
PHD PROGRAM IN SMART COMPUTING

DIPARTIMENTO DI INGEGNERIA DELLINFORMAZIONE (DINFO)

A VARIATIONAL FRAMEWORK

FOR LAWS OF LEARNING

ALESSANDRO BETTI

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing



This page intentionally left blank



PhD Program in Smart Computing

University of Florence, University of Pisa, University of Siena

A VARIATIONAL FRAMEWORK

FOR LAWS OF LEARNING

ALESSANDRO BETTI

Advisor: Prof. MARCO GORI

Head of the PhD Program: Prof. PAOLO FRASCONI

Evaluation:
Committee

Prof. MICHAEL BRONSTEIN Imperial College London
Prof. ULISSE STEFANELLI University of Vienna

XXXII ciclo—October 2019



I imagine this midnight moments forest:

Something else is alive

Beside the clocks loneliness

And this blank page where my fingers move.

— TED HUGHES, The Hawk in the Rain (1957)



To my grandfather Ettore,

whose love for knowledge

has been an absolute model

and source of inspiration.



Acknowledgments. I would like to thank my advisor Marco Gori for his guid-
ance throughout my PhD studies and for all the long and invaluable discussions
we had during these years. His constant presence and continuous interaction
has been the main source to many of the ideas at the basis of this work. I
thank Stefano Melacci for his crucial contribution to the development of software
and to the preparation and conduction of the experimental campaigns. A very
special thank goes to Giovanni Bellettini who assisted and advised me on many
mathematical issues mainly concerning variational calculus. Many thanks to
the members of my Supervisory Committee, Giuseppe Boccignone and Stefano
Soatto for their authoritative feedback on my work.



PREFACE

Set N equal to 1

Begin reading Chapter N .

— DONALD E. KNUTH, The Art of Computer Programming vol. 1 (1997)

As Galileo expressed very plainly in its famous work Il Saggiatore, the way
which has turned out to be most effective to describe natural phenomena is
though the study of mathematical models which are able to capture, to some
extent, the salient features (or the ones that we believe to be mostly relevant) of
the process that we observe. He stated indeed that:

La filosofia è scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l’universo), ma non si può intendere se
prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali
è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli,
cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a
intenderne umanamente parola; senza questi è un aggirarsi vanamente
per un oscuro laberinto.

This translation into mathematical language is usually done through a math-
ematical framework that is expressive enough to host all the possible configura-
tions of interest. To do this we typically end up with spaces of configurations
that are much richer that the one that we can observe. Then the ability of the
translator (the scientist) is to find relations and constraints between the param-
eters that defines the large space of configurations that render the behaviour of
the model similar to the behaviour observed in nature. Scientists usually call
this set of relations laws.

A very important type of laws are evolution laws; that is to say the rules by
which the configurations of our mathematical description changes in time when
we start from a known configuration. For example Newton’s laws of motion are
evolution laws, while, on the other hand, the laws that characterizes the shape
of a chain that hangs on a wall nailed to it by the two endpoints is not, as it is
concerned with the relative position of the links of the chain against the wall.
However physics has showed us many times how most of the phenomena that we
perceive as stationary are actually the asymptotic value of a dynamical process
and that the knowledge of the laws of evolution in most of the cases is much more
informative than the knowledge of only the laws of a system at equilibrium.

The aim of this work is to start to investigate whether and how it is possible
to formulate learning as an evolution problem.

vii



viii PREFACE

The basic intuition behind this idea is the fact that many problems in
learning naturally presents themselves as a coherent stream of information which
have its proper dynamics and temporal scales; one emblematic example is that
of visual information. However nowadays most of the approaches to learning
completely disregard, at all, or in first approximation, this property of the
information on which the learning should be performed. As a result the problem
is typically formulated as a “static” optimization problem on the parameters
that define a learning model.

Formulating a learning theory in terms of evolution laws instead shifts
the attention to the dynamical behaviour of the learner during the process of
learning. As we commented above this gives us the opportunity, for those agents
that lives into streams of data, to couple their dynamics with the information
that flows from the environment. Another advantage that we see in this approach
is the possibility to incorporate into the temporal laws of learning dynamical
constraints that, for example, we know that they will enhance the quality of the
leaning.

We begin our analysis in Chapter 1 by showing how typical machine learning
problems can be defined when data is available as a function of time. In particular
we show the affinity between typical loss functions of ML and potential functions
of classical mechanics both in the time independent case (what in machine
learning we would call batch mode) and the time dependent case (that will
induce an online learning problem). Then we go on and discuss possible temporal
evolutions laws for the parameters that defines the learning model. In the last
section of the chapter we give an important consistency results for a class of
evolution laws that shows how, in the case where there is interaction with an
environment, the out-of-equilibrium dynamics gives consistent predictions on
consistent external stimuli.

The analysis of the first chapter is carried on in Chapter 2 where we show
how we can formulate learning theories using variational methods. Despite the
natural way in which learning problem can be formulated by means of calculus
of variations we faced and analyzed the problem of causality that very soon rises
when we try to formalize an evolution problem using integral functional index.
Eventually we will apply the theory of lagrange multipliers for variational prob-
lems to show how it is possible to reformulate learning problems concerning NN
in terms of constrained variational problems; this general theory is particularly
useful in view of the material discussed in the last chapter.

Finally Chapter 3 is devoted to the development of a theory of extraction
of visual features from videos mostly using unsupervised techniques. The whole
theory is based on three different kind of principle:

1. Regularity;

2. Maximization of mutual information;

3. Enforcement of a dynamical consistency constraint.

These principles are then used to define a variational index based on convo-
lutional features from which the dynamics of the convolutional filters are derived.
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This last Chapter closes with a section that revises some aspects of the theory
proposed in the first two sections of the chapter on the basis of experimental
results and on the analyses described in Chapter 1 and 2.

Firenze A.B.
October 2019

In the process of learning to cook

we build an intuition about

the underlying science as well.

We know that a copper pan heats more evenly

than one made with iron, although we may

not be able to explain why.

— Modernist Cuisine, vol. 1, (2011)
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CHAPTER ONE

LEARNING IN ERGODIC ENVIRONMENTS

Imagine how hard it would be to use a dictionary

if its words were not alphabetized!

— DONALD E. KNUTH, in The Art of Computer Programming, vol. 3,

Sorting and Searching (1998)

Time as he grows old teaches all things.

— AESCHYLUS, in Prometheus Bound (l. 981)

All kinds of learning are concerned with data; more precisely learning consists
in the exposure and the interaction of a learning agent (an entity that has some
degree of adaptation) with information that comes from the environment. In
machine learning agents are computers while environments consists of sets of ex-
amples that are typically static structures in which the program that implements
the learning algorithm have free access and, in principle, can retrieve any kind
of information at any step of the process of learning.

This scenario, of course, contrasts with the way in which human agents
interacts with data. The environment in which humans dwell is not static, and
the agents do not have direct access to any kind of information any time they
want: Memory indeed is a property of the agent not of the environment itself.
What we can observe is that humans (or any other known biological agent with
learning capabilities) live and learn in temporal environments.

In this chapter we will discuss how it is possible to reformulate classical con-
cepts of machine learning when we work with temporal signals (one dimensional
manifolds) in an Euclidean space: t 7→ x(t) ∈ Ω, with Ω generally being a subset
of a high dimensional euclidean space that contains all the learnable information.

The duality that can be established between a probability space (like the
one in which ML is usually defined) and suitable trajectories on the space itself
that relates the probability associated with a small volume of the space with the
time spent by the trajectory in the same volume, is a fundamental concept used
fruitfully both in physics and, more generally, in the study of probability spaces.
In statistical mechanics Bolzmann [8] introduced the ergodic hypothesis in order
to have such relation for trajectories in phase space; more precisely Bolzmann
hypothesized that each orbit starting from an initial point in phase space having
a certain energy would generate the the whole energy surface (indeed the word
ergodic is a composite word that originates from the Greek words ἔργον that
means work and ὁδός that is path). From this hypothesis Bolzmann, showed

1



2 LEARNING IN ERGODIC ENVIRONMENTS 1

that means in time and in phase space are equal. Nowadays we usually refers to
ergodicity as the properties that the flow in phase space needs to have in order to
have equal means in space and in time over real valued functions (see [57]). More
generally ergodic theory now study the actions of groups on measure spaces.

In statistical mechanics, Bolzmann ideas were used to transform time av-
erages of quantities evaluated on huge numbers (of the order of magnitude of
the Avogadro number) of trajectories described by two times many first-order
differential equations (Hamilton’s equations) in averages over phase space with a
measure that for some thermodynamical systems (see [29] for precise statements)
can be derived explicitly. In this sense we can say that statistical mechanics takes
advantage of ergodicity to go from time formulation to timeless formulation. On
the opposite, all the derivations presented in this chapter are based on the belief
that that in (some problems of) learning is exactly the other way around.

We will begin by showing the ergodic translation of the functional risk in
machine learning; this will represent the starting point to reformulate learning
as a class of problems directly in the temporal dimension and to discuss and
analyze different possible continuous temporal dynamics for the parameters of a
learning model.
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1.1. ERGODIC ASSUMPTION IN LEARNING

Because of the generality of the arguments that we will be discussing below we
do not need to focus on a particular type of machine learning problem; indeed it
is not even necessary to distinguish (up to a certain point) between supervised
and unsupervised problems. We only require to have the following spaces and
structures:

1. An environmental space Ω that contains all the information relevant for the
learning;

2. A learning machine (sometimes also called agent) characterized by some
adjustable parameters ω ∈ RN ;

3. A loss function v that measure how much the agent is “learning” from the
environment.

We shall also assume that the information that comes from the environment can
always be represented as elements of a finite dimensional real vector space.

In standard (statistical) learning theory [56] it is assumed that the data in Ω
are generated according to some fixed probability distribution function, so that
the setting in which the theory is framed is that of measure theory. We will now
show how this ideas together with ergodicity naturally suggests a transition from
risk functions to potentials.

1.1.1. Risks and Potentials

First of all assume, as already mentioned, that the environment information is
encoded into points of

Ω ⊂
{

Rd ×Rn, supervised learning;
Rd, unsupervised learning.

()

Indeed in supervised learning the environment both supplies the examples (points
inRd) and the supervisions (points ofRn) while unsupervised tasks are all about
data. One typically thinks that the learner is exposed to the information of Ω
drawn with a specific distribution that completely characterize the ML task that
one is facing. We let π:F ⊂ ℘(Ω) → [0, 1], π(Ω) = 1 be a probability measure
over the set Ω; here ℘(Ω) is the power set of Ω. Since we are working with subsets
of real vector spaces we mainly think to π as strictly related to the Lebesgue
measure.

The other missing ingredient is a way of measuring the performances of the
agent; this can be done by means of a loss function v:RN ×Ω → [0,+∞] that we
assume to be v(ω, ·) π-integrable. Such function takes as inputs the parameters
ω that describe the agent in a certain stage of learning and an example from the
environment and establish how appropriate are the weights* ω for the task that
we want to learn**.

* In neural network the parameters are the weights of the neurons. For this reason in what
follows we will use the word “weights” as a synonymous of parameters even when we are not
considering a NN.

** Sometimes in the ML literature (see for example [21]), the loss function is considered to
be a function that takes as an input not just the model parameters ω and the data point x ∈ Ω
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The risk functional (or functional risk) is classically defined as: TakeX : Ω →
Ω to be the identity random variable and consider

V (ω) := E v(ω,X) =

∫

Ω

v(ω, x) dπ(x). ()

The typical problem of machine learning can be then concisely summed up as
the search of the “best” parameters w in the sense that

w = argmin{V (ω) | ω ∈ RN}. ()

Since the probability measure π is not usually known, a standard procedure is
that of approximating V with the empirical risk : Suppose that instead of π you
get to know a sample of ℓ elements X1 = x1, . . . , Xℓ = xℓ. Then a very crude
(but effective) way of approximating π is the following:

π ≈ πℓ :=
1

ℓ

ℓ
∑

k=1

δxk
, ()

where* δp(T ) := [p∈T ] for all T ⊂ Ω is the Dirac measure. In doing so the
expectation value in () becomes a sum:

V (ω) ≈
∫

Ω

v(ω, x) dπℓ(x) =
1

ℓ

ℓ
∑

k=1

v(ω, xk), ()

that is what is usually referred to as empirical risk [56].
As anticipated at the beginning of this chapter, however, we are interested

into another kind of representation of the risk functional, namely one based on
the existence of a trajectory t 7→ x(t) in the environment space Ω. For the
moment we do not assume any kind of regularity on the function x other than
that of being Lebesgue measurable. On the other hand we make a strong ergodic
hypothesis on x, namely we assume that x is such that

U(ω) := lim
T→∞

1

T

∫ T

0

v(ω, x(t)) dt = V (ω). ()

In general this can be quite a demanding hypothesis on the form of x and one
may rise concerns even on the existence of such trajectories. Therefore some
observations are due at this point. First of all it is important to notice that as
it happens for the empirical risk, also Eq. () can be in principle rather effective
for learning purposes also if it holds only up to a certain approximation. The
second, and most pertinent observation is the fact that for many learning tasks
(like many of the tasks that human can solve in vision) we believe that the
relevant statistic is the one contained in a temporal signal and, as it happens in
physics, the probability distribution that appears in the risk functional can be

but these quantities are given to the criterion trough the model itself: If f(ω, x) is the model
for computing the output then the loss is sometimes defined as v(f(ω, x), x).

* We use the Iverson’s bracket notation [statement]; this quantity is equal to 1 if statement
is true, and to 0 otherwise.
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constructed from it. Elaborating on this idea, of course, all the tasks in which the
probability measure is constructed starting from a temporal signal by definition
clearly satisfy ().

Relation () is a first step towards a possible reformulation of machine
learning where temporal dynamics of the parameters of the model are considered
from a principled way. The strict correspondence that we get here is restricted
to the case when the environmental information is, in some sense, accumulated
in a time independent quantity*. However one may start to ask what happens if
we start to define a local-in-time criterion for the parameters of the model based
on the environmental information.

At this point in order to avoid confusion in talking about temporal dynamics
it is necessary to distinguish between two important and separate concepts:

1. The temporal dynamics of the environment, that is defined by x(t);

2. The dynamics of learning that basically it is the way in which the parameters
of the underlying model change to adapt and learn from the environment.

Of course 2. is more general than 1. in the sense that dynamics of the parameters
(as we will see for example in batch mode learning) can be based on mechanisms
that do not require a temporal interaction with the environment, while the
knowledge of the evolution processes of the environment in itself, if not related to
the dynamics of the parameters, is of no interest in learning. It is also natural to
think whether it is always better to formulate learning problems in terms of the
optimization problem stated in () or if it may be the case of looking for proper
laws of learning [5] which prescribe the whole evolution of weights possibly taking
into account possible stimuli that comes from the environment and, of course,
go eventually in the direction of improving learning performances.

In order to stress this change of prospective, from learning algorithms cru-
cially based on optimization techniques that are mere tools to accomplish () to
implementations of proper laws of learning, we would also like to replace the term
risk with the more evocative potential. In doing so we also legitimate explicit
temporal (in the sense of 1. above) dependencies of the potential.

We will now proceed at examining possible ways to construct potentials
starting from the loss function; then we will begin to look for possible the
dynamical laws for the parameters based on the potentials.

Learning Potentials. The simplest and ready-to-use potential that ensure di-
rect connections not only with classical statistical learning but also with classical
mechanics is the batch potential U(ω) as it is defined in Eq. (). This is a time
independent potential that, under the ergodic hypothesis, coincides with the risk
V (ω). Whenever ergodic hypothesis does not hold, U(ω) can still be thought of
as an approximation of the empirical risk.

* In Eq. () after all we are still considering averages so that we cannot tell the differences
in learning if we consider the trajectory with opposite velocity in which the environment is
visited in the reversed order
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In the opposite direction goes the fully “online” potential

U(ω, t) := v(ω, x(t)), ()

which has an explicit time dependence that describes the interaction with the
environment. Notice that for constant signals this potential collapses, as it
should, to the batch potential so we may conjecture that for slowly varying
signals online and batch potentials may give similar learning phenomena.

In between the two extreme cases, we can also came up with some time-
dependent potential that bears memory of the past information:

U(ω, t) :=
1

t

∫ t

0

v(ω, x(s)) ds. ()

For the moment let us consider these three kind of potentials and let us now
focus on the definition of the learning problem itself. Later in this chapter we
will analyze another potential that can be regarded as a natural transposition in
time of the regularization theory proposed by T. Poggio and F. Girosi [44].
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1.2. LAWS OF MOTION

Driven by the idea that we can model a learning process in terms of interaction
with the environment, we allowed our parameter selection criterion to have an
explicit time dependence. In terms of the definition of the learning problem this
has, of course, some repercussions. While batch mode learning can be always
be formulated by means of Eq. 1.1.1–(), when using a potential that explicitly
depends on time it is no more clear how the problem should be formulated. The
first guess is that one can define the evolution of the parameters, i.e. construct
the map t 7→ w(t), by solving a series of minima problems

w(t) := argmin
ω∈RN

U(ω, t), ()

one for each instant of time t.
However this first attempt does not yield an interesting learning behaviour as

for each t we are solving an independent problem. For example if the dependence
on t is periodic (assuming all the minimum problems are well defined) the
resulting dynamics for w would be an oscillatory non-convergent dynamics.

The simplest solution for this problem is to define a dynamics that updates
the weights based on a goal, the potential—possibly time variant—and to
the previous values of the weights. A very simple mathematical model that
nicely interprets this idea, is an ordinary differential equation (ODE). So we will
henceforth assume that the trajectory t 7→ w(t) is the solution of an ODE: After
all, the most used optimization method for 1.1.1–() used in ML is gradient
descent (GD) which is nothing but the discrete version of a first order ODE. In
the remaining part of this section we will analyze the dynamics yield by a first-
order and second-order ODEs. The structure of these equations will be inspired
to that of classical mechanics, the idea being that mechanical systems, when
they are allowed to loose energy, will try to sit into a minimum of the potential.

1.2.1. Time-independent Potentials

In order to easily compare this with the problem stated in 1.1.1–() we will, for
now, restrict ourselves to the time-independent case. In the next section we will
instead focus on time-dependent potentials.

First order equation. The first first-order dynamics that we will consider is
a gradient flow dynamic:

ẇ(t) = −η∇U(w(t)), η > 0, ()

where ∇U(ω) is the gradient of U . In terms of learning this, as we already
mentioned, is the analogous of full GD on the potential U , which is the standard
ML method with which the minimization of the empirical risk is attained.

The physical interpretation of these equations is not completely apparent;
however these where the equation of motion for particles proposed by Aristotele*
[Ph 215a25].

* Actually from Aristotele’s arguments one can only deduce that the speed of a body (in a
gravitational field) would go to infinity when we let the density of the fluid go to zero. Recently,
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This simple ODE has very nice relations with the minimum problem 1.1.1–
() since it represent a gradient flow on the function U . Indeed by multiplying
Eq. () from both sides by ẇ we get |w(t)|2 = −η∇U(w(t)) · ẇ(t) that implies

dU(w(t))

dt
= −1

η
|ẇ(t)|2 < 0. ()

This is the statement that U is a Lyapunov function.

Second order equation. The analogous of Eq. () is

µẅ(t) = −∇U(w(t)). ()

This equation however, as it is well known, has a very different behaviour. By
again multiplying each side of Eq. () by ẇ we get

d

dt
U(w(t)) = − d

dt

(

1

2
|ẇ(t)|2

)

, ()

so that when the magnitude of the velocity ẇ goes down the potential goes up
and vice versa; indeed we know that Eq. () admits oscillatory solutions. This
being said, this model, that in physics represents the motion of a particle subject
only to conservative forces, is not of interest in learning.

Consider instead the following equation

µẅ(t) + θẇ(t) +∇U(w(t)) = 0 µ, θ > 0. ()

Notice that Eq. (5) is the continuous form of a classic multistep first-order
method (see [46]):

wk+1 = wk − α∇U(wk) + β(wk − wk−1), α, β ≥ 0, ()

called the heavy ball method since Eq. () can be interpreted as the equation of
motion of an heavy ball with friction subject to the potential U(w). Therefore
from the point of view of machine learning this dynamics really goes in the
direction of minimizing the potential.

Equation () describes the motion of a particle that moves into a potential
U subject to a drag force proportional to its velocity through the constant θ.
Whenever µ/θ ≪ 1 Eq. () is an approximation of () with 1/θ ≡ η.

Therefore we saw in that in the case of time independent potentials the
laws of classical mechanics gives a sound method of learning that generalizes the
classical GD method.

1.2.2. Time-dependent Potentials

We are now in position of attacking the problem of learning formulated as a
direct interaction with a temporal environment. For this reason we consider a
time dependent potential of the form U(ω, t). In what follows we will denote

in an interesting article [48] Rovelli argued that Aristotele’s theory is an approximation of
Newton’s theory when we consider objects in spherically symmetric gravitational field that
moves in a fluid.
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both with ∇U and Uω the gradient with respect to omega and with Uτ the
derivative of the potential with respect to its second argument (time).

In this case the analogous of Eq. 1.2.1–() is, of course,

ẇ(t) = −ηUω(w(t), t). ()

Because of the explicit temporal dependence, the solution cannot be interpreted
as a gradient flow of any function. In particular if we choose U to be as in 1.1.1–
() we have that w(t) follows the dynamics

ẇ(t) = −ηvω(w(t), x(t)), ()

which is the continuum analogue of a SGD method. It is well-known [9] that
SGD convergence is guaranteed under strict hypothesis on η, v and the nature
of x(t), which are not so easy to control. However, in practice, it is known that
with a learning rate η sufficiently small and if the examples x(t) are properly
repeated over learning then convergence is attained.

For the moment we will not pursue an in-depth analysis of this equation,
instead, we will consider its second-order generalization:

µẅ(t) + θẇ(t) +∇U(w(t), t) = 0 µ, θ > 0. ()

As usual () is recovered when µ/θ ≪ 1.

Distributional Potential. A particularly interesting time-dependent potential
is the following distribution

U(ω, t) =

+∞
∑

k=0

v(ω, t)δtk(t), ()

where 〈tn〉 is a sequence of times. This particular form of time dependence is of
interest both because it transposes the ideas of Poggio and Girosi described in
[44] in the temporal domain and also because it allows an explicit analysis of the
solutions of equation (). More precisely consider the equation

ẅ + θẇ +

+∞
∑

k=0

vω(w(t), t)δtk (t) = 0, ()

and take the Laplace transform of this expression*. Using the properties of
Laplace transform, we get

s2Lw(s) − sw(0)− ẇ(0) + θ(sLw(s) − w(0)) +

+∞
∑

k=0

vω(w(tk), tk)e
−stk . ()

Let us begin to study what happens with just one impulse at t = τ ; so
consider the equation

ẅ + θẇ = Φ(w)δτ , ()

* Remember that for a function f the Laplace transform Lf(s) is
∫
+∞

0
e−stf(t) dt.
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along with some initial conditions w(0) = w0 and ẇ(0) = v0. Now take the
Laplace transform of this, so that we get

s2Lw(s) − sw(0)− ẇ(0) + θ(sLw(s) − w(0)) = Φ(w(τ))e−sτ , ()

meaning that

Lw(s) =
Φ(w(τ))e−sτ + v0 + θw0 + sw0

s2 + θs
. ()

Inverting the Laplace transform we get

w(t) = w0H(t) +
v0
θ
(1− e−θt)H(t) +

Φ(w(τ))

θ
(1− e−θ(t−τ))H(t− τ), ()

where H is the Heaviside function; for t > 0 we simply have

w(t) = w0 +
v0
θ
(1− e−θt) +

Φ(w(τ))

θ
(1− e−θ(t−τ))H(t− τ)

= w0 +
v0
θ
(1− e−θt) + Φ(w(τ))G(t − τ),

()

where we defined G(t) := θ−1(1 − e−θt)H(t) *. If we now look back to Eq. ()
and we make use of the superposition principle we get

w(t) = w0 +
v0
θ
(1− e−θt)−

+∞
∑

k=0

vω(w(tk), tk)G(t − tk). ()

Now if we define Kt := sup{m | tm < t} this expression can be rewritten as

w(t) = w0 +
v0
θ
(1− e−θt)−

Kt
∑

k=0

vω(w(tk), tk)G(t − tk). ()

which shows the causality nature of the solution.

This method was originally proposed in [5] and, later on, it was developed
and tested in details in [23], where it is also showed how it can be made equivalent
to GD. It represent a first step in the study of systems with an explicit interaction
with the environment.

* The function G should actually be thought as the Green function of the differential
operator d2/dt2 + θd/dt



1.2.3 QUASI-PERIODIC ENVIRONMENTS 11

1.2.3. Quasi-Periodic Environments

We now turn to the general second order equation 1.2.2–() in order to show
that this dynamic becomes consistent with learning, in the sense that after some
time it will give consistent predictions on similar patterns, as soon as we start
to make assumptions on the regularity of x. For the sake of simplicity we will
take in Eq. 1.2.2–() µ = 1.

Regardless of the specific probability distribution that characterizes the
environmental data, when focussing on a generic sample x(t), one can reasonable
expect that a similar pattern will likely appear in the future. Moreover, it makes
sense to assume that such a property takes place uniformly in the temporal
domain, and that for any t ∈ (0,∞), at least one pattern in the future, at time
t, be similar, in the metric sense, so as ‖x(t) − x(t̄)‖ is small. This idea will be
at the base of the definition of quasi-periodicity.

Before introducing the notion of quasi-periodicity, we need some preliminar-
ies.

Suppose w(t) ∈ Rn and A(t), B(t) are continuous n × n matrices. The
dynamics of the system

ẅ(t) + 2A(t)ẇ(t) +B(t)w(t) = 0 ()

exhibits nice stability properties under suitable assumptions on matricesA(t) and
B(t). In particular, we are interested in exponential stability, that is systems for
which there exist positive constants κ and M such that

‖Φ(t, t0)‖ ≤Me−κ(t−t0) ∀t > t0, ()

where Φ is the transition matrix of the system reduced to the first-order.

In order to state an important stability property we need to introduce the
matrix measure ([16] chap. 2, sect. 8)

µ(P ) := lim
h→0+

‖I + hP‖ − 1

h
()

induced by the matrix norm ‖P‖.

Theorem A [Sun et al, 2007]. The dynamical system defined by Eq. () is
exponentially stable if there exists a positive constant m such that

l+
√

l2 + 4c− 2m < 0 ()

where l := supt≥t0 max[0, 2µ(mI −A(t))], c := supt≥t0 ‖2mA(t)−m2I −B(t)‖.

Proof. See [51].

Lemma A. Let θ > 0, and B(t) a continuous, diagonizable n× n matrix with
B(t) = P (t) diag(λ1(t), . . . , λn(t))P (t)

−1 such that λi(t) ∈ R are positive for all
i = 1, . . . , n and all t. Let us consider the homogeneous differential system

ω̈(t) + θω̇(t) +B(t)ω(t) = 0. ()



12 LEARNING IN ERGODIC ENVIRONMENTS 1.2.3

If θ2 ≥ 4λ(1+χ)/χ with λ := mini inft≥t0 λi(t) and χ := supt≥t0 ‖P (t)‖‖P (t)−1‖,
then the dynamical system defined by Eq. () is exponentially stable.

Proof. Once we pose A(t) = 1
2θI we can apply Theorem A. If we choosem < θ/2

then µ(mI−A(t)) = µ((m− θ
2 )I) < 0 and max[0, 2µ((m− θ

2 )I)] = 0, so l = 0. As a
consequence, for the condition () to be verified we need to satisfy c < m2, where
c = supt≥t0 ‖(mθ−m2)I−B(t)‖. Hence, once we pose Λ(t) := diag(λ1, . . . , λn(t))

c = sup
t≥t0

‖P (t)
(

(mθ −m2)I − Λ(t)
)

P−1(t)‖

≤ sup
t≥t0

∥

∥(mθ −m2)I − Λ(t)
∥

∥ sup
t≥0

(

‖P (t)‖ ‖P−1(t)‖
)

≤ |mθ −m2 − λ|χ,
()

we need to satisfy

|mθ −m2 − λ|χ < m2. ()

Now, recalling that by assumption θ2 > 4λ, choosem such thatmθ−m2−λ ≥ 0,
that is to say θ/2 − 1/2

√
θ2 − 4λ ≤ m ≤ θ/2 + 1/2

√
θ2 − 4λ. Then Eq. ()

becomes am2 − θm+ λ > 0 where 1 < a := (1 + χ)/χ.

λ

λ− θ2/4

λ− θ2/(4a)

θ/2

m

Since the parabolasm2−θm+λ and am2−θm+λ are
as in the side figure, there is always at least an interval
of values of m (corresponding to the grey region in the
figure) that simultaneously satisfies mθ −m2 − λ ≥ 0,
am2 − θm+ λ > 0 and m < θ/2, namely:

θ −
√
θ2 − 4λ

2
≤ m <

θ −
√
θ2 − 4aλ

2a
. ()

Finally, the exponential stability of differential equation () follows from Theo-
rem A.

Now let t0 ∈ R, E : [t0,+∞) → (0,+∞) be a nonincreasing differentiable
and integrable function such that there exists limt→+∞ E ′(t)/E(t) ∈ (−κ, 0],,
and E(t) ≥ exp(−κ(t− t0)). A typical example is

E(t) = ǫ

(α+ t− t0)p
∀t > t0, ()

where α > 0, ǫ > 0, p > 1 are suitable parameters.
Based on classical results on the links between exponential and BIBO stabil-

ity (see [12]), Theorem 1, pag. 196), the following lemma establishes a sharper
property on the asymptotical relation between the input and the output of an
exponentially stable system.

Lemma B. Let A ∈ C([t0,+∞);Rn×n) ∩ L∞([t0,+∞);Rn×n), and suppose
that the homegeneous system ω̇(t) = A(t)ω(t) is exponentially stable. Let u ∈
C1([t0,+∞);Rn) be such that

‖u(t)‖ ≤ E(t) ∀t > t0. ()
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Then there exists a positive constant K such that the solution of

ω̇(t) = A(t)ω(t) + u(t) ()

satisfies
‖ω(t)‖ ≤ KE(t) ∀t > t0. ()

Proof. For any t > t0 the solution of Eq. () can be expressed by

ω(t) = Φ(t, t0)ω(t0) +

∫ t

t0

Φ(t, β)u(β)dβ. ()

Since the homogeneous system is asymptotically stable we have

‖ω(t)‖ ≤ ‖Φ(t, t0)ω(t0)‖ +
∫ t

t0

‖Φ(t, β)u(β)‖ dβ

≤ M‖ω(t0)‖e−κ(t−t0) +

∫ t

t0

‖Φ(t, β)‖ ‖u(β)‖ dβ.
()

Using (),
∫ t

t0
‖Φ(t, β)‖ ‖u(β)‖ dβ ≤ M F (t), where we have posed F (t) :=

exp(−κt)
∫ t

t0
exp(κβ)E(β)dβ. An application of the De l’Hôpital theorem shows

that

lim
t→+∞

F (t)

E(t) =
1

κ+ l
, ()

where l := limt→+∞ E ′(t)/E(t) and we recall that l ∈ (−κ, 0]. Hence from
Eq. () there is a constant C′ > 0 such that

‖ω(t)‖ ≤M‖ω(t0)‖e−κ(t−t0) + C′E(t) ≤ KE(t), ()

for any t > t0, where K > 0 is a suitable positive constant (we use here the
assumption that E is bounded below by exp(−κt).

Let us consider the framework dictated by the following definition. From
now on we set t0 = 0.

Definition A. An input signal x(·) is E-quasiperiodic if for all T > 0 there exist
positive constants c, τ̄ , τ̂T : 0 < τ̄ < τ̂T < T and a C1 function τ : [0, T − τ̂T ] →
[τ̄ , τ̂T ] such that γ(t) := t + τ(t) with γ′ > c in [τ̄ , T − τ̂T ], τ̂T is uniformly
bounded in T , and

∀t ∈ [0, T − τ̂T ) we have ‖x(t)− x(γ(t))‖ ≤ E(t). ()

In the simplest case in which τ(t) ≡ τ̂ > 0, the above definition reduces
to an extended notion of periodicity in which we are “tolerant” with respect to
the match induced by the period. In general, it is interesting to pick up τ from
functional spaces equipped with classical analytic properties.

Now, we will show that the assumption on quasi-periodic environments has
important consequences on the learning process. In particular, we will prove that
after a while the learning driven by Eq. 1.2.2–() has the property of convergence
to coherent decisions on similar inputs; this is indeed the essence of the following
theorem:
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Theorem B. Suppose:

i. positiveness of the spectrum of vωω: λ := mini=1,...,N inft∈[0,∞) λi(ξ(t)) > 0
for all ξ(t) that lie in the segment joining (w(t), x(t)) and (w(γ(t)), x(γ(t))),
where λi(ζ), . . . , λN (ζ) are the eigenvalues of vωiωj

(ζ). Under this assump-
tion we write vωω(ξ(t)) = P (t) diag(λ1(ξ(t)), . . . λN (ξ(t)))P (t)−1;

ii. vωξ is bounded. We set CV := ‖vωξ‖∞;
iii. quasi-periodicity: x(·) is E-quasiperiodic;
iv. global existence on (0,+∞) of the solution to Eq. 1.2.2–() with Cauchy

initial conditions.

