5 min, (L3) 10 min, (L4) 15 min, (L5) 30 min
and (L6) 1 hour. It should be noted that in many practical applications of OMA, long
durations of structural ambient vibration response are used in the identification process to
ensure a suitable level of accuracy. However this part of the dissertation focuses also on
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the possibility to identify dynamically the system even in case of short data.
Finally, for each level of excitation and for each time length three different frequency reso-
lution have been considered resulting from three numbers of frequency lines: (NF1) 1024,
(NF2) 2048 and (NF3) 4096 use in the output PSD estimation. Obviously, for the 2 minutes
simulated acceleration time histories just 1024 number of frequency lines are considered
since a smaller frequency resolution is not admittable.
The position and the number of virtual sensors is selected in order to obtain the same con-
figuration of the real experimental data (Figure 5.6) allowing for a complete comparison
between virtual and real experimental results discussed Section 5.4.
Table 6.1 summarizes the considered input factors and their different levels. A total num-

Table 6.1: Description of input factors and their considered levels.

Factor Description Levels

A Level of excitation A1=0.03 g, A2=0.06 g, A3=0.09 g
L Length of the virtual data L1=2 min, L2=5 min, L3=10 min

L4=15 min, L5=30 min, L6=60 min
NF Number of frequency line in PSDs NF1=1024, NF2=2048, NF3=4096

ber of identification runs equal to 48 is performed and used in order to assess the variability
of the modal parameters (i.e. natural frequencies, damping ratios and vibration modes in
terms of diagonal MAC coefficients) providing a quantification of the measurement uncer-
tainty particularly useful in future applications (i.e structural continuous monitoring).
Figure 6.1 shows the virtual acceleration response time histories and their PSDs at three
virtually monitored DOFs of the deck in vertical, horizontal and lateral directions for all
the three base excitations. It is observed that the peaks of PSD decreases as the excitation
amplitude increases, meaning that the modal parameters may be strictly depend on the
excitation amplitude.
The simulated data are decimated 20 times obtaining a Nyquist frequency much higher

than the modal frequencies of interest in the range 0 - 3.5 Hz. No digital filters are ap-
plied in signal pre processing and no spike removal is required. The EFDD is then used
for the dynamic identification, as shown in Chapter 2: the auto/cross PSD functions are
estimated using the Welch’s method with Hanning windows of different sizes depending on
the considered number of frequency lines and measurement length, and 60 % of window
overlap. The output PSDs responses matrices are then decomposed by means of SVD.
Figure 6.2 shows the spread of the ratio between the virtually identified modal properties
(natural frequencies, damping ratios and vibration modes in terms of diagonal MAC ) and
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.1: Vertical (a), horizontal (c) and longitudinal (e) time history acceleration responses
and their power spectral densities (b,d and f) for 0.03 g, 0.05g and 0.09g white noise base
excitations. 130
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those obtained from the updated numerical model. In this way it is possible to immedi-
ately evaluate the percentage errors between the numerical value and the virtual ones. It
is important to point out that the diagonal MAC is used in order to measure the degree
of correlation between the vibration modes obtained from each of the virtual experimental
response and those obtained from the updated numerical model.
First, it is important to point out that the out of plane mode of the pylon (OOP in Figure
5.4a) is never identified, as occur using the real experimental data. Further, the longitu-
dinal mode (LM in Figure 5.4b) can be easily identified in all the 48 virtual experimental
data sets; the same mode shape cannot be identified using the real data even though the
sensors location is the same.
The mixed mode M5 can be not identified in all the virtual data sets. This is mainly
due the fact that the two mixed modes M4 and M5 identified from the updated numerical
model are very similar (MAC coefficient of about 0.85) and they correspond to very close
natural frequencies respectively equal to 2.460 Hz and 2.576 Hz. In particular, the mode
shape M5 is identified using the shorter data sets when the system is excited by the low
level of excitation A1. It can be identified only from the time histories lasting more than
half an hour when the system is excited by the level of excitation A2 and, finally, it is
always identified in all the virtual data sets obtained with the level of excitation A3, with
the exception of virtual response time histories lasting 2 minutes.
It is rather evident that the modal parameter that is most sensitive to the considered in-
put factor variations is the modal damping ratio, confirming that the damping estimation
using EFDD method is characterized by a significant level of uncertainty. The natural fre-
quencies are well estimated in all the virtual data sets; on the contrary, the diagonal MAC
coefficients seem to be particularly affected by the variations of all the three considered
input factors, with the exception of the lateral mode M2 and the second vertical mode M6.
An in depth analysis is carried out in order to properly investigate which are the input
factors that affect mostly the modal response of the cable-stayed footbridge: the contri-
bution of one input factor is assessed taking the observed single input factor as fixed or
known, while the other two remaining input factors are assumed to be variable or however
unknown.
The distributions of the identified modal parameters as a function of the different am-

plitudes of excitation are reported in Figure 6.3 for a number of frequency lines equal to
1024, and for three time length of the signals: 2 minutes (left panels), 15 minutes (center
panels) and one hour (right panels) in order to show what happens for both short and long
data and for the same time length used in the experimental campaign.
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Fig. 6.2: Comparison between numerical and virtual eigenproperties: natural frequencies (a),
damping ratios (b) and diagonal MAC coefficients for varying the considering input factors.

