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Abstract: The present work reports the application of RF-magnetron sputtering technique to realize
CsPbBr3 70 nm thick films on glass substrate by means of a one-step procedure. The obtained
films show highly uniform surface morphology and homogeneous thickness as evidenced by AFM
and SEM investigations. XRD measurements demonstrate the presence of two phases: a dominant
orthorhombic CsPbBr3 and a subordinate CsPb2Br5. Finally, XPS data reveals surface bromine
depletion respect to the stoichiometrical CsPbBr3 composition, nevertheless photoluminescence
spectroscopy results confirm the formation of a highly luminescent film. These preliminary results
demonstrate that our approach could be of great relevance for easy fabrication of large area perovskite
thin films. Future developments, based on this approach, may include the realization of multijunction
solar cells and multicolor light emitting devices.

Keywords: perovskite; thin-film; magnetron-sputtering; caesium lead halides

1. Introduction

In the last decade, halide perovskites have attracted the attention of the scientific community
thanks to their excellent optoelectronic properties [1–4] which make them suitable for applications
ranging from light emitting diodes to nanotechnologies [5]. Among the materials proposed for
optoelectronic devices, halide perovskite materials present several advantages such as the relatively
low-cost, the possibility to tune the band gap varying the composition, and the different kind of
nanostructure obtainable. For such reasons, halide perovskites have been recently proposed as novel
materials for solar cells, sensors and LEDs [3,6–10].

Historically, the first proposed halide perovskites were constituted by organic and inorganic
compounds based on methylammonium lead trihalide (MAPbX3, with X = Cl, Br, I). However, these
materials have a major drawback in their high chemical instability that leads to a significant degradation
of the materials in short times, especially after exposure to humidity, UV light and moderately high
temperature [11]. This instability makes them unsuitable for application where a long lifetime is
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crucial. To overcome this issue, fully inorganic perovskites, which present comparable optoelectronics
properties to the hybrid ones, were realized by the substitution of the organic cation by an inorganic
one [12]. Solution-based chemical synthesis represents the most common route used for deposition
of thin and thick layers and, among them, spin-coating and dipping techniques are the most widely
used [5]. However, these approaches are valuable for assembling small laboratory samples but
result less suitable for the production of devices of several square centimeters, or larger, as required
for industrial applications. Blade coating, spray coating and vapor depositions methods are more
suitable for this purpose and the progress toward the deposition of large-area perovskites have been
recently reviewed [13,14]. Nevertheless, it is an open challenge the search for a techniques that allows
the deposition of several layers of different material (perovskites, scaffold layers, hole and electron
transport layers, metal electrodes) with controlled characteristics (morphology, thickness, roughness,
uniformity) as it’s required for device fabrication.

In this context radio frequency (RF) magnetron sputtering constitutes a powerful technique
for the deposition of both, conductive (metals) and non-conductive (ceramic) materials [15,16] thin
films, offering the possibility to grow consecutive layers of different materials with a nanometric
control of the thickness and a reduced surface roughness. Other advantages are the homogeneity of
the obtained films, the limited contamination from unwanted elements and, conversely, the ease of
doping. In addition the growth can be performed at room temperature avoiding, or at least limiting,
the material stress: this latter is a consequence of the large mismatch between thermal expansion
coefficient (CTE) of the perovskites (3.8 × 10−5 K−1 for CsPbBr3 at room temperature [17]) and the
substrate (typically CTE for glass substrates < 6 × 10−6 K−1) and could be responsible of the layers
cracking and degradation [18–20]. Despite its advantages, it has received a very limited attention;
to our knowledge only two studies report on the depositions of hybrid halide perovskite layers (i.e.,
CH3NH3PbI3) [21,22], while there are no attempts to deposit fully inorganic lead perovskites.

In this study, we report the successful direct deposition of thin films of CsPbBr3 by one step
magneto-sputtering. Even if there is evidence of the presence of two distinct phases with different
stoichiometrical ratio between Cs, Pb and Br, the structural, optical, and electrical properties of
the prepared samples are comparable, and in some case result more performing, then the usual
solution-based grown inorganic perovskites.