Let θ2 ≥ 4λ(1 + χ)/χ, where χ := supt∈[0,T−τ̂T ] ‖P (t)‖‖P (t)−1‖. Then there
exists K > 0 such that for every t ∈ [0, T − τ̂T ]

‖w(t)− w(γ(t))‖ ≤ KE(t). ()

Proof. From Eq. 1.2.2–() (with µ ≡ 1) at t and γ(t) we get

ẅ(t) + θẇ(t) + vω(w(t), x(t)) = 0;

ẅ(γ(t)) + θẇ(γ(t)) + vω(w(γ(t)), x(γ(t))) = 0.
()

Now, if we pose ω(t) := w(t)− w(γ(t)) and

B(t) :=

∫ 1

0

Vωω(σ(s, t)) ds, I(t) :=

∫ 1

0

Vωξ(σ(s, t)) ds, ()

where σ(s, t) := (sw(t)+ (1− s)w(γ(t)), sx(t)+ (1− s)x(γ(t))) for each s ∈ [0, 1]
and t ∈ [0, T ], we have

vω(w(t), x(t)) − vω(w(γ(t)), x(γ(t))) = B(t)ω(t) + I(t)(x(t) − x(γ(t))). ()

From Eq. () we get

ω̈(t) + θω̇(t) +B(t)ω(t) = −I(t)(x(γ(t)) − x(t)). ()

From i. and from Lemma A, we know that the homogeneous system associated
to () is exponentially stable. Now we can reduce Eq. () to the first order by
setting z1 = ω and z2 = ω̇, so as we get

ż = −
(

0 −Id
B(t) θId

)

z −
(

0
I(t)

(

x(t)− x(γ(t))
)

)

()

Since x(·) is E-quasiperiodic by assumption iii we have ‖I(t)
(

x(t)− x(γ(t))
)

‖ ≤
‖I(t)‖ ‖x(t) − x(γ(t))‖ ≤ CV E(t), for any t ∈ [0, T − τ̂T ]. Finally, we can apply
Lemma B, and the conclusion follows.

Corollary. If v is strongly convex in ω, vωξ is bounded, x is E-quasiperiodic
and we have global existence of Eq. 1.2.2–() with Cauchy initial conditions,
then whenever θ2 ≥ 4λ(1 + χ)/χ Then there exists K > 0 such that for every
t ∈ [0, T − τ̂T ]

‖w(t)− w(γ(t))‖ ≤ KE(t).
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In practice this analysis shows that the learning dynamic expressed by
Eq. 1.2.2–() is a good candidate to model learning when the agent has a
continuous dialogue with the surrounding environment. In the next chapter
we will try to elaborate on this and show that indeed such dynamic can be
understood also in terms of variational principles.



CHAPTER TWO

VARIATIONAL APPROACH

I have called this principle,

by which each slight variation,

if useful, is preserved,

by the term Natural Selection.

— CHARLES R. DARWIN, in On the Origin of Species (1859)

Nature does everything

for the sake of something

— ARISTOTELE, in Parts of Animals (350 BC)

Natura enim simplex est

& rerum causis superfluis non luxuriat

— Isaac Newton, in Philosophiae Naturalis Principia Mathematica (1687)

Caro Adso,

non occorre moltiplicare le spiegazioni e le cause

senza che se ne abbia una stretta necessità.

— Guglielmo da Baskerville in Il nome della rosa (1980)

Mathematically each of the three different formulations, Newton’s law, the

local field method and the minimum principle, gives exactly the same

consequences. What do we do then? You will read in all the books that we

cannot decide scientifically on one or the other. That is true. They are

equivalent scientifically. It is impossible to make a decision, because there

is no experimental way to distinguish between them if all the consequences

are the same. But psychologically they are very different in two ways. First,

philosophically you like them or do notlike them; and training is the only

way to beat that disease. Second, psychologically they are different because

they are completely unequivalent when you are trying to guess new laws.

— RICHARD P. FEYNMANN, in The Character of Physical Law (1964)

16
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Simplicity and elegance have always been an incredibly useful criterion for the
development of successful theories. The underlying philosophical principle it the
one that has been very clearly expressed by the English Franciscan friar William
of Occam, that in his theological work Quaestiones et decisiones in quattuor
libros Sententiarum asserts that [42]:

Pluralitas non est ponenda sine necessitate

that basically means that we do not have to choose complex explanations when
we can rely on simpler ones.

One of the most fruitful ways in which this parsimony principle has been
applied by scientists, is through the application of variational methods in order
to describe and to develop theories in a concise and expressive way. One of the
fields where the results of the application of such methods have been particularly
far reaching is physics: The canonical formalism that is built starting from
a functional problem is at the very heart of a great deal of the 20th century
elementary particle physics. Indeed one of the reasons why physicists like so much
variational approaches is the easiness with which one can directly incorporate
desired symmetries and constraints. Consider, as an example, the problem
of determining, in classical mechanics, the trajectory of a particle that moves
freely without any force acting on it. If we assume the existence of a reference
frame (inertial frame) in which space is homogeneous and isotropic and time is
homogeneous, then we can (see [33]) derive the famous principle of inertia from
a variational formulation without any additional hypothesis.

In Chapter 1 we saw how, at least for some tasks of interest, it is sensible
to formulate a learning problem in terms of a quest for a mechanism by means
of which the parameters of a learning model adapt to data. Since our ambition
would be to find natural rules (laws) rather than heuristics to describe such
interaction, in this chapter, we will explore a possible formulation of the problem
in terms of the tools offered by the calculus of variations. We will therefore start
from what we have identified as batch mode as it constitute a bridge with a
mechanical system subject to drag forces without external interactions. Then
we will move on to point out the main difficulties and the first results which
characterize a general formulation that also takes into account interactions with
a learning environment.

The chapter will close with a novel analysis on how neural networks can
be described within a variational framework in terms of a set of honolomic
constraints. This opens new possibilities to the study of deep learning and will
be of crucial importance for the formulation of multilayer visual theories as we
will see in Chapter 3.
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2.1. A VARIATIONAL THEORY FOR BATCH MODE LEARNING

In Chapter 1 we pursue the quest for an appropriate map t 7→ w(t) that would
describe the evolution of the parameters of a learning model. So basically we
were looking, amongst all the possible trajectories that maps [0, T ] → RN (where
[0, T ] can be thought as the life of the agent) the “best” one with respect to a
specific task expressed by a potential. We also argued in Section 1.2 that this
description is precise to the extent that the potential does not depend on time,
while we showed that in the case of time dependent potential we cannot formulate
the problem simply in terms of a static optimization. Let us therefore investigate
whether, at least in the case of time independent potential, it is possible to give
a variational formulation to the problem.

The idea is the following: We want to start from a casual configuration,
w(0) = w0, and then find a trajectory w(t) that at each time assumes the
optimal value with respect to U . Clearly, stated in this terms, the problem is
not well posed since, assuming that U > 0, this corresponds to find in some (yet
to be specified) space of functions X, a trajectory that minimizes

∫ T

0

U(w(t)) dt. ()

Without further specifications on the space X and on the
function U there can be a lot of unwanted solutions. For
example suppose that the function U has two global minima,
take for example the double well function U(ω) := 1

4 (ω
2 −

1)2, then the solution of the problem

1

4
(ω2 − 1)2

−1 +1

min
w∈X

∫ T

0

U(w(t)) dt, ()

crucially depends on the space X. If we choose X = {f ∈ L1([0, T ]) : f(0) = w0}
without any other requirement in terms of regularity, whereas the problem () is
well defined it admits infinite discontinuous solutions as for any finite partition
of [0, T ], t0 = 0 < t1 < · · · < tD = T , and for any σ ∈ {x ∈ RD : xi ∈ {−1,+1}}
the function

u(t) =

{

w0 when t = 0;
σi for ti < t ≤ ti+1, i = 0, . . . , D − 1,

()

is a minimizer of () since
∫ T

0

U(u(t)) dt = 0. ()

The problem here is of course regularity; if we do not ask for higher degree of
regularity the solution can change abruptly from a point to the next without
paying anything. This suggests us to consider instead of () the following
modified problem

min
w∈X

∫ T

0

1

2
|ẇ(t)|2 + U(w(t)) dt, ()
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where the presence of a penalty on the temporal derivatives of w suggests that
solution () does not minimize () anymore.

Indeed assuming that the solution of this problem is regular enough, apply-
ing standard methods of calculus of variations (see Appendix A) we have that
the minimum of () must satisfy the Euler equation

−ẅ(t) +∇U(w(t)) = 0. ()

Assuming also that we minimize among all function which has some fixed initial
value w0 we also get that Eq. () must be coupled with the following boundary
conditions:

w(0) = w0, ẇ(T ) = 0. ()

Because of the condition at t = T , this problem is non causal.

In order to understand this issue consider a potential for which Eq. () can
be solved explicitly. The simplest one is the quadratic potential U(ω) = 1

2ω
2.

The solution to the following problem










− ẅ(t) + w(t) = 0;

w(0) = w0;

ẇ(T ) = 0,

()

is

w(t) =
w0

1 + e2T
et +

w0

1 + e−2T
e−t. ()

As we can immediately see for all t < T the divergent term
et is actually dominated by the denominator, and therefore
the solution approaches rapidly 0 which is the minimum of
the potential. Moreover as T → +∞ the condition ẇ(T ) = 0
becomes a condition on the integrability of the function since
otherwise the integral in Eq. () would be divergent. If we take the limit T → ∞
in Eq. () we can see how the divergent mode disappears leaving simply w(t) ≈
w0e

−t.

w0

T

This solution, as we have anticipated, is highly non-causal and the mini-
mization is attained only for that initial condition on w′(0), which will later
yield w′(T ) = 0. A random initialization will, in general, give to the system
a divergent mode that will inevitably push the solution away from the wanted
value 0.

Also the formulation of learning based on Eq. () therefore is not satisfactory
because causality is of the utmost importance in learning. Even though bio-
logical arguments are not always completely compelling, sometimes it is useful
to confront them and discuss about biological plausibility of our models. In
view of this, due to a evolutionary selection criterion, one can always argue that
intelligent beings actually have the correct “initialization” that will actually lead
to learning. However the behaviour of differential Eq. () is so sensible to initial
conditions that it is quite difficult to think that this is actually possible.



20 VARIATIONAL APPROACH 2.1

Causality therefore seems to be an important issue to take into account
when working with minimization of integral functionals. In the next section
we will devote some time to review Hamilton’s principle as a formulation of
classical mechanics to gain a better understanding of how Newton’s laws—which
are causal— relates to the corresponding variational principle of least action.
Another aspect of classical mechanics on which we will comment is the minimality
properties of the trajectories.

2.1.1. Variational Principle for Classical Mechanics

Variational theory of classical mechanics is based on what is known as the
Principle of least action or Hamilton’s principle; it is usually stated as follows
[3]:

The solutions of the equations of Newtonian mechanic for a system
described by a potential U coincides with the extremals of the functional

S(x) :=

∫ T

0

1

2
|ẋ|2 − U(x) =

∫ T

0

L(x, ẋ), ()

where L(z, p) := |p|2/2− U(z).

Here it is assumed that t 7→ x(t) is the position vector of a particle in Cartesian
coordinates*.

This statement is far from being precise since there are at least two important
ingredients that needs to be specified:

1. The space from which x(t) are drawn. This point both encompass the class
of regularity and the type of boundary conditions that we assign;

2. What we mean by extremal of a functional.

It is very important to point out that in some sense 1. better define point 2.
Usually in calculus of variation a (local) extremum is a (local) maximum or
minimum. Global minima or maxima are very easy to define even for functions
defined on sets (without further structure): x0 ∈ X is a global minimum of
F :X → R if for every x ∈ X we have F (x0) ≤ F (x). Local minima or maxima
requires a notion of distances and therefore can be well defined, for example, on
metric spaces (a set which have also a distance function). Indeed if we assume
x ∈ X, where X is a space without any structure, the characterization of critical
points of a functional becomes quite abstract. Nevertheless one can prove that
a necessary condition for x0 to be a point of (global) minimum of F is the
following: take δ > 0, let γ: (−δ, δ) → X a path in X such that γ(0) = x0 and
define ϕ(s) := F (γ(s)), then for any of such path we need to have

ϕ′(0) =: δF (x0, γ) = 0, ()

whenever ϕ′(0) exists.

* Also whenever it is not specified integrals are assumed to be done with Lebesgue measure.
We will sometimes omit the differential symbol in the notation for the integral when we want
to stress the structure of the functional as a map from a functional space to real numbers
x 7→ S(x).
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If we add more structure to X, for example we assume that (X, V ) is an
affine space with vector space* V, then for all x0 ∈ X we can consider the curve
s 7→ γ(s) := x0+sv ∈ X with v ∈ V which is the line that passes trough x0 with
direction v. As it is explained in Appendix A the first variation of a functional
in the point x0 in the direction v ∈ V can be defined as

δF (x0, v) := lim
s→0

F (x0 + sv)− F (x0)

s
, ()

which is usually known as directional derivative or Gâteaux derivative. If x0 is
an extremum of F it must be

δF (x0, v) = 0, ∀v ∈ V. ()

Nonetheless the term extremal in Hamilton’s principle does not coincide with the
common notion of extremals in calculus of variation (minimum or maximum),
it is rather referring to what in the literature (see for example [19]) is usually
called a critical point, that is to say a point x of X for which

δF (x, v) = 0, ∀v ∈ V. ()

In fact,in most cases, the trajectory of a particle does not have any minimality
property with respect to the functional in ().

As we have already remarked, the choice of X is particularly important
because of the boundary conditions. We know that Newton’s equations are
second-order ODE in the trajectory variable, and because of this we also know
that in mechanics the trajectory of particles is completely specified by the initial
values of position and velocity. This being said it seems natural to define:

X := { x ∈ C∞([0, T ]) : x(0) = x0, ẋ(0) = x1 }, ()

and

V := { v ∈ C∞([0, T ]) : v(0) = v̇(0) = 0 }. ()

We will now show that with this choice a function x ∈ X that satisfy Eq. () in
general it does not exists.

We have (see Appendix A)

δF (x, v) =

∫ T

0

Lz(x, ẋ) · v + Lp(x, ẋ) · v̇

= [Lp(x, ẋ)v]
T
0 +

∫ T

0

Lz(x, ẋ) · v − (Lp(x, ẋ))˙ · v,
()

where Lz(z, p) = ∇U(z), Lp(z, p) = p. Since stationarity condition () must
hold for all v ∈ V we can proceed as follows: By choosing v ∈ C∞

c ([0, T ]) we
have, because of the fundamental lemma of calculus of variations,

ẍ+∇U(x) = 0, ()

* This as we shall soon see is the case of interest here since usually X will be an affine
subspace of an Hilbert space.
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which indeed is Newton’s equation for a particle that moves in the potential U ,
however taking v ∈ V such that v(T ) = 1, from () we also get

Lp(x(T ), ẋ(T )) = 0, that implies ẋ(T ) = 0. ()

This means that for x to be a critical point of F on the space X it should satisfy






















ẍ(t) +∇U(x(t)) = 0 ∀t ∈ (0, T );

x(0) = x0;

ẋ(0) = x1;

ẋ(T ) = 0,

()

which, as can be readily understood, in general, will not have any solution. Again
notice the emergence of the Neumann boundary condition at t = T which ruins
causality.

Hence these arguments show us that Hamilton’s principle cannot be for-
mulated in a causal way if we look for stationary points in a functional space
with assigned initial position and velocity. Looking at Eq. () we can however
understand that if we formulate the problem on the space

X := { x ∈ C∞([0, T ]) : x(0) = x0, x(T ) = xT }, ()

then a stationary point of x must satisfy










ẍ(t) +∇U(x(t)) = 0 ∀t ∈ (0, T );

x(0) = x0;

ẋ(T ) = xT ,

()

that is indeed a well-defined boundary value problem. Thus the correct way to
state Hamilton’s principle would rather be the following

The solution of the equations of Newtonian mechanic x̄(t) for a system
described by a potential U coincides with the stationary point (when it
is unique) of the functional S(x) defined over the set

X := { x ∈ C∞([0, T ]) : x(0) = x̄(0), x(T ) = x̄(T ) }. ()

Rephrased in a (possibly) more appealing way this is the analogue of saying that
between all possible trajectories that pass between two predetermined points,
mechanics choose the one which makes the action S stationary. Again this
formulation is non-causal.

Now let us now turn to the minimality properties of this functional. The
simplest case is the free particle action S(x) =

∫

|ẋ|2/2. In this case the
stationarity conditions has as unique solution the line x(t) = x0 +(xT − x0)t/T ,
which is indeed a minimum of S on X (see [3]). The second example is the classic
harmonic oscillator that is described by the action S(x) =

∫

|ẋ|2/2 − |x|2/2; in
this case stationarity conditions gives the unique point

x(t) = x0 cos t+
xT − x0 cosT

sinT
sin t. ()
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In order to see whether this solution is a minimum we can check whether
δ2S(x, v) ≥ 0 for all v ∈ V . In this case we have

δ2S(x, v) =

∫ T

0

(v · Lzzv + 2v · Lzpv̇ + v̇ · Lppv̇). ()

Since we also have Lzp = 0, Lzz = −Id, Lpp = Id, then

δ2S(x, v) =

∫ T

0

(|v̇|2 − |v|2). ()

One can see that this quantity, with appropriate choices* of T we can always find
v ∈ V such that δ2S(x, v) < 0; for example fix T = 10, then in one dimension
we have

δS(x, t2 − 10t) = −3000. ()

This indeed means that in this case mechanics is generally a “saddle point” of
S.

Till now we saw that the variational principle in classical mechanics is non-
causal, and at the same time it does not have those minimality properties that
are necessary for a good theory of leaning. On the other hand the fact that
energy E(t) = 1

2 |ẋ(t)| + U(x(t)) is conserved prevents the explosive behaviours
that we experienced in the case of the functional in 2.1–(). This being said we
are still missing a crucial property of learning systems that we have discussed in
Chapter 1: dissipation. In the remainder of this section we will try to understand
if it is possible to incorporate dissipation in the action of classical mechanics.

Dissipative evolution. The main problem with the functional of mechanics
described in Eq. () is that there is no directionality of time. Because of this, it
can consistently describe a conservative system while it is rather reasonable that
it cannot model dissipative systems: If we consider the motion of a conservative
system (a pendulum with no friction, particles in a box that undergoes elastic
scattering etc.) and shoot a film of it, then a backward reproduction of the movie
will show a consistent (possible) dynamics. Instead if we consider the motion of
a ball that moves in a medium and because of a drag force comes to a rest, the
time-reversed dynamics would look like a ball that start accelerating by itself
without an apparent cause.

So the basic idea to introduce dissipation is to insert in the action () a term
that breaks the time reversal symmetry. Let us therefore consider a function of
time a(t) which is not symmetric with respect to t = T/2. A simple additive term
will have no effects to the stationary points of the action, while if we multiply
the whole Lagrangian by a(t) this will affect the stationarity condition of S. So
consider the following modification of the action

Sa(x) :=

∫ T

0

a

(

1

2
|ẋ|2 − U(x)

)

, ()

* This hypothesis is necessary because for T small enough solution () is indeed a minimum
of the action; and this it may be a motivation for the name principle of least action (see for
example [33] and [18])
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which has as stationarity condition the following Euler equation

a(t)ẍ(t) + ȧ(t)ẋ(t) + a(t)∇U(x(t)) = 0. ()

Assuming that a(t) 6= 0 for all t ∈ (0, T ) we can rewrite Eq. () as

ẍ(t) +
ȧ(t)

a(t)
ẋ(t) +∇U(x(t)) = 0. ()

From this expression we can clearly see that if ȧ/a > 0 we are modelling a
system with a dissipative force proportional to the velocity; the simplest case of
a constant drag coefficient ν can be achieved when we choose a to be the solution
of the differential equation

ȧ(t)

a(t)
= γ, ()

which have an exponential solution a(t) = a(0)eγt. Moreover the integration
constant a(0) is irrelevant since it is just an overall multiplicative term. Then
we are left with the choice a(t) = eγt. This construction allows us to recover
the heavy-ball method we discussed in Section 1.2.1 and 1.2.2 from a variational
method. However from this same variational approach we also get non-causal
final condition.

The idea of weighting the standard action with an exponential to describe
dissipative systems by means of a variational formulation is already present in
the literature notably in [27].

2.1.2. Causal Formulation of Learning

Let us consider the functional in Eq. 2.1–() again. In the last section we argued
that besides giving non-causal stationarity conditions, because the structure of
the Lagrangian, it also does not have terms that explicitly breaks time reversal.
Indeed if we consider the symmetry t → T − t (symmetry with respect to T/2)
we have

∫ T

0

1

2
|ẇ(T − t)|2 + U(w(T − t)) dt =

∫ 0

T

1

2
|ẇ(s)|2 + U(w(s)) (−ds). ()

In Section 2.1.1 we have seen that when we introduce a term that breaks this
symmetry we can recover dissipative behaviour. Therefore we start to conjecture
that causality can be reached with the introduction of an appropriate time
dependence in the Lagrangian. So consider the following modification of the
functional (similar to the one considered in Eq. 2.2.1–())

F (w) :=

∫ T

0

a

2
|ẇ|2 + bU(w), ()

where t 7→ a(t) and t 7→ b(t) are two positive differentiable functions. Now
consider the functional space X as in Eq. 2.1.1–() and take in this space the
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variation of F . The consequent stationarity conditions are
{

− a(t)ẅ(t)− ȧ(t)ẇ(t) + b(t)U(w(t)) = 0;

a(T )ẇ(T ) = 0,
()

where, as usual, the second condition comes from the boundary term of the
integration by parts. It seems therefore that indeed we can choose the function
a so to have a(T ) = 0. If we do this, apparently the non-causal condition
a(T )ẇ(T ) = 0 is satisfied. However in general is never a good idea to take a
weight in front of the term that enforces regularity that is vanishing, because in
the region in which the weight vanishes the solution can become very large. Let
us make a simple example: Consider the case of a real valued functions w ∈ R,
take a(t) = b(t) = (T − t) and choose U(w) = 1

2 (w)
2. Assuming that there exists

smooth stationary point we can write down the Euler equation

−(T − t)ẅ(t) + ẇ(t) + (T − t)w(t) = 0. ()

The general solution of this equation is

w(t) = AI0(T − t) + BK0(T − t), ()

where I0 and K0 are the modified Bessel functions. This can be easily checked
if we perform in Eq. () the change of variable t ≡ t(s) = T − s. If we define
z(s) := w(T − s) we have that z satisfies

s2z′′(s) + sz′(s)− s2z(s) = 0, ()

that is the defining equation of the modified Bessel functions I0 and K0 (see [1]
pag. 374 Eq. (9.6.1)). If we now fix the integration constants A and B with
Cauchy initial conditions w(0) = w0 and ẇ(0) = w1, then we find that

A = T (w0K1(T )− w1K0(T )), B = T (w0I1(T ) + w1I0(T )). ()

Notice that since T > 0 this quantities are real numbers. Therefore the solution
with Cauchy initial conditions is

w(t) = T (w0K1(T )−w1K0(T ))I0(T − t)+T (w0I1(T )+w
1I0(T ))K0(T − t). ()

Since the limiting form of modified Bessel functions for
small arguments are known we can study the behaviour
of the solution near t = T which is exactly the critical
point where a vanishes. In the side figure the solution
is plotted for T = 1, w0 = 1 and w1 = 0. From [1] pag.
375 Eq. (9.6.7) and (9.6.8) we know that I0(s) ∼ 1 while
K0(s) ∼ − log s as s → 0, therefore we can conclude
that as t→ T

w(t)

1

5

10

0 1

w(t) ∼ C1 + C2 log(T − t). ()

This means that the solution diverges logarithmically for t = T and it also means
that indeed the boundary conditions are satisfied since

lim
t→T−

w′(t)a(t) = 0. ()
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What about the minimality properties of this solution? Because

w′(t) = −AI1(T − t) +BK1(T − t), ()

and K1(s) ∼ 1/s we immediately understand that the energy of this solution is
divergent.

We will now show how the causality issues can be covered following an idea
by Ennio de Giorgi (see [14]) that has been proved in [50], [49], [37].

De Giorgi approach. The main idea is that we can introduce a parameter
ε (with the dimensions of time) which measure the “degree of causality” of the
problem that we are solving. When ε > 0 the problems that we will define
are non-causal, however as ε → 0 the solutions of this problems will converge
(in some sense) to the solution of a causal problem. To define this family of
problems consider the functional in Eq. () with a(t) ≡ aε(t) = εe−t/ε and
b(t) ≡ bε(t) = e−t/ε so to have

Fε(w) :=

∫ T

0

e−t/ε
(ε

2
|ẇ|2 + U(w(t))

)

. ()

Let us also consider the following domain:

X = {w ∈ H1((0, T );RN) : w(0) = w0}. ()

More generally (following the original conjecture by De Giorgi and its subsequent
proofs) we can consider the functional

Fε(w) :=

∫ T

0

e−t/ε
(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w(t))

)

dt, ()

where we have introduced two positive constants to weight the regularization
terms |ẅ|2 and |ẇ|2; this functional is thus naturally well defined on the space

X := {w ∈ H2((0, T );RN) : w(0) = w0, ẇ(0) = w1 }. ()

The first important result that we have is that (see [37]) if U ∈ C1(RN ;R)
and bounded from below by using standard arguments of the direct method of
calculus of variations it is possible to prove the existence of a minimizer of Fε in
X. Let us now see what such minimizer looks like.

Let us denote wε a minimizer of Fε on X. Then surely we need to have
δFε(wε, v) = 0, for all v ∈ V := { v ∈ C∞([0, T ];RN) : v(0) = v̇(0) = 0 }, and so

δFε(wε, v) =

∫ T

0

e−t/ε
(

ε2ρẅε(t) · v̈(t)+ενẇε(t) · v̇(t)+∇U(wε(t)) ·v(t)
)

dt = 0,

()
which is the weak form of the Euler Lagrange equation. A boostrap argument
shows also that the minimizers are also regular (in fact they are C∞) and
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therefore satisfy the strong form of the Euler equations:










ε2ρw(4)
ε − 2ερw(3) + (ρ− νε)ẅ + νẇ +∇U(w) = 0 in (0, T );

w(0) = w0, ρẇ(0) = ρw1;

ρẅ(T ) = 0, ρεw(3)(T ) = νẇ(T ),

()

where the two extra boundary conditions at t = T arises due to boundary
conditions of v ∈ V (see Appendix A).

Let us see this in some details, as it is the crucial argument that let us
conclude that the minimum in X has the desired regularity. Consider the
following lemma

Lemma A. Let f ∈ L2((0, T )) and suppose that f has a second order weak
derivative, i.e there exists a function g ∈ L2((0, T )) such that

∫

fϕ′′ =
∫

gϕ for
all ϕ ∈ C∞

c ((0, T )), then f ∈ H2((0, T )).

Proof. It is sufficient to prove that f admits a weak derivative. Then just set
f ′(t) =

∫ t

0 f
′′(t) dt, then f ′(t) ∈ L2((0, T )) and for all ϕ ∈ C∞

c ((0, T )) we have

∫ T

0

f ′ϕ′ = −
∫ T

0

f ′′ϕ.

which concludes the proof.
Equipped with this observation we can easily prove the following regulariza-

tion theorem:

Theorem A. Let wε be a minimum of Fε in X, if U ∈ Ck(RN ) then wε ∈
Ck+3([0, T ]).

Proof. From Eq. () we have for all v ∈ C∞
c (0, T ):

∫ T

0

ε2ρe−t/εẅε(t)·v̈(t) dt+
∫ T

0

ενe−t/εẇε(t)·v̇(t) dt = −
∫ T

0

e−t/ε∇U(wε(t))·v(t) dt
()

which gives
∫ T

0

ε2ρe−t/εẅε(t) · v̈(t) dt−
∫ T

0

εν
(

e−t/εẇε(t)
)′
v(t) dt

=−
∫ T

0

e−t/ε∇U(wε(t)) · v(t) dt.
()

This relation means that e−t/εẅε(t) has a weak second derivative and in partic-
ular

d2

dt2
(ε2ρe−t/εẅε(t)) =

d

dt
(ενe−t/εẇε(t))− e−t/ε∇U(wε(t)) in L2((0, T )).

()
Thanks to Lemma A we can therefore conclude that ẅε ∈ H2(0, T ) this means

that wε, ẇε, ẅε and w
(3)
ε are continuous, and from Eq. () plus the continuity of

∇U we have that w
(3)
ε has a continuous derivative which implies w

(3)
ε ∈ C1([0, T ])
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or wε ∈ C4([0, T ]). At this point we have already obtained that () holds in

the strong sense with “real” derivatives. Now using () we can express w
(4)
ε in

terms of wε, ẇε, ẅε, so we have that w
(4)
ε ∈ C1([0, T ]) meaning that if U ∈ C2

then wε ∈ C5([0, T ]). Repeating this same argument we have the thesis.

This theorem assure us that in order to find the minimum of Fε one can
study the solutions of the system of ODE in Eq. ().

Now the important part of De Giorgi conjecture is the fact that these
minima that, as we can see from Eq. (), are non-causal, as ε → 0 converge
to the solution of a causal, evolution problem that is completely determined by
the initial conditions of X. The particularly interesting fact is that the causal
solution that we recover is the solution of the following Cauchy problem:

{

ρẅ(t) + νẇ(t) +∇U(w(t)) = 0;

w(0) = w0, ẇ(0) = w1,
()

which is exactly the dynamics of the mechanical system described in the previous
section (see Eq. 2.1.1–()). The explicit temporal dependence of the Lagrangian
expressed in the term exp(−t/ε) as we already commented is necessary to have
the dissipation behaviour. However in this formulation, the dissipative term
νẇ can be directly linked to the term that penalized the first derivative and it
emerges in the limit due to an interaction between this regularization term and
the exponential factor.

The precise statement of this convergence result is summed up in the fol-
lowing theorem (which can be found in [37]).

Theorem B. (Liero and Stefanelli) Let ν > 0, and assume that wε minimize Fε

in X, then wε → w weakly in H2((0, T ),RN) (and strongly in H1((0, T );RN))
if ρ 6= 0 and weakly in H1((0, T ),RN) if ρ = 0, where w solves the Cauchy
problem ().

It is important to stress the fact that he solution of Eq. () cannot be
directly interpreted as the minimum of some functional, however it is the limit
of a sequence of minima as ε→ 0. Therefore from our point of view it is crucial
to understand how does the minimum of Fε as ε → 0 performs in terms of
potential energy U(w) since this is the quantity we are interested in.

Since the limiting equations are the same as the ones we considered in
Chapter 1, a first answer to this question involves an energy analysis directly
performed on the differential equations; because we are, for the moment, consid-
ering batch mode learning we already know that both methods (the one obtained
for ρ > 0 and the gradient flow model obtained when ρ = 0) tend to dissipate
energy to conquer states with lower potential.

Yet another kind of consideration seems to be relevant as well: Since the
solution of the limiting Cauchy problem is approximated by minima of func-
tionals we can safely argue that if ε is small enough, then the solution w of
Eq. () is close to the minimum of Fε. So the main question now is: How
does the exponential factor exp(−t/ε) that, as we have seen, is fundamental for
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a causal formulation of the problem does affect the behaviour of the minima?
Indeed the minimization of the functional Fε without the exponential factor
would imply also a minimization of the term

∫

U(w), whereas the introduction
of an exponentially suppressing term may arise at least some concern in the
interpretation of the minimum problems for ε sufficiently small.

The first thing to notice is that the minima of Fε and Fε/ε coincides. The
functional Fε/ε has, as a weight, in front of the Lagrangian the function e−|t|/ε/ε;
this weight as ε → 0 is proportional to the delta measure in t = 0. Yet if
we replace this function with another weight which still approximate the delta
measure, but with compact support, the Euler-Lagrange equation will not give
us any conditions on the minimum outside the support of the weight. This tells
us that the weight in front the Lagrangian does not prevent the minimization
process to consider the Lagrangian for all t ∈ [0, T ].