Figures 6.3a, 6.3b and 6.3c show the significant influence of the excitation amplitude on
the distributions of the identified natural frequencies with values very different from one -
that means perfect correlation with the updated numerical model - for the highest level of
excitation (A3) in all the considered virtual data sets. Such differences are comparatively
more significant in the natural frequencies associated to the first, the second vertical (M1
and M6) and the torsional (M3) mode shapes. However, the errors remain lower than 0.5
%.
The dependance of the vibration modes from the excitation level - shown in Figures 6.3g,
6.3h and 6.3i - is not as evident as in the case of natural frequencies. The diagonal MAC
coefficients are almost aligned in the horizontal direction in all the virtual data sets with
the exception of the first vertical (M1) and the torsional vibration modes (M3) estimated
from 1 hour virtual acceleration time histories: the diagonal MAC related to M1 decreases
from 0.99 to 0.60 when the level of excitation increases from A1 to A3; same behavior is
observed for M3 but, in this case, the MAC coefficients are always lower than 0.7. On
the contrary, the other mode shapes are always characterized by a MAC coefficient greater
than 0.9 meaning almost perfect correlation with the corresponding numerical results.
The ratios between the modal damping ratio obtained from the virtual measurements and
the modal damping ratio assumed in the numerical model are far from the target unit
value, even though they are almost aligned on the horizontal direction as shown in Fig-
ures 6.3d 6.3e and 6.3f varying the virtual signal time length. This means that the level
of accuracy that can be reached in the damping ratio estimates using OMA methods in
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Fig. 6.3: Identified natural frequencies ratios (a, b, and c), damping ratios (d,e and f) and
diagonal MAC coefficients (g,h and i) as a function of the level of excitation for time length
equal to 2 minutes (left panels), 15 minutes (center panels),1 hour (right panels) and 1024
number of frequency lines.
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frequency domain is not related to the level of excitation.
The distributions of the identified modal parameters as a function of the time length of the
virtual acceleration time histories is thus discussed. Figure 6.4 shows the ratio between
the modal properties identified from the virtual data sets and those identified from the
updated numerical model only for the mode shapes that are most sensitive to variations
of this input factor: the first vertical mode shape (M1 in left panels), the lateral mode
shape (M2 in center panels) and the torsional mode shape (M3 in right panels). Having
observed that the level of excitation plays a crucial role, the dependency of all the modal
parameters with the signal time length is studied fixing 1024 number of frequency lines for
each level of excitation taken alone. All the modal parameters assume almost the same
values when virtual acceleration time histories longer than half an hour are used. For this
reason, further analysis have been carried out considering also virtual time histories lasting
40 minutes and 50 minutes. Results have confirmed that data sets lasting more than half
an hour provide almost the same results.
The natural frequencies of all the first seven mode shapes under investigation are charac-
terized by values following an irregular trend with up and down when time length lower
than 15 minutes is used. These variations depend strictly from the level of excitation. As
shown in Figures 6.4a 6.4b 6.4c the natural frequency ratio variations as a function of the
virtual signal time length increase when the level of base excitation increases.
Similar results are obtained for the diagonal MAC coefficients. MAC values level off for
short data lining up on the horizontal direction for data lasting more than half an hour
and, as shown in Figures 6.4g, 6.4h and 6.4i, the variability of the MAC with time length
of the virtual signals increase with the level of base excitation. The variations in the MAC
are significant also when the system is excited by a low base input excitation and this is
due to the fact that MAC number is sensitive to large eigenvector components.
Different results are obtained for the damping ratios. On one hand it is evident that the
dependency of damping ratios with the virtual signal time length is the same of the natu-
ral frequencies and the diagonal MAC numbers, with values fluctuating when shorter data
set are used and almost constant when longer data set are used. On the other hand the
values identified from the virtual acceleration time histories remains very far from those
hypothesized in the updated numerical model, with significant differences greater than
200% occurring for the first vertical (M1 in Figure 6.4d) and the torsional (M3 in Figure
6.4f) mode shapes.
Having assessed the crucial role of the level of excitation and and having observed that

the identified modal parameters assume constant values when virtual data set lasting more
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Fig. 6.4: Identified natural frequencies ratios (a, b, and c), damping ratios (d,e and f) and
diagonal MAC coefficients (g,h and i) as a function of the time length using 1024 number of
frequency lines.
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than 30 minutes are used, the distributions of the identified modal parameters as a function
of the number of frequency lines is reported for a signal time length equal to one hour and
for all the three level of excitation taken alone. Figure 6.5 shows the obtained results. In
particular, the effect of the number of frequency lines in the output PSDs on the natural
frequencies is almost negligible for lower level of excitation (Figure 6.5a) with maximum
percentage errors lower than 0.1%; it is significant for the highest levels of excitation (Fig-
ures 6.5b and 6.5c) with maximum percentage variations with respect to the numerical
results used as reference state of about 0.5 % for all the mode shapes with significant
vertical components.
Figures 6.5d, 6.5e and 6.5f show the variations of diagonal MAC coefficients for each con-
sidered mode shape for each of the three excitation levels A1, A2 and A3 in left, central
and right panel, respectively. On one side it is rather evident that for low level of excita-
tion the lines are almost horizontal, indicating that the effect of the frequency resolution
is negligible; on the other side, for the highest level of excitation significant variations of
the diagonal MAC occur with values higher than 12 %, with the exception of the first
longitudinal vibration mode (LM) and the vibration modes M1, M2 and M4 for which the
single lines are almost horizontal.
The damping ratio is particularly influenced by the frequency resolution as just discussed
in Chapter 2. In order to compare the results obtained by virtual data sets and those
obtained from the real experimental data (Section 5.6), the dependency of the damping
ratio with the number of frequency lines in output PSDs is studied in terms of frequency
resolution (Eq 2.65).
Figure 6.6 shows that the damping estimation is almost linearly dependent from the fre-
quency resolution, with the exception of the first and the second vertical vibration modes
(M1 and M6) for the highest level of excitation. The varying gradient of the first order
curves obtained for each mode confirms that the damping estimates depend also on the
natural frequencies of each corresponding mode shapes: maximum gradients are observed
for the lowest frequencies. This result is confirmed by the bias error on damping (Eq.
2.66) that is shown in Figures 6.6d, 6.6e and 6.6f for the level of excitation A1, A2 and
A3 respectively. Bias error on damping decreases in all the data sets when the frequency
resolution increases and the gradient of each single first order curves decreases when the
associated natural frequencies increase. The results obtained with the real experimental
data are therefore confirmed using virtual Gaussian white noise data: the frequency reso-
lution needs to be chosen such that the influence of the leakage bias is minimized. However
it is important to observe that the maximum values of the damping ratio remain very far
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Fig. 6.5: Identified natural frequencies ratios (a, b, and c), and diagonal MAC coefficients
(d,e and f) as a function of the number of frequency lines and for level of excitation A1 (left
panels), A2 (middle panels) and A3 (right panels).

from those assigned in the updated numerical model, even when a frequency resolution
corresponding to the highest number of frequency lines is used.
In order to have a quantitative complete idea of the effect of all the input factors, the

coefficients of variation of the modal parameters are estimated following the same proce-
dure of the previous result. The contribution of one input factor is assessed taking the
observed single input factor as fixed or known, while the other two remaining input factors
are assumed to be variable. Figure 6.7 shows that the variation of the identified modal
properties among the different used virtual data sets used is different. Before discussing
the results, it is important to point out that all the statistics (mean and variance) related
to the mode shape M5 cannot be considered, since just a limited number of samples are
available.
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Fig. 6.6: Identified damping ratios (a, b, and c), and bias errors on damping (d,e and f) as
a function of the number of frequency lines and for level of excitation A1 (left panels), A2
(middle panels) and A3 (right panels).