2. Materials and Methods

CsPbBr3 powder was obtained through a mechanochemical procedure described in literature [23].
It consists by grinding the two precursor salts (CsBr and PbBr2 purchased from Merck KGaA,
Darmstadt, Germany) in equal molar ratio in a mixer mill (Retsch model MM400, Haan, Germany).
The success of the synthesis was qualitatively witnessed by the color change of the powder from white
to yellow (see Figure 1a) and, more quantitatively, by powder XRD pattern which also confirmed the
absence of unreacted precursors (see Figure 1b).

The sputtering target (5 cm diameter disk) was realized by pressing the perovskite powder by
means of a pneumatic press (11.5 MPa working pressure) for 24 h at room temperature. The so obtained
target is depicted in Figure 1a.

The magnetron sputtering equipment is constituted by a Korvus HEX system, (Korvus Technology
Ltd., Newington, UK) coupled with an RF source working at 13.56 MHz. The deposition was performed
at room temperature with an RF power of 20 W and argon gas flow of 20 atm cm3 min−1. In these
conditions, the dynamic working pressure was 2 × 10−6 atm and the deposition rate resulted to be
7 × 10−2 nm s−1. We monitored the film thickness by using a quartz crystal nanobalance until it
reached the desired thickness of 70 nm after about 17 min. During this time, the sample holder was
kept rotating to assure thickness homogeneity. At the end of the sputtering procedure, the obtained
film resulted transparent, uniform and slightly orange colored, with a green fluorescence under a
254 nm UV lamp.
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(a)
(b)

Figure 1. (a) Picture of the obtained perovskite target (b) XRD spectra of the obtained
perovskite powder.

Scanning electron microscopy (SEM, Gaia3 FESEM, Tescan Orsay Holding, Brno - Kohoutovice,
Czech Republic) was performed to assess the morphology, the homogeneity and the thickness of the
film. To obtain an optimal cross section of the film, an in-situ platinum deposition was performed
before the focused ion beam cutting. Unfortunately, due to the small film thickness of the film chemical
composition could not be measured by energy dispersive spectroscopy (EDS). Surface roughness and
morphology was investigated by atomic force microscopy (AFM). Morphological analysis have been
carried out with a NT-MDT Solver P47pro Scanning Probe Microscope (NT-MDT, Zelenograd, Moscow,
Russia). AFM images were recorded in tapping mode in air using a HQ:NSC36B/Al BS N-type silicon
tip with a resonance frequency of 130 KHz and we used the Gwyddion, open source software, version
2.54 to perform the statistical analysis on the AFM obtained data.

Due to the small thickness, the chemical composition of the film could not be determined by EDS,
therefore, chemical investigation was performed by X-ray photoelectron spectroscopy (XPS). We used
an XPS instrument constituted by an X-ray source (VSW Scientific Instrument Limited model TA10,
Al Kα radiation, 1486.6 eV) and a hemispherical analyzer model HA100 (VSW Scientific Instrument
Limited, Manchester, UK) with a 16 channels detector. The XPS peaks were fitted by CasaXPS software
after Shirley’s type background substraction [24]. The binding energies (BEs) values were calibrated
using as internal reference the 1s transition of adventitious carbon fixed at 284.8 eV [25]. Peaks were
fitted by Gaussian-Lorentzian components, imposing for each doublet the distance between the two
peaks and the area ratio.

The structural investigation was achieved by grazing angle XRD carried out with a Bruker
model D8 Advance diffractometer. Diffuse reflectance spectroscopy (DRS, Agilent Cary 300
spectrophotometer, equipped with a Labsphere PELA-1050 integration sphere) measurements assessed
the direct band-gap value by McLean analysis at the absorption edge [26].