In order to get a better understanding of this limiting procedure in the
remaining part of this section we will mainly focus on a the simple case ρ = 0,
w: [0, T ] → R and U(w) = w2/2, which gives first order linear problems that can
be solved exactly. In this special case the Euler equation for the minimum of Fε

reads
{

− νεẅ + νẇ + w = 0;

w(0) = w0, ẇ(T ) = 0.
()

Let us try to compare this minimum with the one that we obtain from

G(w) =

∫ T

0

(

ν2

2
|ẇ|2 + U(w(t))

)

dt, ()

which solves the following problem:

{

− ν2ẅ + w = 0;

w(0) = w0, ẇ(T ) = 0.
()

We want to compare the solutions of Eq. () in the limit ε → 0 with the
minimum of this functional that weights homogeneously potential U and that
has the same time scale ν that is present in each Fε. Let us call the solution of
the first problem wε, and let ω the solution of the problem in Eq. (). Both of
then are second order differential equations with boundary conditions, however
while () will approximate better and better the Cauchy problem (by applying
Theorem B)

{

νẇ + w = 0

w(0) = w0
()

the problem in () does not have a “causal approximation”. Now, let us start
to find the explicit solution of Eq. (). The explicit solution for general T , ε



30 VARIATIONAL APPROACH 2.1.2

0.3

0.7

1

0 0.5 1

ε = 1

ε = .1

ε = .01

0.3

0.6

1

0 0.5 1

ω

w

(a) (b)

Fig. 1. On the left we plot the convergence trend of wε (dashed lines) the limiting
value w (solid line). On the right the solution w (or wε for small ε) is compared against
the minimum of G, ω.

and w0, as can be easily checked by direct substitution is

wε(t) = w0et/2ε

√
4ε+ ν Ch

(√
4ε+ν
2ε

√
ν
(T − t)

)

+
√
ν Sh

(√
4ε+ν
2ε

√
ν
(T − t)

)

√
4ε+ ν Ch

(√
4ε+ν
2ε

√
ν
T
)

+
√
ν Sh

(√
4ε+ν
2ε

√
ν
T
) . ()

Instead the solution ω(t) is simply given by

ω(t) = w0 1

Ch(T/
√
ν)

Ch

(

T − t√
ν

)

().

The behaviour of this solutions is displayed in Fig. 1.; Fig. 1–(a) shows the
convergence trend of wε → w, instead Fig. 1–(b) compares the behaviour of
a minimum of the functional G (dashed line) against the limiting solution w
obtained solving Eq. ()

As it can be seen the qualitative behaviour of the solutions is pretty similar
even though ω is the solution of a second order equation (with boundary condi-
tions), while w comes from a first order ODE (with Cauchy conditions) and in
both cases the solutions lower the potential energy.

For equations with one main condition

(Those linear), you have the permission

To take your solutions,

With firm resolution,

And add them in superposition.

— DAVID MORIN, Introduction to Classical Mechanics (2007)

Of course the same analysis can be carried out explicitly in the case ρ > 0
with quadratic potential; in this case the solution is a superposition of ex-
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ponential modes wε(t) =
∑4

i=1 ci(ε)e
λi(ε)t, where λi(ε) are the roots of the

characteristic polynomial

ε2ρz4 − 2ερz3 + (ρ− εν)z2 + νz + 1. ()

As it is well known an explicit algebraic solution for this roots can be found and,
in particular in this case the roots turns out to be

λ1 =
1−

√

1 + (2ε/ρ)
(

ν −
√

ν2 − 4ρ
)

2ε
, λ2 =

1−
√

1 + (2ε/ρ)
(

ν +
√

ν2 − 4ρ
)

2ε
,

λ3 =
1 +

√

1 + (2ε/ρ)
(

ν −
√

ν2 − 4ρ
)

2ε
, λ4 =

1 +
√

1 + (2ε/ρ)
(

ν +
√

ν2 − 4ρ
)

2ε
.

()
Eventually we were therefore able to find a variational scheme which produces
causal/evolution laws, that converges to low potential states with some temporal
regularity on the variations of the parameters w (we worked out the solution only
for quadratic potentials but general convergence properties are classical results
and can be found for example in [26]) which is indeed what we hoped for.

We also argue that the limiting solution that comes out of this method
cannot be interpreted as the minimum of some functional; indeed we have
that Fε/ → U(w0) whose minimum clearly is not the solution of (). In the
next section we will discuss whether it is possible to achive similar causality
properties but with a different kind of explicit temporal dependence; possibly
a temporal dependence that weights more evenly the potential on the whole
temporal interval.

2.1.3. Why the Exponential?

In the previous section we considered a sequence of Fε based on the exponential
weight exp(−t/ε). We asked ourselves whether the causal reduction that we
discussed in Section 2.1.2 heavily depends on the exponential form or it the
same behaviour could be reproduced for a broader family of weights?

So let replace in the definition of Fε the term e−t/ε with some arbitrary
positive function t 7→ ̟ε(t) > 0. If we assume that such a weight is regular (for
example C∞) then all the regularity results that we gave in the last section will
still hold true and the Euler equations for a fixed ε will turn out to be

ε2ρ̟εw
(4) + 2ε2ρ ˙̟ εw

(3) + (ε2ρ ¨̟ ε − εν̟ε)ẅ − εν ˙̟ εẇ +̟ε∇U = 0, ()

with the two boundary conditions at t = T






ρε2̟ε(T )ẅ(T ) = 0

ρε2w(3)(T ) + ρε2
˙̟ ε(T )

̟ε(T )
ẅ(T )− νεẇ(T ) = 0

⇒
{

ẅ(T ) = 0

ρεw(3)(T ) = νẇ(T )

()
Now, since we assumed ̟ε to be positive (remember that in Section 2.1.2 we
discussed how it is not a very good idea to let the weight become zero) we can
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rewrite Eq. () in the following way:

ε2ρw(4) + 2ε2ρ
˙̟ ε
̟ε

w(3) +
(

ε2ρ
¨̟ ε

̟ε
− εν

)

ẅ − εν
˙̟ ε
̟ε

ẇ +∇U = 0. ()

Therefore the limiting dynamic will crucially depends on the form of two func-
tions: ˙̟ ε/̟ε and ¨̟ ε/̟ε. More specifically it will depend on the form of these
two functions as ε → 0. First of all notice that the term ˙̟ ε/̟ε appears both
multiplied by ε and ε2 therefore if we assume that ˙̟ ε/̟ε ∼ f(t)/ε2, then there
would surely be a problem with the term ε ˙̟ ε/̟ε because it would be divergent.
This is in general what will happen if we take ˙̟ ε/̟ε ∼ f(t)/εn with n > 1.
Moreover If we choose n < 1 both the terms ε ˙̟ ε/̟ε and ε

2 ˙̟ ε/̟ε would vanish.
So the only remaining possibility is to choose

˙̟ ε(t)/̟ε(t) ∼ f(t)/ε, as ε→ 0. ()

Looking at the differential equation we also want to have f(t) < 0 for all t ∈ [0, T ],
otherwise, as we have already commented, the dynamic can be unstable. Then,
once we choose f (assuming that this choice should be smooth) we can find the
appropriate weight by solving the differential equation

˙̟ ε(t) =
f(t)

ε
̟ε(t). ()

This equation can be easily solved by choosing ̟ε(t) = exp(g(t)), where g(t)

solves ġ = f(t)/ε. Hence if we let F (t) = F (0) +
∫ t

0
f(s) ds we finally have that

̟ε(t) = exp
(

F (0)

ε
+

1

ε

∫ t

0

f(s) ds
)

, ()

where F (0) has to do with the initial condition on the weight. Now since we
required f to be negative, the second term in the exponential is negative, the first
term though depends on the sign of F (0). If we allow F (0) to be strictly positive
as ε→ 0+ then the weight will blow up, which is an unwanted behaviour. Then
we assume that F (0) ≤ 0. Under this hypothesis however for any smooth choice
of f we will have the same exponential dumping behaviour that we wanted to
avoid with the e−t/ε.

This arguments all together are a strong indication that with a smooth
weight we either get a trivial limiting equation or (if we choose the weight
more wisely) we end up in a situation that has the same exponential damping
properties that we wanted to avoid in the first place.

Discontinuous weight. The next question therefore is to see whether some-
thing change if we consider weights that allows discontinuities. The basic idea
being the following: Instead of using one exponential term e−t/ε/ε that in the
limit ε → 0 sample the value of the Lagrangian (and hence of the potential) at
t = 0, if we allow discontinuities we can consider a whole “train” of this terms.
As ε→ 0 if the space between two of these peaks (see Fig. 2) also goes to 0 then
at the end we can transform the integral that defines the functional that we are
considering into a uniform integral over the interval [0, T ] of the potential.
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Fig. 2. The function ̟ε(t) written in Eq. () for three different values on ε when
T = 1.

So, without further ado let us define the following discontinuous weight
function*:

̟ε(t) = e−t/ε

T/ε−1
∑

k=0

ekχ[tk,tk+1)(t), tk = εk, ()

where χI is the characteristic function of the interval I.

Once we defined this weight then we can consider the family of functionals

Jε(w) :=

∫ T

0

̟ε

(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w)

)

=

T/ε−1
∑

k=0

ek
∫ tk+1

tk

e−t/ε
(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w)

)

dt.

()

First of all we need to know if this modification has compromised the result on
the existence of the minima on the set X (see Eq. 2.1.2–()).

The proof of the existence of the minima (under the same hypothesis used
in [37]) can be established using the direct method of calculus of variations.

Theorem C. For every ε > 0 the problem min{Jε(w) : w ∈ X} has a solution.

Proof. The change of the weight surely does not change the results on lower
semicontinuity, thus we just need to check the compactness of sublevels of Jε
with respect to the convergence wn → q strongly in H1((0, T );Rn) and ẅn ⇀ q̈
weakly in L2((0, T );Rn).

First of all let us define

Jε(w; (a, b)) :=

∫ b

a

e−t/ε
(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w)

)

dt, ()

then we have that

Jε(w; (a, b)) ≥ e−b/εε2ρ

∫ b

a

|ẅ|2 dt ()

* From now on we will always assume that ε divides T , that is to say we choose only the ε
such that T/ε ∈ N.
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Now it is clear that* if Jε(w) ≤ C then Jε(w; (a, b)) ≤ C, therefore

e−b/εε2ρ

∫ b

a

|ẅ|2 dt ≤ Jε(w; (a, b)) ≤ C, ()

Hence

C ≥ Jε(w) =

T/ε−1
∑

k=0

ekJε(w; (tk, tk+1)) ≥
T/ε−1
∑

k=0

eke−(k+1)ε2ρ

∫ tk+1

tk

|ẅ|2 dt

=
ε2ρ

e

∫ T

0

|ẅ|2 dt,

()

which gives us the estimate
∫ T

0

|ẅ|2 dt ≤ Ce

ρε2
. ()

Moreover in virtue of the following inequality (proved in Lemma 2.3 of [49])
∫ T

0

e−t|h(t)|2 dt ≤ 2|h(0)|2 + 4

∫ T

0

e−t|h′(t)|2 dt ()

with h(t) = ẇ(t) and with ẇ(0) = w1 we have also
∫ T

0

|ẇ|2 dt ≤ C. ()

Now we can use the fundamental theorem of calculus to estimate w(t) for t ∈
[0, T ] as follows:

w(t) = w0 +

∫ T

0

ẇ dt ≤ w0 +
√
T

(

∫ T

0

|ẇ|2 dt
)

. ()

Once we observe this we can follow a standard coercivity argument; first of all
we notice that any sequence 〈wn〉 is bounded in H2([0, T ];RN) we have that
‖wn‖H2 < C for all n ∈ N. Then because of Theorem 3.16 in [10] it follows
that 〈wn〉 has a subsequence weakly converging in H2((0, T );RN). Moreover
since H2 compactly embeds in H1, then there is a subsequence that converges
strongly in H1. This means that indeed the sublevels of Jε are compact with
respect to the notion of convergence specified earlier.

So this proves that the problem at least is well posed. We should also
comment on the regularity of the solutions; since we are in H2 the solution
must be at least continuous and differentiable; however globally we cannot say
more this because of the discontinuities that the weight ̟ε. Nonetheless we can
repeat the argument of Theorem B choosing v to be compactly supported in
each (tk, tk+1); in doing so we establish the regularity of the solution on each of
the intervals where the weight is regular. So the only points where we need to

* Throughout the proof the value that we assign to the constant C can change. Of course
it is intended that it is a constant that does not depend on the index of the sequence n.
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understand carefully how the solution behaves are the tk points. In order to do
this, we need, first of all, to understand how to treat the variation of an integral
functional with a time-dependent lagrangian that have explicit discontinuities in
time.

To evaluate the first variation of Jε it is better to take a slightly general
point of view and consider:

Jε(w) =

∫ T

0

Lε(t, w(t), ẇ(t), ẅ(t)) dt, ()

where Lε(t, ·, ·, ·) is discontinuous at times t = tk, for k = 1, 2, . . . , T/ε. For any
v ∈ V = {C∞((0, T );RN) | v(0) = v̇(0) = 0} we have that

δJε(w, v) =

∫ T

0

(Lx(t, w(t), ẇ(t), ẅ(t))v(t) + Lp(t, w(t), ẇ(t), ẅ(t)))v̇(t)

+ La(t, w(t), ẇ(t), ẅ(t))v̈ dt;

()

since the Lagrangian is discontinuous at t = tk for all k = 1, 2, . . . , T/ε we
cannot directly integrate by parts, we can however split the integral into the
sum of integrals each performed on a continuous Lagrangian and then integrate
by parts:

δJε(w, v) =

T/ε
∑

k=1

∫ tk

tk−1

(

Lxv + Lpv̇ + Lav̈
)

dt

=

T/ε
∑

k=1

∫ tk

tk−1

(

Lx − d

dt
Lp +

d2

dt2
La

)

v dt+

T/ε
∑

k=1

[

Lav̇ +
(

Lp −
d

dt
La

)

v

]t−
k

t+
k−1

.

()
We know that the minimum is regular in each interval (tk−1, tk), therefore
by imposing δJε(w, v) = 0 with the variation v ∈ C∞

c (tk−1, tk;R
N ) for k =

1, 2, . . . , T/ε one obtains the Euler equations

Lx(t, w(t), ẇ(t), ẅ(t))−
d

dt
Lp(t, w(t), ẇ(t), ẅ(t))+

d2

dt2
La(t, w(t), ẇ(t), ẅ(t)) = 0,

()

that holds ∀t ∈ ⋃T/ε
k=1(tk−1, tk). Once we know this for all the other possible

variations which are not compactly supported in
⋃T/ε

k=1(tk−1, tk) we have that

δJε(w, v) =

T/ε
∑

k=1

[

Lav̇ +
(

Lp −
d

dt
La

)

v

]t−
k

t+
k−1

= La

∣

∣

t=T
v̇(T ) +

(

Lp −
d

dt
La

)∣

∣

∣

t=T
v(T ) +

T/ε−1
∑

k=2

(

La

∣

∣

t=t−
k

− La

∣

∣

t=t+
k

)

v̇(tk)

+

T/ε−1
∑

k=2

[

(

Lp −
d

dt
La

)∣

∣

∣

t=t−
k

−
(

Lp −
d

dt
La

)∣

∣

∣

t=t+
k

]

v(tk) = 0,

()
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where we have used the continuity of v and v̇. Appropriate choices of the
variation makes us conclude that

La

∣

∣

t=T
=
(

Lp −
d

dt
La

)∣

∣

∣

t=T
= 0;

La

∣

∣

t=t−
k

= La

∣

∣

t=t+
k

k = 1, 2, . . . , T/ε− 1;
(

Lp −
d

dt
La

)∣

∣

∣

t=t−
k

=
(

Lp −
d

dt
La

)∣

∣

∣

t=t+
k

k = 1, 2, . . . , T/ε− 1.

()

Now coming back to our original problem, we need to evaluate this conditions
on the specific Lagrangian

L(τ, x, p, a) = ̟ε(τ)

(

ρε2

2
|a|2 + νε

2
|p|2 + U(x)

)

. ()

Equation () of course reduces exactly to Eq. () and it holds for each t 6= tk;
Notice that for each t ∈ [0, T ] with t 6= tk we have that

˙̟ ε
̟ε

= −1

ε
, and

¨̟ ε

̟ε
=

1

ε2
. ()

Hence, outside the discontinuities we have that for each fixed ε the equations
that holds are the Euler equations that one would obtain with e−t/ε, i.e. the one
described in Eq. 2.1.2–(). Instead the boundary and transmission condition in
Eq. () becomes


































ρε2̟ε(T )ẅ(T ) = 0;

νε̟ε(T )ẇ(T )−ρε2 ˙̟ ε(T )ẅ(T )−ρε2̟ε(T )w
(3)(T ) = 0;

ρε2
(

̟ε(t
−
k )ẅ(t

−
k )−̟ε(t

+
k )ẅ(t

+
k )
)

= 0 k = 1, . . . T/ε−1;
νε(̟ε(t

−
k )ẇ(t

−
k )−̟ε(t

+
k )ẇ(t

+
k ))−ρε2( ˙̟ ε(t−k )ẅ(t−k )

+̟ε(t
−
k )w

(3)(t−k )− ˙̟ ε(t
+
k )ẅ(t

+
k )−̟ε(t

+
k )w

(3)(t+k )) = 0 k = 1, . . . , T/ε−1.
()

The first two conditions are the boundary conditions at t = T and in the
case ̟ε(t) = e−t/ε reduces exactly to the boundary conditions that defines the
problem in Eq. 2.1.2–(). The second two equations instead are the transmission
conditions that prescribe the behaviours of the solution around the critical points
tk. Together with this conditions we have to remember that the this solution is in
H2 and therefore it must be continuous with continuous derivative everywhere.
In particular this also means that the following conditions should hold:

w(t+k ) = w(t−k ) and ẇ(t+k ) = ẇ(t−k ). ()

So far we have formulated the minimum problem for Jε, we have shown the
existence of a solution of such a problem and we have determined the condition
(differential, boundary and transmission conditions) that such solution must
satisfy. The next step to follow the De Giorigi approach would be that of studying
this solutions, wε(t) as ε→ 0. It is important to bear in mind that this procedure
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(letting ε → 0) is linked to causality, as we have already remarked many times
for any ε > 0 the solution wε is not causal.

Based on the analysis that we have done so far we can put out two different
conjectures on the limiting behaviour of wε:

Conjecture A. Let wε be a minimizer of Jε in the class X, then there exists
limε→0 wε(t) = w(t) where w(t) satisfy 2.1.2–().

Conjecture B. Let wε be a minimizer of Jε in the class X, then there exists
limε→0 wε(t) = w(t) where w(t) satisfy ∇U(w(t)) = 0.

Clearly these two conjectures are mutually exclusive (except for the very
special case ρ = ν ≡ 0). In the remaining of this section we will go on and
investigate this two conjectures by trying to understand what happens in for
quadratic potentials U(w) = w2/2. In order to simplify boundary conditions we
will also choose ν = 0 and N = 1 (but of course the following argument can be
carried on with ν 6= 0 and for finite values of N the only important assumption
here is on the form of the potential).

The Euler equation () and the boundary/transmission conditions () in
this case simply becomes














































ε2ρw(4)(t)− 2ερw(3)(t) + ρẅ(t) + w(t) = 0, ∀t ∈ ⋃T/ε
k=1

(

(k − 1)ε, kε
)

;

w(0) = w0, ẇ(0) = w1;

ẅ(T ) = w(3)(T ) = 0;

ẅ(kε+) =
1

e
ẅ(kε−), k = 1, . . . T/ε− 1;

w(3)(kε+) =
1

e
w(3)(kε−), k = 1, . . . T/ε− 1.

()
Let us call wε the solution of this problem. Notice that we already know that
this solution in the k-th interval ((k − 1)ε, kε) coincide with the function

wk(t) = c4k−3e
λ1(t−(k−1)ε)+c4k−2e

λ2(t−(k−1)ε)+c4k−1e
λ3(t−(k−1)ε)+c4ke

λ4(t−(k−1)ε),
()

for suitable constants c1, c2, . . . , c4T/ε and λi are the roots specified in Eq 2.1.2–
(). This being said the solution of the problem Eq. () is equivalent to the
solution of the following linear system in the 4T/ε variables ci























































w1(0) = w0;

ẇ1(0) = w1;

ẅT/ε(T ) = 0;

w
(3)
T/ε(T ) = 0;

ẅk+1(kε) =
1

e
ẅk(kε), k = 1, . . . , T/ε− 1;

w
(3)
k+1(kε) =

1

e
w

(3)
k (kε), k = 1, . . . , T/ε− 1,

()



38 VARIATIONAL APPROACH 2.1.3

where the last two equations represent the transmission conditions at each dis-
continuous points t = tk.

Another, more viable approach for solving this problem is to use the final
conditions on ẅ and w(3) to determine c1, c2, c3 and c4 imposing only Cauchy
conditions on the first interval and then use the continuity of w and ẇ and the
transmission conditions on ẅ and w(3) to determine the initial condition for the
next interval. In the first interval the coefficients will be given by







c1
c2
c3
c4






=







1 1 1 1
λ1 λ2 λ3 λ4
λ21 λ22 λ23 λ24
λ31 λ32 λ33 λ34







−1







w0

w1

ẅ1(0)

w
(3)
1 (0)









. ()

Then the solution and its derivative at t = ε can be found simply by multiplying
the appropriate exponential factors by the relative constants








w1(ε)
ẇ1(ε)
ẅ1(ε)

w
(3)
1 (ε)









=







eλ1ε eλ2ε eλ3ε eλ4ε

λ1e
λ1ε λ2e

λ2ε λ3e
λ3ε λ4e

λ4ε

λ21e
λ1ε λ22e

λ2ε λ23e
λ3ε λ24e

λ4ε

λ31e
λ1ε λ32e

λ2ε λ33e
λ3ε λ34e

λ4ε













1 1 1 1
λ1 λ2 λ3 λ4
λ21 λ22 λ23 λ24
λ31 λ32 λ33 λ34







−1







w0

w1

ẅ1(0)

w
(3)
1 (0)









()

Define α(ẅ1(0), w
(3)
1 (0)) := (w0, w1, ẅ1(0), w

(3)
1 (0))′, let V be the Vandermonde

matrix, and (E)ij = λi−1
j exp(λjε) and R = diag(1, 1, 1/e, 1/e). Then applying

the same arguments that led to equations () and () we have that








w2(ε)
ẇ2(ε)
ẅ2(ε)

w
(3)
2 (ε)









= REV −1α(ẅ1(0), w
(3)
1 (0)), ()

and again that








w3(2ε)
ẇ3(2ε)
ẅ3(2ε)

w
(3)
3 (2ε)









= (REV −1)2α(ẅ1(0), w
(3)
1 (0)), ()

up to








wT/ε((T/ε− 1)ε)
ẇT/ε((T/ε− 1)ε)
ẅT/ε((T/ε− 1)ε)

w
(3)
T/ε((T/ε− 1)ε)









= (REV −1)T/ε−1α(ẅ1(0), w
(3)
1 (0)). ()

Now we can also define ω(wT/ε(T ), ẇT/ε(T )) = (wT/ε(T ), ẇT/ε(T ), 0, 0)
′ thus

having

ω(wT/ε(T ), ẇT/ε(T )) = EV −1(TEV −1)T/ε−1α(ẅ1(0), w
(3)
1 (0)), ()

which is a 4 × 4 linear system with unknowns ẅ1(0), w
(3)
1 (0), wT/ε(T ) and

ẇT/ε(T ). By closer inspection we realize that the system decouples; let us define
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Fig. 3. Solution of Eq. () for T = 1 and
ε = 1, 0.1, 0.01, 0.005 for w0 = 0 and w1 = 1.

M := EV −1(REV −1)T/ε−1 with entries mij and let us look at the last two lines
of equation ():

(

0
0

)

=

(

m31 m32 m33 m34

m41 m42 m43 m44

)









w0

w1

ẅ1(0)

w
(3)
1 (0)









, ()

which is equivalent to the 2× 2 system
(

m33 m34

m43 m44

)(

ẅ1(0)

w
(3)
1 (0)

)

=

(

−m31w
0 −m32w

1

−m41w
0 −m42w

1

)

. ()

Once we know the values of ẅ1(0) and w
(3)
1 (0) we can find the coefficients ck :=

(c4k−3, c4k−2, c4k−1, c4k)
′ relative to the k-th interval as follows:

ck = V −1(REV −1)k−1α(ẅ1(0), w
(3)
1 (0)). ()

Notice that the matrix M propagates the final conditions back through each
interval.

A simulation of the solution obtained in this way for the problem defined
on the interval [0, 1] is shown in Fig. 3. As it can be seen the solution as ε → 0
becomes closer and closer to the null solution w ≡ 0. In this simulation the
initial conditions where chosen to be w0 = 0 and w1 = 1, therefore the solution
of Eq. 2.1.2–() (with ν = 0) would be the w(t) = sin t. This result of course
gives us strong indications that Conjecture A is false while Conjecture B might
be correct. Such result is not good for our purposes since the equation ∇U = 0
does not give us “update rules” to modify the parameters of a learning model.
We will now briefly explore another possibility that it might deserve some further
investigation.

ε-independence. The above discussion show how formulating the problem
subdividing the temporal interval in small segments of length ε, and then letting
ε→ 0 probably yields solutions that converge to a value of w for which ∇U = 0.
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If we inspect closely the linear example discussed in the previous section, it seem
clear that this behaviour is practically enforced by the transmission conditions
that at each transition point tk reduce the derivatives of the solution of a factor
1/e.

This seems to suggest that we may avoid this behaviour (and in some sense
encourage causality) by defining in each ε-interval an independent minimum
problem. More specifically, suppose that we define

Jk
ε (w) :=

∫ (k+1)ε

kε

̟ε

(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w)

)

, ()

and consider for each k = 0, 1, . . . , T/ε− 1 the problem

P k
ε : min

w∈Xk
ε

Jk
ε (w), ()

with

Xk
ε :=

{

{w ∈ H2(0, ε) : w(0) = w0, ẇ(0) = w1} if k = 0
{w ∈ H2(tk, tk+1) : w(kε) = wk

ε (kε), ẇ(kε) = ẇk
ε (kε)} if k > 0

()

where we have set wk
ε to be the solution of the problem P k−1

ε . Notice that the
sequence of problems P k

ε is well defined since the first problem P 0
ε has solution

that defined the values of w1
ε(ε) and ẇ

1
ε(ε), that in turns define the problem P 1

ε

and so on.

Another important comment is the fact that the function on [0, T ] that is
constructed by concatenating the solutions of the problem P k

ε that is to say the
function

w̄ε(t) :=



















w0 if t = 0;
w1

ε(t) if 0 < t ≤ ε;
...
w

T/ε
ε (t) if T − ε < t ≤ T ,

()

is a competitor of the global minimum of Jε since we have that w̄ε ∈ X. This
indeed follows from the following lemma:

Lemma B. if f ∈ H2(a, b)∩H2(b, c), f(c+) = f(c−), and f ′(c+) = f ′(c−) then
f ∈ H2(a, b).

Proof. All we have to do is to show that there exists g ∈ L2(a, b) such that

∀ϕ ∈ C2
c (a, b), we have

∫ b

a fϕ
′′ =

∫ b

a gϕ. Indeed

∫ b

a

fϕ′′ =

∫ c

a

fϕ′′+

∫ b

c

fϕ′′ = −
∫ c

a

f ′ϕ′−
∫ b

c

f ′ϕ′ = +

∫ c

a

f ′′ϕ+

∫ b

c

f ′′ϕ, ()

so it is sufficient to choose

g =

{

f ′′ in (a, c)
f ′′ in (c, b)

∈ L2(a, b) ()
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Fig. 4. Solutions in the interval [0, 4] of the
problems P k

ε with quadratic potential and
ν = 0 for ε = 1, 0.1,; the reference solutions
sin t and t are displayed in dashed lines.

Exactly as we did for the Jε minima also in this case we would like to
understand what happens when ε → 0 since indeed each of the problem P k

ε

for each fixed ε are non-causal problems. And exactly as we did for the global
minimum of Jε we can study explicitly the problem in the case ν = 0, N = 1 and
U = w2/2. This time however the coefficients of the general form of the solution
described in Eq. () are not determined taking into account what happens
too far into the future, instead are determined in each interval by the value
of the solution and its derivative in the previous interval and by the boundary
conditions at the end of the current ε-interval. The constant ck that determine
the solution wk

ε should satisfy the system










































w1(0) = w0;

ẇ1(0) = w1;

wk((k − 1)ε) = wk−1(kε), k = 2, . . . , N ;

ẇk((k − 1)ε) = ẇk−1(kε), k = 2, . . . , N ;

ẅk(kε) = 0, k = 1, . . . , N ;

w
(3)
k (kε) = 0, k = 1, . . . , N,

()

where wk is defined in Eq. () in terms of the coefficients ck. Figure 4 shows
the result of a simulation for T = 4, w(0) = w0 and ẇ(0) = w1 of the solution
of the sequence of problems P k

ε for various values of ε. From this simulation it
seems clear that as ε → 0 the solution converges to the solution of the Cauchy
problem











ẅ(t) = 0;

w(0) = w0,

ẇ(0) = w1,

which of course is a causal problem but indeed it is not a good solution for our
purposes .
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2.2. A THEORY FOR TIME DEPENDENT POTENTIAL

In the last section we analyzed variational techniques for a class of fairly special
potentials; the one that in the first chapter we have called time-independent
potential. We argued that this kind of potential correspond in machine learning
to a batch mode. Now we turn into the exploration of potentials which involve
explicit dependence on time (see also [54]). Of course, since time-independent
potentials are just a particular case of potentials with explicit temporal depen-
dence the analysis carried out in the previous section, especially the discussion
on causality, is relevant for time dependent potentials. This suggests us that we
should start right away to consider the approach conjectured by De Giorgi and
already discussed in the previous section.

So the first thing that we are going to do is to analyze what happens when
we introduce an explicit temporal dependence in the functional 2.1.2–().

2.2.1. Causality

We will now consider the functional

F̄ε(w) :=

∫ T

0

e−t/ε
(

ε2
ρ

2
|ẅ|2 + ε

ν

2
|ẇ|2 + U(w(t), t)

)

dt, ()

which is the same as the one in Eq. 2.1.2–() except for the fact that we now
allow the Lagrangian to have an extra explicit temporal dependence thought the
potential U .

The temporal dependence of course does not change the result on the exis-
tence of a minimum on X as long as we maintain the hypothesis on boundedness
from below, the regularity assumptions; the same comment goes for Theorem A.
This means that the Euler equations for the minimizer are










ε2ρw(4)
ε (t)− 2ερw(3)(t) + (ρ− νε)ẅ(t) + νẇ(t) +∇U(w, t) = 0 in (0, T );

w(0) = w0, ρẇ(0) = ρw1;

ρẅ(T ) = 0, ρεw(3)(T ) = νẇ(T ),
()

Moreover if we assume the following additional growth conditions on U , that
is to say for all δ positive there exists two positive integrable functions cδ(t) and
κδ(t) such that for every z ∈ RN and for all t ∈ [0, T ] we have

|∇U(z, t)| ≤ δ(U(z, t)+ |z|2)+cδ(t), |∂tU(z, t)| ≤ δ(U(z, t)+ |z|2)+κδ(t), ()

then we can prove the following theorem:

Theorem D. The solution of the problem in Eq. () converges (weakly in
H1((0, T ),RN) to the solution of

{

ρẅ(t) + νẇ(t) +∇U(w(t), t) = 0;

w(0) = w0, ẇ(0) = w1,
()

Proof. The proof of this theorem follows the spirit of Theorem 4.2 of [37]. We
will start with an uniform (in ε) estimate of ‖ẇε‖2L2 and then we will use this
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estimate in weak form of the Euler equation to show the convergence of wε to
the solution of (). We will prove the theorem in the case ρ > 0 and ν = 0.
Uniform Estimate. Start form the differential equation in () and scalar multiply
it by (w′

ε − w1):

ε2ρw(4)
ε · (w′

ε −w1)− 2ερw(3) · (w′
ε −w1) + ρẅ · (w′

ε −w1) +∇U · (w′
ε −w1) = 0,

then integrate this equation on the interval (0, t), and using the boundary con-
ditions () integrate by parts to obtain

ε2ρw(3)
ε (t) · (w′

ε − w1)− ε2ρ

2
|ẅε(t)|2 +

ε2ρ

2
|ẅε(0)|2

−2ερw(3)
ε (t) · (ẇε(t)− w1) + 2ερ

∫ t

0

|ẇε(s)|2 ds+
ρ

2
|ẇε(t)− w1|2

+U(wε(t), t) − U(w0, 0)−
∫ t

0

∇U(wε(s), s) · w1 ds−
∫ t

0

∂tU(wε(s), s) ds.

Now let us integrate this equality again in the interval (0, T ), therefore obtaining

(

2ε− 3

2
ε2
)∫ T

0

ρ|ẅε(s)| ds+
ε2(1 + T )

2
ρ|ẅε(0)|+

(

1

2
− ε

)

ρ|ẇε(T )− w1|2

+2ερ

∫ T

0

∫ τ

0

ẅε(s) dsdτ +
ρ

2

∫ T

0

|ẇε(s)− w1|2 ds+ U(wε(T ), T )

+

∫ T

0

U(wε(s), s) ds =

∫ T

0

∇U(wε(s), s) · w1 +

∫ T

0

∫ τ

0

∇U(wε(s), s) · w1 dsdτ

+(1 + T )U(w0, 0) +

∫ T

0

∫ τ

0

∂tU(wε(s), s) dsdτ.