The cov of the natural frequencies are estimated for the first seven mode shapes under in-
vestigation and plotted in Figures 6.7a 6.7b and 6.7c as a function of the level of excitation,
the time length of the virtual responses and the number of frequency lines, respectively.
The maximum dispersion of the data points is obtained for the excitation levels with cov
reaching values close to 2%. This confirms the fact that the base excitation amplitude has
a significant influence on the distributions of the eigenfrequencies, especially for the higher
modes. It is noteworthy that the dispersion of the identified natural frequencies increases
significantly when the level of excitation amplitude increases. Cov of the same order of
magnitude are obtained varying the frequency resolution and the time length of the virtual
acceleration time histories. In particular, the dispersion of the natural frequencies seems
to increase when data sets lasting more than half an hour are used. This can due to the
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fact that the level of excitation continues to play a crucial role.
Similar results are obtained for the cov of the diagonal MAC coefficients when the effect
of the excitation level is considered, as shown in Figure 6.7d. The dispersion of the data is
maximum for the highest level of excitation. However, the cov assume values significantly
different than those obtained for the eigenfrequencies: close to 20% and to 15% for the
vertical (M1) and torsional (M3) mode shapes. Also the effect of the frequency resolution is
evident with cov lower than 2% only for the mixed mode shape M4 (Figure 6.7e). Finally,
the effect of the signal time length is the same of the natural frequencies albeit the order
of magnitude of the cov is completely different (Figure 6.7f).
The dispersion of the data related to the damping estimates confirms what already dis-
cussed. All the data sets are characterized by a significant dispersion with cov assuming
values always greater than 15% for all the considered input factor, as shown in Figures
6.7g, 6.7h and 6.7i.
Therefore it is possible to summarize the obtained results:

• The natural frequencies identified using all the virtual data sets are in excellent agree-
ment with the results of the updated numerical model and their inherent variation
is principally related to the higher level of excitation and to the frequency resolu-
tion: the better results are obtained for low level of excitation and higher number of
frequency lines.

• The uncertainty related to the damping ratio estimates is inherently higher the un-
certainty in the corresponding natural frequencies confirming the results already dis-
cussed in some literature works (as discussed in Chapter 2). However, in this case
study an important result is obtained: the variability/uncertainty in modal damp-
ing estimates by means of EFDD is in general attributed to the nature of the input
excitation that does not satisfy the input broadband assumption. In this case three
different Gaussian white noises are used as base input in order to not violate the
main hypothesis of the output-only dynamic identification and even in case of low
excitation level the results are not acceptable, with damping ratios assuming values
very different from those hypothesized in the updated numerical model. Obviously,
the classical damping assumed in the numerical model may not characterize well the
actual energy dissipation mechanism of the structure and, in this sense, deeper anal-
ysis would be needed to be performed in order to quantify this source of uncertainty.
However, having studied the dispersion of the results and the bias errors due to leak-
age, it is possible to assess that the level of excitation, the time length of the signals
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Fig. 6.7: Coefficients of variation of the identified natural frequencies (a,b and c), damping
ratios (d,e and f) and diagonal MAC coefficients (g,h and i) related to the singular input
factors: level of excitation (left panels), signals time length (middle panels) and number of
frequency lines (right panels).
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and frequency resolution have got a significant influence on the results related to
modal damping and that selecting a proper frequency resolution the bias errors can
be minimized.

• The diagonal MAC coefficients presents very scattered values in relation to the sin-
gle input factor. Moreover, for low level of excitation and long data the diagonal
MAC assumes values higher than 0.85 that means a good correlation within the cor-
responding numerical results with the exception of the torsional mode shape having
value of about 0.7 in all the data sets.

For all these reasons the EFDD method can be considered a useful tool for the evaluation
of the modal properties with the exception of the damping ratio, especially if a single
measurement campaign is carried out. These results are of utmost importance in the field
of SHM. In fact, both the parametric and the uncertainty analysis show clearly that when
low level of excitation occur and when signal time length lasting more than half an hour
are used, the reliability of natural frequency and the mode shape estimates is high and
that both of them can be used as indicator for damage detection. In contrast, the use of
damping as a dynamic property to represent the structural damage is not recommended.

6.3 Effects of temperature on structural frequencies

The effects of temperature variability on the measured modal properties of structures have
been addressed in several studies, as discussed in Chapter 2. Temperature variation may
not change only the modal properties of structure but also the boundary conditions of
the whole structural system. The main aim of this section is to discuss the effect of the
temperature variations on the natural frequencies and the mode shapes of the cable stayed
footbridge object of study.
The effects induced by temperature variations on modal properties are evaluated through
a deterministic analysis solving the eigenvalues problem of the structural system increasing
the value of the temperature between - 10° and + 50° C. In particular, the temperature
effects are simulated by means of a pre-stressed modal analysis starting from the deformed
equilibrium configuration under dead load, cable pre-tension and temperature effects. The
non linear static analysis solution is achieved by means of 200 incremental steps. The
equilibrium is reached at each step using the Newton - Raphson method.
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Since the variations in the natural frequencies induced by temperature effects are at least
comparable with those obtained with the different level of excitation and since the main
aim of the following procedure is to assess the possibility to identify damage occurrence in
the cables, the thermal effects are applied just on the main cables neglecting any kind of
local effects in the deck. Also the effects of temperature variations on the vibration modes
is analyzed but results are not herein shown since no significant effects are evaluated.
Figure 6.8 shows the trend of frequency ratios between the natural frequencies obtained
for ∆T 6= 0 and those obtained for ∆T = 0 for the most sensitive modes. Although the
eigenfrequency variations are very small the linear trends can be easily recognized. The
natural frequencies decrease with the increase of temperature for the out of plane mode
of the pylon, the torsional and the second vertical mode (M3 and M6, respectively); on
the contrary, the natural frequencies decrease with the increase of temperature in all the
other observed vibration modes. The variation of the longitudinal mode modal frequency
is around 0.01% under a variation of 1°C. It is interesting to observe that the two vertical
mode shapes (M1 and M6) have an opposite qualitative trend while, as it was reasonable
to expect, a very similar trend is identified for the two close mixed modes M4 and M5.
A different view of the dependencies of the natural frequencies from temperature variations
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Fig. 6.8: Frequency ratios of the most sensitive vibration modes increasing the temperature
variation ∆T : the out of plane mode of the pylon, the longitudinal mode (a), the two vertical
modes (b) and the mixed modes(c).

is highlighted in Figure 6.9, where a continuous response analysis is simulated for better
analyze the daily fluctuations of the eigenfrequencies due to different real temperature
variations. The temperature time histories taken as reference are recorded in a nearly
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weather station. Figures 6.9a and 6.9b shows the natural frequency time histories as a
function of the temperature time histories in winter and summer season respectively for
the most sensitive mode, (i.e. the longitudinal model). The relation between the two
considered quantities it is evident. Figures 6.9d and 6.9d shows the natural frequency
variations of the first and second vertical vibration mode (M1 and M6, respectively) for
the same temperature time histories. In this case it is evident the natural frequency time
histories of the two mode shapes are anticorrelated.
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Fig. 6.9: Variations of the natural frequencies in twenty days of temperature fluctuations:
(a) winter and (b, c and d) summer for the longitudinal mode LM (upper panels), and for the
first (M1) and second vertical (M6) mode shape (lower panels).
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6.4 Sensitivity of structural modal parameters to damage
scenarios