The photoluminescence (PL) measurements were performed in a quasi-backscattering geometry
(illuminated area about 100 µm). The samples were kept in a closed cycle cryostat, allowing to span a
temperature range from 10 to 300 K. Continuous wave (CW) measurements were performed exciting
the samples by a laser diode operating at 405 nm with an excitation intensity of about 10 W cm−2, while
a frequency-doubled mode-locked ps Ti:Sapphire laser, operating at 81.3 MHz repetition rate with
1.2 ps pulses, was used for time-resolved (TR) experiments. The PL signal was spectrally dispersed
by a monochromator (Acton SpectraPro HRS-300, grating 300 gr/mm blazed at 500 nm) providing a
spectral resolution of 1 meV and detected by by a streak camera Hamamatsu model C5680 (Hamamatsu
Photonics, Hamamatsu City, Shizuoka, Japan) (time resolution 5 ps).
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3. Results

3.1. Morphological Characterization

The SEM micrograph displayed in Figure 2a depicts a compact and well-distributed film on which
numerous nanocrystals (about 100 nm size) are uniformly distributed all over the sample.

The Back Scattered Electron (BSE) image of the cross section of the sample is shown in Figure 2b.
The CsPbBr3 film appears to be very compact and homogeneous, about 70 nm thick, confirming the
gravimetrical value given by the nanobalance.

(a) (b)

Figure 2. SEM images of a deposited CsPbBr3 sample on glass. (a) Secondary Electrons micrograph.
(b) Backscattered electrons micrograph of a sample cross section. Three layers are visible: the Pt coating
(1), the 70 nm sputtered film (2), the glass substrate (3).

Figure 3a reports the morphology of the sample obtained in a 1 × 1 µm area by AFM measurement.
It is possible to observe the presence of small particles with height of about 40–50 nm. To be sure
to have a representative sample of the overall morphology, we recorded the surface topography in
10 different spots and evaluated the roughness as a mean value of these measurements. The overall
roughness, evaluated as the arithmetic average of the absolute values of the profile height deviations
from the mean line of the deposit is 6.1 nm and the root means square 9.8 nm; these data asses the
small roughness of the obtained deposits.

(a) (b)
Figure 3. Surface data on a 1 × 1 µm zone. (a) is the AFM image and (b) is the power spectral density
function evaluated in the same area.

Historically, two approaches have been used to describe the characteristics of rough surfaces in
order to understand their properties and model their behaviour. The 2D extension of the random
process theory, previously applied to random noise signals, was proposed by Longuett-Higgins [27]
and then extended to 3D to solve the contact problem by Nayak [28]. Meanwhile, the characteristics of
self-affinity of natural rough surfaces emerged [29] and were object of new research. Hence, to better
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characterize the morphology of the film surface, we evaluated the power spectral density function
(PSD) as the fast Fourier transform of the height fields [30]. It is known that, for fractal surfaces the PSD
has a power law dependency on the frequency [31] and that the fractal dimension can be evaluated as
the slope β of a least-square regression line fit to the data points in log-log plot of power spectrum as
Df = 7/2 + β/2 [32–34]. In this case the fractal dimension was D = 2.2, that corresponds to a smooth
surface. From the PSD plot depicted in Figure 3b, we can also identify the presence of a cut-off at
lower frequency, usually this kind of feature is characteristic of a grinded or polished surface, on which
the asperities larger than the grinding particle dimension have been eliminated. In our case it can
be related to the maximum dimension of the particles present on the surface. The cut-off of the PSD
is located at a frequency value of log10 ω = 7.65 nm−1 that corresponds to a length scale of 23 nm,
in agreement with the topography of the sample.

We also focused our attention on the flat smaller zones of the surface in between the larger
crystals shown in Figure 3a to analyze the surface with a higher resolution. As an example one of
the topography is reported in Figure 4a. The 100 × 100 nm zone shows the presence of much smaller
asperities that were not evident in larger topography. Figure 4b shows a variation in the slope of the
PSD evaluated in this zone. Higher slope in the high frequency range usually is associated with a
texturing of the surface at the nano-scale level as previously reported [35]. This so called bifractality
suggests two different level of organization in the surface and the shift between the two regimes is
located in correspondence of 1 nm lenghtscale. The distribution of the asperity heights in Figure 5
shows that the medium height of the particles is 2 nm. We can suppose that the two phases present
in the deposit have two different particle sizes and lenghtscale, however, it is difficult to prove this
hypothesis since the small thickness of the film does not allow a EDS point analysis on the particles.