Now we can take all the positive (for ε small enough) terms to the right hand
side to obtain

ρ

2

∫ T

0

|ẇε − w1|2 dt+
∫ T

0

U(wε(t), t) dt ≤(1 + T )U(w0, 0)

+ (1 + T )|w1|
∫ T

0

|∇U(wε(t), t)| dt

+ T

∫ T

0

|∂tU(wε(t), t)| dt.

Now using Eq. () we can choose δ to further reduce this inequality down to

ρ

2

∫ T

0

|ẇε − w1|2 dt+
∫ T

0

U(wε(t), t) dt ≤ c(T ) + C(T )

∫ T

0

|wε(t)| dt,

where c(T ) and C(T ) are constant with respect to the parameter ε. Using
Peter-Paul inequality we have that |ẇε − w1|2 ≥ (1 − η′)|ẇε|2 + (1 − 1/η′)|w1|
for all η′ > 0. Similarly since wε ∈ H2, we can write wε(t) = w0 +

∫ t

0 ẇε
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and using Peter-Paul and Cauchy-Schwartz we also end up with the estimate
|wε − w0| ≥ (1 − η)|wε|+ (1− 1/η)|w0| for all η > 0, which implies

∫ T

0

|wε(t)|2 dt ≤ T
1/η − 1

1− η
|w0|2 + T 2

1− η

∫ T

0

|ẇε(t)|2 dt.

Finally this gives us the wanted uniform bound on ‖ẇε‖L2.

Convergence. Once we have this uniform bound we can complete the proof by
arguing along the vary same line of the proof of Theorem 3.1 of [37] to obtain
the thesis.

In the same spirit of what we have done in Section 2.1.2 we will show an
application of this result to a simple time dependent potential. We will start with
what we can call a one dimensional linear auto-encoder defined by the potential

U(w, t) :=
1

2
sin2 t(w − 1)2. ()

What we are thinking here is to have a single linear neuron which mimics a
sinusoidal input. As we did in section 2.1.2 we will focus on the case ρ = 0 and
ν > 0; in this way we will have a limiting first order differential equation and
second order problems for ε > 0 which are much simpler to handle rather than
fourth order equations. The approximating problems therefore are











− νεẅ(t) + νẇ(t) + sin2 t(w(t) − 1) = 0;

w(0) = w0;

ẇ(T ) = 0,

()

while the limiting problem reduces to
{

νẇ(t) + sin2 t(w(t) − 1) = 0;

w(0) = w0.
()

The solution of Eq. () cannot be easily expressed in terms of elementary special
function and since for our purposes it is not essential to find the exact solution
we will not spend trying to find the explicit solution to this equation and we
will settle for numerical solutions. Equation () instead is a first order linear
equation that can be easily solved explicitly and it gives

w(t) = 1 + (w0 − 1) exp
(

−2t+
sin(2t)

4ν

)

. ()

This solution is particularly interesting as it is easily interpretable. We can
immediately see that the solution converges (as it is expected) to the constant
solution w(t) = 1, in this way the value of w(t) sin t (the output of our linear
neuron) will be equal to the input sin t. Moreover we can see that if we were
lucky enough to start form the initial condition w0 = 1, then the solution would
not have been changed at all. In Fig. 5–(a) we can see how the approximating
problem converges to the solution of Eq. ().
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Fig. 5. On the left we plot the convergence trend of wε (dashed lines) the limiting
value w (solid line). On the right the solution w (or wε for small ε) is compared against
the minimum of G, ω.

Now let compare this solution with the non causal solution that comes from
the minimization of

Ḡ(w) =

∫ T

0

(

ν2

2
|w|2 + U(w(t), t)

)

dt. ()

The Euler equations for this functional are
{

− ν2ẅ + sin2 t(w(t) − 1) = 0;

w(0) = w0, ẇ(T ) = 0.
()

A numerical solution of this problem is plotted in Fig. 5–(b) when T = 10
w0 = 0, ν = 1 and it is compared against the solution of Eq. () with the same
parameters. We refer to the solution of () as wε, to the solution of () as w
and we let ω be the solution of (). Again we can see that the behaviour of
the non-causal minimum and the causal one are very similar even though one
solution comes from a second order differential equation (ω) and the other is the
solution of a first order differential equation (w).

We will now show how, when an explicit time dependence is present, the
temporal scale defined by the explicit temporal dependence of the potential
furnish a natural way to segment the flux of information. Therefore this addi-
tional information from the environment opens the doors of new possible causal
variational interpretations.

2.2.2. Input Segmentation

In section 2.1.2 we saw that the formulation of a causal theory with vanishing
ε intervals would not give meaningful results for learning while it would have
given us a nicer interpretation in terms of the quality of the solution (measured
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Fig. 6. Solution for T = 8,
ν = 0 of

argmin

∫
̟ε

(

ẇ2
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)

,

when ε = 3, 1, 1/4 and wε as
in Eq. () with K = 1, t1 =
T/2 = 4.

through the potential). We will now show that when we can partition the
temporal interval [0, T ] into a number of finite sub-intervals, then we can furnish
a different interpretation of the limiting causal problem. The main observation
is the following: The term ε has of course the dimensions of a time, therefore
when we one consider the limit ε → 0 we are actually considering the regime
when ε≪ T . If we now have another temporal scale τ then we can replicate the
problem on [0, T ] in each of the intervals of size τ , causality will then be achieved
when ε≪ τ . Of course the interpretation that we will find will crucially depend
on the partition that we perform in the interval [0, T ] so this partition must be
chosen carefully. In the batch mode problem that we discussed in the previous
section the only temporal constant that we can use to perform this partition is
given by a suitable combination of the parameters that we use (so on the values
of ν and ρ). It is much more interesting (and indeed is the reason why we are
presenting this ideas in this section) when the temporal scale is chosen based on
the explicit temporal dynamic of the potential.

The idea that we would like to follow is the same that we pursued in
Section 2.1.3. Consider a finite partition of size K of [0, T ]: t0 = 0 < t1 <
t2 < · · · < tK . Then we can define the following weight

̟ε(t) = e−t/ε
K
∑

k=0

etk/εχ[tk,tk+1)(t), ()

which is the analogous of the weight defined in Eq. 2.1.3–() but where now tk
are fixed and they do not depend on ε. First of all we will give a counterexample
that shows that even with a finite partition the limiting solution of global (on
[0, T ]) minima is not a good solution for learning.

Indeed consider the simplest nontrivial partition 0 < T/2 < T and the
potential w2/2. In Fig. 6 it is shown the behaviour if the minima wε of the

functional
∫ T

0 ̟ε(|ẇ|/2 + |w|2/2) on the usual set X. As it can be seen the
solutions has a peculiar trend as ε → 0; the solution converges to w ≡ 0 right
after the discontinuity of the weight ̟ε.
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However we can state a meaningful result under the assumption of what we
can refer to as sequential optimization that is basically the procedure introduced
in Section 2.1.3 and which assume to solve a (finite) sequence of problems one
after the other and the solution to the k-th problem determines the initial
conditions of the k+1-th problem. In Section 2.1.3 we defined each problem P k

ε

(see Eq. ()) on a temporal domain of vanishing size; this time we will define
each problem in the exactly same way:

P k
ε : min

w∈Xk
ε

Jk
ε (w), k = 1, . . . ,K ()

except that this time the functional Jk
ε is defined on a fixed temporal domain

Jk
ε (w) :=

∫ tk

tk−1

̟ε(t)
(

ε2
ρ

2
|ẅ(t)|2 + ε

ν

2
|ẇ(t)|2 + U(w(t), t)

)

dt, ()

and the set Xk
ε ≡ Xk and it is defined as

Xk :=

{

{w ∈ H2(0, t1) : w(0) = w0, ẇ(0) = w1} if k = 1
{w ∈ H2(tk−1, tk) : w(tk−1) = wk

ε (tk−1), ẇ(tk−1) = ẇk
ε (tk−1)} if k > 1

()
where wk

ε is the solution of the problem P k
ε . Also let

w̄ε(t) :=

{

w0 if t = 0;
wk

ε (t) if tk−1 < t ≤ tk.
()

Then we conjecture that
w̄ε → w,

where w solves 2.2.1–(). Indeed we can formally prove this in the following
special case

Theorem E. Let ρ = 0, ν > 0 and choose U(w, t) = w2/2, then wε → w
pointwise in [0, T ].

Proof. It is sufficient to prove the property for a partition of two intervals
0 < t̄ < T ; we also set ν = 1. The characteristic polynomial associated with the
ODE in () is −ελ2 + λ+1, so that the roots are λ1,2 = (1±

√
1 + 4ε )/2ε. The

solution in the first interval in terms of the boundary conditions is

w1
ε(t) = w0 λ2e

λ2 t̄

λ2eλ2 t̄ − λ1eλ1 t̄
eλ1t + w0 λ1e

λ1 t̄

λ1eλ1 t̄ − λ2eλ2 t̄
eλ2t.

On the second interval the solution is

w2
ε(t) =w

0 e
(λ1+λ2)t̄(λ1 − λ2)

λ1eλ1 t̄ − λ2eλ2 t̄

λ2e
λ2 t̄

λ2eλ2 t̄ − λ1eλ1 t̄
eλ1t

+ w0 e
(λ1+λ2)t̄(λ1 − λ2)

λ1eλ1 t̄ − λ2eλ2 t̄

λ1e
λ1 t̄

λ1eλ1 t̄ − λ2eλ2 t̄
eλ2t.

Now, by direct calculation we see that w1
ε(t) → w0e−t and similarly w2

ε(t) →
w0e−t which is indeed the solution to ().
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So we found that, not only 2.2.1–() can be interpreted as the limit of minima
of F̄ε on X, but also as the solution of the “sequential” problems ().

So let us now discuss how we can define a good partition of the interval
[0, T ] based on the temporal evolution of the environment.

Choosing a meaningful partition. A natural way to define a partition of
[0, T ] looking at the properties of the input signal x(t) that characterize the
temporal dependence of the potential is to segment according to the variations
of x.

In Chapter 1 we stressed the importance of using smooth signals x(t). This
assumption is now fundamental in the definition of an input-based partition.
Indeed if the signal is at least differentiable we for every chosen δ > 0 we can
always find a partition t0 = 0 < t1 < · · · < tK = T of [0, T ] such that for every
tk < ta, tb < tk+1, k = 0, . . . ,K − 1 we have

‖x(ta)− x(tb)‖ ≤ δ. ()

The idea behind this definition is that the partition can be done in such a way
that within each interval the value of the input is almost constant. Of course
in order to be able to do this we also need to have a smooth dependence of the
potential on the input signal.

Once we choose such partition, the function in Eq. () can be interpreted as
the parameter trajectory that in each of the intervals of the partition is moved
according to the input present in that interval conditionally to the value of the
parameters developed up to the previous interval. Indeed thanks to the weight
̟ε for ε small enough the solution w̄ε solves minimization problems that fully
“see” the data since the value of the potential evaluated at tk, k = 0, . . .K is
computed according to the value of the signal at those same temporal instants.

Furthermore the criterion that we have described so far can be further
enriched to encompass the case when the input signal x(t) has a finite number
of discontinuities by simply inserting the times at which the discontinuities
occurs into the temporal partition without changing the position of the problems
P k
ε . Sometimes abrupt (or very quick) changes indeed have the function of

segmentation; as we will see in the next chapter focus of attention for visual
scenes have exactly this kind of behaviour. So it is very important to have a
theory that can handle such phenomena.

Another interesting comment is the fact that the solution of the problems P k
ε

(that as we have already remarked in Section 2.1.3, Lemma B as a whole belongs
to X) becomes the actual global minimum if on the boundaries of the partition
the transmission conditions in Eq. 2.1.3–() are satisfied. As we have argued
in the last section in general this does not happen, however one may imagine
that with a suitable temporal dependence of the potential there could be some
relaxation properties through which the derivative of the solution vanish. In this
case indeed the transmission condition would be satisfied and the independence
condition that we have postulated in the formulation of the problems P k

ε would
be actually transformed into a “reset” property of the derivative of the solution at
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special temporal instants. This reset mechanism is exactly what we will enforce
in the first formulation of our theory for visual feature extraction presented in
Section 3.2.

2.2.3. Comments on the Solution

What we have done till now shows that the requirement of causality and having
enforced locality by assuming that the parameters of the model w appears in the
Lagrangian evaluated at a specific point in time (and not for example as a sum
or integral on larger temporal domains) give rise ultimately to the differential
laws 2.2.1–().

However we didn’t have done any assumption on the information content
of the signal x(t). Without assumptions on the way in which the environment
acts on the system there is no guarantee of good learning behaviour nor of
any kind of convergence of the solutions of Eq. 2.2.1–(). We have already
seen in Section 1.2.3 that this kind of results can be achieved assuming some
kind of repetitions of important pattern; for example we proved that under the
assumption of quasi-periodicity the dynamic of Eq. 2.2.1–() becomes consistent
on similar patters.

When we set ρ = 0 and ν > 0, as we have already commented in Chapter 1,
Eq. 2.2.1–() can be actually be interpreted as the continuum version of a SGD
update. In this case it is experimentally and theoretically well known that the
learning rate should be small (see [41]) and therefore ν (which has the dimensions
of time) should be large compared to the temporal scale at which the example
present themselves.

A last comment here that has to do with the behaviour of solutions of
Eq 2.2.1–() is also very relevant: For the purpose of learning the speed of the
signal can be adjusted by performing a smoothing on data. This is particularly
interesting because it allows to avoid, or at least reduce at the beginning of learn-
ing a temporal dynamics of the gradient that are too quick therefore enhancing
the quality of the numerical solution.
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2.3. CONSTRAINED VARIATIONAL PROBLEMS

One of the many advantages of using calculus of variations to describe a theory,
other than its compactness and the way in which symmetries are easily handled,
is the fact that it allows the study of constrained problems. Indeed there
is an infinite dimensional extension of the Lagrange multipliers method that
guarantees (under some suitable hypothesis) the existence of the multipliers
associated to a class of constraints.

In this section we will explore a method to explicitly compute these multi-
pliers for a sufficiently big class of functionals. We will start with a somewhat
general setting and then we will proceed to discuss how this techniques can be
applied to Neural Networks computations. The following derivation is inspired
by exercise 1 of Section 2.2 of [19].

Throughout this section we will override some of the notations that we have
used so far in order to avoid cumbersome expressions.

2.3.1. Modified Dirichlet Problem

Let Ω be an open, bounded domain in Rn, let u: Ω → RN , ̟: Ω → R of
class C1(RN ; (0,+∞)) and F(u) :=

∫

Ω F (x, u,∇u) dx, then define the following
functional

S(u) :=
1

2

∫

Ω

|∇u|2̟(x)dx + F(u), ()

which is the weighted Dirichlet integral plus the F(u) term. We are here
interested in the necessary conditions for u to be an extremizer of the modified
Dirichlet functional S subject to a class of holonomic constraints. Holonomic
constraints (see [19]) are subsidiary conditions of the form

G(x, u(x)) = 0. ()

When n = 1 and the independent variable is time if G does not depend explicitly
on time we say that it is a scleronomic constraint, otherwise we will call it a
rheonomic constraint.

Scalar Constraints. We start our analysis by considering a single constraint
G(u) = 0, with z 7→ G(z) ∈ C2(RN ;R) and |Gz|2 6= 0, where we denote with
Gz the gradient of the constraint.

Using the Lagrange multiplier theory we know that instead of looking for
constrained stationary points of S we can focus on the unconstrained stationary
points of the functional

S
∗(u) =

1

2

∫

Ω

|∇u(x)|2̟(x) − λ(x)G(u(x)) dx + F(u). ()

The constrained Euler equations therefore becomes*:

−̟∆u− uxα̟xα − λGz(u) + LF (u) = 0, ()

where, LF (u) is the Euler operator (see [19] p. 18) and ∆ is the Laplace operator.

* In this section we will make extensive use of Einstein summation convention.
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Now by differentiating the constraint two times with respect to xα, and then
summing over α we obtain:

Gzizkuixαukxα +Gziuixαxα = 0, ()

or written more concisely −Gz ·∆u = Gzizkuixαukxα . Now we can scalar multiply
both sides of Eq. () by the vector Gz(u)

λ|Gz(u)|2 = −̟∆u ·Gz(u)−̟xα(uxα ·Gz(u)) + LF (u) ·Gz(u), ()

from where we immediately have (since we assumed |Gz |2 6= 0)

λ =
̟Gzizk(u)uixαukxα −̟xα(uxα ·Gz(u)) + LF (u) ·Gz(u)

|Gz(u)|2
. ()

Example 1 (Inclined Plane). Let us consider a simple example in classical
mechanics of a mass sliding on a frictionless inclined plane. The motion takes
place on a two dimensional plane. This correspond to the case, n = 1, N = 2,
̟ ≡ m, with m a positive constant (the value of the mass). Let u1 and u2 be
the coordinates of the mass on the plane, then the action is

S(u) =

∫ t1

t0

(

m

2
|u̇|2 −mgu · ê2

)

dt, ()

where ê2 = (01 ). The constraint here is G(u) = u · v, where v = (−s
1 ), s > 0.

Therefore we have Gz(u) = v, Guiuk ≡ 0 for all i = 1, 2, LF (u) = −mgê2. This
means that λ = −mg/(1 + s2) and therefore the equations of motion for the
mass becomes

−ü(t) + g

1 + s2
v − gê2 = 0. ()

In order to understand this result intuitively let us consider the rotation matrix
R(ϑ) =

(

cosϑ−sinϑ
sinϑ cosϑ

)

and consider the change of coordinates u 7→ R(−θ)u =: U
with θ = arctan s (the slope of the inclined plane), then the Euler equation in
this new reference frame are

−Ü(t)− g

(

sin θ
0

)

= 0, ()

which indeed is the well known equation of motion of a mass on an inclined plane
written in the reference frame where U1 is parallel to the plane.

Example 2 (Pendulum). Consider the motion of a particle on a circumference
under the action of gravity (pendulum). The setting is the same as the one in
Example 1; this time however the constraint is quadratic: G(u) = 1

2 |u|2− ℓu · ê2.
Therefore Gz(u) = u− ℓê2 and (Gzizj ) =

(

1 0
0 1

)

, then

λ =
m

ℓ2
(

|u̇|2 + g(ℓ− u · ê2)
)

. ()

Thus the non-linear Euler equation reads

−ü(t)− |u̇(t)|2 + g(ℓ− u(t) · ê2)
ℓ2

(u(t)− ℓê2)− gê2 = 0, ()
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this is indeed the awkward form of the non-linear equation of the pendulum
ℓθ̈+ g sin θ = 0 written in the fixed reference frame with origin corresponding to
the configuration θ = 0.

Multiple Constraints. Consider the problem in Eq. () where u are subject
to the constraints G(u(x)) = 0 for all x ∈ Ω and G(z) of class C2(RN ,Rr).
Furthermore assume that the r ×N matrix Gz = (Gi

zj ) has maximal rank r for
all1 z ∈ RN :

rankGz = r for all z ∈ RN . ()

The extended functional S
∗ becomes

S
∗(u) =

1

2

∫

Ω

|∇u(x)|2̟(x)− λj(x)G
j(u(x)) dx + F(u) ()

Euler equation for this functional are−̟∆u−uxα̟xα−λℓGℓ
z(u)+LF (u) = 0; on

the other hand from the constraints one obtains −∆u ·Gj
z(u) = Gj

zizk(u)u
i
xαukxα

for 1 ≤ j ≤ r. Hence Gj
z(u) ·Gℓ

z(u)λℓ = ̟Gj
zizk(u)u

i
xαukxα −̟xα(uxα ·Gj

z(u)) +

LF (u) · Gj
z(u). Define Ajℓ(u) := Gj

z(u) · Gℓ
z(u), then the constrained Euler

equations are
−̟∆u− uxα̟xα − λℓG

ℓ
z(u) + LF (u) = 0, ()

with

λℓ = (A−1(u))ℓj
(

̟Gj
zizk(u)u

i
xαukxα −̟xα(uxα ·Gj

z(u)) + LF (u)G
j
z(u)

)

. ()

Notice that A−1(u) always exists because of the assumption on Gz and because
A(u) is a Ghram matrix and the following lemma holds:

Lemma C. If v1,. . . , vn are n linear independent vectors, then the Ghram
matrix Gij := (vi, vj) is positive definite.

Proof. We have (x,Gx) = xi(vi, vj)xj = (xivi, xjvj) = ‖vixi‖2 ≥ 0. However
‖vixi‖ = 0 if and only if xivi = 0, therefore we can conclude that (x,Gx) > 0
for every x 6= 0.

2.3.2. Neural Network Constraints

The typical learning paradigm within the framework of NN consists of a model,
that depends on a set of parametersW , that usually are identified as the weights
of the neurons which defines the NN. In this section we are interested in a different
representation of a NN in which the space of variables consist both of the weights
W and the output x of the neuron and where the structure of the network is
defined though a set of constrains that appropriately links together the neurons
variables through the weights variables. This approach to neural networks has
been originally proposed in the finite dimensional case by Yann LeCun in [34]
and later developed with different declinations by [13], [55], [25] and [6]. In this
section we will show how to extend the theory to functional problems. We will

1 We could ask for a less restrictive condition here, namely that Gz(z) should be full rank
on all the points z ∈ RN such that G(z) = 0,
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E1

x2

w21

x1

x2 − σ(w21x1) = 0
x2

w21

x2 = σ(w21E1)

(a) (b)

Fig. 7. Visualization of the neural constraints for the neural network
1 2

(one input
{1} and two neurons {1, 2}). Constraint G2(x,W ) = 0, restricted to the plane x1 = E1,
is shown in (a). In (b), such restriction is represented in the w21–x

2 plane.

show that, surprisingly enough, in contrast to what happens with the standard
approach of Lagrange multipliers in finite dimension, where they generally cannot
be easily expressed in terms of the other variables involved in the optimization,
in this case we are able to obtain an explicit representation of the multipliers.

First of all let us describe the architecture of the class of models that we will
address. Given a simple digraph D = (V,A) of order ν without loss of generality
we can assume V = {1, 2, . . . , ν} and A = {(i, j) ∈ N2 | i ∈ V, j ∈ V }. A neural
network constructed on D consists of a set of maps* i ∈ V 7→ xi ∈ R and (i, j) ∈
A 7→ wij ∈ R together with ν constraints Gj(x,W ) = 0 j = 1, 2, . . . ν where
(W )ij = wij . Let Mν(R) be the set of all ν × ν real matrices and M↓

ν(R) the
set of all ν × ν strictly lower triangular matrices over R. If W ∈ M↓

ν(R) we say
that the NN has a feedforward structure. The relations Gj = 0 for j = 1, . . . , ν
specify the computational scheme with which the information diffuses trough
the network. In a typical network with ω inputs these constraints are defined as
follows (see also Fig. 7): For any vector ξ ∈ Rν, for any matrixM ∈ Mν(R) with
entries mij and for any given C1 map e: (0,+∞) → Rω we define the constraint
on neuron j when the example e(τ) is presented to the network as

Gj(τ, ξ,M) :=

{

Ij(τ, ξ) := ξj − ej(τ), if 1 ≤ j ≤ ω;
Hj(ξ,M) := ξj − σ(mjkξ

k) if ω < j ≤ ν,
()

where σ:R → R is of class C1(R).
Our goal here is to show that such relations, that normally are considered

just a local description of the compositional structure of the NN, once properly
interpreted as constraints in the space x−W (see Fig. 7) are suitable holonomic
subsidiary conditions in the sense of Eq. 2.3.1–().

Like in the case of classical mechanics, when dealing with learning processes
we are interested in the temporal dynamics of the variables when they are
exposed to the data from which the learning is supposed to happen. For this
reason in this section we can restrict ourselves to the case n = 1 and regard this
variable as time (x1 = t). Moreover because the neural constraints Gj(x,W ) = 0

* Please notice that now x is a the variable of the variational problem, and therefore
represent a mapping t 7→ x(t). It not to be intended as the independent variable of the
problem described in the previous sections.
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involve not only W but also x the N variables u1, . . . , uN split into x ∈ Rν and
W ∈ Mν(R).

Feedforward Networks. Now let us consider the caseW ∈ M↓
ν(R) and let us

extend the theory by allowing F(x,W ) :=
∫

F (t, x, ẋ, ẍ,W, Ẇ , Ẅ ) dt, so that,
in the end, we consider the functional

A(x,W ) =

∫

1

2
(|ẋ(t)|2 + |Ẇ (t)|2)̟(t)dt + F(x,W ), ()

subject to the constraints

Gj(t, x(t),W (t)) = 0, 1 ≤ j ≤ ν. ()

Then the following proposition holds true:

Proposition A. The matrix (
Gξ

GM
) ∈ M(ν2+ν)×ν(R) is full rank.

Proof. First of all notice that if (Gξ)ij = Gj
ξi is full rank also (

Gξ

GM
) has this

property. Then, since

Gj
ξi(τ, ξ,M) =

{

δij , if 1 ≤ j ≤ ω;
δij − σ′(mjkξ

k)mji if ω < j ≤ ν,

we immediately notice that Gi
ξi = 1 and that for all i > j we have Gi

ξi = 0. This
means that

(Gj
ξi (τ, ξ,M)) =









1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1









,

which is clearly full rank.

We will now discuss the updates rules (Euler-Lagrange equations) for the
variables x and W derived from the stationarity conditions of the functional ().
The constrained functional is

A
∗(x,W ) =

∫

1

2
(mx|ẋ(t)|2 +mW |Ẇ (t)|2)̟(t)− λj(t)G

j(t, x(t),W (t)) dt

+ F(x,W ),
()

and its Euler equations (ELE) thus reads

−mx̟(t)ẍ(t)−mx ˙̟ (t)ẋ(t)− λj(t)G
j
ξ(t, x(t),W (t)) + Lx

F (x(t),W (t)) = 0;

−mW̟(t)Ẅ (t)−mW ˙̟ (t)Ẇ (t)− λj(t)G
j
M (t, x(t),W (t)) + LW

F (x(t),W (t)) = 0,
()

where Lx
F = Fx − d(Fẋ)/dt+ d2(Fẍ)/dt

2, LW
F = FW − d(FẆ )/dt+ d2(FẄ )/dt2.

An expression for Lagrange multiplies, as it is explained in Section is derived by
differentiating two times the constraint with respect to the time and using the



2.3.2 NEURAL NETWORK CONSTRAINTS 55

obtained expression to substitute the second order terms in the Euler equations.
In this case the analogue of Eq. 2.3.1–() is

(Gi
ξaG

j
ξa

mx
+
Gi

mab
Gj

mab

mW

)

λj =̟
(

Gi
ττ + 2(Gi

τξa ẋ
a +Gi

τmab
ẇab +Gi

ξambc
ẋaẇbc)

+Gi
ξaξb ẋ

aẋb +Gi
mabmcd

ẇabẇcd

)

− ˙̟ (ẋaGi
ξa + ẇabG

i
mab

) +
Lxa

F Gi
ξa

mx
+
Lwab

F Gi
mab

mW
.

()
whereGi

τ , G
i
ττ , G

i
ξa , G

i
ξaξb , G

i
mab

andGi
mabmcd

are the gradients and the hessians

of constraint () all evaluated on the trajectories x(t), W (t) and at the temporal
instant t.

As we can expect the satisfaction of the constraints that the Euler equations
() propagates in time must be satisfied at the beginning; and this of course
imposes constraints on the way in which the system () can be initialized. Such
conditions are discussed here below.

Initial conditions. Suppose now that we want to solve Eq. () with Cauchy
initial conditions. Of course we must choose W (0) and x(0) such that gi(0) ≡ 0,
where we posed gi(t) := Gi(t, x(t),W (t)), for i = 1, . . . , ν. However since the
constraint must hold also for all t ≥ 0 we must also have at least g′i(0) = 0.
These conditions written explicitly means

Gi
τ (0, x(0),W (0)) +Gi

ξa(0, x(0),W (0))ẋa(0) +Gi
mab

(0, x(0),W (0))ẇab(0) = 0.
()

Notice that the “vector” (ẋ(0), Ẇ (0)) in order to have a motion along the
constraints must be tangent to the constraints; one possible way to achieve this
is to choose ẋ(0) = 0 and Ẇ (0) = 0. This being done it remains to satisfy

Gi
τ (0, x(0),W (0)) = 0, ()

which is an additional constraint on the initial conditions x(0) andW (0). There-
fore one possible consistent way to impose Cauchy conditions for Eq. () is























Gi(0, x(0),W (0)) = 0, i = 1, . . . , ν;

Gi
τ (0, x(0),W (0)) = 0, i = 1, . . . , ν;

ẋ(0) = 0;

Ẇ (0) = 0.

()

Higher derivative of gi becomes automatically satisfied thanks to Eq. ().
The following examples give a better idea of how the multipliers can be

found inverting the linear equation in ().

Example 1. We want to study only how the information that comes from
the signal e is transferred to the input neurons by means of the time dependent
constraint. The simplest scenario to consider is that with just one input neuron
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x subject to the constraint G = x− e. We also just consider a free dynamic, i.e.
F = 0. So that the only equation that we have to consider is

−̟ẍ− ˙̟ ẋ− λGx = 0, ()

with λ = −̟ë − ˙̟ ẋ, which means that the equation of motion for the neuron
is ẍ = ë, which if coupled with consistent initial conditions (x(0) = e(0) and
ẋ(0) = ė(0)) indeed yields x(t) = e(t).

Example 1. The next natural example to consider is the case of proper linear
neuron, characterized by the constraint G(t, x(t), w(t)) = x(t)−w(t)e(t), where e
is a given input and we assume that F = −̟(y−x)2/2, Lx

F = ̟(y−x). The ELE
in this case are the following two scalar equations (we choose ̟(t) := exp(ϑt))

ẍ = −ϑẋ− 1

mx
µ+

1

mx
(y − x);

ẅ = −ϑẇ +
1

mW
µe.

()

where µ = exp(−ϑt)λ. Moreover the second derivative of the constraint gives

ẍ− ẅe = 2ẇė+ wë. ()

Multiplying the second ELE by −e (which is indeed Gm) and then summing the
two equations gives

ẍ− eẅ = −θ(ẋ− eẇ)− µ
mW + e2mx

mxmW
+

1

mx
(y − x), ()

therefore

µ = − mWmx

mW + e2mx

[

2ẇė+ wë + ϑ(ẋ − eẇ)− y − x

mx

]

. ()

Now let us define q0 = w, q1 = x, q2 = ẇ, q3 = ẋ, then

q̇0 = q2, q̇1 = q3, ()

while

q̇2 = −ϑq2 −
emx

mW + e2mx

[

2q2ė+ q0ë+ ϑ(q3 − eq2)
]

+
e

mW + e2mx
(y − q1);

q̇3 = −ϑq3 +
mW

mW + e2mx

[

2q2ė+ q0ë+ ϑ(q3 − eq2)
]

+
e2

mW + e2mx
(y − q1).

()
This equations can be solved with Cauchy initial conditions consistent with ();
therefore it must be true that Gτ (0, x(0), w(0)) = −w(0)ė(0) = 0, so either
ė(0) = 0 or w(0) = 0. This being said

q0(0) = 0, q1(0) = 0, q2(0) = 0, q3(0) = 0, ()

is an initial condition consistent with ().

Example 2. Consider the simplest FNN with two neurons, an input neuron and
an output neuron. Then to each neuron we can assign a constraint: G1 = x1(t)−
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e(t), G2 = x2(t)−σ(w21(t)x
1(t)). We also assume that F = −̟(t)V (x2(t), t) :=

−̟(t)(x2(t) − y(t))2/2, where y(t) is a given target. This in particular means
that Lx

F = −̟
(

0
x2−y

)

. In order to find an expression for the multipliers we need

to consider Eq. () which is of the form Aλ = v; let us now write explicitly A
and v in this special case. We have that v1 = −(̟ë+ ˙̟ ẋ1), while

v2 =− 2̟
[

σ′′(w21x
1)w21x

1 + σ′(w21x
1)
]

ẋ1ẇ21 −̟σ′′(w21x
1)
[

w2
21(ẋ

1)2

+ (x1)2(ẇ21)
2
]

+ ˙̟
[

σ′(w21x
1)w21ẋ

1 − ẋ2 + σ′(w21x
1)ẇ21x

1
]

− ̟

mx
(x2 − y).

()
The matrix A is

A =

(

1
mx

−σ′(w21x
1)w21

mx

−σ′(w21x
1)w21

mx

1+(σ′(w21x
1))2w2

21

mx
+ (σ′(w21x

1))2(x1)2

mW

)

, ()

therefore its inverse can be written explicitly and turns out to be

m2
xmW

mW +mxσ′(w21x1)(x1)2

(

1+(σ′(w21x
1))2w2

21

mx
+ (σ′(w21x

1))2(x1)2

mW

σ′(w21x
1)w21

mx

σ′(w21x
1)w21

mx

1
mx

)

.