The main aim of this section is to evaluate the efficacy of permanent vibration based struc-
tural health monitoring systems for assessing the health state of the main cables without
direct and expensive investigations. Therefore a parametric analysis similar to that pre-
sented in previous section is carried out in order to evaluate numerically the main damage
effects on the modal properties. In this way a direct comparison with the measurement
uncertainties/variability and with the thermal effects is possible.
Cable - stayed footbridge are highly redundant structures that are particularly vulnerable
to different kind of events related to tension loss or to a cross section reduction due to
cyclic loads or natural corrosion. For these reasons, the cable damage is herein modeled
as a reduction of the cables stiffness under different damage scenario. Following [140], a
damage scenario is completely described by the damage level, DL, the damage extension,
DE, and the damage position, DP. Assuming the occurrence of diffused damage in a single
cable or in consecutive cables, six different DL are considered corresponding to a stiffness
reduction of about 10 % (DL1) , 20% (DL2), 30% (DL3), 40% (DL4), 50%(DL5) and 60%
(DL6) in order to assess the possibility to detect different class of damage severity. The
damage extension is a quantity able to consider that the damage may affect more cables
consecutively and it can be thus defined as the differences between the horizontal abscissa
of the damaged region: DE = x2−x1

L , where x1 and x2 are the quantities summarized
in Figure 6.10 and L is total length of cable span. It is important to point out that the
damage is assumed to be diffused in all the length if the cables and that x1 and x2 refers to
the abscissa of the connection between the damaged cable and the deck. Then the position
factor is defined as DP = x1+x2

2L .
Variations of natural frequencies and vibration modes are investigated through a para-

metric analysis focusing firstly on the effect of damage position. The six level of damage
extension are thus considered on all the cables taken alone in order to highlight the aspects
related to different level of damages induced by local failure or to impulsive high tensile
stress in the cable due to some extreme events. Thus the effect of damage position is eval-
uated for all the first eight numerical eigenfrequencies and plotted in Figures 6.11 and 6.12
in terms of ratio between the damaged fDAM and the undamaged fUND eigenfrequencies.
The pylon position is highlighted by the black dashed line. It is observed that the first
vertical (M1) and the lateral (M2) vibration modes present a similar behavior: maximum
variations of natural frequencies between damaged and undamaged state occur when the
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L 
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x1 

Fig. 6.10: Geometry overview of the cable-stayed footbridge with damaged region.

damaged cables are the most distant from the pylon and zero at the pylon position; on the
contrary, the second vertical (M8), the torsional (M3) and the two mixed mode shapes (M4
and M5) are characterized by maximum variations in the eigenfrequencies when damage
affects one of the central cables of the two different arrays of cables attached to the two
rings. The out of plane (OOP) mode of the pylon is characterized by maximum variation
in the frequency ratios when damage affect the cables attached to the lowest ring. The
longitudinal mode shape (LM) presents a singular behavior with maximum variations for
damage affecting the most external cable on the longest side of the deck. Therefore the
most sensitive modes to damage induced frequency variations are the two vertical ones.
The diagonal MAC coefficients are used again in order to measure the correlation between
the eigenvectors corresponding to the damaged and the undamaged state. In the present
case the obtained MAC values of the out of plane mode of the pylon, the longitudinal mode
and the first vertical and lateral ones are very close to one meaning that these modes are
characterized by negligible variations with different level and different damage position.
On the contrary, the other mode shapes are characterized by variations in MAC values in
a range between 2% and 3% when the damage level DL6 occur, as shown in Figure 6.13.
Maximum variations in the diagonal MAC coefficients and therefore in the eigenvectors
can be observed in the torsional mode (M3) when damage affects a single cable between
the most external ones, while all the other modes (M4, M5, M6) are characterized by sig-
nificant variation when damage occurs in one of the central cable of the two array of cables
at the two opposite sides of the pylon. It is clear that the effect of the local damage in the
diagonal MAC coefficients is significantly smaller than the effect of the level of excitation
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Fig. 6.11: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the first out of plane mode of the pylon (a), longitudinal mode (b) and the first and
second vertical vibration modes (c and d, respectively) as a function of the damage position
for damage level DL2, DL4 and DL6 .

and the signal process parameters, even when severe damage corresponding to a reduction
in stiffness of about 60% in one cable occur.
Since the position of the local damage has significant influence on the damage induced

natural frequency variations, the results of the parametric analysis carried out in order to
evaluate the effect of the different levels of damage are shown only for the damage positions
at which the maximum variations of the frequency ratio occur. In particular the maximum
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Fig. 6.12: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the lateral (a), torsional (b) and the two mixed vibration modes (c and d, respectively)
as a function of the damage position for damage level DL2, DL4 and DL6 .

eigenfrequencies variations are equal to 2.0% and 1.8% respectively for the first vertical
mode shape (M1) when the maximum level of damage DL6 affects the first cable (with
reference to the fixed reference system in Figure 6.10) and for the second vertical mode
shape (M6) when the maximum level of damage DL6 affects the first 6th cable (again, with
reference to the fixed reference system in Figure 6.10). Figure 6.14 shows the obtained re-
sults. The trend of frequency ratios varying the damage level is almost linear for all the
vibration modes. Damage always produces a reduction in the eigenfrequencies and this
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Fig. 6.13: Damage effects on the vibration modes of the cable-stayed footbridge: diagonal
MAC coefficients of the torsional (a), the two mixed (b and c, respectively) and the second
vertical vibration modes as a function of the damage position for damage level DL2, DL4 and
DL6 .

reduction increases with the increase of damage severity. It can be further observed that
the local damage induced eigenfrequencies variations for the two mixed modes (in Figure
6.14d) are so small that they lose essentially any practical interests.
The comparison between temperature and damage effects highlights that temperature

produces apparent changes in frequencies of the same order of magnitude than those pro-
duced by a significant level of local damage, with the exception of the two vertical mode
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Fig. 6.14: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the out of plane mode of the pylon and the longitudinal modes (a), the first and the
second vertical modes (b), the lateral and the torsional modes (c) and the two mixed vibration
modes (d) as a function of the damage levels for two fixed positions DP=0.0667 and DP=0.40
(corresponding to the first and the sixth cable respectively).