(a)
(b)

Figure 4. Surface data on a 100 × 100 nm zone. (a) is the AFM image and (b) is the power spectral
density function evaluated in the same area.

Figure 5. Distribution of asperity heights.
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3.2. Chemical and Structural Characterization

The chemical analysis and phase identification of the deposited thin film were performed by XPS
and XRD. The first one allows the evaluation of the chemical composition of the sample and thanks to
its surface sensitivity (in such conditions the technique probing depth is about 4 nm) it is particularly
suited for thin film analysis. The second one provides information concerning the lattice structure
of the film and, by comparing results with tabulated data, the nature of the mineralogical species
was attributed.

In Figure 6 the high-resolution XPS spectra of caesium 3d transition (from 745 eV to 720 eV,
Figure 6a), lead 4f transition (from 150 eV to 130 eV, Figure 6b) and bromine 3d transition (from 74 eV
to 64 eV, Figure 6c) are reported. The results of the fitting are listed in Table 1, where the calculated
and theoretical atomic percentage contents of each element are reported.

(a) (b) (c)
Figure 6. XPS spectra of (a) 3d transition of caesium, (b) 4f transition of lead and (c) 3d transition
of bromine. The dots are the experimental data, the red line is the fitting curve and the blue line is
the residual.

Table 1. Binding energies and measured peaks area for Cs, Pb and Br as evaluated from XPS data.
The measured atomic percentage refers to the absolute elemental content as detected by the technique.

Element B.E. (eV) Area Measured Atomic Percentage Expected Atomic Percentage

Cs 724.7 3746 35 ± 3 20
Pb 138.0 10230 20 ± 2 20
Br 68.2 5661 45 ± 4 60

The measured percentages were calculated from the relative XPS peaks after applying tabulated
atomic sensitivity factors [36]. Experimental results were slightly different form the expected
stoichiometrical values. In particular, an excess of caesium and a lack of bromine was observed
in the deposed film. Reasonably, the elements have different sputtering rates as previously reported
by Bonomi et al. for hybrid perovskites [22]. However, it is also known that halogen vacancies are
the most abundant defect in CsPbX3 materials (see [37] and references therein). The presence of such
defects, mostly related to the surface, is considered responsible of the changes in the PL intensity
when samples are exposed to air and different gases [38]. To determine if bromine vacancies were
located only in the surface region of the film, we carried out depth profiling XPS analysis. The same
percentages of the elements with the respect to the surface was found throughout all the thickness.
Since the starting materials returned the correct stoichiometrical composition, different sputtering rates
should be responsible for the change in composition. Anyhow, the binding energies observed for each
element (Table 1) are very similar to those observed in previous reported XPS analysis for CsPbBr3.

A detailed information relative to the mineralogical nature of the deposited film, a picture of which
is displayed in Figure 7b, was obtained by XRD. The spectrum (Figure 7a) displays peaks attributable to
CsPbBr3 perovskite. However, their relative intensities do not fulfill the relative intensities achievable
from a randomly oriented crystalline compound, indicating, on the whole, high texturing of the film.
Peaks attributable to the phase CsPb2Br5 are also present (labeled in red in Figure 7a). This phase
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reasonably accounts for the bromine deficiency observed by XPS measurements. Further investigations
will be carried out in order to assess the optimal conditions to avoid the formation of these spurious
phases, for example varying the amount of CsBr in the sputtering target.

(a) (b)

Figure 7. (a) XRD spectrum of the thin film. In black are evidenced the peaks of the CsPbBr3 phase and
in red the peaks of the CsPbBr5 inclusions (b) Picture of the obtained transparent thin film.

3.3. Optical Characterization

Figure 8 shows the DRS spectrum obtained on the sputtered film. The band-gap value can be
estimated by fitting the McLean analysis at the absorption edge [26] i.e., by the extrapolation of the
linear trend in the Tauc plot [39,40]. The direct band-gap resulted 2.31 eV, slightly smaller than the
bulk CsPbBr3. In accordance to previous reports [41–43] the band-gap decrease could be related to the
small thickness and crystallite size of the film.