()
In this example we will also choose ̟(t) := exp(ϑt), with ϑ ∈ R. Then if we
multiply Eq. () by the term exp(−ϑt) we get

ẍ = −ϑẋ− 1

mx
µjG

j
ξ −

1

mx

(

0

x2 − y

)

;

Ẅ = −ϑẆ − 1

mW
µjG

j
M ,

()

where µj := exp(−ϑt)λj . So that µj solve the same equation of λj multiplied by
exp(−ϑt): Aµ = v̄. Here v̄ := exp(−ϑt)v:

v̄1 = −ë− ϑẋ1

v̄2 =− 2
[

σ′′(w21x
1)w21x

1 + σ′(w21x
1)
]

ẋ1ẇ21 − σ′′(w21x
1)
[

w2
21(ẋ

1)2

+ (x1)2(ẇ21)
2
]

+ ϑ
[

σ′(w21x
1)w21ẋ

1 − ẋ2 + σ′(w21x
1)ẇ21x

1
]

− (x2 − y)

mx
.

()
In our case therefore Eq. () becomes

ẍ1 = −ϑẋ1 − 1

mx

[

µ1 − µ2σ
′(w21x

1)w21

]

;

ẍ2 = −ϑẋ2 − 1

mx

[

µ2 + x2 − y
]

;

ẅ21 = −ϑẇ21 +
µ2

mW
σ′(w21x

1)x1,

()

where µ1 = (A−1)11v̄
1 + (A−1)12v̄

2 and µ2 = (A−1)21v̄
1 + (A−1)22v̄

2.
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Now let us define qx1 := x1, qx2 := x2, px1 := ẋ1, px2 := ẋ2, qW := w21 and
pW = ẇ21. Clearly, by definition, we have

q̇W = pW , q̇x1 = px1 , q̇x2 = px2 . ()

Moreover, in this new notation Eq. ()

ṗx1 = −ϑpx1 −
1

mx

[

µ1 − µ2σ
′(qW qx1 )q

W
]

;

ṗx2 = −ϑpx2 −
1

mx

[

µ2 + qx2 − y
]

;

ṗW = −ϑpW +
µ2

mW
σ′(qW qx1 )q

x
1 ,

()

and

v̄1 = −ë− ϑpx1

v̄2 =− 2
[

σ′′(qW qx1 )q
W qx1 + σ′(qW qx1 )
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mx
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()
Eventually the inverse matrix can be written as follows
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1
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()
This together with appropriate initial conditions determines the dynamic of the
system.

We now show that for a particular choice of the Lagrangian the classical
algorithm of Backpropagation can be recovered.

Supervised Learning and reduction to BP. In order to see how this theory
can be readily applied to learning let us restrict ourselves to the caseW ∈ M↓

ν(R)
and choose ̟(t) = exp(ϑt), ϑ > 0, m > 0. Now let us choose

F (t, x(t), ẋ(t), ẍ(t),W (t), Ẇ (t), Ẅ (t)) = −eϑtV (x(t), y(t)), ()

where y(t) is an assigned supervision signal and

V (x(t), y(t)) :=
1

2

η
∑

i=1

(yi(t)− xν−η+i(t))2, ()

xν−η, . . . , xν being the variables associated with the outputs neurons. This
choices are suggested by the analysis that we carried out in Section 2.1 and 2.2:
We saw that even though the correct causal formulation of learning by means of
variational method is the one that follows the De Giorgi approach, in some cases
we can still use the classical action of mechanics as an “effective” functional to
derive the correct differential equations.
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A typical input signal and the corresponding supervision signal can be
constructed from a standard training set L := {(eκ, dκ) | eκ ∈ Rω, dκ ∈ Rη, κ =
1, . . . , ℓ} in the following manner. Choose a sequence of times 〈tn〉 := t0, t1, t2, . . .
such that |ti+1 − ti| =: τ is constant i ∈ N. Furthermore define the following
sequences: 〈En〉 := e1, . . . , eℓ, e1, . . . eℓ, . . . and 〈yn〉 := d1, . . . , dℓ, d1, . . . dℓ, . . ..
Let R(t) :=

∑∞
n=0 ρǫ(t − tn), where ρǫ(·) are standard Friedrichs mollifiers and

define

Ē(t) :=

∞
∑

n=0

Enχ[tn−1,tn](t), ȳ(t) :=

∞
∑

n=0

ynχ[tn−1,tn](t), ()

where χA is the characteristic function of the set A and t−1 = 0. Then the signal

E(t) := (Ē ∗R)(t), and y(t) := (ȳ ∗R)(t), ()

is piecewise constant signals with smooth transitions. The temporal behaviour
of these signals is depicted in the side figure.

tt0 t1 t2

To understand the behaviour of the Euler equa-
tions () we observe that in the case of feedforward
networks, as it is well known, the constraints Gj(t, x,W ) = 0 can be solved
for x so that eventually we can express the value of the output neurons in
terms of the value of the input neurons. If we let f i

W (e(t)) be the value of xν−i

when x1 = e1(t), . . . , xω = eω(t), then the theory defined by under subsidiary
conditions is equivalent, when mx = 0, to the unconstrained theory defined by

∫

eϑt
(

mW

2
|Ẇ |2 − V (t,W (t))

)

dt ()

where V (t,W (t)) := 1
2

∑η
i=1(y

i(t)−f i
W (E(t)))2. The Euler equations associated

with () are

Ẅ (t) + ϑẆ (t) = − 1

mW
VW (t,W (t)), ()

that in the limit ϑ→ ∞ and ϑm→ γ reduces to the gradient method

Ẇ (t) = − 1

γ
VW (t,W (t)), ()

with learning rate 1/γ.
Typically the term VW (t,W (t)) in Eq. () can be evaluated using the

Backpropagation algorithm; we will now show that Eq. () in the same limit
used above mx → 0, mW → 0, mx/mW → 0 reproduces Eq. () where the term
VW (t,W (t)) explicitly assumes the form prescribed by BP. In order to see this
choose ϑ = γ/mW and multiply both sides of Eq. () and Eq. () by exp(−ϑt),
then take the limit mx → 0, mW → 0, mx/mW → 0. In this limit Eq. () and
Eq. () becomes respectively

Ẇ = − 1

γ
σ′(wikx

k)δix
j ;

Gi
ξaG

j
ξaδj = −VxaGi

ξa ,

()
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Fig. 8. Temporal evolution for the weights of a linear neuron characterized by the
constraint G = x(t)−w(t)e(t). We used V = (x−3)2/2 and we fixed the parameters as
follows mx = mW = ϑ = 1. The shown trajectories correspond to the initial conditions
ẇ(0) = ẋ(0) = x(0) = 0, w(0) = 0 in (a), and w(0) = 0.01 in (b).

where δj is the limit of exp(−ϑt)λj and Vxa is the a-th component of the gradient

of V with respect to x. Because the matrix Gi
ξaG

j
ξa not only is invertible, but it

is a Gram matrix if we define Tij := Gj
ξi , then we have Gi

ξaG
j
ξa = (T ′T )ij , with

T upper triangular. Then from the second equation of () we have, since both
T and T ′ are invertible:

Tijδj = −Vxi . ()

Because T is upper triangular it is clear that this equation can be efficiently
solve starting from the last line of the matrix T up to the first one. Indeed
it is not hard to prove that Eq. () is equivalent to the backward step of the
Backpropagation algorithm: Using the explicit expression for Gj

ξi where i is not

an input nor an output neuron we have (δij − σ′(wjkx
k)wji)δj = 0 which is

δi = σ′(wjkx
k)wjiδj . ()

On the other hand when i is an output neuron we simply get

δi = −Vxi . ()

Equations () and () are exactly those that define the backward step of BP.

Simulation of the dynamics. In order to prove the soundness of the proposed
theory we performed some simulations of the Euler equations and in the special
case ω = 1, η = 1, ̟ = exp(ϑt) and F = − exp(ϑt)V (t, x(t)), where in particular
V (t, x(t)) is taken to be a quadratic loss on the output neuron. To understand
the learning dynamic of the weights we choose a constant supervision signal and
various time-dependent input signals e(t). Figure 8 shows the evolution of the
weight of a single linear neuron x(t) = w(t)e(t) with a target y = 3 and a variable
input e(t). In Fig. 8–(a) e(t) → 3 as t → ∞, and indeed w(t) converges to 1.
In Fig. 8–(b) e(t) ≈ 3(1 − t) and consistently w(t) ≈ 1/(1 − t). Notice that in
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Fig. 9. Temporal evolution of the weight that connects two neurons: G1 = x1 − e,
G2 = x2 − σ(wx1) with σ(x) := Th(x). We took mx = mW = ϑ = 1 and identically
null initial conditions. In (a) we considered V = (x2−Th(3))2/2, while in (b) we chose
V = (x2 − Th(3))2/2 + (x2 − σ(wx1))2/2.

both cases the neuron constraint is always exactly satisfied. Remember that the
initial conditions must be consistent with Eq. (); in this example in Fig. 8–(a)
we have w(0) = 0 that guaranteed Gτ = 0, while in the experiment relative
to Fig. 8–(b) one can choose ẇ(0) 6= 0 as the condition Gτ = 0 is ensured by
ė(0) = 0.

In Fig. 9 instead we tested the robustness of the method with respect to
numerical errors by running the simulation for a longer period of time. The
model here consists of two neurons NN with nonlinear activation function. We
observed that due to numerical errors the system can fail to converge to the
correct solution w = 1 (Fig. 9–(a)). This can be understood as soon as we
realize that, following the ideas of Section 2.3.1, EL-equations implements only
the satisfaction of the second derivative of the constraints, therefore errors on
the trajectories can shift the dynamic of the system on another constraint that
differs from the correct one by a linear function of time. Hence, we found that
such behaviour can be effectively corrected (see Fig. 9–(b)) by adding to the
potential a quadratic loss on the constraint itself.



CHAPTER THREE

VISUAL FEATURES FROM VIDEOS

Vision is the art of seeing

things invisible.

— JONATHAN SWIFT, in Thoughts on Various Subjects; from Miscellanies (1726)

Thou hast seen nothing yet.

— Miguel de Cervantes, in Don Quixote, pt. I (1605)

O! woe is me,

To have seen what I have seen, see what I see!

— WILLIAM SHAKESPEARE, in Hamlet (1599–1602)

Most successful computer vision algorithms work at image level, completely
discarding the precious information carried by motion. In this chapter, we will
discuss how the processing of visual streams naturally leads to formulate what we
have called the motion invariance principle, which enables the construction of a
new theory of vision that originates from variational principles. Such principled
approach is well suited for a discussion on a number of interesting questions that
arise in vision, and it offers a well-posed computational scheme for the discovery
of convolutional filters over the retina. Differently from traditional convolutional
networks, which need massive supervision, the proposed theory offers a truly
new scenario for the unsupervised processing of video signals, where features are
extracted in a multi-layer architecture with motion invariance. While the theory
enables the implementation of novel computer vision systems, it also sheds light
on the role of information-based principles to drive possible biological solutions.

For many years, the pioneering work on vision by David Marr [39], has
evolved without a systematic exploration of foundations in machine learning.
When the target is moved to unrestricted visual environments and the emphasis
is shifted from huge labelled databases to a human-like protocol of interaction,
we need to go beyond the current peaceful interlude that we are experimenting in
vision and machine learning. A fundamental question a good theory is expected
to answer is why children can learn to recognize objects and actions from a few
supervised examples, whereas nowadays supervised learning approaches strive
to achieve this task. In particular, why are they so thirsty for supervised
examples? This fundamental difference seems to be deeply rooted in the different
communication protocol at the basis of the acquisition of visual skills in children
and machines.

62
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So far, the semantic labeling of pixels of a given video stream has been
mostly carried out at frame level. This seems to be the natural outcome of well-
established pattern recognition methods working on images, which have given
rise to nowadays emphasis on collecting big labelled image databases (e.g. [15])
with the purpose of devising and testing challenging machine learning algorithms.
While this framework is the one in which most of nowadays state-of-the art object
recognition approaches have been developing, we argue that there are strong
arguments to start exploring the more natural visual interaction that animals
experiment in their own environment.

This leads to process a video signal instead of image collections, that natu-
rally leads to a paradigm-shift in the associated processes of learning to see. The
idea of shifting to video is very much related to the growing interest of learning
in the wild that has been explored in the last few years*. The learning processes
that take place in this kind of environments has a different nature with respect to
those that are typically considered in machine learning. Learning convolutional
nets on ImageNet typically consists of updating the weights from the processing
of temporally unrelated images, whereas a video carries out information when
we pass through contiguous frames by smooth changes. While ImageNet is a
collection of unrelated images, a video supports information only when motion
is involved. In presence of fixed images that last for awhile, the corresponding
stream of equal frames basically supports only the information of a single image.
As a consequence, visual environments diffuse information only when motion
is involved. There is no transition from one image to the next one— like in
ImageNet—but, as time goes by, the information is only carried out by motion.
Once we deeply capture this fundamental feature of visual environments, we
early realize that we need a different theory of machine learning that must deal
with video instead of a collection of independent images anymore.

A crucial problem that has been recognized by Poggio and Anselmi [45] is the
need to incorporate visual invariances into deep nets that go beyond simple trans-
lation invariance that is currently characterizing convolutional networks. They
propose an elegant mathematical framework on visual invariance and enlighten
some intriguing neurobiological connections. Overall, the ambition of extracting
distinctive features from vision poses a challenging task. While we are typically
concerned with feature extraction that is independent of classic geometric trans-
formation, it looks like we are still missing the fantastic human skill of capturing,
for example, distinctive features to recognize ironed and rumpled shirts. There is
no apparent difficulty to recognize shirts by keeping the recognition coherence in
case we roll up the sleeves, or we simply curl them up into a ball for the laundry
basket. Of course, there are neither rigid transformations, like translations and
rotation, nor scale maps, that transforms an ironed shirt into the same shirt
thrown into the laundry basket. Is there any natural invariance?

In this chapter, we claim that motion invariance is in fact the only invariance
that we need. Translation, rotation, and scale invariance, that have been the

* See e.g. https://sites.google.com/site/wildml2017icml/.
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subject of many studies [38], are in fact examples of invariances that can be
fully gained whenever we develop the ability to detect features that are invariant
under motion. Consider the simple example of your inch that moves closer and
closer to your eyes. Any of its representing features that is motion invariant will
also be scale invariant.

Clearly, translation, rotation, and complex deformation invariances derive
from motion invariance. Humans life always experiments motion, so as the gained
visual invariances naturally arise from motion invariance. Animals with foveal
eyes also move quickly to focus attention on informative areas of the retina,
which means that they continually experiment motion. Hence, also in case
of fixed images, conjugate, vergence, saccadic, smooth pursuit, and vestibulo-
ocular movements lead to acquire visual information from relative motion. We
claim that the production of such a continuous visual stream naturally drives
the extraction of feature that are supposed to be useful for object and action
recognition. The enforcement of this consistency condition creates a mine of
visual data during animal life. Interestingly, the same can happen for machines.
Of course, we need to compute the optical flow at pixel level so as to enforce
the consistency of all the extracted features. Early studies on this problem [28],
along with recent related improvements (see e.g. [4]) suggests to determine the
velocity field by enforcing brightness invariance. As the optical flow is gained,
it is used to enforce motion consistency on the visual features. Interestingly,
the theory we propose is quite related to the variational approach that is used
to determine the optical flow in [28]. In addition to the importance of motion
invariance, it is worth mentioning that an effective visual system should also
develop features that do not follow such invariance. These kind of features can
be conveniently combined with those that are discussed in this chapter with the
purpose of carrying out high level visual tasks.

Some of the ideas presented in this chapter are somewhat inspired by the
research activity reported in [22], where the authors propose the extraction of
visual features as a constraint satisfaction problem, mostly based on information-
based principles and early ideas on motion invariance. However, we incorporate
motion invariance in the variational framework that we discussed in Chapter 2
(see also [5]), which gives rise to a time-variant differential equation, where the
parameters of the model w(t) which are thought as Lagrangian coordinates cor-
responds with the values of the convolutional filters and that we will eventually
denote as q(t). Unsupervised development of features from temporally coherent
data has already been investigated in Slow Feature Analysis (SFA) [60, 61], with
more recent applications to high-level tasks, such as action recognition [52]. The
basic idea is to extract features that are “slowly varying” with respect to the
“quickly varying” input signal. SFA has been applied in several contexts, and also
in the case of motion estimation in video signals. Other unsupervised learning
algorithms have been mostly applied to image datasets [47, 32]. More recent ap-
proaches embraces the idea of exploiting some notions of motion coherence with
unsupervised learning of image-level features or with object segmentation [58,
24, 36, 43]. However to the best of our knowledge, none of the cited works
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proposed a learning theory for pixel-level visual features directly formulated in
the time domain and based on motion.

Motivating questions. The proposed theory offers a computational perspec-
tive on the emergence of visual features regardless of the “body” which sustains
the processing. The theory is rooted on the need to address some fundamental
questions that involve vision in animals, and that are likely to be very important
in order to construct an effective and efficient computational model for com-
puters. As it will become early clear, the need of visual features that support
the property of motion invariance plays a central role in most of the questions
outlined below.

Q1. How can humans conquer visual skills without requiring “intensive supervi-
sion”?

Recent remarkable achievements in computer vision are mostly based on tons
of supervised examples—of the order of millions! This does not explain
how can humans conquer visual skills with scarse “supervision” from the
environment. Hence, there is plenty of evidence and motivations for invoking
a theory strongly rooted in unsupervised learning that can be capable of
explaining the emergence of features from visual data collections. While
the need for theories of unsupervised learning in computer vision has been
advocated in a number of papers (see e.g. [53, 35, 47, 24], so far, because
of many recent successful applications, the powerful representations that
arise from supervised learning, seem to attract much more interest. While
information-based principles could themselves suffice to construct visual
features, the absence of any feedback from the environment make those
methods quite limited with respect to supervised learning. One of the
founding ideas of our theory is that motion invariance inherently offers a huge
amount of “free supervisions” from the visual environment, thus explaining
the reason why humans do not need the massive supervision process that is
dominating feature extraction in convolutional neural networks.

Q2. How can animals gradually conquer visual skills in a truly temporal-based
visual environment?

Animals, including primates, conquer visual skills by living in their own
visual environment. This is gradually achieved without needing to separate
learning from test environments. At any stage of their evolution, it looks like
they acquire the skills that are required to face the current tasks. On the
opposite, most approaches to computer vision do not really grasp the notion
of time. The typical ideas behind on-line learning do not necessarily capture
the natural temporal structure of the visual tasks. Time plays a crucial
role in any cognitive process. One might believe that this is restricted to
human life, but more careful analyses lead us to conclude that the temporal
dimension plays a crucial role in the well-positioning of most challenging
cognitive tasks, regardless of whether they are supported by humans or
machines. Nowadays dominating trend leads to struggle for the acquisition
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of huge labeled databases, while the truly incorporation of time might led to
a paradigm shift in the interpretation of the learning and test environment
and construct visual features without needing any labeling. The theory
proposed here is framed in the context of agent life characterized by the
ordinary notion of time, which emerges in all its facets. We are not concerned
with huge supervised visual data repositories, but merely with the agent
life in its own visual environments. The extraction of features in such a
temporal-based visual environment is the main objective of this chapter.

Q3. Can animals see in a world of shuffled frames?

One might figure out what human life could have been in a world of visual
information with shuffled frames. Could children really acquire visual skills
in such an artificial world, which is the one we are presenting to machines?
Notice that in a world of shuffled frames, for a video to be recorded, we
require a space that is significantly larger than the space required to store
the corresponding temporally coherent visual stream. This is a serious
warning that is typically neglected. As a consequence, any recognition
process is likely to be remarkably more difficult when shuffling frames, which
clearly indicates the importance of keeping the spatio-temporal structure
that is offered by nature. This calls for the formulation of a theory of
learning capable of capturing spatiotemporal structures. Basically, we need
to abandon the indisputable issue of restricting computer vision to the
processing of images. The reason for formulating a theory of learning on
video instead of on images is not only rooted in the curiosity of grasping the
computational mechanisms that take place in nature. It looks like that, while
ignoring the crucial role of temporal coherence, learning visual features leads
to tackling a problem that is remarkably more difficult than the one nature
has prepared for humans! We conjecture that animals could not see in a
world of shuffled frames, which indicates that such an artificial formulation
might led to a very hard problem. In a sense, the very good results that we
already can experiment nowadays on the extraction of visual features are
quite surprising, but they are mostly due to the stress of the computational
power and the artificial framework of supervised learning. The theory
proposed in here relies on the choice of capturing temporal structures in
natural visual environments, which is claimed to simplify dramatically the
problem at hand, and to give rise to a reduce dramatically the computational
burden.

Q4. How can humans attach semantic labels at pixel level?

Humans provide scene interpretation thanks to linguistic descriptions. This
requires a deep integration of visual and linguistic skills, that are required to
come up with compact, yet effective visual descriptions. However, amongst
these high level visual skills, it is worth mentioning that humans can attach
semantic labels to a single pixel in the retina. While this decision process is
inherently interwound with a certain degree of ambiguity, it is remarkably
effective. The linguistic attributes that are extracted are related to the
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context of the pixel that is taken into account for label attachment, while
the ambiguity seems to be mostly a linguistic more than a visual issue. The
proposed theory addresses directly this visual skill since the hidden labels
can be extracted for a given pixel at different levels of abstraction.
The bottom line is that human-like linguistic descriptions of visual scenes is
gained on top of pixel-based feature descriptions that, as a byproduct, must
allow us to perform semantic labeling. Interestingly, there is more; as it will
be shown in the following, there are in fact computational issues that lead
us to promote the idea of carrying out the feature extraction process while
focussing attention on salient pixels.

Q5. What could drive the functional difference between the ventral and dorsal
mainstream in the visual cortex?

It has been pointed out that the visual cortex of humans and other primates
is composed of two main information pathways that are referred to as
the ventral stream and dorsal stream [20]. The ventral “what” and the
dorsal “where/how” visual pathways are traditionally distinguished, so as
the ventral stream is devoted to perceptual analysis of the visual input,
such as object recognition, whereas the dorsal stream is concerned with
motion ability in the interaction with the environment. The enforcement of
motion invariance is clearly conceived for extracting features that are useful
for object recognition to assolve the “what” task. Of course, neurons with
built-in motion invariance are not adequate to make spatial estimations.
The model behind the learning of the filters indicates the need to access
to velocity estimation, which is consistent with neuroanatomical evidence.
Interestingly, we will see that the theory also advocates the need of hierar-
chical structures for the dorsal mainstream, but there is one more reason for
those structures in the ventral stream.

Q6. Why do we need a hierarchical architecture with receptive fields?

Beginning from early studies by Hubel and Wiesel [30], neuroscientists have
gradually gained evidence that the visual cortex presents a hierarchical
structure, and that the neurons process the visual information on the basis of
inputs restricted to receptive field. Is there any reason why this solution has
been developed? We can promptly realize that, even though the neurons are
restricted to compute over receptive fields, deep structures easily conquer
the possibility of taking large contexts into account for their decision. Is
this biological solution driven by computational laws of vision? We provide
evidence of the fact that receptive fields do favor the acquisition of motion
invariance which, as already stated, is the fundamental invariance of vision.
Since hierarchical architectures is the natural solution for developing more
abstract representations by using receptive fields, it turns out that motion
invariance is in fact at the basis of the biological structure of the visual
cortex. The computation at different layers yields features with progressive
degree of abstraction, so as higher computational processes are expected to
use all the information extracted in the layers.
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Q7. Why do animals focus attention?

The retina of animals with well-developed visual system is organized in
such a way that there are very high resolution receptors in a restricted
area, whereas lower resolution receptors are present in the rest of the retina.
this convenient? One can easily argue that any action typically takes place
in a relatively small zone in front of the animals, which suggests that the
evolution has led to develop high resolution in a limited portion of the retina.
On the other hand, this leads to the detriment of the peripheral vision, that
is also very important. In addition, this could apply for the dorsal system
whose neurons are expected to provide information that is useful to support
movement and actions in the visual environment. At a first glance, the
ventral mainstream, with neurons involved in the “what” function, does not
seem to benefit from foveal eyes. The theory proposed here strongly supports
the need for foveal retinas, when we need to achieve an efficient construction
of visual features delegated to sustain object recognition. However, it will
be argued that the most important reason for focussing attention is that
of dramatically simplifying the computation and limit the ambiguities that
come from the need to sustaining a parallel computation over each frame.

Q8. Why do foveal animals perform eye movements?

Human eyes make jerky saccadic movements during ordinary visual acqui-
sition. One reason for these movements is that the fovea provides high-
resolution in portions of about 1, 2 degrees. Because of such a small high
resolution portions, the overall sensing of a scene does require intensive
movements of the fovea. Hence, the foveal movements do represent a good
alternative to eyes with uniformly high resolution retina. On the other
hand, the preference of the solution of foveal eyes with saccadic movements is
arguable; while a uniformly high resolution retina is more complex to achieve
than foveal retina, saccadic movements in this case are less important.
The information-based theory presented here makes it possible to conclude
that foveal retina with saccadic movements is in fact a solution that is
computationally sustainable and very effective.

Q9. Why does it take 8-12 months for newborns to achieve adult visual acuity?

There are surprising results that come from developmental psychology on
what a newborn see. Charles Darwin came up with the following remark:

It was surprising how slowly he acquired the power of following
with his eyes an object if swinging at all rapidly; for he could
not do this well when seven and a half months old.

At the end of the seventies, this early remark was given a technically sound
basis [17]. In the paper, three techniques—optokinetic nystagmus (OKN),
preferential looking (PL), and the visually evoked potential (VEP) —were
used to assess visual acuity in infants between birth and 6 months of age.
More recently, the survey by Braddick and Atkinson [11] provides an in-
depth discussion on the state of the art in the field. It is clearly stated that
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for newborns to gain adult visual acuity, depending on the specific visual
test, several months are required. Is the development of adult visual acuity
a biological issue or does it come from higher level computational laws? We
have already commented in Section 2.2.3 that the “speed” at which data
comes interacts with the natural dynamics of learning when the process is
modelled through a differential equation. Therefore we can argue that the
blurring process taking place in newborns is in fact a natural strategy to
solve online learning problems under causality requirements. Moreover, the
strict limitations both in terms of spatial and temporal resolution of the
video signal, according to the theory, help conquering visual skills.

Q10. Causality and Non Rapid Eye Movements (NREM) sleep phases

Computer vision is mostly based on huge training sets of images, whereas
humans use video streams for learning visual skills. Notice that because of
the alternation of the biological rhythm of sleep, humans somewhat process
collections of visual streams pasted with relaxing segments composed of
“null” video signal. This happens mostly during NREM phases of sleep, in
which also eye movements and connection with visual memory are nearly
absent. Interestingly, the Rapid Eye Movements (REM) phase is, on the
opposite, similar to ordinary visual processing, the only difference being
that the construction of visual features during the dream is based on the
visual internal memory representations [2]. As a matter of fact, the process
of learning the filters experiments an alternation of visual information with
the reset of the signal. We provide evidence to claim that such a relaxation
coming from the reset of the signal nicely fits the overall objective of the
visual agent.
In particular, throughout this chapter, we will see that the reset of the visual

information favors the optimization under causality requirements. From one side
it provides a good way to enforce relaxation of the derivatives of the filters, while
on the other it provides a natural way to perform input segmentation as described
in Section 2.2.2. Hence, the theory offers an intriguing interpretation of the role
of eye movement and of sleep for the optimal development of visual features. In a
sense, the theory also offers a general framework for interpreting the importance
of the day-night rhythm in the development of visual features.

This chapter is organized as follows: Section 3.1 and 3.2 contains the de-
scription of the theory both formulated on a continuous and a discrete retina.
In Section 3.2 a first analysis of causality is presented based on the ideas of
relaxation and reset briefly introduced in Section 2.2.2. In the last section of
the chapter we will revisit the theory addressing the causality issue in a more
systematic following the analyses presented in Section 2.2.

We decided to present both approaches in order to reinforce the analysis of
Chapter 2 that showed how causality issues are central in this kind of discussions.
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3.1. GENERAL FORMULATION OF THE PROBLEM

We are given a retina Σ ⊂ R2, which can formally be regarded as a compact
subset of the plane; for the moment we will not assume any specific shape. The
purpose of this chapter is that of analyzing the mechanisms that give rise to the
construction of local features for any pixel x ∈ Σ of the retina, at any time t.
These features, along with the video itself, can be regarded as visual fields, that
are defined on the retina and on a given time horizon [0, T ]. As it will be clear
in the remainder of the chapter, a set of symbols are extracted at any layer of
a deep architecture, so as any pixel—along with its context— turns out to be
represented by the list of symbols extracted at each layer. The computational
process that we define involves the video as well as appropriate vector fields
that are used to express a set of pixel-based features properly used to capture
contextual information. The video, as well as all the involved fields, are defined
on the parallelepiped Π = Σ× [0, T ]. In what follows, points on the retina will be
represented with two dimensional vectors x = (x1, x2) on a defined coordinate
system on the retina. The temporal coordinate is usually denoted by t, and,
therefore, the video signal on the pair (x, t) is C(x, t). The color field can be
thought of as a special field that is characterized by the RGB color components
of any single pixel; in this case m = 3.

Now, we are concerned with the problem of extracting visual features that,
unlike the components of the video, express the information associated with
the pair (x, t) and with its spatial context. Basically, one would like to extract
visual features that characterize the information in the neighborhood of pixel x.
A possible way of constructing this kind of features is to construct the map*

Φi(x, t) =
m
∑

j=1

∫

Σ

ϕij(x, y, t, Cj(y, t)) dy. ()

Here, the feature defined by index i = 1, . . . , n, that is denoted by Φi(x, t)
presents a spatial dependence on any pixel y ∈ Σ. Here we assume that n
symbols are generated from the m components of the video. In the special
case in which such a dependence only involves the distance from the pixel of
coordinates x on which we want to determine the feature, the above equation
reduces to

Φi(x, t) =
m
∑

j=1

∫

Σ

ϕij(x − y, t, Cj(y, t)) dy, ()

which becomes the convolutional computation in case of linear filters ϕij , that
is

Φi(x, t) =

m
∑

j=1

∫

Σ

ϕij(x − y, t)Cj(y, t) dy ()

Notice that ϕ(z, t) is responsible of expressing the spatial dependencies, and
that one could also extend the context in the temporal dimension. However,

* In the rest of the chapter when the expressions will become more involved we will make
extensive use of Einstein summation convention.
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Fig. 10. Computation
in a deep network. The input
is processed by convolutional
filters which transform C to
Φ. Notice that the features
are extracted at different lev-
els on the same pixel x.

the immersion in the temporal dimension that arises from the formulation given
here makes it reasonable to begin restricting the contextual information to spatial
dependencies on the the retina. In addition, it is worth mentioning that the agent
is expected to return a decision also in case of fixed images, which represents a
further element for considering features as defined in Eq. ().

In general, the kernel ϕ can be regarded as a map from Σ × Σ × [0, T ] →
Rn,m. Whenever ϕ(x, y, t) → ϕ(x − y, t) the above definition reduces to an
ordinary spatial convolution. Notice that while the kernel ϕ(x, y, t) can handle
the ambiguities that arise from the the presence of strong visual deformations
of the same features in the same frame at time t, the same does not hold for
ϕ(x − y, t), that only reasonably deals with those deformations while focusing
attention on x at time t. This issue will be widely covered in the following, but
it is already clear that the convolutional filter ϕ(x − y, t) can face strong visual
deformation only when supported by focus of attention driven computation. The
presence of multiple deformations in the same frame yields inconsistent decisions,
so as only an “averaging solution” can be discovered. The computation of Φ(x, t)
yields a field with n features, instead of the three components of color in the video
signal. However, Eq. () can be used for carrying out a piping scheme where a
new set of features Φ2 is computed from Φ and so forth (see Fig. 10). Of course,
this process can be continued according to a deep computational structure with
a homogeneous convolutional-based computation, which yields the features at
the p convolutional layer. The theory proposed here focuses on the construction
of any of these convolutional layers which are expected to provide higher and
higher degree of abstraction as we increase the number of layers. The filters ϕ
completely determine the features Φ(x, t). In what follows we will formulate a
theory for the discovery of ϕ that is based on three driving principles:
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1. Optimization of information-based indices: We use an information-based
approach to determine ϕ. Beginning from the color field C, we attach symbol
yi ∈ Σ of a discrete vocabulary to pixel (x, t) with probability Φi(x, t).
The principle of Maximum Mutual Information (MMI) is a natural way of
maximizing the transfer of information from the visual source, expressed
in terms of mixtures of colors, to the source of symbols yi ∈ Σ. Clearly,
the same idea can be extended to any layer in the hierarchy. Once we
are given a certain visual environment over a certain time horizon [0, T ]—
which can be extended to [0,+∞)—once the filters ϕ have been defined,
the mutual information turns out to be a functional of ϕ, that is denoted
as I(ϕ). However, in the following, it will be shown that the more general
view behind the the maximum entropy principle (MaxEnt) offers a better
framework for the formulation of the theory.