shapes. It is important also to observe that all the variations produced by the excita-
tion level and the signal processing parameters continue to play a crucial role providing
variations in the eigenfrequencies comparatively most significant than those produced by
this damage scenario. These results imply that in redundant structure like cable stayed
footbridge the damage quantification and localization is not possible using eigenfrequencies
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and mode shapes as control parameters.
The effect of damage extension in both natural frequencies and mode shapes is thus con-
sidered assuming that same level of damage affects more cables consecutively. This kind
of simulation is used to reproduce the effect of a severe damage diffused into a region and
due for example to a diffused corrosion process or to a local phenomena affecting the deck.
Therefore the damage induced variations in the considered numerical eigenfrequencies - as
a function of the damage position - are firstly studied and shown in Figures 6.15 and 6.16
for the different damage level affecting 4 cables consecutively in order to identify the worst
damage position. The maximum percentage variation equal to 4.5 % occur for DP=0.4
(diffused damage in the 4th,5th,6th,7th cable with reference to Figure 6.10 ) and maximum
damage level DL6 in the second vertical vibration mode (M6 in Figure 6.15d). Significant
variations higher than 2.5% occur for DP=0.80 (diffused damage in the 10th,11th,12th,13th

cable with reference to Figure 6.10 ) and for DL6 in the two mixed vibration modes (M4
and M5 in Figures 6.16c and 6.16d). It is noteworthy that, from a qualitative point of view,
the trend of the induced eigenfrequency variations is the same of that obtained in case of
damage affecting just a single cable, even though the order of magnitude is completely
different.
Therefore in the following results, two fixed damage positions are considered correspond-
ing to DP=0.40 and DP=0.80 in order to assess the relationship between the damage levels
and the damage induced natural frequency variations. Figure 6.17 shows clearly than the
trend of the frequency ratios for varying DL is almost quadratic and the most sensitive
modes are the second vertical modes (M6 in Figure 6.17b) and the torsional mode ( M3
in Figure 6.17c). Changes in frequency of the other modes especially the out of plane
mode of the pylon (OOPM) and the longitudinal mode (LM) are comparatively small with
variations lower than 0.1% for the considered damage levels (Figure 6.17a).
The same procedure is carried out in order to evaluate the effect of the same kind of dam-
age on the diagonal MAC coefficients. First, the effect of damage position is investigated
showing that the most sensitive modes are the torsional mode (M3 in Figure 6.18a), the two
mixed modes (M4 and M5 in Figures 6.18b and 6.18c) and the second vertical mode (M6
in Figure 6.18d) where maximum variations are in the range of 12-25%. The other mode
shapes are characterized by diffused damage induced diagonal MAC variations so small
that they lose any practical interest especially in comparison with the corresponding vari-
ations due to measurement uncertainty/variability and thermal effects. It is noteworthy
that the trend of the variations as a function of the damage position is almost symmetric
with respect to the pylon position, reaching maximum variations when the damage affects
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the central group of the 2 arrays of cables.
The variations in the most sensitive mode shapes as a function of the damage level are
therefore discussed and showed in Figure 6.19 with reference to the position at which max-
imum variations of MAC occur: DP=0.2667 (a) and DP=0.80 (b). The diagonal MAC
decreases rapidly with the increase of the damage level following almost a quadratic trend.
The lower variations are obtained for the second vertical mode shape (M6) while the other
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Fig. 6.15: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the first out of plane mode of the pylon (a), longitudinal mode (b) and the first and
second vertical vibration modes (c and d, respectively) as a function of the damage position
for DL2, DL4 and DL6 affecting 4 consecutive cables.
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considered mode shapes present variations in the range of 10 - 25 % for all the damage
level corresponding to a stiffness reduction higher than 30%.
The comparison between temperature and damage effects on natural frequencies highlights
that small variations in the operating conditions produces apparent changes in eigenfre-
quencies that can be likely more significant than those produced by small damage. How-
ever, when damage severity and extension increase, changes in natural frequencies are sig-
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Fig. 6.16: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the first out of plane mode of the pylon (a), longitudinal mode (b) and the first and
second vertical vibration modes (c and d, respectively) as a function of the damage position
for DL2, DL4 and DL6 affecting 4 consecutive cables.
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Fig. 6.17: Damage effects on the natural frequencies of the cable-stayed footbridge: frequency
ratios of the out of plane mode of the pylon and the longitudinal modes (a), the first and the
second vertical modes (b), the lateral and the torsional modes (c) and the two mixed vibration
modes (d) as a function of the damage levels for two fixed positions DP=0.40 and DP=0.80
with damage affecting four consecutive cables.

nificantly higher than those produced by daily and seasonal fluctuations of temperature.
Furthermore, variations of natural frequencies with temperature are linear and therefore
temperature effect can be easily removed from the identified natural frequency time histo-
ries when a lot of observations are available.
Analysis results also show that frequencies are affected by damage position, damage ex-
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Fig. 6.18: Damage effects on the vibration modes of the cable-stayed footbridge: diagonal
MAC coefficients of the torsional (a), the two mixed (b and c, respectively) and the second
vertical vibration modes as a function of the damage position for DL2, DL4 and DL6 when
damage affect four consecutive cables .

tension and level in quantitatively similar ways and therefore the damage quantification is
not possible using natural frequencies as damage indicator. In fact, when small damage
occurs (e.g single cable is subjected to maximum level of damage or consecutive cables af-
fected by minimum level of damage) the frequency shifts are almost negligible or however
smaller than the variations in the operating conditions (base excitation amplitude) and
signal processing parameters. It is also difficult to detect the damage position using nat-
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Figure 6.19: Damage effects on the vibration modes of the cable-stayed footbridge: diagonal
MAC of the torsional, the two mixed and the second vertical vibration mode shapes as a
function of the damage levels for two fixed positions DP=0.2667 (a) and DP=0.40 (b) with
damage affecting four consecutive cables.

ural frequencies since the same eigenfrequency shifts occur for different damage positions,
level and extensions.
The diagonal MAC appears to be potentially a most powerful damage sensitive feature.
The comparison between the temperature and the damage effects on the eigenvector high-
lights that small variations in temperature do not produce changes in the diagonal MAC.
On the contrary, when significant damage extension is considered, even for low level of
damage, changes in the diagonal MAC are significant. However, the eigenvectors are very
sensitive to the operating conditions (amplitude of excitation) and signal processing pa-
rameters. Moreover, results show that the damage, the operating conditions and the signal
processing parameters effects on the diagonal MAC shifts are comparatively similar making
damage identification using MAC as damage indicator actually a challenge.