Figure 8. (a) Diffuse reflectance spectrum of the magnetron sputtered thin film on glass and (b) Band
gap of the thin film calculated from absorbance data using the Tauc relation

PL experiments were performed from 10 K to 300 K: here we show in Figure 9 results at low
temperature to assess the overall quality of the material. In fact our results indicate an inhomogeneous
broadening comparable to results reported for spin-coated samples (<20 meV) and a small Stokes shift
of the PL respect to the reflectivity spectrum, with a marked excitonic resonance. In Figure 9c the slow
rise of the low energy emission accounts for the exciton localization, which is a process occurring in a
longer time scale respect to the exciton formation/radiative recombination, as commonly found in
literature when high quality semiconductor samples are investigated. Such localisation effect shows
up in Figure 9d as an increase of the low energy contribution at the PL at longer delay. The low
temperature PL spectrum and the reflectivity spectrum well agree with literature data on CsPbBr3

thin films [44]. The PL time evolution cannot be described by a single exponential, in agreement with
literature data for perovskite. A fit of the PL decay at 2.325 eV is shown in the inset of Figure 9c: the
dashed line is a two-exponential fit with 50 ± 10 ps and 400 ± 50 ps.The initial decay turns out to
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be slightly faster respect to values reported for pure CsPbBr3 spin-coated samples [44–46], therefore
such result indicates that the presence of small amount of the CsPb2Br5 phase does not affect the PL
emission. A slight localization is present with a shift of the PL peak energy less than 5 meV, while
bound states appear on the low energy side, as the time delay increases. The overall PL behavior turns
out to be comparable to state of the art spin coated thin films.

Figure 9. Photoluminescence spectra at 10 K. (a) CW PL and reflectivity spectrum. (b) Streak camera
image of the PL. (c) Normalized PL decays at three different energies extracted from (b): HE-high
energy side at 2.34 eV, PE-Peak energy at 2.325 eV, LE-low energy side at 2.31 eV. The red curve in (c) is
the experimental time response. In the inset a fit of the PL decay (dashed line) at 2.325 eV is reported.
(d) Time-resolved PL spectra extracted from (b).

4. Conclusions

Here we demonstrate, for the first time in the literature, the successful deposition of thin
(70 nm) CsPbBr3 films by RF-magnetron sputtering technique starting from a single perovskite
target. The obtained film is uniform and transparent, highly textured and mainly constituted by
CsPbBr3. The optical properties of the film are similar to bulk materials. Overall, in this paper
we propose a new route to the fabrication of fully inorganic perovskite thin films, which could be
applied as a new fabrication method for large size devices and multi-layer heterostructures, opening
new and stimulating scenarios in the current research on perovskite-related functional materials.
Future developments will include the optimization of the deposition parameters to better control the
stoichiometry and the direct realization of perovskite solar cells by multi-layered magnetron-sputtering
deposition.
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The following abbreviations are used in this manuscript:

BE Binding energy
BSE Backscattered
CTE Thermal expansion coefficient
CW Continuous wave
DRS Direct reflectance spectroscopy
EDS Energy dispersive spectroscopy
MA Methyl ammonium
PSD Power spectral density
RF Radio frequency
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction

References

1. Vidyasagar, C.; Flores, B.M.M.; Pérez, V.M.J. Recent advances in synthesis and properties of hybrid halide
perovskites for photovoltaics. Nano-Micro Lett. 2018, 10, 68. [CrossRef] [PubMed]

2. Kanemitsu, Y.; Handa, T. Photophysics of metal halide perovskites: From materials to devices. Jpn. J. Appl.
Phys. 2018, 57, 1–17. [CrossRef]

3. Gholipour, S.; Saliba, M. From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. Small
2018, 14, 1802385. [CrossRef] [PubMed]

4. Mitzi, D.B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials.
In Progress in Inorganic Chemistry; Wiley: Hoboken, NJ, USA, 1999; pp. 1–121.