2. Motion invariance: While information-based indices optimize the informa-
tion transfer from the input source C to the symbols, the major cognitive
issues of invariances are not covered. The same object, which is presented at
different scales and under different rotations does require different represen-
tations, which transfers all the difficulty of learning to see to the subsequent
problems interwound with language interpretation. Hence, it turns out that
the most important requirement that the visual field Φ must fulfill is that
of exhibiting the typical cognitive invariances that humans and animals
experiment in their visual environment. We claim that there is only one
fundamental invariance, namely that of producing the same representation
for moving pixels. This incorporates classic scale and rotation invariances in
a natural way, which is what is experimented in newborns. Objects comes
at different scale and with different rotations simply because children ex-
periment their movement and manipulation. As we track moving pixels, we
enforce consistent labeling, which is clearly far more general than enforcing
scale and rotation invariance. We claim that the enforcement of motion
constraint is the key for the construction of a truly natural invariance.

3. Parsimony principle: Like any principled formulation of learning, we require
the filters to obey the parsimony principle. Amongst the philosophical
implications, it also favors the development of a unique solution. The devel-
opment of filters that are consistent with the above principles requires the
construction of an on-line learning scheme, where the role of time becomes
of primary importance. The main reason for such a formulation is the need
of imposing the development of motion invariance features. Given the filters
ϕ, there are two parsimony terms, one P(ϕ), that penalizes abrupt spatial
changes, and another one, K(ϕ) that penalizes quick temporal transitions.

Overall, the process of learning is regarded as the minimization of the
cognitive action

A(ϕ) = −I(ϕ) + λMM(ϕ) + λPP(ϕ) + λKK(ϕ), ()

where λM , λP , λK are positive multipliers. While the first and third principles
are typically adopted in classic unsupervised learning, motion invariance does
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Fig. 11. Motion invariance in the feature extraction process. The symbol y1, that
defines a features at the beginning of motion (t = 0 s), must be coherently extracted
during the movement—see the enforcement of the coherence requirement at t = 1, 2 s.

characterize our approach. Of course, there are visual features that do not obey
the motion invariance principle. Animals easily estimate of the distance to the
objects in the environment, a property that clearly indicates the need for features
whose value do depend on motion. The perception of vertical visual cues, as
well as a reasonable estimation of the angle with respect to the vertical line also
suggests the need for features that are motion dependent. Since the above action
functional A(ϕ) depends on the choice of the multipliers λM , λP , λK , it is quite
clear that there is a wide range of different behavior that depend on the relative
weight that is given to the terms that compose the action. As it will be shown in
the following, the minimization of A(ϕ) can be given an efficient computational
scheme only if we give up to optimize the information transfer in one single step
and rely on a piping scheme that clearly reminds deep network architectures.

Now, we provide arguments to support the principled framework of this ap-
proach. Like for human interaction, visual concepts are expected to be acquired
by the agents solely by processing their own visual stream along with human
supervisions on selected pixels, instead of relying on huge labelled databases. In
this new learning environment based on a video stream, any intelligent agent
willing to attach semantic labels to a moving pixel is expected to take coherent
decisions with respect to its motion. Basically, any label attached to a moving
pixel has to be the same during its motion. Hence, video streams provide
a huge amount of information just coming from imposing coherent labeling,
which is likely to be the primary information associated with visual perception
experienced by any animal. Roughly speaking, once a pixel has been labeled,
the constraint of coherent labeling virtually offers tons of other supervisions,
that are essentially ignored in most machine learning approaches working on big
databases of labeled images. It turns out that most of the visual information to
perform semantic labeling comes from the motion coherence constraint, which
might explain the reason why children learn to recognize objects from a few
supervised examples. The linguistic process of attaching symbols to objects
takes place at a later stage of children development, when he has already de-
veloped strong pattern regularities. We conjecture that, regardless of biology,
the enforcement of motion coherence constraint is a high level computational
principle that plays a fundamental role for discovering pattern regularities.
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Concerning the MMI principle, it is worth mentioning that it can be regarded
as a special case of the MaxEnt principle when the constraints correspond with
the soft-enforcement of the conditional entropy, where the weight of its associated
penalty is the same as that of the entropy (see e.g. [40]. Notice that while the
maximization of the mutual information nicely addresses the need of maximizing
the information transfer from the source to the selected alphabet of symbols, it
does not guarantee temporal consistency of this attachment. Basically, the opti-
mization of the index is also guaranteed by using the same symbol for different
visual cues. Motion consistency faces this issue for any pixel, even if it is fixed.
As for the adoption of the parsimony principle in visual environments, we can use
appropriate functionals to enforce both the spatial and temporal smoothness of
the solution. While the spatial smoothness can be gained by penalizing solutions
with high spatial derivatives— including the zero-order derivatives— temporal
smoothness arises from the introduction of kinetic energy terms which penalizes
high velocity and, more generally, high temporal derivatives.

The agent behavior turns out to be driven by the minimization of an appro-
priate functional that combines the all above principles. The main result is that
this optimization can be interpreted in terms of laws of nature expressed by a
temporal differential equation.

Basically, the process of learning consists of determining

ϕ̂ = argmin
ϕ

A(ϕ).

We will show how we can get the filters ϕ̂ by addressing the problem of deter-
mining stationary points of the action A and, moreover, we discuss the existence
of such filters ϕ̂. The filters are determined by imposing

δA(ϕ) = 0, ()

that is the nullification of the variation of the action, which corresponds with
the stationarity condition on A. It is worth mentioning that this does not
correspond with the classic gradient flow used in machine learning, since in
that case the filters are updated by using the gradient heuristics towards the
stationary condition. The consequences of imposing condition () is mostly
discussed in Section 3.1.2, where we prove that, when considering the continuous
setting of computation in which ϕij(z, t) are the unknown filters, there is no local
solution to this problem, since any stationary point of this functional turns out
to be characterized by a integro-differential equation. Interestingly, we show
that we can naturally gain a local solution when introducing the classic notion
of receptive field. This issue turns out to be relevant also in case we deal with
a discrete retina. The equations contain coefficients which inherits by the time-
variance from the video. The analysis carried out shows how can we attack the
problem either in the case in which the agent is expected to learn from a given
video stream with the purpose to work on subsequent test collections, or in the
case in which the agent lives in a certain visual environment, where there is no
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distinction between learning and test phases. Basically, it is pointed out that
only the second case leads to a truly interesting and novel result.

The puzzle of extracting robust cues from visual scenes has only been par-
tially faced by nowadays successful approaches to computer vision. The remark-
able achievements of the last few years have been mostly based on the accu-
mulation of huge visual collections gathered by crowdsourcing. An appropriate
set up of convolutional networks trained in the framework of deep learning has
given rise to very effective internal representations of visual features. They have
been successfully used by facing a number of relevant classification problems
by transfer learning. Clearly, this approach has been stressing the power of
deep learning when combining huge supervised collections with massive parallel
computation. We argue that while stressing this issue we have been facing
artificial problems that, from a pure computational point of view, are likely
to be significantly more complex than natural visual tasks that are daily faced
by animals. In humans, the emergence of cognition from visual environments
is interwound with language. This often leads to attack the interplay between
visual and linguistic skills by simple models that, like for supervised learning,
strongly rely on linguistic attachment. However, when observing the spectacular
skills of the eagle that catches the pray, one promptly realizes that for an in-
depth understanding of vision, that likely yields also an impact in computer
implementation, one should begin with a neat separation with language! This
theory is mostly motivated by the curiosity of addressing a number of questions
that arise when looking at natural visual processes. While they come from
natural observation, they are mostly regarded as general issues strongly rooted
in information-based principles, that we conjecture are of primary importance
also in computer vision.

3.1.1. A Functional for Vision

We can provide an interpretation of the processing carried out by our visual agent
in the framework of information theory. The basic idea is that the agent produces
a set of symbols from a given alphabet while processing the video. Unlike
traditional approaches to computer vision, we begin considering that maps on
the retina are refined with the final purpose of transforming the color field,
which reports pixel-based information, into visual features that take the pixel
context into account. As such, one could expect each pixel to be associated with
a remarkable number of features that somehow express the visual information
in its neighborhood. A similar map of features, Φ(x, t) is clearly reporting an
enriched color field that, just like C(x, t), still operates at pixel level. In doing so,
all subsequent cognitive tasks that relies on video can benefit of the processing
on Φ(x, t) that, unlike C(x, t), is expected to express relevant visual features that
emerge from the context. It will be shown that the search for an appropriate
enrichment of the color field leads to important architectural conclusions that
address some of questions raised in the previous section and very much support
nowadays emphasis on the deep networks.
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MMI principle. The purpose of the visual agent is to generate symbols from
the video. We will make use of the Maximum Mutual Information principle
(MMI), according to which we want to maximize the transfer of information
from the input to the generated symbols. As it will be shown later, this can also
be reformulated within the framework of the Maximum Entropy principle [31].

Let us define random variables X and T , which take into account the
spatiotemporal probability distribution, while Y is used to specify the probability
distribution over the possible symbols, and F to specify the video frame. Basi-
cally, the realization of these of (X,T, F ) is the triple (x, t, f), which describes the
spatiotemporal pair (x, t) (pixel-time) at frame f , that is clearly characterized by
the given video signal at time t. In order to assess the information transfer from
(X,T, F ) to Y we consider the corresponding mutual information I. Clearly, it
is zero whenever random variable Y is independent of X , T and F . The mutual
information can be expressed by

I(Y ;X,T, F ) = S(Y )− S(Y | X,T, F ). ()

The conditional entropy S(Y | X,T, F ) is given by

S(Y | X,T, F ) = −
∫

Ω

n
∑

i=1

dPX,T,F pi log pi ()

where pi is the probability of Y conditioned to the values of X , T and F , dPX,T,F

is the joint measure of the variable (X,T, F ), and Ω is a Borel set in the (X,T, F )
space. The agent is supposed to generate symbols yi, i = 1, . . . , n along with the
corresponding probabilities. Now, let us make two fundamental assumptions:
1. The conditional probability pi is given by the i-th feature field Φi(x, t).

Notice that one can also distinguish between the feature map Φi(x, t) and
the symbols to be used in the codebook. In that case, we need an additional
map Φ(x, t) → Ψ(Φ(x, t)), that could be properly expressed by a feedforward
neural network that is charged of computing the probability pi.

2. Random variables X,T, F follows an ergodic-like assumption, so as we can
perform the replacement:

∫

Ω

dPX,T,F −→
∫

Π

dµ. ()

A reasonable measure is given by dµ = f(x, t) dxdt, where dxdt is the
Lebesgue measure on Π; basically, this comes from the visual environment on
which the agent is supposed to operate. Furthermore, we will assume that we
are given the trajectory of the focus of attention t 7→ a(t) ∈ Σ and that f(x, t)
is factorized according to

f(x, t) = g(x− a(t))̟(t), ()

This ergodic-like translation of the probabilistic measure has been chosen in such
a way that the density is higher where the eye is focussing attention, that is in
the neighborhood of a(t); this can be achieved by means of a function g(x−a(t))
peaked on the focus of attention. As it will be shown in the following, and as we
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have already commented in Section 2.1 the weight factor ̟(t) plays a crucial role
in the establishment of dissipation and causality, two properties indeed related
to the enforcement of a temporal direction.

Notice that in truly active environments humans and robots can select even
the environment, which may result in a remarkable variability of the probability
distributions. For instance, living like Eskimos leads to acquire visual infor-
mation that are remarkable different from Newyorkèse. Regardless of the huge
visual environmental gap, however, humans seem to adapt very well their visual
system when moving from New York to snow territories and vice versa. This
suggests that when learning in natural environments focus of attention strategies,
that are associated with the computation a(t), seem to be remarkably important
in the acquisition of visual skills.

The research on focussing of attention trajectories a(t) is rooted on solid
studies at the crossroad of neuroscience and computer vision, and it has been
recently given a formulation [62, 63] that is very much aligned with the theoretical
framework of this work.

Whenever assumptions 1. and 2. holds, we can rewrite the conditional
entropy defined by Eq. () as

S(Y | X,T, F ) = −
∫

Π

n
∑

i=1

Φi(x, t) log Φi(x, t) dµ(x, t). ()

Similarly for the entropy of the variable Y we can write

S(Y ) = −
n
∑

i=1

Pr(Y = yi) log Pr(Y = yi). ()

Now, if we use the law of total probability to express Pr(Y = yi) in terms of the
conditional probability pi and use the above assumptions we get

Pr(Y = yi) =

∫

Ω

dPX,T,F pi =

∫

Π

Φi(x, t) dµ(x, t). ()

Then

S(Y ) = −
n
∑

i=1

(

∫

Π

Φi(x, t) dµ(x, t)
)

log
(

∫

Π

Φi(x, t)dµ(x, t)
)

. ()

Finally the mutual information becomes

I(Y ;X,T, F ) =

n
∑

i=1

(

∫

Π

Φi logΦi dµ−
∫

Π

Φi dµ log

∫

Π

Φi dµ
)

. ()

Of course, ∀x, t the field Φi(x, t) is subject to the probabilistic constraints
∑

iΦi(x, t) = 1 (normalization)
0 ≤ Φi(x, t) ≤ 1 (positivity)

()

In the case there is an additional neural map Ψ to determine the probability, the
normalization is moved to the range of the map itself, which allows the typical
presence of more distributed representations on Φ.
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MaxEnt principle. An agent driven by the MMI principle carries out an un-
supervised learning process aimed at discovering the symbols defined by random
variable Y . Interestingly, when the constraints are given a soft-enforcement,
the MMI principle has a nice connection with the Max-Ent principle [31]: The
maximization of the mutual information is somewhat related to the maximization
of the entropy while softly-enforcing the constraint that the conditional entropy
is null. In particular, in MMI both the entropy terms get the same value of the
weight, but one can think of different implementations of the MaxEnt principle
that very much depend on the choice of the weights of the two entropy terms. As
an extreme case, one can also remove the conditional entropy term and consider
motion invariance only. The satisfaction of the conditional entropy constraint
needs to be paired with the maximization of the entropy, which protects us from
the development of trivial solutions (see [21] pp. 99–103 for further details). Of
course, the probabilistic normalization constraints stated by Eq. () comes along
with the information-based formulation. While the computational mechanism
that drives the discovery of the symbols described here is inspired by MaxEnt, a
well-posed learning process requires that the map which originates the symbols
be subjected to some kind of parsimony assumption. The conditional entropy
constraint only involves the value taken by Φi which depends on ϕij(x, t), but
there is no structural enforcement on the function ϕij ; its spatiotemporal changes
are ignored. Ordinary regularization issues suggest to select functions ϕij such
that ‖Px,tϕij‖L2 is small, where Px,t is a spatiotemporal differential operator. A
simplified, yet effective choice is that of separating the spatial from the temporal
regularization and consider

λP
2

∫

Π

dtdx̟(t)(Pxϕij(x, t))
2 +

λK
2

∫

Π

dtdx̟(t)(Ptϕij(x, t))
2, ()

is “small”, where Px, Pt are spatial and temporal differential operators, and
λP , λK are non-negative reals*. Notice that the ergodic-like translation of dµ,
in this case, only involves the temporal factor ̟(t).

Second, as already pointed out, the visual features that in the ventral
mainstream are involved in the “what” function need to be motion invariant.
Just like an ideal fluid is adiabatic—meaning that the entropy of any particle
fluid remains constant as that the particles move about in space— in a video,
once we have assigned the correct symbol to a pixel, it must be conserved as
the pixel moves on the retina. If we focus attention on a the pixel x at time
t, which moves according to the trajectory x(t) then this is formally stated by
Φi(x(t), t) = c, being c a constant. This “adiabatic” condition is thus expressed
by the condition dΦi/dt = 0, which yields

∂tΦi + ẋj∂jΦi = 0, ()

where ∂k is the partial derivative with respect to xk. In a video we can assign
to each pixel x at a certain instant t the velocity vector v(x, t) (from the optical

* A simple introduction to differential operators that are appropriate in this context is given
in [21], pp. 512–516.
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flow). Therefore we can turn the condition () into a condition for each pixel x
at a certain time t:

∂tΦi(x, t) + vj(x, t)∂jΦi(x, t) = 0; ()

we will assume that the velocity field (x, t) 7→ v(x, t) ∈ R2 is is given. Notice that
in case ϕij(z, t) = δijδ(z) then the previous invariance on the feature becomes
the brightness invariance condition

∂tCi + vj∂jCi = 0, ()

that is typically used to estimate the optical flow [28]. Here, the unknown is in
fact the velocity field, whereas in the feature motion invariance condition ()
the unknown are the filters. This can be promptly seen when replacing Φi as in
Eq. 3.1–() we get

∫

Σ

(

∂tϕijCj + ϕij∂tCj + ϕijvk∂kCj

)

dy = 0, ()

which holds for any i = 1, . . . , n and (x, t) ∈ Π. Notice that this constraint
is linear in the field ϕ. This can be interpreted by stating that learning under
motion invariance, for any (x, t), consists of determining elements of the kernel
of function

M(x,t)(ϕij) :=

∫

Σ

(

∂tϕijCj + ϕij∂tCj + ϕijvk∂kCj

)

dy. ()

As we can promptly see M(x,t)(·) is defined by the knowledge of the video signal
C and the by availability of the optical flow v. Depending on the color field C
it quite easy to realize that M(x,t)(ϕij) might be the null space, since while the
possible visual configurations increase exponentially with the growth of the mea-
sure of Σ , the information associated with ϕij only grows linearly the distance
to the focus point. Hence condition () can be better satisfied in case of video
with smooth spatiotemporal transitions. This is what happens for newborns,
who experiment similar smooth transitions in early stage of development [11].
Moreover, sparseness of ϕij also favors the satisfaction of (). In particular, as
will be better discussed in the remainder of the section, the satisfaction of motion
invariance is favored by the receptive-field assumption. It is worth mentioning
that the above constraints can be enforced at least in two different ways:

i. As stated above, we can impose constraint () for all points (x, t) ∈ Π. In
doing so, one enforces motion invariance in any point of the retina;

ii. We can impose constraint () with the choice x(t) = a(t), namely on the
focus of attention trajectory.

In the reminder of this section we will follow the first approach, the second
approach will be pursued in Section 3.3.1.

3.1.2. Analysis on the Continuous Retina

In the previous section we have discussed principles that drive the discovery of
the filters ϕij based on the MaxEnt principle and regularization. We provide
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a soft-interpretation of the constraints, so as the adoption of these principles
corresponds with the minimization of a functional that, following [5], it referred
to as the “cognitive action”:

A0(ϕ) =

∫

Π

Φi(ϕ) dµ log

∫

Π

Φi(ϕ) dµ− λC

∫

Π

Φi(ϕ) log Φi(ϕ) dµ

+ λ1

∫

Π

(
n
∑

i=1

Φi(ϕ) − 1
)2

dµ− λ0

∫

Π

Φi(ϕ)[Φi(ϕ) < 0] dµ

+
λP
2

∫

Π

(Pxϕij(x, t))
2̟(t)dtdx +

λK
2

∫

Π

(Ptϕij(x, t))
2̟(t)dtdx

+ λM

∫

Π

(

∂tΦi(ϕ) + vj∂jΦi(ϕ)
)2
dµ,

()

where the notation Φi(ϕ) is used to stress the fact that Φi depends functionally
on the filters ϕ. Here, if λC = 1, the first line is the negative of the mutual
information and the constants λC , λ1, λ0, λP , λK , and λM are positive multi-
pliers. This cognitive action can be given two different interpretations. First,
one could think of the regularization terms and on the motion terms as penalty
constraints, so as learning is interpreted in the classic framework of the MaxEnt
principle. Second, we can (preferably) think of enriching the entropy with the
regularization terms in the objective functions and regard motion term as the
only actual constraint. Furthermore, notice that the mutual information (the
first line) is rather involved, and it becomes too cumbersome to be used with a
principle of least action. However, if we give up to attach the information-based
terms their interpretation in terms of bits (or nats), we can rewrite the entropies
that define the mutual information as

S(Y | X,T, F ) → −
∫

D

Φ2
i dµ and S(Y ) → −

(

∫

D

Φi dµ
)2

. ()

Interestingly, this replacement does retain all the basic properties on the sta-
tionary points of the mutual information and, at the same time, it simplifies
dramatically the overall action, which becomes

A(ϕ) =
1

2

(

∫

Π

Φi(ϕ) dµ
)2

− λC
2

∫

Π

Φ2
i (ϕ) dµ

+
λ1
2

∫

Π

( n
∑

i=1

Φi(ϕ) − 1
)2

dµ− λ0

∫

Π

Φi(ϕ) · [Φi(ϕ) < 0] dµ

+
λP
2

∫

Π

(Pxϕij)
2̟(t)dtdx +

λK
2

∫

Π

(Ptϕij)
2̟(t)dtdx

+
λM
2

∫

Π

(

∂tΦi(ϕ) + vj∂jΦi(ϕ)
)2
dµ.

Φi(x, t) =σ(ϕkj ∗ Cj)(x, t) = σ

(

∫

Σ

ϕkj(x − y, t)Cj(y, t) dy

)

()
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In the following analysis we will consider the case in which σ(·) is the identity
function, but the extension to the general case is straightforward. In order to be
sure to preserve the commutativity of convolution—a property that in general
holds when the integrals are extended to the entire plane—we have to make
assumptions on the retina and on the domain on which the filters are defined.
First of all assume that Π = ΣR× [0, T ], with ΣR = [−R,R]× [−R,R], R > 0; we
will assume that Ci has spatial support in ΣR and it is identically null outside,
while ϕij will be taken with spatial support in Σr with 0 < r ≤ R and zero
outside Σr. Under these assumption we can guarantee that the convolution
ϕij ∗ Cj is commutative in ΣR. In particular, for all x ∈ ΣR we have

Φi(x, t) = (ϕij ∗ Cj)(x, t) =

∫

ΣR

ϕij(x− y, t)Cj(y, t) dy

=

∫

ΣR

ϕij(y, t)Cj(x− y, t) dy =

∫

Σr

ϕij(y, t)Cj(x− y, t) dy

= (Cj ∗ ϕij)(x, t).

()

Before studying the stationarity ofA we can conveniently elaborate its functional
structure so as to get a more direct expression in terms of ϕij . In particular, in
order to provide an explicit expression of the motion term we need to introduce
a number of coefficients that can be computed whenever we are given the video
signal and the optical flow. Let us define*

Wml(ξ, ζ, τ) = f(z, τ)Cm(z − ξ, τ)Cl(z − ζ, τ)

Yml(ξ, ζ, τ) = f(z, τ)[∂τCm(z − ξ, τ) + vα∂αCm(z − ξ, τ)]Cl(z − ζ, τ)

Hml(ξ, ζ, τ) = f(z, τ)[∂τCm(z − ξ, τ) + vα∂αCm(z − ξ, τ)]·
· [∂τCl(z − ζ, τ) + vβ∂βCl(z − ζ, τ)].

()

In case of still images we can promptly see that only Wml(ξ, ζ, τ) 6= 0. Its value
turns out to be a sort of autocorrelation of the color field, which operates over
the different channels m, l, as well as at spatial level between the values at ξ
and ζ. The coefficients Yml(ξ, ζ, τ), Hml(ξ, ζ, τ) are affected by motion but have
a related autocorrelation meaning. Once, we introduce these coefficients, the
following property can be stated.

Proposition A. Motion term ω(ϕ) turns out to be a quadratic function of ϕ
and its temporal derivative, that is (integral over τ is understood)

ω(ϕ) =
1

2

(

∂τϕkm(ξ, τ)Wml(ξ, ζ, τ)∂τϕkl(ζ, τ)

+ 2ϕkm(ξ, τ)Yml(ξ, ζ, τ)∂τϕkl(ζ, τ) + ϕkm(ξ, τ)Hml(ξ, ζ, τ)ϕkl(ζ, τ)
)

.
()

Proof. The proof arises from plugging expression of the features into the motion
term.

* We use Einstein’s notation also on continuum spatial indexes á la Weinberg (see [59]).
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The statement of the Euler-Lagrange equations also benefits from defining

Ξjk(x, ξ, t) = −Wjk(ξ, x, t)

Θjk(x, ξ, t) = Yjk(x, ξ, t) − Ykj(ξ, x, t) − ∂tWkj(ξ, x, t)

Υjk(x, ξ, t) = Hkj(ξ, x, t)− ∂tYkj(ξ, x, t).

()

In addition, based on Ξjk(x, ξ, t),Θjk(x, ξ, t), and Υjk(x, ξ, t), we also introduce
(no integral over t)

cj(x, t) := f(z, t)Cj(z − x, t),

Tjk,im(x, ξ, t, ∂t) := λCΞjk(x, ξ, t)δim +
n
∑

l=1

Ξjk(x, ξ, t)δℓm

+ λM (Ξjk(x, ξ, t)∂
2
t +Θjk(x, ξ, t)∂t +Υjk(x, ξ, t))δim,

∆jk,im(x, ξ, t, ∂t) := Tjk,im(x, ξ, t, ∂t) + cj(x, t)ck(ξ, t)δim,

ρij(x, t) := −λ1cj(x, t) − λ0f(z, t)Cj(z − x, t)[Φi(z, t)< 0].
()

In what follows we will regard ρ as a function that is independent of the variables*
ϕ. We are now ready to express the stationary condition of the action ().

Theorem A. The stationarity conditions of () leads to the following Euler-
Lagrange equations in the filters ϕij

λKP
∗
t (̟(t)Ptϕij(x, t)) + λP̟(t)P ∗

xPxϕij(x, t) + Tjk,im(x, ξ, t, ∂t)ϕmk(ξ, t)

+ cj(x, t)ck(ξ, τ)ϕik(ξ, τ) + ρij(x, t) = 0,
()

where T and ρ are defined in Eq. ().

Proof. The Euler-Lagrange equation of the action arises from δA(ϕ)/δϕij(x, t) =
0. So we need to take the variational derivative of all the terms of action in
Eq. (). In the following calculation, we will assume that dµ(x, t) = f(x, t) dx dt.
The first term yields
(

∫

Π

Φk dµ
)

δ

δϕij(x, t)
f(z, τ)ϕkm(y, τ)Cm(z − y, τ)

= f(y, t)Cj(y − x, t)f(z, τ)ϕik(ξ, τ)Ck(z − ξ, τ);

()

while the second term gives

δ

δϕij(x, t)

1

2

∫

Π

Φ2
k dµ = f(z, t)Φi(z, t)Cj(z − x, t)

= f(z, t)Cj(z − x, t)Ck(z − ξ, t)ϕik(ξ, t).

()

* Actually ρ depends on ϕ through the step function [Φ≤ 0], so that the precise statement
would be that ρ is independent of ϕ in the regions with definite sign of the feature ϕ. This
can be avoided if we impose the perfect satisfaction of the normalization conditions or if we
assume a softmax normalization of the features., this is also the reason why we do not bother
too much for analyzing more carefully the regularity properties of ϕ
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The variation of the third term similarly yields

n
∑

m=1

f(z, t)Cj(z − x, t)Ck(z − ξ, t)ϕmk(ξ, t)− f(z, t)Cj(z − x, t). ()

The variation of the terms that implements positivity is somewhat more involved:

δ

δϕij(x, t)

∫

Π

Φk[Φk < 0] dµ =
δΦk(z, τ)

δϕij(x, t)
[Φk(z, τ) < 0]f(z, τ)

+ Φk(z, τ)
δ[Φk(z, τ) < 0]

δϕij(x, t)
f(z, τ) dz dτ.

()

However, the second term is zero since

Φk(z, τ)δ[Φk(z, τ) < 0]f(z, τ) =ϕkm(ξ, τ)C(z − ξ, τ)

·
(

[

ϕkm(y, τ)Cm(z − y, τ)

+ ǫδϕkm(y, τ)Cm(z − y, τ) < 0
]

−
[

ϕkm(y, τ)Cm(z − y, τ) < 0
]

)

.

()

The difference of the two Iverson’s brakets is always zero unless the epsilon-term
makes the argument of the first braket have an opposite sign with respect to the
second. Since ǫ is arbitrary small, this can only happen if ϕkm(ξ, τ)Cm(z−ξ, τ) =
0. Thus in either cases the whole term vanishes. Hence, we get

δ

δϕij(x, t)

∫

Π

Φk · [Φk < 0] dµ = f(z, t)Cj(z − x, t)[Φi(z, t) < 0]. ()

Recalling () and definition () we can eventually compute the variation of
the motion invariance term. Since we can always assume that at t = 0 and
t = T that the video C with its derivative is identically zero, we automatically
have Wml(ξ, x, 0) ≡ Wml(ξ, x, T ) ≡ Yml(ξ, x, 0) ≡ Yml(ξ, x, T ) ≡ Hml(ξ, x, 0) ≡
Hml(ξ, x, T ) ≡ 0. This properties save us from having boundary terms coming
from the integration by parts that we need to perform when we compute the
variation of this term.

δω(ϕ)

δϕij(x, t)
=−Wlj(ξ, x, t)∂

2
t ϕil(ξ, t)

+ (Yjl(x, ξ, t) − Ylj(ξ, x, t) − ∂tWlj(ξ, x, t))∂tϕil(ξ, t)

+ (Hlj(ξ, x, t) − ∂tYlj(ξ, x, t))ϕil(ξ, t).

()

Hence

δω(ϕ)

δϕij(x, t)
=
(

Ξjk(x, ξ, t)∂
2
t +Θjk(x, ξ, t)∂t +Υjk(x, ξ, t)

)

ϕik(ξ, t). ()

In these calculations we have used intensively the commutative property of the
convolution as stated in Eq. (), which allows us to avoid expressions with an
higher degree of space non-locality. Then the Euler-Lagrange equations reads:
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λKP
∗
t (̟(t)Ptϕij(x, t)) + λP̟(t)P ∗

xPxϕij(x, t)

+ cj(x, t)
(

ck(ξ, τ)ϕik(ξ, τ)− λ1
)

+ λCΞjk(x, ξ, t)ϕik(ξ, t)

− λ1

n
∑

m=1

Ξjk(x, ξ, t)ϕmk(ξ, t) − λ0f(z, t)Cj(z − x, t)[Φi(z, t) < 0]

+ λM
(

Ξjk(x, ξ, t)∂
2
t +Θjk(x, ξ, t)∂t +Υjk(x, ξ, t)

)

ϕik(ξ, t) = 0,

()

which is nothing else than Eq. ().

Boundary conditions. In order to be solved, E-L equations () require the
definition of the boundary conditions on Π. Clearly the mutual information
term does not add any boundary conditions to the E-L equations and we have
already discussed that we can choose C and its derivative to be 0 at t = T so
that the motion term does not add any conditions on the boundaries either. As
we will see in details in the following sections and as we have already discussed
extensively in Chapter 2, however, boundary conditions will appear that are due
to the temporal regularization term.

Non-locality and ill-position. This theorem shows that the EL-equations are
non-local integro-differential equations. Notice that Eq. () is non-local in both
spatial (third and fourth terms) and time (fourth term). This result suggests
that an agent designed on the basis of Eq. () would be doomed to fail, since its
solution is inherent intractable in terms of computational complexity. Basically,
the lack of locality, makes Eq. () unsuitable to model the emergence of visual
features in nature. In what follows we will show how to overcome this critical
complexity issues by modifying the position of the problem of visual feature so
as to make it well-posed.

Temporal locality. Other than the non causality due to the presence of
boundary conditions in the theory that we have described so far there is a
much more explicit sorce of non-causality due to the temporal non-locality of
the lagrangian that we are using. From Eq. () we immediately see that the
last term is non-local in time; this, as a consequence, means that the equations
are non-causal. This is basically due to the need of knowing the probability of
the hidden symbols to determine the entropy. Formally, the probability of the
symbols does require to know all the video over the life interval [0, T ], which
breaks temporal locality. This problem can be faced in different ways:

i. Enforce time locality by computing the entropy by splitting the averaging
on frames and time as follows:

S(Y ) →
∫ T

0

(

∫

Σ

g(x− a(t))Φi(x, t)f(x, t) dx

)2

̟(t)dt. ()

Clearly this way of splitting the measure dµ only approximates the actual
entropy of the source. When averaging at frame level one might get a biased
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view on the probability of the symbols that, however, is somewhat balanced
by the temporal average over all the time horizon.

ii. Define the following estimation of the probability of symbol i at t:

si(t) =

∫ t

0

∫

Σ

Φi(x, τ)f(x, τ) dxdτ =

∫ t

0

∫

Σ

Φi(x, τ)̟(τ)g(x − a(τ)) dxdτ.

()
and express the entropy on the basis of this estimation instead of the actual
value of the probability of symbol i given by

∫

Π
dµΦi. In this way the entropy

term S(Y ) in the Lagrangian can be replaced with

S̃(Y ) =
1

T

∫ T

0

s2i (t) dt+ α

∫ T

0

(

si(t)−
∫ t

0

∫

X

Φi(x, τ)f(x, τ) dxdτ

)2

dt

()
where the second term, with an appropriate non-negative α is required to
enforce the constraint on the value gained by si(t).

iii. Let us consider the above causal entropy S̃Y given by Eq. () and enforce
a differential form of the the constraint on si(t). In doing so, the entropy
term in the Lagrangian can be replaced with

˜̃S(Y ) =
1

T

∫ T

0

s2i (t) dt+ α

∫ T

0

(

ṡi(t)−
∫

Σ

Φi(x, t)f(x, t) dx

)2

dt. ()

Clearly, in doing so, unlike the formulation based on the cognitive action (),
the corresponding E-L equations that we derive are local in time. However,
we need to involve the auxiliary variable si in addition to the other La-
grangian coordinates.