6.5 Effect of uncertainties on damage detection

After the preliminary results concerning the evaluation of the effects induced on modal
frequencies and modal vectors by temperature, damage, base amplitude of excitation and
signal processing parameters, the continuous dynamic responses is simulated.
Some details on the response simulation are produced first focusing the attention on the
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main results obtained from the parametric analysis carried out in order to understand the
effect induced on the eigenproperties by the base level of excitation, the signal processing
parameters and the temperature.
First, the effect of amplitude base excitation plays a crucial role. The parametric analysis
carried out in order to quantify the measurement uncertainty has shown that the variabil-
ity of the identified modal frequencies and modal vectors is almost negligible when low
level of excitation occur (A1 and A2 with reference to the nomenclature used in Section
6.2). Furthermore when the structural system is excited by low amplitude excitation the
signal processing parameters (e.g. length of the signal, frequency resolution in the output
PSDs) do not have a significant influence on natural frequencies and vibration modes; on
the contrary, the accuracy of the experimental results depends strictly on the frequency
resolution and on the time length of the signals when high base excitation is used. For
this reason it has been chosen to simulate the continuous response using base excitation
having white noise characteristics and a standard deviation equal to 0.03g (A1) and 0.06g

(A2), where g is the acceleration of gravity.
The results of the parametric deterministic analysis carried out in order to quantify the
accuracy of the experimental results when different time length of the signals are used has
shown that a time length of half an hour can be considered as a sort of "optimal time
length" for the dynamic response time histories to be used in the EFDD method. For
this reason both modal frequencies and modal vectors are identified from continuous re-
sponse simulated time histories lasting 30 minutes, 40 minutes and 1 hour. Finally, it has
been shown that the frequency resolution does not have a crucial role in the estimation of
the eigenfrequencies and eigenvectors, therefore a number of frequency lines in the output
PSDs spectrum equal to 1024, 2048 and 4096 is used in the EFDD method.
The deterministic parametric analysis carried out in order to evaluate the effect of tem-
perature on both eigenvectors and eigenfrequencies has shown that temperature induced
eigenvector variations are negligible and that eigenfrequencies variations and changes in
temperature are characterized by a linear relation. In literature there are well established
methods for removing successfully the effect of temperature on natural frequency time his-
tories when the natural frequency and temperature variations are linearly dependent. For
this reason the simulation of continuous response is carried out neglecting the temperature
effects.
Finally the parametric deterministic sensitivity analysis carried out for the evaluation of
the damage induced effects on the system modal properties has been used in order to
choose the damage scenario (DS) to be reproduced using continuous response simulation.
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1. DS - 1:{DE = 0.0667, DP = 0.0667, DL6}
This damage scenario is characterized by a damage diffused in the 1st cable (with
reference to Figure 6.10) corresponding to a damage position DP=0.0667 with max-
imum level of damage DL6 (i.e. reduction in cable stiffness of 60%). According to
the results of the parametric analysis the maximum eigenfrequency variations are
expected at the first and second vertical mode shapes (M1 and M6).

2. DS - 2:{DE = 0.20, DP = 0.80, DL6}
This damage scenario is characterized by a damage diffused in the 10th,11th,12th,13th

cable (with reference to Figure 6.10) corresponding to a damage position DP=0.80

and to a damage extension of DE=0.20 with maximum level of damage DL6; accord-
ing to the results of the parametric analysis the maximum eigenfrequency variations
are expected at the torsional and the two mixed mode shapes (M3, M4 and M5).

3. DS - 3:{DE = 0.20, DP = 0.2667, DL6}
This damage scenario is characterized by a damage diffused in the 2nd,3rd,4th,5th

cable (with reference to Figure 6.10) corresponding to a damage position DP=0.2667

and to a damage extension of DE=0.20 with maximum level of damage DL6; accord-
ing to the results of the parametric analysis the maximum eigenvectors variations are
expected at the torsional and the two mixed mode shapes (M3, M4 and M5).

The combinations of the damage position, level and extension have been selected in or-
der to represent the artificial damage that provides the maximum variations in terms of
natural frequencies and diagonal MAC basing on the results of the numerical parametric
analysis shown in previous section. It is important to point out that the three defined
damage scenarios allow to discuss the capability of the procedure to detect damage using
the natural frequencies and the diagonal MAC as damage sensitive features when small,
moderate or severe damage occur.
The continuum response simulation is therefore performed for each damage scenario using
base excitation time histories A1 and A2 lasting two hours. Since three different time
lengths of the virtual signals (30 minutes, 40 minutes and 1 hours) are used as input in
the EFDD method and three different numbers of frequency lines (1024, 2048 and 4096)
are used for the estimation of the output PSDs spectrum, for each damage scenario a set
of 54 values of eigenfrequencies and diagonal MAC values are obtained.
Once that the variability of the modal parameters has been assessed in each damage sce-
nario by varying the considered input factors, the capability to detect the artificial damage
is discussed by comparing directly the set of eigenproperties obtained from the continuous
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response of the structure in its damaged and undamaged state.
The artificial damage in DS-1 cannot be detected using the natural frequencies and the
diagonal MAC coefficient as damage sensitive features. In fact, the set of the natural fre-
quencies and the diagonal MAC coefficients identified in all the virtual data sets obtained
from continuous response of the structure in its damaged state is not so different from the
corresponding quantities obtained in case of undamaged state. Therefore it is impossible
to distinguish if the variations in the natural frequencies and the diagonal MAC are due
to the measurement uncertainty or to the presence of a severe local damage.
The effect of the artificial damage in DS-2 on both natural frequencies and diagonal MAC
is instead evident in some mode shapes. Figure 6.20 shows the 54 values of natural fre-
quencies identified from the virtual measurements obtained from the continuous response
of the structure in its undamaged state (green empty circles). The variability of the natural
frequencies related to the level of input base excitation is highlighted. The red filled area
shows the total variability of the 54 natural frequencies identified from the different virtual
data sets obtained from the continuous response of the structure in its damaged state.
The deterministic numerical analysis has shown that the the maximum variations in the
natural frequency with respect to the undamaged state occur for the torsional mode shape
(M3) and the two mixed mode shapes (M4 and M5). This result is only partially confirmed
by the simulated response based dynamic identification procedure. In fact, the two sets of
natural frequencies corresponding to a damaged and an undamaged state are characterized
by two very well different trends only at the torsional mode shape (M3 in Figure 6.20a)
and the first mixed mode shape (M4 in Figure6.20b). The results are completely different
for the second mixed mode shape (M5 in Figure 6.20c). In this case it is clearly not pos-
sible to distinguish the effects on eigenfrequencies induced by a severe damage from the
measurement variability. Confirming the results of the deterministic numerical analysis, all
the other mode shapes are characterized by damage induced natural frequency variations
almost negligible with reference to the undamaged state showing a behavior similar to the
second vertical mode shape (M6 in Figure 6.20d).
It is noteworthy that even if the continuous response of the damaged structure is simulated
using low levels of excitation and the dynamic identification is carried using virtual signals
lasting more that 30 minutes, the variability of the eigenfrequencies remains significantly
high in the mode shapes most sensitive to the considered damage scenario.
The same kind of analysis is carried out in order to assess if the diagonal MAC coeffi-
cients can be considered an effective damage sensitive feature. According to the results
of the deterministic numerical analysis, the most significant damaged induced diagonal
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Fig. 6.20: Comparison between the distribution of eigenfrequencies identified from the virtual
continuous simulation response of the structure it its damaged and undamaged state for the
torsional mode shape M3 (a), the two mixed mode shapes M4 and M5 (b and c) and the
second vertical mode shape M6 (d) in damage scenario DS-2.