5. Liang, K.; Mitzi, D.B.; Prikas, M.T. Synthesis and characterization of organic- inorganic perovskite thin films
prepared using a versatile two-step dipping technique. Chem. Mater. 1998, 10, 403–411. [CrossRef]

6. Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72.
[CrossRef]

7. Stoeckel, M.A.; Gobbi, M.; Bonacchi, S.; Liscio, F.; Ferlauto, L.; Orgiu, E.; Samorì, P. Reversible, fast, and
wide-range oxygen sensor based on nanostructured organometal halide perovskite. Adv. Mater. 2017,
29, 1702469. [CrossRef]

8. Xu, W.; Li, F.; Cai, Z.; Wang, Y.; Luo, F.; Chen, X. An ultrasensitive and reversible fluorescence sensor of
humidity using perovskite CH3NH3PbBr3. J. Mater. Chem. C 2016, 4, 9651–9655. [CrossRef]

9. Bruzzi, M.; Talamonti, C.; Calisi, N.; Caporali, S.; Vinattieri, A. First proof-of-principle of inorganic
perovskites clinical radiotherapy dosimeters. APL Mater. 2019, 7, 051101. [CrossRef]

10. Gabelloni, F.; Biccari, F.; Andreotti, G.; Balestri, D.; Checcucci, S.; Milanesi, A.; Calisi, N.; Caporali, S.;
Vinattieri, A. Recombination dynamics in CsPbBr 3 nanocrystals: Role of surface states. Opt. Mater. Express
2017, 7, 4367–4373. [CrossRef]

11. Shahbazi, M.; Wang, H. Progress in research on the stability of organometal perovskite solar cells. Sol. Energy
2016, 123, 74–87. [CrossRef]

12. Calisi, N.; Caporali, S.; Milanesi, A.; Innocenti, M.; Salvietti, E.; Bardi, U. Composition-Dependent
Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Top. Catal. 2018, 61,
1201–1208. [CrossRef]

13. Yang, Z.; Zhang, S.; Li, L.; Chen, W. Research progress on large-area perovskite thin films and solar modules.
J. Mater. 2017, 3, 231–244. [CrossRef]

14. Lan, C.; Zhou, Z.; Wei, R.; Ho, J.C. Two-dimensional perovskite materials: From synthesis to energy-related
applications. Mater. Today Energy 2019, 11, 61–82. [CrossRef]

http://dx.doi.org/10.1007/s40820-018-0221-5
http://www.ncbi.nlm.nih.gov/pubmed/30393716
http://dx.doi.org/10.7567/JJAP.57.090101
http://dx.doi.org/10.1002/smll.201802385
http://www.ncbi.nlm.nih.gov/pubmed/30106507
http://dx.doi.org/10.1021/cm970568f
http://dx.doi.org/10.1016/j.mattod.2014.07.007
http://dx.doi.org/10.1002/adma.201702469
http://dx.doi.org/10.1039/C6TC01075J
http://dx.doi.org/10.1063/1.5083810
http://dx.doi.org/10.1364/OME.7.004367
http://dx.doi.org/10.1016/j.solener.2015.11.008
http://dx.doi.org/10.1007/s11244-018-0922-5
http://dx.doi.org/10.1016/j.jmat.2017.09.002
http://dx.doi.org/10.1016/j.mtener.2018.10.008


Nanomaterials 2020, 10, 60 10 of 11

15. Orlovskaya, N.; Coratolo, A.; Johnson, C.; Gemmen, R. Structural characterization of lanthanum chromite
perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a
promising interconnect material for SOFCs. J. Am. Ceram. Soc. 2004, 87, 1981–1987. [CrossRef]

16. Kim, T.C.; Lee, S.H.; Jung, H.K.; Kim, Y.E.; Choi, J.W.; Yang, D.; Kim, D.H. Effect of sputtering conditions
on the structure and magnetic properties of self-assembled BiFeO3-CoFe2O4 nanocomposite thin films.
J. Magn. Magn. Mater. 2019, 471, 116–123. [CrossRef]

17. Rodová, M.; Brožek, J.; Knížek, K.; Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm.
Anal. Calorim. 2003, 71, 667–673. [CrossRef]

18. Ramirez, C.; Yadavalli, S.K.; Garces, H.F.; Zhou, Y.; Padture, N.P. Thermo-mechanical behavior of
organic-inorganic halide perovskites for solar cells. Scr. Mater. 2018, 150, 36–41. [CrossRef]