Interestingly, S̃Y offers a consistent asymptotic approximation of S(Y ). In
particular, the following results connects the two terms.

Proposition B. If limt→∞ si(t) = pi(T ) :=
∫

Σ

∫ T

0
Φi(x, t)f(x, t) dxdt, then

lim
T→+∞

∣

∣

∣
p2i (T )−

1

T

∫ T

0

s2i (t) dt
∣

∣

∣
= 0. ()

Proof. From the hypothesis ∀ǫ > 0 there exists Tǫ such that ∀t > Tǫ : |pi−si(t)| ≤
ǫ

αS(T ) =
1

T

∣

∣

∣

∣

Tp2i −
∫ T

0

s2i dt

∣

∣

∣

∣

=
1

T

∣

∣

∣

∣

∫ T

0

p2i dt−
∫ T

0

s2i dt

∣

∣

∣

∣

=
1

T

∣

∣

∣

∣

∫ T

0

(pi + si)(pi − si) dt

∣

∣

∣

∣

≤ 1

T

∫ T

0

(pi + si)|pi − si| dt

≤ 1

T

∫ Tǫ

0

(pi + si)|pi − si| dt+
1

T

∫ T

Tǫ

(2pi + ǫ)ǫ dt

≤ 2
Tǫ
T
ǫ+

T − Tǫ
T

(2 + ǫ)ǫ <

(

2
Tǫ
T

+ (2 + ǫ)

)

ǫ.
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Now, for any δ > 0 the condition αS(T ) < δ yields 2Tǫ

T + (2 + ǫ)ǫ < δ which is
satisfied when choosing

ǫ <

√

√

√

√

(

1 +
Tǫ
T

)2

+ δ −
(

1 +
Tǫ
T

)

and T > Tǫ.

We are now ready to see how how the Euler-Lagrange equations are trans-
formed once time-locality is handled. In particular, in the following, we consider
the case i, but extension to ii. and iii. can be considered.

Theorem B. The functional A(ϕ) under the replacement described in Eq. ()
admits time-local E-L equations, i.e Eq. () becomes

λKP
∗
t (̟(t)Ptϕij(x, t))+λP̟(t)P ∗

xPxϕij(x, t)+∆jk,im(x, ξ, t, ∂t)ϕmk(ξ, t)+ρij(x, t) = 0,
()

Proof. It is sufficient to replace the variation of the energy term, which is now
dramatically simplified (no integral over t)

δ

δϕij(x, t)

∫ T

0

(

∫

X

Φi(z, τ)f(z, τ) dz

)2

dτ = cj(x, t)ck(ξ, t)ϕik(ξ, t).

Finally, the theorem arises when considering the definitions ().
It is easy to see that temporal locality can also be gained in the case in

which the entropy is defined according to Eq. ().

Space locality. We will now show how to gain space locality, which is still
missing in Eq. (). The intuition is that the lack of space locality is inherently
connected with the definition of convolutional features, whenever one makes no
delimitation on the context required to compute the features. As already pointed
when addressing motion invariance, while the possible visual configurations in-
crease exponentially with the growth of the measure of Σ , the information
associated with ϕij only grows linearly the distance to the focus point. We will
make use of a generalized notion of receptive field that, as it will be proven in
the following, allows us to gain spatial locality.

To be more precise assume the following factorization for the filters

ϕij(x, t) = G(x)φij(x, t), ()

where G: Σ → R is a smooth, bell shaped function. Notice that this corresponds
with expressing the computation of the features by

Φi(x, t) =

∫

Σ

G(y)φij(y, t)C(x− y, t) dy. ()

In so doing, the contribution of the color field at distance x−y is weighed on the
basis of the receptive field structure induced by bell-shaped function G. Then
the non-local term in Eq. () reads G(ξ)∆jk,im(x, ξ, t, ∂t)φmk(ξ, t).
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Theorem C. Let G: Σ → R be the Green function of an self-adjoint operator
L and let G(∂Σ) = 0, where ∂Σ denotes the boundary of Σ. Then Eq. () is
equivalent to the following (local) system of differential equations:
{

λKP
∗
t (̟(t)PtG(x)φij (x, t))+λP̟(t)P ∗

xPxG(x)φij(x, t)+Λij(x, 0, t)+ρij(x, t) = 0;

LΛij(x, ξ, t) = ∆jk,im(x, ξ, t, ∂t)φmk(ξ, t).

()

Proof. Let Λij(x, ξ, t) be a solution of the differential equation

LΛij(x, ξ, t) = ∆jk,im(x, ξ, t, ∂t)φmk(ξ, t),

where L is a self-adjoint operator. The term G(ξ)∆jk,im(x, ξ, t, ∂t)φmk(ξ, t)
becomes (no integral over t)

G(ξ)∆jk,im(x, ξ, t, ∂t)φmk(ξ, t) = G(ξ)LΛij(x, ξ, t). ()

Now, since L is self-adjoint, we have L∗G = LG = δ and, consequently, we get
(no integral over t)

G(ξ)∆jk,im(x, ξ, t, ∂t)φmk(ξ, t) = Λij(x, 0, t), ()

which is a local expression in space. Finally, Eq. () turns out to be equivalent
to Eq. ().

These differential equations, along with their boundary conditions, can be
thought of as information-based laws that dictate the spatiotemporal behavior
of the visual filters. Notice that space locality has been gained at the price of
enriching the space by the adjoint variable Λij . It contributes to face and break
chicken-egg dilemma on whether we first need to define the context for computing
the related visual feature or if the feature does in fact define also the context
from which it is generated. The transformation of Eq. () (integro-differential
equations) into Eq. () (differential equations) is paid by the introducing of the
cyclic computational structure of Eq. () that, however, is affordable from a
computational point of view. It is worth mentioning that from an epistemological
point of view, Eq. () comes from variational principles that very much remind
us the scheme used in physics; for this reason we use the term information-based
laws of visual features. Clearly, we can always read these differential equations
as a computational model of learning visual features.

The following theorem gives insights on the possibility of finding G and L
that satisfy the properties required by Theorem C with arbitrary precision.

Theorem D. Let Gσ(x) be a gaussian with variance σ and zero mean; et Lm
σ :=

∑m
n=0(−1)n(σ2n/2nn!)∇2n, thenGσ and Lm

σ satisfy the hypothesis of Theorem C
if σ is chosen small enough. More precisely we have that

lim
σ→0

∫

(

Lm
σ Gσ(x)

)

ϕ(x) dx = ϕ(0), ∀ϕ ∈ C∞
c (R). ()

Proof. See Appendix B
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x

x

x− y
C

ϕij(y, t)

A(x, t)
σ

−→ Φ(x, t)

A(ϕ)

−
→

−
→

A
Fig. 12. Without ex-

plicit constraints in the ac-
tion that enforces probabilis-
tic normalization the out-
comes of convolution must be
remapped with a nonlinear
function σ (for example a soft-
max function) in order to be
used to built the information
based part of the functional
index.

This result expressed by this theorem makes the reduction of Eq. ()
possible in case we adopt receptive fields. Let ρσ(x) := Lm

σ Gσ(x) be. In
Appendix A we can see that, for a given m we have that ρσ(x) approaches the
δ distribution as σ → 0. Basically, we meet the assumption of Theorem C for
finite m, which is a crucial computational issue concerning the adjoint equation
LΛij(x, ξ, t) = ∆jq,ip(x, ξ, t, ∂t)φpq(ξ, t). As stated by the theorem, this holds
for “small” σ, that can be regarded as a receptive field assumption.

It is interesting to notice that the property claimed in the theorem works
also if G is not itself a Green’s function but in case it is a linear combination of
Green’s functions evaluated at different points, that is

G(x) =

N
∑

i=1

αiJ(x − xi), ()

so as Eq. () is in fact quite general in terms of function representation. How-
ever, it is evident that as N increases also the number of terms in Eq. () does
the same, so that it might indicate that the resolution of such equations becomes
harder.

Softmax formulation and focus of attention. Instead of imposing proba-
bilistic normalization implicitly, we can express the constraints by classic soft-
max as follows:

Ai(x, t) :=

∫

Σ

ϕij(y, t)Cj(x− y, t) dy, Φi(x, t) = σi(A1(x, t), . . . , An(x, t)),

()
where σi(x1, . . . , xn) := exi/

∑n
k=1 e

xk . With this redefinition, the the infor-
mation theory based terms of the action are automatically well-defined, while
the motion invariance term can still be imposed on the convolutional activations
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Ai(x, t). This formulation therefore it is based on the following action

A(ϕ) =
1

2

(

∫

Π

Φi dµ
)2

− λC
2

∫

Π

Φ2
i dµ

+
λP
2

∫

Π

(Pxϕij(x, t))
2̟(t) dtdx+

λK
2

∫

Π

(Ptϕij(x, t))
2̟(t) dtdx

+
λM
2

∫

Π

(

∂tAi(ϕ) + vj∂jAi(ϕ)
)2
dµ.

()

that gives rise to EL-equations very related to Eq. ().
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3.2. NEURAL INTERPRETATION ON THE RETINA

So far, we have developed a field theory on Π, now we will reformulate it on
a discretized retina Σ♯. We need to see how this fields can be re-written on a
discretized retina Σ♯ = {(i, j) | 0 ≤ i < ℓ, 0 ≤ j < ℓ}. While the filters are
characterized by ϕijx(t), the color field will be replaced with Cix(t).

Notice that, because of the factorization f(x, t) = ̟(t)g(x− a(t)), the term
gx in the discretized formulation is also a function of time, which will turn
out to contribute to the time dependence that affects the coefficients of the
differential equation that governs the evolution of the filters. Moreover, since gx
plays the role of a probability distribution over the retina, for every t, we have
∑

x∈Σ♯ gx = 1. As a consequence this yields
∫ T

0 ̟(t) = 1.
On the discrete retina the activations as defined in Eq. 3.1.2–() assume

the form (we do not explicitly write the time dependence on the time)

Aix1x2
= ϕijξ1ξ2Cj(x1−ξ1)(x2−ξ2). ()

Now let γx := (C1(x1−1)(x2−1), C1(x1−1)(x2−2), . . . , Cm(x1−ℓ)(x2−ℓ)) ∈ Rmℓ2 and

χi := (ϕi111, ϕi112, . . . , ϕimℓℓ) ∈ Rmℓ2 . Then

Aix ≡ Aix1x2
= χi

αγ
x
α. ()

Let us now see how the Cognitive Action can be written in terms of these
discretized variables. First of all let us analyze the motion-invariance term.
If we let ζx to be the vector that for each pixel x on the retina collects the
components of the discretization of the term v(x, t) · ∇xCj(x− ξ, t) with respect
to the indexes ξ and j, then the part of the Lagrangian relative to the motion
invariance term can be written as

1

2

∫ T

0

̟(t)gx

(

(χi
αγ

x
α)˙ + χi

αζ
x
α

)2

. ()

The square in the previous equation, once expanded, gives:

gx

(

(χi
αγ

x
α)˙ + χi

αζ
x
α

)2

=χi
α

(

gx(γ̇
x
αγ̇

x
β + ζxαζ

x
β + 2γ̇xαζ

x
β )
)

δijχ
j
β

+ 2χi
α

(

gx(γ̇
x
αγ

x
β + ζxαγ

x
β)
)

δijχ̇
j
β

+ χ̇i
α

(

gxγ
x
αγ

x
β

)

δijχ̇
j
β

=χi
αOαβδijχ

j
β + 2χi

αNαβδij χ̇
j
β + χ̇i

αMαβδij χ̇
j
β .

()

Where we have defined Oαβ := gx(γ̇
x
αγ̇

x
β+ζ

x
αζ

x
β+2γ̇xαζ

x
β ), Nαβ := gx(γ̇

x
αγ

x
β+ζ

x
αγ

x
β)

and Mαβ := gxγ
x
αγ

x
β .

Given A ∈ Rm×n and B ∈ Rn×k and having defined the vectorization
operation as follows

vec(A) = (a11, a21, . . . , am1, am2, a12, a22, . . . , amn)
′, ()

this two identities holds

1. vec(AB) = (B′ ⊗ Idm) vec(A);
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2. Tr(A′B) = vec(A) · vec(B),

where ⊗ is the Kronecker product. Using 1. and 2. we can rewrite the terms in
Eq. () as follows:

χi
αOαβδijχ

j
β = Tr(χ′χO) = vec(χ) · vec(χO) = vec(χ) · (O′ ⊗ Idmℓ2) vec(χ);

χi
αNαβδijχ̇

j
β = Tr(χ′χ̇N) = vec(χ) · vec(χ̇N) = vec(χ) · (N ′ ⊗ Idmℓ2) vec(χ̇);

χ̇i
αMαβδijχ̇

j
β = Tr(χ̇′χ̇M) = vec(χ̇) · vec(χ̇M) = vec(χ̇) · (M ′ ⊗ Idmℓ2) vec(χ̇).

()
Once we define q := vec(χ), O♮ := (O′ ⊗ Idmℓ2), N

♮ := (N ′ ⊗ Idmℓ2) and
M ♮ := (M ′ ⊗ Idmℓ2) we eventually have

χi
αOαβδijχ

j
β = q · O♮q, χi

αNαβδij χ̇
j
β = q ·N ♮q̇, χ̇i

αMαβδijχ̇
j
β = q̇ ·M ♮q̇. ()

Notice how these matrices are the discrete counterparts of the functionsW , Y , H
defined in the previous section. Furthermore we group the terms of the mutual
information in the potential-like term U(q, t) defined as follows:

U(q, t) =
1

2

(

gxσi(Ax)
)2 − λC

2
gx

(

σi
(

Ax

)

)2

. ()

The above derivations can be summed up in the following proposition

Proposition C. On the discrete retina the functional

1

2

(

∫

Π

Φi dµ
)2

− λC
2

∫

Π

Φ2
i dµ+

λM
2

∫

Π

(

∂tAi(ϕ) + vj∂jAi(ϕ)
)2
dµ, ()

which is the Cognitive Action in 3.1.2–Eq. () without the regularization terms,
becomes

V(q) =
∫ T

0

̟(t)U
(

q, t
)

dt+ λMM(q) ()

where

M(q) :=

∫ T

0

̟(t)

(

1

2
q̇M ♮(t)q̇ + qN ♮(t)q̇ +

1

2
q(t)O♮(t)q(t)

)

dt. ()

We will now show that if we pair the functional () with the regularization
term

R(q) :=

∫ T

0

̟(t)dt

(

α

2
|q̈(t)|2 + β

2
|q̇(t)|2 + 1

2
|γ1q̇(t) + γ2q̈(t)|2 +

k

2
|q|2
)

, ()

then the resulting cognitive action

Γ(q) := V(q) +R(q) ()

admits a minimum.
In order to understand the peculiar structure of the chosen regularization

term notice that if we pose µ = α+ γ22 , ν = β+ γ21 , γ = γ1 · γ2 then Eq. () can
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be rewritten as

Γ(q) =

∫ T

0

̟
(

µ

2
|q̈|2 + ν

2
|q̇|2 + γq̇ · q̈ + k

2
|q|2 + U

(

q, C
)

)

dt+ λMM(q). ()

As we have argue in Chapter 2 the interpretation of learning by means of
functional () is especially interesting since, unlike the case of the classic action
in mechanics, it admits a minimum under appropriate conditions.

The following theorem, that is a straightforward extension of a results dis-
cussed in Chapter 2, sections 2.1 and 2.2 and appeared in [7], offers an important
result on the well-posedness of learning.

Theorem E. If the following coercivity conditions*

µ > γ22 , ν > γ21 , k > 0 ()

hold true then functional Γ, defined by Eq. (), admits a minimum on the set

X = { q ∈ H2((0, T ),Rn) | q(0) = q0, q̇(0) = q1 }. ()

Proof. The proof follows the one in [7] with the additional observation that
M(q) ≥ 0 and that it contains at most the first derivatives of q.

Euler-Lagrange Equations. For the porpuse of taking the variation of the
functional Γ it is convenient to rearrange it so to have all the terms with at least
one derivative all grouped together: Γ(q) = Γ1(q) + Γ2(q) with

Γ1(q) =

∫ T

0

(

Û(q, t) +
1

2
q(t)(Ô♮(t) + k̂)q(t)

)

dt, ()

and

Γ2(q) :=

∫ T

0

dt
(

µ̂

2
|q̈|2 + ν̂

2
|q̇|2 + γ̂q̇ · q̈ + λM

2
q̇ · M̂ ♮q̇ + λM q · N̂ ♮q̇

)

. ()

We have also introduced the following notation: for any expression A we let
Â(t) := ̟(t)A. In what follows we will also assume

̟(t) =
θ

eθT − 1
eθt ()

with θ > 0. In general, ̟(t) needs to be monotone increasing, so as to yield
dissipation. For the moment therefore we are disregarding the causality issues
that we raised in Section 2.1 and that we are going to address again at the end
of this section and in the next section as well. With this factorization we see
that the variation of Γ1, other than being immediate, does not give any extra
boundary condition. So let us focus on the variation of Γ2(q).

Let us consider the variation v and define ψ(s) = Γ2(q + sv), where s ∈ R.
In the analysis below, we will repeatedly use the fact that v(0) = v̇(0) = 0. This
corresponds with the assignment of the initial values q(0) and q̇(0). Since we
want to provide a causal computational framework for q(t), this is in fact the

* These conditions are indeed equivalent to α > 0,β > 0 and k > 0.
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first step towards this direction. The stationarity condition for the functional Γ2

is ψ′(0) = 0,

ψ′(0) =

∫ T

0

dt
{

(µ̂q̈+γ̂q̇)·v̈+[(ν̂+λMM̂
♮)q̇+γ̂q̈+λM (N̂ ♮)′q]·v̇+λMN̂ ♮q̇·v} ()

With a few integration by parts we get

ψ′(0) =
[

(µ̂q̈ + γ̂q̇)v̇ +
(

(ν̂ + λMM̂
♮)q̇ + γ̂q̈ + λM (N̂ ♮)′q − (µ̂q̈ + γ̂q̇)̇

)

v
]

t=T

+

∫ T

0

{

(µ̂q̈ + γ̂q̇)̈ −
(

(ν̂ + λMM̂
♮)q̇ + γ̂q̈ + λM (N̂ ♮)′q

)

˙ + λM N̂
♮q̇
}

· v
()

As it often happens in variational calculus we proceed as follows:
1. Consider only the variations such that v(T ) = v̇(T ) = 0. In this case

ψ′(0) = 0 yields the following differential equations

µ̂q(4) + 2 ˙̂µq(3) + (¨̂µ+ ˙̂γ − ν̂ − λMM̂
♮)q̈

+ (¨̂γ − ˙̂ν − λM (
˙̂
M

♮

+ (N̂ ♮)′ − N̂ ♮))q̇ − λM (
˙̂
N

♮

)′q = 0.
()

2. Because of Eq. (), ψ′(0) = 0 reduces to
[

(µ̂q̈ + γ̂q̇)v̇ +
(

ν̂q̇ + γ̂q̈ − (µ̂q̈ +

γ̂q̇)̇
)

v
]

t=T
= 0. Moreover, since v(T ) and v̇(T ) can be chosen independent

one of each other, then the vanishing of the first variation also implies that

µ̂q̈(T ) + γ̂q̇(T ) = 0;

− µ̂q(3)(T )− ˙̂µq̈(T ) + (ν̂ − ˙̂γ + λMM̂ ♮)q̇(T ) + λM (N̂ ♯)′q(T ) = 0.
()

We summarize the previous analysis in the statement of the following theo-
rem:

Theorem F. The Euler-Lagrange equation relative to the functional Γ(q) de-
fined on X are

µ̂(t)q(4)(t)+2 ˙̂µ(t)q(3)(t)+Z2(t)q̈(t)+Z1(t)q̇(t)+Z0(t)q(t)+∇q Û(q, C) = 0. ()

where

Z2 = ¨̂µ+ ˙̂γ − ν̂ − λMM̂
♮, Z1 = ¨̂γ − ˙̂ν − λM (

˙̂
M

♮

+ (N̂ ♮)′ − N̂ ♮),

Z0 = k̂ + λM Ô
♮ − λM (

˙̂
N

♮

)′, ()

together with the boundary conditions in Eq. ().

It is worth mentioning that the above theorem holds also if we redefine Γ(q)

by arbitrary positive and bounded functions µ̂(t), ν̂(t), γ̂(t), and k̂(t). This is one
of the key observations that made us devise a mechanism to deal with Eq. ()
without using the limiting procedure described in Chapter 2. In the following we
will describe our initial ideas that we used to handle boundary conditions ().
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Boundary conditions. The solution of the forth-order differential equation on
the filter parameters requires the satisfaction of the boundary conditions ().
The underlying idea that drives the learning process is that one is expected to
solve the problem of determining the filters in a causal way, which corresponds
with imposing Cauchy’s initial condition. However, the solution of Eq. ()
under Cauchy’s initial condition will not, in general, satisfy conditions () at
the end of learning. Hence, we get into a dilemma that involves the choice
of the initial conditions, since the values q(T ), q̇(T ), q̈(T ), q(3)(T ) do depend on
the video signal in (0, T ], that is on the “future.” We can break the dilemma
when pairing a couple of important remarks: First, a special case in which
conditions () are satisfied is whenever we have still images at T , so as N ♯ = 0,
and

q̇(T ) = q̈(T ) = q(3)(T ) = 0. ()

Second, without limitations of generality, the color field C(x, t) in Π will always
contain brief portions of null signal. Moreover, its eventual manipulation with the
purpose of injecting brief portions of null signal does not change its information
structure, so as one can reasonably regard the visual environment with such a
manipulation equivalent with respect to the one from which it is generated. The
intuition is that such a “reset” of the video results in N ♯ = 0 and, moreover,
the null signal also affects the differential equation of learning () by resetting
the dynamics, so as q̇(T ) = q̈(T ) = q(3)(T ) = 0 is also very well approximated.
Hence, no matter what the initial conditions are, it turns out the we can satisfy
conditions () after a small portions of the video.

Now, we will translate this intuition into a formal statements. Let us
consider a sequence of times 0 < t0 < t1 < t2 < · · · < t2N < T that defines
the two sets A =

⋃N
i=0 Ai with Ai = (t2i−1, t2i), t−1 = 0 and B =

⋃N
i=0 Bi with

Bi = (t2i, t2i+1), t2N+1 = T . Suppose furthermore that we modify the video
signal in the following way C(x, t) → C(x, t)[t∈A], so that it is identically null
on B. As already pointed out, in doing so, we do not change the problem of
discovering visual features, since we just dilute the information that is contained
in C. On the other hand, whenever C = 0, this results into a remarkable
simplification of the system dynamics in B: the potential U and all the terms
coming from the motion invariance term (the ones proportional to λM ) are
identically zero. Moreover, since the EL equations still holds true for time-variant
coefficients µ̂(t), ν̂(t), γ̂(t), and k̂(t), we can always decouple the dynamics so
that whenever t ∈ B Eq. () becomes (see [7])

µ̄q(4) + 2θ̄µ̄q(3) + (θ̄2µ̄+ θ̄γ̄ − ν̄)q̈ + (θ̄2γ̄ − θ̄ν̄)q̇ + k̄q = 0, t ∈ B ()

where θ̄, µ̄, ν̄ and λ̄ are arbitrary constants different from θ, µ, ν and λ. In
particular the following theorem guarantees us that θ̄, µ̄, ν̄ and λ̄ can be chosen
in such a way that the boundary conditions in Eq. () are approximaterly
satisfied at the end of each B interval.

Theorem G. We can always choose the system parameters of Eq. () in
such a way that |q(k)(t2i+1)| = 0, k = 1, 2, 3, up to an arbitrary precision for
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i = 0, 1, . . . , N regardless of the initial Cauchy conditions, which is in fact a
special way of satisfying boundary conditions ().

Proof. See [7] for the proof.

The intuition behind this result is that the dynamical system defined by ()
becomes asymptotically stable under an appropriate choice of the parameters,
which corresponds with driving the dynamics to a reset state arbitrarily fast.

Another important property of the dynamics in the Bi is that it we can
arrange things in such a way that it does not alter the solution found in the
previous Aj . More precisely, let (0, λ2, λ3, λ4) be the roots of the characteristic
polynomial associated with Eq. () and let V3 = V (λ2, λ3, λ4) be the Vander-
monde matrix associated with the λi eigenvalues. The the following theorem
holds.

Theorem H. Let Λ = (V (λ2/ρ, λ3/ρ, λ4/ρ))
−1 be and for every even i =

0, . . . , 2N consider the defined sets Ai = (ti−1, ti), Bi = (ti, ti+1). It is always
possible to choose the coefficients in Eq. () such that ∀ǫ > 0, if we choose

ρ > [(9C/ǫ) ·max
k

|q(k)(ti)|]1/2 > 1 ()

we have |q(ti+1)− q(ti)| < ǫ, where |Λkj | ≤ C for all k and j = 1, 2, 3.

Proof. See [7] for the proof.

System dynamics. Here we will mainly focus on the “free dynamics” C ≡ 0.
This turns out to be a good way to classify the solution of Eq. () according to
the behaviour of the associated “free” equation (obtained for C ≡ 0) This case
is particularly important since it is possible to analyze this case in details, and
it gives us insights on the solutions depending on the choice of the parameters.
Let χ(x) = x4 + bx3 + cx2 + dx + e be the characteristic polynomial of the
EL equation () with U ≡ 0 (which is just the same as Eq. () only with
the unbarred variables); here we assume µ 6= 0 and use the notation b = 2θ,
c = (θ2µ+ θγ − ν)/µ, d = (θ2γ − θν)/µ, and e = k/µ.

If we replace x = z − b/4 with χ(x) then we obtain the reduced quartic
equation ζ(z) := χ(z − b/4) = z4 + qz2 + rz + s = 0, where q = c− 3b2/8, r =
b3/8− bc/2+ d, s = b2c/16− 3/256b4− bd/4+ e. Then one can prove (see [7])
that the following proposition holds:

Proposition D. If we choose θ, µ, ν, γ1, γ2, k such that θ > 0 and:

µ > γ22 , ν > γ21 , ν < θγ1γ2, 0 < k ≤ (ν − θγ1γ2)
2

4µ

γ1 < 0, γ2 <
γ1
θ

or γ1 > 0, γ2 >
γ1
θ
.

()

then the following conditions are jointly verified:

1. Γ admits a minimum in X;
2. the homogeneous equation associated with Eq. () has the following two

properties:
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i. it is asymptotically stable;
ii. it yields aperiodic dynamics (the roots of the characteristic polynomial

are real).

Now we will present some experimental results of the theory.

3.2.1. Experimental Results

We implemented a solver for the differential equation of Eq. 3.2–() that is based
on the Euler method. After having reduced the equation to the first order, the
variables that are updated at each time instant are q, q̇, q̈, and q(3). The code
and data we exploited to run the following experiments can be downloaded at
http://www.dii.unisi.it/ melacci/calneco/neco code data params.zip

together with the full list of model parameters.
We randomly selected two real-world video sequences from the Hollywood

Dataset HOHA2 marszalek09, that we will refer to as “skater” and “car”, and
a clip from the movie “The Matrix” ( c©Warner Bros. Pictures). The frame
rate of all the videos is ≈ 25 fps, so we set the step-size of the Euler method
to 1/25, and each frame was rescaled to 240 × 110 and, for simplicity, it was
converted to grayscale. Videos have different lengths, ranging from ≈ 10 to ≈ 40
seconds, and they were looped until 45, 000 frames were generated, thus covering
a significantly longer time span.

We randomly initialized the variable q for t = 0, while the derivatives q̇,
q̈, and q(3) were set to 0. We used the softmax function to force a probabilistic
activation of the features, as suggested in Section Eq. 3.2–(), and we computed
the optical flow v using an implementation from the OpenCV library. Convo-
lutional filters cover squared areas of the input frame, and we set gx, for each
x, to be the inverse of the frame area, i.e., we assume that we have a uniform
distribution over the retina. All the results that we report are averaged over 10
different runs of the algorithms.

The video is presented gradually to the agent so as to favour the acquisition
of small chunks of information. We start from a completely null signal (all pixel
intensities are zero), and we slowly increase the level of detail and the pixel
intensities, in function of τ(t) ∈ [0, 1], where τ(t) = 0 leads to null signal and
τ(t) = 1 to full details. In detail,

C(x, t) = τ(t)G(1−τ(t))δ ∗ C(x, t), ()

where ∗ is the spatial convolution operator, C(x, t) is the original source video
signal, Gσ is a Gaussian filter of variance σ, and δ > 0 is a customizable scaling
factor, that we set to the size of the squared discrete Gaussian filter mask. It is
easy to see that for τ(t) = 1 we get C(x, t) = C(x, t). We start with τ(0) = 0,
and then τ(t), t > 0, is progressively increased as time passes with the following
rule,

τ(t+ 1) = τ(t) + η(1 − τ(t)), ()

where we set η = 0.0005. We refer to the quantity 1− τ as the “blurring factor”,
being it proportional to the variance of the Gaussian blur.
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Fig. 12. Comparing 4 configurations of the parameters, characterized by different
properties in terms of stability and reality of the roots of the characteristic polynomial.
The input video is reproduced (in loop) for 45k frames (x-axis). From left-to-right, top-
to-bottom we report the Cognitive Action (CA), the portion of the cognitive action that
is about the Mutual Information (MI) (that we maximize), the portion that is about
the Conditional Entropy, the MI per-frame, the norm of q(t), and the fraction of “reset”
operations performed every 1000 frames.

In order to be able to (approximately) satisfy the conditions in Eq. 3.2–()
we need to keep the derivatives small, so we implement a “reset plan” according
to which the video signal undergoes a reset whenever the derivatives become too
large. Formally, if |q̇(t′)|2 ≥ ǫ1, or |q̈(t′)|2 ≥ ǫ2, or |q(3)(t′)|2 ≥ ǫ3 then we set to
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Fig. 13. Different number of features and filter sizes (1st column: n = 5, size = 5× 5;
2nd column: n = 11, size = 11 × 11) in 3 videos. See Fig. 12 for a description of the
plots.

0 all the derivatives, and we also force τ(t′) to 0, leading to null video signal, as
described above. We used ǫj = 300n, for all j.

Our experiments are designed (i) to evaluate the dynamics of the cognitive
action in function of different temporal regularities imposed to the model weights
(parsimony), and then (ii) to evaluate the effects of motion, that introduces a
spatio-temporal regularization on single and multi-layer architectures. When
evaluating the temporal regularities, the cognitive action is composed by the



3.2.1 EXPERIMENTAL RESULTS 99

1 2 3 4

Frame 10
4

0.2

0.4

0.6

0.8

1

1
-B

lu
rr

in
g

 F
a

c
to

r

slow

fast

faster (none)

1 2 3 4

Frame 10
4

1000

2000

3000

4000

5000

C
A

slow

fast

faster (none)

1 2 3 4

Frame 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
A

: 
M

I

slow

fast

faster (none)

Fig. 14. Three different blurring plans:
slow, fast, faster (i.e., no bluring). We
consider n = 11 and filters of size 11×11.

information-based and parsimony terms only, and we experiment four instances
of the set of parameters {µ, ν, γ, k} of Eq. 3.2–(), leading to different dynamics.
Each instance is characterized by the roots of the characteristic polynomial that
lead to stable or not-stable configurations, and with only real or also imaginary
parts, keeping the roots close to zero, and fulfilling the conditions of Proposi-
tion D when stability and reality are needed. These configurations are all based
on values of k ∈ [10−19, 10−3], while θ = 10−4.

We performed experiments on the “skater” video clip, setting n = 5 features,
and filters of size 5× 5. Results are reported in Fig. 12. The plots indicate that
there is an initial oscillation that is due to the effects of the blurring factor,
that vanish after about 10k frames. The Mutual Information (MI) (I) portion
of the cognitive action correctly increases over time, and it is pushed toward
larger values in the two extreme cases of “no-stability, reality” and “no-stability,
no-reality”. The latter shows more evident oscillations in the frame-by-frame MI
value, due to the roots with imaginary part. In all the configurations the norm
of q increases over time (with different speeds), due to the small values of k,
while the frequency of reset operations is larger in the “no-stability, no-reality”
case, as expected.