MAC variations are expected at the torsional (M3) and the two mixed mode shapes (M4
and M5). Also in this case this result is confirmed only partially. In fact, the two sets of
diagonal MAC coefficients obtained from the virtual continuous dynamic response of the
structure in its damaged and undamaged state follow two very well separated trends only
when the first mixed mode shape (M4 in Figure 6.21c) is considered. The torsional and the
second mixed mode shapes (M3 and M5, respectively) present an opposite behavior: the
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variability of the diagonal MAC coefficients related to the undamaged state is so high that
damage induced diagonal MAC variations cannot be distinguished from the uncertainty
due to the operating conditions (Figures 6.21b and 6.21d).
It is important to note that even if the deterministic parametric analysis has not shown
significant variations in the diagonal MAC coefficient related to the first vertical mode
shape (M1 in Figure 6.21a) the two sets of diagonal MAC coefficients obtained from the
virtual continuous dynamic response of the structure in its damaged and undamaged state
follow two very well separated trends.
The effect of the artificial damage in DS-3 is again analyzed in terms of variations of nat-
ural frequencies and diagonal MAC coefficients between the damaged and the undamaged
state.
Figure 6.22 shows the comparison between the two sets of natural frequencies obtained
from continuous structural responses of the structure in damaged and undamaged state
for the torsional and the two mixed modes (M3, M4 and M5). It is important to ob-
serve that in this damage scenario the results of the parametric deterministic analysis have
shown that the most significant damage induced variations in the eigenfrequencies with
reference to the undamaged state occur for the torsional and the mixed mode shapes (M3,
M4 and M5 in Figures 6.22a 6.22b and 6.22c). Also in this case results are only partially
confirmed by the continuous response simulation of the damaged structure. The two sets
of eigenfrequencies follow two very well separated trends only for the torsional and the first
mixed mode shape (M3 and M4).
The same kind of analysis is carried out for analyzing the damage induced eigenvector

variations in terms of diagonal MAC coefficients. According to the results of the determin-
istic numerical analysis the most significant damaged induced diagonal MAC variations
are expected for the torsional (M3) and the two mixed mode shapes (M4 and M5). As in
previous damage scenario this result is confirmed only partially. In fact, the two sets of
diagonal MAC coefficients obtained from the virtual continuous dynamic response of the
structure in its damaged and undamaged state follow two very well separated trends only
in correspondence of the first mixed mode shape (M4 in figure 6.23c). The variability of
the diagonal MAC coefficient in the torsional (M3 in figure 6.23b) and the second mixed
mode shape (M5 in Figure 6.23d) related to the undamaged state is so high that damage
induced diagonal MAC variations cannot be distinguished from the uncertainty due to the
operating conditions.
Furthermore - as in previous damage scenario analysis - the two sets of diagonal MAC
coefficients related to the first vertical mode shape (M1 in Figure 6.23a) in a damaged and
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Fig. 6.21: Comparison between the distribution of diagonal MAC identified from the virtual
continuous simulation response of the structure it its damaged and undamaged state for the
first vertical mode M1(a) torsional mode shape M3 (b) and the two mixed mode shapes M4
and M5 (b and c) in damage scenario DS-2 .

undamaged state follow very well separated trends, even though the parametric determin-
istic analysis has shown that the first vertical mode shape is not one of the most sensitive
to damage induced variations.
Summarizing, the eigenproperties variations between the damaged and the undamaged

state cannot be recognized using continuous response simulation when a localized severe
damage occur as in damage scenario DS-1. On the contrary, eigenfrequencies and eigen-
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Fig. 6.22: Comparison between the distribution of eigenfrequencies identified from the virtual
continuous simulation response of the structure it its damaged and undamaged state for the
torsional mode shape M3 (a) and the two mixed mode shapes M4 and M5 (c and d) in damage
scenario DS-3.

vectors variations between the damaged and the undamaged state can be recognized using
continuous response simulation when damage is severe in terms of both damage position
and damage extension.
Usually in literature the damage identification is performed by considering just the natural
frequencies as suitable damage indicator. In this application, the diagonal MAC appears to
be a powerful damage detection feature. This is due to the fact that the cable stayed foot-
bridge is an high redundant structure and the eigenvectors, that reflects the distribution of
the mass, the stiffness and the boundary conditions of the model, are most influenced by
damage occurring on the cables. Furthermore even if the MAC matrix is a global quantity
able to estimate the correlation between two different modal vectors, it is very sensitive
also to small variations in single modal components.
Finally, as discussed in the previous section, the damage localization and quantification
remains still a challenge since the effect of damage position, extension and severity provide
comparable variations in both natural frequencies and MAC coefficients.
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Fig. 6.23: Comparison between the distribution of diagonal MAC identified from the virtual
continuous simulation response of the structure it its damaged and undamaged state for the
first vertical mode M1(a) torsional mode shape M3 (b) and the two mixed mode shapes M4
and M5 (b and c) in damage scenario DS-3 .
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Chapter 7

Conclusions

The present dissertation has dealt with the role of uncertainties in structural dynamic iden-
tification and damage detection. This chapter summarizes the most important conclusions
of the thesis responding appropriately to the three research questions stated in Chapter 1:

(a) Is it possible to reduce the uncertainties related to the modal parameter estimates due
to different operating conditions occurring during the tests and signal sampling parameters?

(b) Is it possible to identify the existence, the localization and the severity of damage by
means of global quantities such as the modal parameters? Which are the most suitable
damage indicators to be used?

(c) Is it possible to overcome the limitations of the Bayesian updating framework speeding
up the posterior evaluation by means of suitable and reliable procedures?

First, the issue of reducing the computational costs related to the posterior evaluation in
structural identification of complex structure such as cable stayed footbridge when real
experimental modal data are used as target has been addressed.