19. Rolston, N.; Bush, K.A.; Printz, A.D.; Gold-Parker, A.; Ding, Y.; Toney, M.F.; McGehee, M.D.; Dauskardt,
R.H. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 2018, 8, 1802139.
[CrossRef]

20. Zhao, J.; Deng, Y.; Wei, H.; Zheng, X.; Yu, Z.; Shao, Y.; Shield, J.E.; Huang, J. Strained hybrid perovskite
thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.
[CrossRef]

21. Zhang, Z.; Li, M.; Liu, W.; Yue, X.; Cui, P.; Wei, D. CH3NH3PbI3 converted from reactive magnetron
sputtered PbO for large area perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 163, 250–254. [CrossRef]

22. Bonomi, S.; Marongiu, D.; Sestu, N.; Saba, M.; Patrini, M.; Bongiovanni, G.; Malavasi, L. Novel Physical
Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI3 Thin Films by RF-Magnetron
Sputtering. Sci. Rep. 2018, 8, 15388. [CrossRef] [PubMed]

23. Jana, A.; Mittal, M.; Singla, A.; Sapra, S. Solvent-free, mechanochemical syntheses of bulk trihalide
perovskites and their nanoparticles. Chem. Commun. 2017, 53, 3046–3049. [CrossRef] [PubMed]

24. Shirley, D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972,
5, 4709. [CrossRef]

25. Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped
with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [CrossRef]

26. Giaccherini, A.; Colantoni, I.; D’acapito, F.; De Luca, A.; Capolupo, F.; Montegrossi, G.; Romanelli, M.;
Innocenti, M.; Di Benedetto, F. Green synthesis of pyrite nanoparticles for energy conversion and storage:
A spectroscopic investigation. Eur. J. Mineral. 2016, 28, 611–618. [CrossRef]

27. Longuet-Higgins, M.S. The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. Lond. Ser.
A Math. Phys. Sci. 1957, 249, 321–387. [CrossRef]

28. Nayak, P. Random process model of rough surfaces in plastic contact. Wear 1973, 26, 305–333. [CrossRef]
29. Majumdar, A.; Bhushan, B. Role of fractal geometry in roughness characterization and contact mechanics of

surfaces. J. Tribol. 1990, 112, 205–216. [CrossRef]
30. Barnsley, M.F.; Devaney, R.L.; Mandelbrot, B.B.; Peitgen, H.O.; Saupe, D.; Voss, R.F.; Fisher, Y.; McGuire, M.

The Science of Fractal Images; Springer: Berlin/Heidelberg, Germany, 1988.
31. Wu, J.J. Characterization of fractal surfaces. Wear 2000, 239, 36–47. [CrossRef]
32. Van Put, A.; Vertes, A.; Wegrzynek, D.; Treiger, B.; Van Grieken, R. Quantitative characterization of individual

particle surfaces by fractal analysis of scanning electron microscope images. Fresenius’ J. Anal. Chem. 1994,
350, 440–447. [CrossRef]

33. Mannelquist, A.; Almqvist, N.; Fredriksson, S. Influence of tip geometry on fractal analysis of atomic force
microscopy images. Appl. Phys. A Mater. Sci. Process. 1998, 66, S891–S895. [CrossRef]

34. Zahn, W.; Zösch, A. Characterization of thin-film surfaces by fractal geometry. Fresenius’ J. Anal. Chem. 1997,
358, 119–121. [CrossRef]

35. Borri, C.; Paggi, M. Topology simulation and contact mechanics of bifractal rough surfaces. Proc. Inst. Mech.
Eng. Part J J. Eng. Tribol. 2016, 230, 1345–1358. [CrossRef]

36. Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy;
Chastain, J., Ed.; Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1992.