We evaluated the quality of the developed features by freezing the final q of
Fig. 12 and computing the MI index over a single repetition of the whole video
clip, reporting the results in Tab. 1–(a). This is the procedure we will follow in
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Table 1

MUTUAL INFORMATION

(a) (b) (c)

Config (Skater)

S R 0.54± 0.07
S R 0.54± 0.08
S R 0.44± 0.11
S R 0.45± 0.13

Video n = 5, 5× 5 n = 11, 11 × 11

Car 0.38± 0.03 0.272± 0.003
Matrix 0.60± 0.03 0.45± 0.02
Skater 0.45± 0.13 0.35± 0.05

Blurring (n = 10, 5× 5)

Slow 0.35± 0.08
Fast 0.39± 0.05
None 0.34± 0.08

MI on (a) the “skater” video, given the models of Fig. 12 (S=stability, R=reality, X̄=not X);
(b) different videos, number of features, filter sizes (SR); (c) different blurring plans (SR)

the rest of the section when reporting numerical results in all the tables. We
notice that, while in Fig. 12 we compute the MI on a frame-by-frame basis, here
we compute it over the whole frames of the video at once, thus in a batch-mode
setting. The result confirms that the two extreme configurations “no-stability,
reality” and “no-stability, no-reality” show better results, on average. These
performances are obtained thanks to the effect of the reset mechanism, that
allows even such unstable configurations to develop good solutions. When the
reset operations are disabled, we easily incurred into numerical errors due to
strong oscillations while, for example, the “stability” cases were less affected by
this phenomenon.

We also compared the dynamics of the system on multiple video clips and
using different filter sizes (5 × 5 and 11 × 11) and number of features (n = 5
and n = 11) in Fig 13. We selected the “stability, reality” configuration of
Fig. 12, that fulfils the conditions of Proposition D. Changing the video clip
does not change the considerations we did so far, while increasing the filter size
and number of features can lead to smaller MI index values, mostly due to the
need of a better balancing the two entropy terms to cope with the larger number
of features. The MI of Tab. 1–(b) confirms this point. Interestingly, the best
results are obtained in the longer video clip (“The Matrix”) that requires less
repetitions of the video, being closer to the real online setting.

Figure 14 and Tab. 1–(c) show the results we obtain when using different
blurring plans (“skater” clip), that is, different values of η in Eq. (), that lead to
the blurring factors reported in the first graph of Fig. 14. These results suggest
that a gradual introduction of the video signal helps the system to find better
solutions than in the case in which no-plans are used, but also that a too-slow
plan is not beneficial. The cognitive action has a big bump when no-plans are
used, while this effect is more controlled and reduced in the case of both the slow
and fast plans.

In order to study the effect of motion in multi-layer architectures (up to 3
layers), we still kept the most stable configuration (“stability, reality”, 5 × 5
filters, 5 features), and introduced the motion-related term in the cognitive
action. Our multi-layer architecture is composed of a stack of computational
models developed accordingly to (). A new layer ℓ is activated whenever layer
ℓ − 1 has processed a large number of frames (≈ 45k), and the parameters of
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Table 2

MUTUAL INFORMATION–LAYERS

S
ka

te
r

λM = 0 10−8 10−6 10−4 10−2 1 102

ℓ = 1 .61± .11 .54 ± .11 .52 ± .07 .53± .08 .69± .07 .53 ± 0 .01 ± 0
ℓ = 2 .53± .12 .62± .15 .60 ± .11 .43± .06 .48 ± .06 .1 ± .1 .03± .01
ℓ = 3 .56± .17 .58 ± .20 .62± .10 .18± .16 .16 ± .17 .04± .02 .03± .02

C
a
r

ℓ = 1 .49± .05 .44± .02 .46 ± .04 .47± .04 .66± .10 .60± .02 .01 ± 0
ℓ = 2 .25± .26 .54± .10 .65± .08 .46± .03 .63 ± .11 .18± .32 .03± .01
ℓ = 3 .26± .34 .45± .22 .51± .11 .38± .20 .24 ± .20 .09± .12 .04± .02

M
a
tr
ix ℓ = 1 .66 ± .01 .66± .02 .67± .01 .63± .05 .59 ± .03 .44 ± 0 .23± .02

ℓ = 2 .55 ± .13 .56± .14 .43 ± 0 .45± .04 .62± .02 .35± .19 .13± .08
ℓ = 3 .64± .03 .54± .11 .35 ± .07 .40± .01 .21 ± .07 .06± .03 .04± .02

MI in different videos, up to 3 layers (ℓ = 1, 2, 3), and for multiple weighting factors λM of the
motion-based term. All layers share the same λM .

Table 3

MUTUAL INFORMATION–LAYERS 2

S
ka

te
r

λM = 0 10−8 10−6 10−4 10−2 1 102

ℓ = 1 .61± .11 .54 ± .11 .52± .07 .53± .08 .69± .07 .53 ± 0 .01 ± 0
ℓ = 2 .38± .34 .53± .12 .50 ± .1 .47 ± .1 .41 ± .02 .33± .17 .21 ± .2
ℓ = 3 .55± .12 .62± .11 .55± .13 .42± .01 .36 ± .09 .2 ± .18 .39± .22

C
a
r

ℓ = 1 .49± .05 .44± .02 .46 ± .04 .47± .04 .66± .10 .60± .02 .01 ± 0
ℓ = 2 .48 ± .1 .59± .17 .59 ± .18 .55± .12 .41 ± .01 .01 ± 0 .64± .01
ℓ = 3 .67± .01 .60± .12 .73± .09 .36± .05 .33 ± .11 .27± .14 .73± .01

M
a
tr
ix ℓ = 1 .66± .01 .66± .02 .67± .01 .63± .05 .59 ± .03 .44 ± 0 .23± .02

ℓ = 2 .55± .13 .56± .14 .43 ± 0 .45± .04 .62± .02 .35± .19 .13± .08
ℓ = 3 .55± .12 .53± .12 .82± .14 .35± .05 .35 ± .31 .02± .01 .01 ± 0

Same structure of Tab. 2. Here the model with the best λM is selected and used as basis to
activate a new layer (layer ℓ = 1 is the same as Tab. 2)

layer ℓ − 1 are not updated anymore. We initially considered the case in which
all the layers ℓ = 1, . . . , 3 share the same value λM that weighs the motion-based
term. Tab. 2 shows the MI we get for different weighting schemes. Introducing
motion helps in almost all the cases (for appropriate λM —the smallest values
of λM are a good choice on average), and, as expected, a too strong enforcement
of the motion-related term leads to degenerate solutions with small MI. We
repeated these experiments also in a different setting. In detail, after having
evaluated layer ℓ for all the values of λM , we selected the model with the
largest MI and started evaluating layer ℓ + 1 on top of it. Tab. 3 reports the
outcome of this experience. We clearly see that motion plays an important
role in increasing the average MI. In the case of “car”, we also obtained two
(unexpected) positive results when strongly weighing λM . They are due to very
frequent reset operations, that avoid the system to alter the filters when the
too-strongly-enforced motion-based term yields very large derivatives. This is
an interesting behaviour that, however, was not common in the other cases we
reported.
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3.3. FURTHER DEVELOPMENTS OF THE THEORY

In Section 3.1 we discussed the principles on which our theory of vision stands,
while in Section 3.2 we proposed a specific model that we derived from the
general theory under a number of assumptions, some of which were strongly
motivated and suggested by mathematical results, some by computational issues
while others were assumed as working hypotheses. In this section we want, on
the basis of what we learned either from the theoretical analysis presented in
Section 2.2 and also from the experimental results shown in Section 3.2.1, to
reconsider some of these working hypotheses. In particular we will re-discuss
two main points of the theory that we believe that are crucial and that could
result in major improvement on the model developed in Section 3.2:

1. The motion invariance term based on the trajectory of the focus of attention
(as discussed in item ii. at the end of Section 3.1);

2. Instead of the “reset mechanism” that we introduces in the last section to
handle the boundary conditions, applying the De Giorgi approach to the
problem as it is discussed on Chapter 2.

A closing section will then wrap the discussion up on two important is-
sues that will be the core part of future investigations: Deep architectures and
integrated supervisions.

Let us start to consider the implications of 1. in terms of the Lagrangian
theory presented in Section 3.2.

3.3.1. Motion Term Driven by the Focus of Attention

In Section 3.1.1 we defined the motion invariance term according to Eq. 3.1.1–
(). This constraint was then incorporated in the theory by adding to the
Lagrangian a penalty term integrated over the whole retina. However we soon
realized that this way of imposing the motion invariance term would only result
in a mean effect on the features: Since the features that we are extracting are
convolutional the filters are shared weights all over the retina, thus if we try to
force coherence under motion on all the pixels what we will end up with is just
a mean, regularizing effect. On the other hand the intuition is that if we focus
on a single pixel, then we can hope to be able to change the convolutional filters
in such a way to have motion-coherent feature at least where the attention is
focused.

Another great advantage of using motion invariance only on the focus of
attention, although in a certain sense can be considered as a special case of
the above comment, is the fact that brakes down any sort of ambiguities that
could arise for example for the presence of multiple version of the same shapes
at different scales or moving on different trajectories.

Sot let us see how the motion invariance term on the convolutional acti-
vations looks like when computed on the trajectory of the focus of attention
a(t):

d

dt
Ai(a(t), t) = ∂tAi(a(t), t) +∇Ai(a(t), t) · ȧ(t). ()
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The discrete counterpart of this is*

d

dt
Aia(t) =

d

dt
(χi

αγα(a(t), t)) = χ̇i
α(t)γα(a(t), t) + χi

α(t)
d

dt
γα(a(t), t) = 0. ()

Hence the motion invariance terms becomes
∫ T

0

̟(t)
dAia(t)

dt

dAia(t)

dt
dt =

∫ T

0

̟(t)
(

χ̇i
α(t)γα(a(t), t)γβ(a(t), t)χ̇

i
β(t)

+ 2χi
α(t)

d

dt
γα(a(t), t)γβ(a(t), t)χ̇

i
β(t)

+ χi
α(t)

d

dt
γα(a(t), t)

d

dt
γβ(a(t), t)χ

i
β(t)
)

dt.

()
As we did in Section 3.2 we can define the matrices (that for convenience we will
indicate with the same names as before) Oαβ := (dγα(a(t), t)/dt) (dγβ(a(t), t)dt),
Nαβ := (dγα(a(t), t)/dt)γβ(a(t), t) and Mαβ := γα(a(t), t)γβ(a(t), t). Using the
same exact definition that we have given in Section 3.2 of M ♮, N ♮, O♮ and of q
we finally get the expression for the motion term:

∫ T

0

̟(t)

(

1

2
q̇M ♮(t)q̇ + qN ♮(t)q̇ +

1

2
q(t)O♮(t)q(t)

)

dt. ()

which is formally the same as the one in Eq. 3.2–(). In this expressions however
the matrices M ♮, N ♮, O♮ depends on time other than through the video also
directly through the trajectory of the focus of attention and its derivative.

It is also interesting to notice that the same results could have been found
by choosing gx ≡ δxa(t) so that all the sum on the retina that appeared in the

old definition of the matrices M ♮, N ♮, O♮ would have collapsed on the focus of
attention.

3.3.2. Causal Formulation

We will now apply the techniques described in Chapter 2 to our theory of vision.
In particular we will try to reformulate the theory presented in Section 3.2 using
the De Giorgi causal approach. In Section 2.2.2 we investigated the possibility
of using a sequential optimization for problems which have explicit temporal
dependence in the potential. We also argued that this approach is particularly
fruitful when we have a natural way to segment the entire agent life in temporal
segments inside of which we have consistent information. In a visual system
with an attention mechanism a(t) which behaves as a natural (human) focus
of attention a possible segmentation criterion as intended in Section 2.2.2 is
furnished by the attention signal itself as we can choose the times of the temporal
partition ti to coincide with the instants in which the attention quickly moves
from a region of the retina to another (saccadic movements).

* Here we will use a slightly different notation than in in Section 3.2 for the quantity γ;
what we called γx(t) here will be denoted as γ(x, t), both quantities however have the same
definition.
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This being said consider the following family of functionals for the con-
voluitional filters q:

Fε(q) :=

∫ T

0

e−t/ε
(

ε2
ρ

2
|q̈|2 + ε

ν

2
|q̇|2 + λM

(

fM (ε)

2
q̇ ·M ♮q̇ + fN(ε)q ·N ♮q̇

+
fO(ε)

2
q · O♮q

)

+ U(q, t)
)

dt,

()

where the terms fM , fN and fO are suitable positive weights such as the ε2 and
ε in front of the regularization terms that we reserve to choose appropriately on
the basis of the resulting Euler equations.

Using exactly the same arguments as in Section 2.1.2 (Theorem 2.1.2A),
we can conclude that if the U , M ♮, N ♮ and O♮ are smooth functions, then
we gain the regularity of the minimum of the functional Fε (whose existence
we have basically proved when we proved the existence of the minimum for Γ in
Section 3.2). Therefore we can write down the Euler equations for this functional;
we have

e−t/ερε2q(4) − e−t/ε 2

ε
ε2ρq(3) + e−t/ε

(

1

ε2
ε2ρ− εν − λMfM (ε)M ♮

)

q̈

+e−t/ε
(

1

ε
εν − λM

(

fM (ε)(Ṁ ♮ − 1

ε
M ♮) + fN(ε)(N ♮′ −N ♮)

)

)

q̇

+e−t/ε λMfN(ε)

ε
N ♮′q − e−t/ελMfN (ε)Ṅ ♮

′
q + e−t/ελMfO(ε)O

♮q +∇U = 0.

()
As usual the Euler equations (see Appendix A) are coupled with two conditions
at t = T which are La(T, q(T ), q̇(T ), q̈(T )) = 0 and Lp(T, q(T ), q̇(T ), q̈(T )) −
dLa(T, q(T ), q̇(T ), q̈(T ))/dt = 0:

e−t/εε2ρq̈(T ) = 0;

−e−t/εε2ρq(3)(T ) + e−t/ε 1

ε
ε2ρq̈(T )+e−t/ε(εν + λMfM (ε)M ♮)q̇(T )

+ e−t/ελMfN(ε)N ♮′q(T ) = 0.

()

Looking at Eq. () we immediately realize that fM (ε) = ε is a good choice,
indeed if we were to choose fM (ε) = εn with n < 1 formally the Euler equation,
as ε → 0 would reduce to something, which would depend on the mutual value
of fM , fN and fO but not on ∇U and neither on any other terms that comes
from the regularization part. The same remark also hold for fN(ε). So far then
it seems that a good choice would be fM (ε) = fN(ε) = ε. Now for the choice of
fO(ε) we are left with two possibilities, indeed if we were to choose fO(ε) = εn

with n < 0 we would get (after having chosen the other two terms to be order ε)
an even more degenerate equation. Then we can either choose n > 0 or n = 0;
in the first case the Euler equations will formally converge as ε→ 0 to

ρq̈ + (ν + λMM
♮)q̇ + λMN ♮′q +∇U = 0. ()
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Instead with the choice n = 0 we would get

ρq̈ + (ν + λMM ♮)q̇ + λMN
♮′q + λMO

♮q +∇U(q, t) = 0. ()

Both these limiting equations seems to be reasonable even though one would say
that Eq. () is much more in the spirit that we described in Chapter 2 since we
can always regard the term O♮ a s a part of the potential.

With this choices the functional Fε becomes:

Fε(q) :=

∫ T

0

e−t/ε
(

ε2
ρ

2
|q̈|2 + ε

ν

2
|q̇|2 + λM

(

ε

2
q̇ ·M ♮q̇ + εq ·N ♮q̇

+
1

2
q · O♮q

)

+ U(q, t)
)

dt.

()

Using this functional we can lay down the following strong conjecture based on
the formal limit that led to Eq. ()

Conjecture C. For ρ > 0 the solution of () with boundary conditions () and
Cauchy initial conditions q(0) = q0, q̇(0) = q1 converges to the solution of ()
with the same boundary conditions.

Notice that the time dependent matricesM ♮, N ♮, O♮ can always be chosen to
be L∞. This observation is central as it suggests that we can replace the fourth
order dynamics 3.2–() and our “reset plan” with a much simpler second order
ODE solved with Cauchy initial conditions. And there is no doubt that a simpler
structure of the differential equation also opens the door to the possibility to
perform some analysis directly on the differential equations in order to better
understand the nature of the leaning process.

For example when we force the motion invariance terms (i.e. we choose
consider the regime of big λM ) formally we have that the dynamics is mainly

driven by the term λMM
♮q̇ + λMN

♮′q + λMO
♮q. Now if we look back at the

definition of the matrices we soon realize that when we are focusing on a coherent
part of an image the term γα(a(t), t) is slowly changing since in the neighbour
of the focus of attention we will get similar values of the video. Therefore the
entries of the matrix O♮ will be negligible compared with the other two terms.
In this approximation the requirement λMM

♮q̇ + λMN
♮′q = 0 is equivalent to

the satisfaction of the motion invariance constraint 3.3.1–() (just multiply this
relation by q̇).

3.3.3. Multilayer Architecture and Supervisions: a Prospective

In the experimental Section 3.2.1 we discussed the possibility of defining a
progressive multilayer architecture. What we did was to use the single layer
theory to sequentially (starting from the lower layers to the higher ones) develop
the convolutional filters. Of course this solution is a zeroth order approximation
of a proper multilayer theory since it lacks of any kind of backpropagation from
higher levels.

We can, of course, formulate the theory taking into account a multilayer
architecture from the beginning by explicitly writing the inter-layers dependence
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in the functionals that we use to define the theory. Indeed the terms of the
potential will result in a function of all the convolutional filters with a rich
compositional structure that can in principle be handled in the Euler Lagrange
equations with a backprop-like calculation. However we will encounter more
severe problems with the multilayer generalization of the motion invariance term.

Suppose that we want to impose a motion invariance term on the convo-
lutional activations of each layer. These terms will in general depend on the
convolutional filters of that same level and on its derivative, but it will also
essentially depend on the variables at lower levels and on their derivatives though
the value of the feature map on which the invariance is imposed. This, of course,
makes the problem of computing the variations of the functional intractable;
even we just two layers the calculations are extremely involved.

A possible solution to this apparent impasse is to exploit the power of
the variational formulation that we are adopting and to apply the theory for
architectural constraints that we have developed in Section 2.3 (actually our
interest in that kind of formalism was originally inspired originally exactly by
this problem).

If we do so the complete multilayer formulation will consist of a variational
problem on the variables of all the different layers which will simply consists of
the sum of the functionals for each layer together with a set of constraints that
are exactly of the form that we discussed in Section 2.3.2.

Another aspect of the theory that we want to emphasize is the possibility to
incorporate (both in the one presented in Section 3.2 and the one proposed at the
beginning of this section) supervision in a uniform and simple way. In particular
suppose that we want to incorporate a set of supervised examples that comes
at times t0, t1, t3, . . . , tK ; this can be done by adding to the potential that we
have used so far in vision (that consists essentially of terms that come from the
mutual information) a new potential that makes memory of the given examples.
We have already discussed a possibility for such a potential when discussing the
transposition of the theory of Poggio and Girosi [44] in the temporal domain
with the potential defined in Eq. 1.2.2–(). Another possibility would be the
following: Suppose that v0(ω) is the loss relative to the example presented at t0
and in general vi(ω) the loss relative to the example presented at time ti (for
example if at time t = t5 the following pair example-supervision is given (x5, y5)
we may define v5 = 1/2(y5 − fω(x5))

2 where f is the overall model that should
map the examples into the predictions) then we define

US(ω, t) :=



















v0(ω) for t0 ≥ t < t1;
v0(ω) + v1(ω) for t1 ≥ t < t2;

...
∑k

i=0 vi(ω) for t ≥ tk.

This potential indeed accumulates the various examples and keeps memory of
the supervised example that the agent saw during its life. Notice that for t > tK
the potential lose its temporal dependence and becomes a constant risk.
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My conclusions have cost me some labor from the want of coincidence

between accounts of the same occurrences by different eyewitnesses,

arising sometimes from imperfect memory, sometimes from undue

partiality for one side or the other.

— THUCYDIDES (Peloponnesian War, I, 22)

In this work we tried to pursue the coherent idea of learning processes as phe-
nomena which takes place in time. In particular we showed how batch learning
problems can be reformulated using time-independent potential functions like
it happens in many problems of classical mechanics. We showed that in this
case the resulting equations of motion generalizes batch learning optimized with
gradient descent. We argued how the case of time-dependent potentials, instead,
is much more in the spirit of an online stochastic method.

We discussed how the explicit temporal dependencies of the potential are
of the utmost importance whenever we want to regard learning processes as an
interplay between the internal dynamics of the learner and the temporal scale at
which the input signal (which carry the data relevant for the task in question)
varies. It is in this contest that we firstly see the importance of dissipative
dynamics, which is responsible of relaxation towards states that are as good as
possible in terms of the learning task we are trying to solve. We also showed that
the dynamical behaviour of the evolution laws borrowed from classical mechanics
are well suited for learning: When paired with the the additional hypothesis that
the temporal dependence of the potential consists of a signal which has some
properties of periodicity (quasi-periodicity), we can observe how eventually also
the prediction of the model will share the same pattern of repetition so to have
consistent predictions on similar data.

We show how both formulations, time-independent (batch mode) and time-
dependent, can be recovered though a variational formulation that allow us to
get a much more high level control of the theory. This becomes particularly
apparent in the theory of visual extraction. The motion invariance term is a
perfect example of a class of constraints that act on the dynamics and that when
introduced in the Lagrangian it cannot be classified neither as a potential term
neither as a kinetic term. Therefore its contribution to the updates rules for the
filters could not have been easily guessed otherwise.

A central part of the discussion was about the causality issues that arises
when trying to formulate an evolution problem using calculus of variations. With
this respect we used recent results that show that causality can be conquered at
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the price of introducing both an overall weight to the Lagrangian and a temporal
scale that in some sense measure the “degree of causality” of the solution. We
saw how this causal solution may be more satisfactorily interpreted in terms of a
number of sequential, independent variational problems performed on consistent
data. We also showed how the inter-layer dependencies of a feedforward NN
can be completely described by means of holonomic constraints; in particular we
described how the lagrange multipliers for these constraints can be expressed in
terms of the other variables of the problem.

The last part of the work is dedicated to the development of a theory of
extraction of visual feature. The formulation of such a problem has been carried
out using again methods from calculus of variations. Under the hypothesis of
using convolutional features we showed how the computational soundness of
the theory naturally requires an hypothesis of receptive fields. Moreover, as
we have already pointed out this general approach has given us the possibility
of including a dynamical constraint on the convolutional filters: The motion
invariance constraint. In particular we argued how this term becomes very
important when we can take advantage of a method for focusing attention.

To sum up the most important contributions of this dissertation are:

• Interpretation of batch mode learning and online learning in terms poten-
tial functions. We completed this discussion with a consistency result on
classification of similar patterns (Theorem 1.2.3B);

• Formulation of learning as a variational problem, causality of the obtained
solution and its interpretation in terms of a sequence of independent varia-
tional problems;

• Description of a FNN architecture in terms of holonomic constraints and
consistency check with Backpropagation;

• Definition of a theory for convolutional feature extraction based on a func-
tional index that enforces the dynamical constraint of motion invariance;

• Discussion of the associated Euler equations and how they suggest receptive-
field-like solutions and the need for a focus of attention mechanism both on
a continuous and on a discretized retina.

• Causality issues in vision and subsequent reformulation of the theory with
the methods discussed in Chapter 2.

In the last section we lay down the guidelines for future and necessary
developments of the theory: A proper multilayer architecture and an integrated
way to inject supervision. The multilayer architecture is particularly important
because of our assumptions on receptive fields while the need for a good way to
include supervised example is crucial in view of more sophisticated interaction
protocol between the learning agents and humans.
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CALCULUS OF VARIATIONS

You will find it a very good practice always to verify your

references, sir.

— MARTIN JOSEPH ROUTH, from J. W. Burgon, Memoir of Dr. Routh (1878)

Calculus of variation in its essence is the study of extremals of functions
f :X → R, where R = R ∪ {−∞,+∞}. The case in which X is a Euclidean
space corresponds of course to the study of stationary points of a real valued
function on Rn. For the purposes of this work we are mainly interested in the
case in which X is an infinite dimensional functional space. In particular we will
focus on the case in which X is an affine space with vector space V so that in
particular for all x ∈ X and all v ∈ V we have that x+ v ∈ X. In this case then
it is particularly straightforward to generalize the usual concept of directional
derivative in the direction v at point x0 as follows:

δF (x0, v) := lim
s→0

F (x0 + sv)− F (x0)

s
. ()

In general this quantity is called Gâteaux differential, or more traditionally first
variation. The term Gâteaux differential comes from the notion of Gâteaux
differentiability in Banach spaces (see [19]). Notice also that if we define ψ(s) :=
F (x0 + sv), then δF (x0, v) = ψ′(0).

This quantity is particularly important for the study of extremals of a
functional since, as it happens for real valued functions, the vanishing of this
quantity for all v ∈ V it is a necessary condition to be satisfied by any local
extremum of F .

Integral Functional and Euler equations. We will now restrict ourselves
to functionals of the form

F (x) :=

∫ T

0

L(t, x(t), ẋ(t), ẍ(t)) dt, ()

where x ∈ X and L(t, z, p, a) is a continuous real valued function of the variables
(t, z, p, a). Suppose furthermore that for example* X ⊂ C2([0, T ];Rn).

Now we can use the following well known result about integration that es-
sentially says that under appropriate regularity assumptions the derivative of the

* A milder assumption would be X ⊂ H2((0, T );Rn).
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integral is the integral of the derivative. More precisely if f : [0, T ]× [−τ, τ ] → R,

then if we let ψ(s) :=
∫ T

0
f(t, s) dt we have that

1. If f is continuous in [0, T ]× [−τ, τ ] then ψ is continuous in [−τ, τ ];
2. If fs is continuous in [0, T ]× [−τ, τ ] then ψ′ exists and it is given by

ψ′(s) :=

∫ T

0

fs(x, s) dx. ()

If we take, as we remarked above ψ(s) := F (x+ sv), then

ψ′(s) =

∫ T

0

d

ds
L(t, x+ sv, ẋ+ sv̇, ẍ+ sv̈) ()

Then, using the chain rule on L we have that the first variation () looks like

δF (x, v) =

∫ T

0

(

Lz(t, x(t), ẋ(t), ẍ(t)) · v(t) + Lp(t, x(t), ẋ(t), ẍ(t) · v̇(t)

+ La(t, x(t), ẋ(t), ẍ(t)) · v̈(t)
)

dt

()

Now consider the relation δF (x, v) = 0 for all v ∈ C∞; here we are considering
v ∈ C∞ instead of C2 functions since this has the advantage that we can consider
the same class of variations for all differential equations of all order; moreover
it is consistent with the usual conventions in the theory of distributions. This
condition is equivalent to

∫ T

0

(

Lz(t, x(t), ẋ(t), ẍ(t)) · v(t) + Lp(t, x(t), ẋ(t), ẍ(t) · v̇(t)

+ La(t, x(t), ẋ(t), ẍ(t)) · v̈(t)
)

dt = 0 ∀v ∈ C∞((0, T );Rn)

()

This condition it is usually called the weak Euler equation for x. Notice that in
order for this condition to be well defined the function x(t) does not need more
regularity than that declared in the definition of X.

Now suppose that we take v vanishing at the boundary, then by integration
by parts we get

∫ T

0

(

Lz(t, x(t), ẋ(t), ẍ(t))−
d

dt
Lp(t, x(t), ẋ(t), ẍ(t))+

d2

dt2
La(t, x(t), ẋ(t), ẍ(t))

)

·v(t) dt = 0.

()
This, of course, can be done if we have enough regularity on both L and x.
This integral relation can be turned into a differential equation by using the
fundamental lemma of calculus of variations:

Lemma. Let f : [0, T ] → Rn be continuous function. If

∫ T

0

f(t) · v(t) dt = 0 ∀v ∈ C∞
c ((0, T );Rn), ()

then f ≡ 0 in [0, T ].
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We therefore have

Lz(t, x(t), ẋ(t), ẍ(t))−
d

dt
Lp(t, x(t), ẋ(t), ẍ(t)) +

d2

dt2
La(t, x(t), ẋ(t), ẍ(t)) = 0.

()
Till now we have not taken into account the cases in which the variations does
not vanishes at the boundary; this for example happens when if we formulate
a variational problem without specifying in X the value of the solution at the
boundaries.

Notice however that since the fundamental lemma of the calculus of variation
the vanishing condition () need just to be verified for compactly supported
functions, if we can prove that the solution of the variational problem is reg-
ular enough then the differential Eq. () will hold regardless of any boundary
conditions. This being said let us now see what happens to the stationarity
condition δF (x, v) = 0 when we do not assume the vanishing of the variation at
the boundaries.

We have already discussed the fact that Eq. () still holds; therefore we are
left with the contributions only from the boundary terms of the integration by
parts; namely

[

(

Lp −
d

dt
La

)

v

]T

0

+ [Lav̇]
T
0 = 0. ()

In order for this term to be zero the only possibility, other than the vanishing of
v is to have

Lp −
d

dt
La = 0 andLa = 0, ()

at the boundary where we do not know that the variation is vanishing. This kind
of boundary conditions usually are referred to as Neumann boundary conditions
since they generally depends on the derivatives of the solution.
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GAUSSIAN GREEN FUNCTIONS

And now there came both mist and snow, And it grew wondrous cold:

And ice, mast-high, came floating by,

As green as emerald.

— SAMUEL TAYLOR COLERIDGE, The Rime of the Ancient Mariner, (I, st. 13)

First of all define Lm
σ :=

∑m
n=0(−1)n(σ2n/2nn!)d2n/dx2n and consider the

induced function ρσ(x) := Lm
σ Gσ(x). Now notice that as σ → 0, L → 1 and

Gσ → δ so that we automatically have LG = δ. It is also immediate to see that
∫

ρσ(x) dx = 1. Let us now consider for any δ > 0

lim
σ→0

∫

|x|≥δ

|ρσ(x)| dx = lim
σ→0

m
∑

n=1

σ2n

2nn!

∫

|x|≥δ

∣

∣

∣

∣

d2n

dx2n
Gσ(x)

∣

∣

∣

∣

dx;

notice that the sum starts at n = 1 because, since the gaussian is a mollifier, we
already known that limσ→0

∫

|x|≥δ
e−x2/2σ2

/
√
2πσ2 dx = 0. Now, let us consider

the Hermite polynomial:

Hn(x) = (−1)nex
2 dne−x2

dxn
,

which satisfies
dnGσ(x)

dxn
= (−1)n

Hn(x/
√
2σ)

(
√
2σ)n

Gσ(x).

If we change the variable y = x/σ, we have

σ2n

∫

|x|≥δ

∣

∣

∣

∣

d2n

dx2n
Gσ(x)

∣

∣

∣

∣

dx =
1

2n

∫

|x|≥δ

∣

∣

∣H2n(x/
√
2σ)Gσ(x)

∣

∣

∣ dx

=
1

2n

∫

|y|≥δ/σ

∣

∣

∣H2n(y/
√
2)G1(y)

∣

∣

∣ dy,

that goes to 0 as σ → 0
To sum up, we can state the following lemma for ρσ.

Lemma. The family of functions {ρσ}σ>0 ⊂ C∞(R) has the following proper-
ties

i. supx∈R |ρσ(x)| <∞;
ii.

∫

R
ρσ(x) dx = 1;
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Fig. 15. Plots of ρσ when m = 1 for various values of σ: σ = 1 in (a), σ = 0.1 in (b),
σ = 0.01 in (c) and σ = 0.001 in (d).

iii. limσ→0

∫

|x|≥δ
|ρσ(x)| dx = 0 for every δ > 0.

iv.
∫

R
|ρσ(x)| dx <∞

In view of this Lemma the following theorem holds:

Theorem. The sequence 〈ρσ〉 converges in D′ to the δ function as σ → 0:

lim
σ→0

∫

ρσ(x)ϕ(x) dx = ϕ(0), ∀ϕ ∈ C∞
c (R).

Proof. Because of ii. we set

Iσ :=

∫

ρσ(x)ϕ(x) dx − ϕ(0) =

∫

ρσ(x)
(

ϕ(x) − ϕ(0)
)

dx,

so that for any fixed δ > 0:

Iσ =

∫

|x|≤δ

ρσ(x)
(

ϕ(x) − ϕ(0)
)

dx+

∫

|x|>δ

ρσ(x)
(

ϕ(x)− ϕ(0)
)

dx;

if we let αδ
σ be the first integral, and βδ

σ the second one, we have the following
bounds

|αδ
σ| ≤ sup

|x|≤δ

|ϕ(x) − ϕ(0)|
∫

|x|≤δ

|ρσ(x)| dx ≤ K sup
|x|≤δ

|ϕ(x) − ϕ(0)| ≡ Aδ,

|βδ
σ| ≤ sup

|x|>δ

|ϕ(x) − ϕ(0)|
∫

|x|>δ

|ρσ(x)| dx ≤ 2‖ϕ‖L∞(R)

∫

|x|>δ

|ρσ(x)| dx.

Now because of the continuity in x = 0 of ϕ and because of property iii. of
the above lemma we have that limδ→0Aδ = 0, and limσ→0 β

δ
σ = 0 for every δ

positive. Then
max lim

σ→0
|Iσ| ≤ Aδ +max lim

σ→0
|βδ

σ| = Aδ,

now taking the limit δ → 0 we finally obtain limσ → 0|Iσ| = 0.
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