164



Chapter 7 Conclusions

The first stage of this work involved full scale ambient vibration tests to estimate the modal
parameters of the structural system: natural frequencies, vibration modes and damping
ratios. In particular, damping ratio estimates have been evaluated by varying the sampling
parameters in order to assess the reliability of the obtained results. On the other side, the
initial three-dimensional finite element numerical model of the footbridge has been de-
veloped taking into account the significance of non linear behavior of this class of bridge
that is mainly due to cable sag and large deflection. An in depth sensitivity analysis is
carried out from a deterministic and a probabilistic point of view for selecting the updated
parameters in an efficient manner determining all the physical parameters having effects
on the measured natural frequencies and mode shapes used as reference in the updating
framework.
The finite element model response has been approximated by surrogate models in order
to reduce significantly the computational burden using Polynomial Chaos representation
method. The use of this kind of surrogate models in finite element analysis is well known
in literature for representing the model predicted natural frequencies. In the proposed
framework the polynomial chaos expansion based surrogate models have been extended
and used for approximating both natural frequencies and eigenvector components, allow-
ing to explicitly treat the experimental modal vector components as target in the Bayesian
updating framework. Furthermore, the deterministic coefficients have been estimated com-
bining least square minimization method and Gaussian quadrature rule making the whole
procedure easy to be implemented from a computational point of view and particularly
suitable to be used in continuous real time monitoring applications.
The posterior distribution has been evaluated using classical Markov Chain Monte Carlo -
Metropolis Hastings procedure replacing the solution of the deterministic numerical model
with the surrogate solution at each step of the chain. The importance of using an infor-
mative data set in the whole updating procedure has been demonstrated by a quantitative
assessment of the remaining model uncertainties when different reference data sets are
used.
Two main intermediate contributions are introduced to overcome the main limitations
about the use of real experimental modal data: the first one regards the capability to take
into account the correlation of model prediction errors during the procedure for the evalu-
ation of the posterior distribution; the second one regards the formulation of the likelihood
function rewritten in terms of modal assurance criterion when modal vectors are included
in the reference data set. The modal vector prediction error is considered as the distance
between perfect correlation and actual correlation for pair of experimental and numerical
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eigenvectors.
Since it has been proven that the least square minimization is a suitable computational
method for tuning the surrogate models and that the spectral expansion method can be
used for the evaluation of the posterior distributions, the proposed procedure lends itself
to be used in real time Structural Health Monitoring applications for assessing the perfor-
mance of structures.
Therefore, a natural future development of this research work is to assess the effectiveness
of the Bayesian updating to identify damage in terms of stiffness loss when small variations
in the modal properties occur.

Second, the issue of analyzing the measurement uncertainties has been faced. The En-
hanced Frequency Domain Decomposition method has been selected for extracting the
modal parameters of the cable stayed footbridge in order to assess the capability of this
method to be used in real time Structural Health Monitoring applications. Usually differ-
ent methods (e.g. Stochastic Subspace Identification) easier to be automatized are used.
Actually the Enhanced Frequency Domain Decomposition is a user friendly output only
dynamic identification technique and therefore particularly suitable to be used by different
kind of users with different level of details. In fact, the main scope of Structural Health
Monitoring is to continuously monitor the evolution in time of the main modal parameters
in order to detect damage when some change occur. This could be particularly useful for
public administrations in maintenance programs, for Civil Defense in post emergency state
management or for engineerings and practitioners in structural design and verification.
The main hypotheses at the base of Enhanced Frequency Domain Decomposition is that the
structure is subjected to some kind of load excitation having white noise characteristics and
that the structure is lightly damped. For this reason the measurement uncertainty analysis
has been carried out when these two main assumptions are complied. The footbridge up-
dated numerical model has been dynamically loaded by white noise base excitations with
different amplitude in order to assess the effectiveness of the considered dynamic identifi-
cation technique to provide natural frequencies, vibration modes and damping ratio when
high excitation levels occur, e.g tremors or micro tremors. Then, the system identification
has been performed using pseudo experimental response time histories by varying the sig-
nal sampling parameters (time length of the signals and frequency resolution of the output
Power Spectral Density spectrum).
It has been shown that the variability of the natural frequencies and the vibration modes is
related mainly to the base excitation amplitude and that the Enhanced Frequency Domain
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Decomposition can provide misleading results when high excitation levels occur. Further-
more, an optimal time length of the signal has been obtained providing a useful recom-
mendation for data processing in both single ambient vibration measurement campaign
and continuous monitoring. Completely different results have been obtained for damping
ratios: on one side, the considered sources of uncertainty has significant influence on the
results and the frequency resolution of the output Power Spectral Density spectrum can
be properly chosen for minimizing the leakage bias errors; on the other side, the obtained
damping ratio estimates are not so accurate. Therefore the damping ratio estimation using
output only dynamic identification technique in frequency domain remains a challenge.
For all these reasons the Enhanced Frequency Domain Decomposition method can be con-
sidered a reliable dynamic identification technique for natural frequencies and vibration
modes. The natural future development for this research work is to quantify the uncer-
tainties of the modal properties when different kind and a vast amount of real data are used.

The third issue concerning the damage detection - in terms of damage existence, loca-
tion and quantification - has been finally addressed taking into account the measurement
uncertainties.
Despite the vast amount of literature works, a lack of knowledge on the actual effectiveness
of vibration based damage detection can be recognized. Trying to bridging this gap the last
part of the thesis is focused on closing the procedure - which goes from modal properties
extraction and structural parameters identification - by discussing the capability to detect
a damage in complex redundant structure such as cable stayed footbridges by global quan-
tity (mainly natural frequencies and vibration modes) variations used as damage sensitive
features.
The updated footbridge numerical model is employed for comparing damage induced vari-
ations of natural frequencies and modal assurance criterion diagonal matrix with those
induced by temperature variations and those produced by all the uncertainty related to
system identification. The analytical model in different damaged state has been also used
for generating pseudo experimental random response when different kind of dynamic base
excitation occur. The modal parameters have been extracted from such experimental data
and have been used for revealing the presence of a damage through direct comparison with
the set of modal parameters identified from pseudo experimental data obtained in case of
undamaged structure and accounting for measurement uncertainties.
Usually in literature the damage identification is performed by considering just the natural
frequencies as suitable damage indicator. In this application, the diagonal modal assurance
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criterion matrix appears to be a powerful damage detection feature, since it is the only
global quantity able to provide information about local damage phenomena being strongly
dependent to the spatial sensors location.
The damage presence can be identified only when severe damage occurs while the damage
localization and quantification remains a challenge since the effect of the damage position
and extension provides comparable variations in both natural frequencies and modal as-
surance criterion matrix.
The presented results have been entirely based on simulated data under the main hypothe-
ses of output only dynamic identification techniques validity. In this sense, a natural future
development of this work is to extend the obtained results accounting for different external
factors such as wind and measurement noise.
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