37. Wang, Y.; Ren, Y.; Zhang, S.; Wu, J.; Song, J.; Li, X.; Xu, J.; Sow, C.H.; Zeng, H.; Sun, H. Switching excitonic
recombination and carrier trapping in cesium lead halide perovskites by air. Commun. Phys. 2018, 1, 96.
[CrossRef]

http://dx.doi.org/10.1111/j.1151-2916.2004.tb06350.x
http://dx.doi.org/10.1016/j.jmmm.2018.09.059
http://dx.doi.org/10.1023/A:1022836800820
http://dx.doi.org/10.1016/j.scriptamat.2018.02.022
http://dx.doi.org/10.1002/aenm.201802139
http://dx.doi.org/10.1126/sciadv.aao5616
http://dx.doi.org/10.1016/j.solmat.2017.01.034
http://dx.doi.org/10.1038/s41598-018-33760-w
http://www.ncbi.nlm.nih.gov/pubmed/30337600
http://dx.doi.org/10.1039/C7CC00666G
http://www.ncbi.nlm.nih.gov/pubmed/28239726
http://dx.doi.org/10.1103/PhysRevB.5.4709
http://dx.doi.org/10.3762/bjnano.6.17
http://dx.doi.org/10.1127/ejm/2016/0028-2534
http://dx.doi.org/10.1098/rsta.1957.0002
http://dx.doi.org/10.1016/0043-1648(73)90185-3
http://dx.doi.org/10.1115/1.2920243
http://dx.doi.org/10.1016/S0043-1648(99)00362-2
http://dx.doi.org/10.1007/BF00321787
http://dx.doi.org/10.1007/s003390051262
http://dx.doi.org/10.1007/s002160050360
http://dx.doi.org/10.1177/1350650116641017
http://dx.doi.org/10.1038/s42005-018-0098-0


Nanomaterials 2020, 10, 60 11 of 11

38. Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the Defects, Stability, and Photoluminescence of CsPbX3
Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618. [CrossRef]

39. Boldish, S.I.; White, W.B. Optical band gaps of selected ternary sulfide minerals. Am. Mineral. 1998,
83, 865–871. [CrossRef]

40. Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium.
Phys. Status Solidi b 1966, 15, 627–637. [CrossRef]

41. Nolan, M.; O’Callaghan, S.; Fagas, G.; Greer, J.C.; Frauenheim, T. Silicon nanowire band gap modification.
Nano Lett. 2007, 7, 34–38. [CrossRef]

42. Zhang, L.; Xu, T.; Zhao, X.; Zhu, Y. Controllable synthesis of Bi2MoO6 and effect of morphology and
variation in local structure on photocatalytic activities. Appl. Catal. B Environ. 2010, 98, 138–146. [CrossRef]

43. Pardeshi, S.; Patil, A. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide
synthesized by solution free mechanochemical method. J. Mol. Catal. A Chem. 2009, 308, 32–40. [CrossRef]

44. Gabelloni, F.; Biccari, F.; Falsini, N.; Calisi, N.; Caporali, S.; Vinattieri, A. Long-living nonlinear behavior in
CsPbBr3 carrier recombination dynamics. Nanophotonics 2019. [CrossRef]

45. Diroll, B.T.; Zhou, H.; Schaller, R.D. Low-Temperature Absorption, Photoluminescence, and Lifetime of
CsPbX3 (X = Cl, Br, I) Nanocrystals. Adv. Funct. Mater. 2018, 28, 1800945. [CrossRef]

46. Becker, M.A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P.C.; Shabaev, A.; Mehl, M.J.; Michopoulos, J.G.;
Lambrakos, S.G.; Bernstein, N.; Lyons, J.L.; et al. Bright triplet excitons in caesium lead halide perovskites.
Nature 2018, 553, 189. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acsenergylett.9b00849
http://dx.doi.org/10.2138/am-1998-7-818
http://dx.doi.org/10.1002/pssb.19660150224
http://dx.doi.org/10.1021/nl061888d
http://dx.doi.org/10.1016/j.apcatb.2010.05.022
http://dx.doi.org/10.1016/j.molcata.2009.03.023
http://dx.doi.org/10.1515/nanoph-2019-0013
http://dx.doi.org/10.1002/adfm.201800945
http://dx.doi.org/10.1038/nature25147
http://www.ncbi.nlm.nih.gov/pubmed/29323292
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Morphological Characterization
	Chemical and Structural Characterization
	Optical Characterization

	Conclusions
	References

