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DISSOCIATING LIMIT IN DENSITY FUNCTIONAL THEORY WITH

COULOMB OPTIMAL TRANSPORT COST

GUY BOUCHITTÉ, GIUSEPPE BUTTAZZO, THIERRY CHAMPION, LUIGI DE PASCALE

Abstract. In the framework of Density Functional Theory with Strongly Correlated
Electrons we consider the so called bond dissociating limit for the energy of an aggregate
of atoms. We show that the multi-marginals optimal transport cost with Coulombian
electron-electron repulsion may correctly describe the dissociation effect. The variational
limit is completely calculated in the case of N = 2 electrons. The theme of fractional
number of electrons appears naturally and brings into play the question of optimal partial
transport cost. A plan is outlined to complete the analysis which involves the study of the
relaxation of optimal transport cost with respect to the weak* convergence of measures.
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1. Introduction

The analysis of minimum problems for functionals involving the wave function is one
of the most studied topics in quantum physics. The Born-Oppenheimer model for the
electronic structure of several particles systems deals with the functional

E(ψ) = ~
2

2m
T (ψ) + Uee(ψ) − Une(ψ) (1.1)

where

T (ψ) =
∑

si=±1

∫

R3N

∑

1≤i≤N

|∇xiψ|2 dx1 . . . dxN (kinetic energy),

Uee(ψ) =
∑

si=±1

∫

R3N

(

∑

1≤i<j≤N

1

|xi − xj|

)

|ψ|2 dx1 . . . dxN (electron-electron interaction),

Une(ψ) =
∑

si=±1

∫

R3N

V (x1, . . . , xN )|ψ|2 dx1 . . . dxN (electron-nuclei interaction).

We do not consider the nucleus-nucleus interaction because in our case we assume the nuclei
are fixed and this extra term would then simply be a constant. However, if the nuclei are
not considered as fixed, an extra term involving a repulsive nucleus-nucleus interaction has
to be added.

Here ψ(x1, s1, x2, s2, . . . , xN , sN ) is the wave function depending on space coordinates
xi and spin coordinates si, m the reduced mass of the nuclei, N the number of electrons,
and V a potential. In the Coulomb case, if we assume to have M nuclei with positions Xk

and charges Zk (k = 1, . . . ,M), we may take

V (x1, . . . , xN ) =
∑

1≤k≤M

Zk

|x−Xk|
,

even if most of the analysis can be similarly carried out assuming only V ∈ L3/2(R3) +
L∞(R3). The class where the functional above has to be minimized is the class of functions
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that, with respect to the space variables, belong to the Sobolev space H1(R3N ;C) with
‖ψ‖L2 = 1.

Concerning the symmetry assumptions on the functions ψ in the admissible class, there
are two main cases considered in physics:

• the bosonic case, where for all permutations σ of N points

ψ
(

(xσ(1), sσ(1)), . . . , (xσ(N), sσ(N))
)

= ψ
(

(x1, s1), . . . , (xN , sN )
)

• the fermionic case, where for all permutations σ of N points

ψ
(

(xσ(1), sσ(1)), . . . , (xσ(N), sσ(N))
)

= sign(σ)ψ
(

(x1, s1), . . . , (xN , sN )
)

To simplify this rather complex problem, several approximated models have been pro-
posed; here we deal with the one considered in the Density Functional Theory (DFT)
introduced in the works of Thomas [24] and Fermi [10] and then revived by Hohenberg,
Kohn and Sham [11, 12] and, from a variational point of view by Levy [14] and Lieb [15].
The DFT looks at the N -point probability distribution of electrons ρ (also known as charge
density) as the main variable, replacing the wave function ψ by

ρ(x) =
∑

si=±1

∫

R3(N−1)

|ψ(x, s1, x2, s2, . . . , xN , sN )|2 dx2, . . . , dxN .

The usual choice for the definition of the electrons density is ρ̃ = Nρ so that the approx-
imations for the kinetic energy and the potential (i.e. electron-nuclei interaction) terms
are respectively given by

N K ~
2

∫ |∇ρ|2
ρ

dx (kinetic);

N

∫

V (x)ρ dx (potential).

where all the integrals with no domain of integration explicitly defined are intended on R
3.

Here we choose to keep ρ as a probability density, and then divide the whole energy by N .
The constant K depends on the case considered (bosonic or fermionic) see Theorems 1.1
and 1.2 of [15]; in the rest of the paper it will be normalized to 1.

Concerning the approximation for electron-electron correlation, the considered term can
be expressed using the multimarginal mass transport theory (see for instance [4, 7]) as
detailed below.

The Kohn-Sham model is an approximation of the wave functional (1.1) and aims to
determine the probability to find N electrons in a given position once the positions Xk

and the charges Zk of M nuclei are given. The probability ρ is obtained through the
minimization of a suitable functional

Fε(ρ) = εT (ρ) + bC(ρ)− U(ρ) (1.2)

where ε is a small parameter depending on the Planck constant ~, b is a given positive
constant (b = 1 in the original Kohn-Sham model, b = 1/N with our normalization for ρ),
and the three terms appearing are defined as follows :

• The kinetic energy T is of the form

T (ρ) =

∫ |∇ρ|2
4ρ

dx =

∫

|∇√
ρ|2 dx.

• The correlation term C is given by means of the multimarginal mass transport
functional

C(ρ) := inf

{∫

R3N

c(x1, . . . , xN ) dP (x1, . . . , xN ) : ∀i = 1, . . . , N, π#i P = ρ

}

, (1.3)
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where P is a probability on R
3N , πi is the projection map from R

3N on its i-th
factor R3, # denotes the push forward operator defined for a map f and a measure
µ by

f#µ(E) = µ
(

f−1(E)
)

,

and c is the Coulomb correlation function

c(x1, . . . , xN ) =
∑

1≤i<j≤N

1

|xi − xj|
.

• The potential term U is of the form

U(ρ) =

∫

V (x) dρ(x)

being V (x) the Coulomb potential

V (x) =
∑

1≤k≤M

Zk

|x−Xk|
.

We shall also write U in the form

U(ρ) =

M
∑

k=1

Zk UXk
(ρ) where UXk

(ρ) :=

∫

1

|x−Xk|
dρ(x) .

When the Coulomb correlation term C above is chosen the theory is usually called
Strongly Correlated Electrons Density Functional Theory (SCE-DFT); it was started and
developed since the late 90’s (see for instance [20, 22, 21]) and the connection with optimal
transport was made in [4, 7].

Our goal is to describe the behavior, as ε → 0, of the asymptotically minimizing se-
quences {ρε}ε of the functionals Fε in (1.2); we will see that, as ε→ 0, the minimal values
of Fε tend to −∞ as −1/ε, so it is convenient to consider the rescaled functionals

Gε(ρ) = εFε(ρ) = ε2T (ρ) + εbC(ρ)− εU(ρ) (1.4)

that have the same minimizers as Fε (we refer to Definition 3.4 for a precise statement). It
turns out that, by a scaling property of the above functionals, minimizing Gε is equivalent
to minimize the functional F1 with nuclei at positions X̃i = Xi/ε (see (3.2)) : in this
respect the asymptotic study of Gε corresponds to the study of the so-called dissociating
bond problem (see in particular Remark 5.11 and [5, 18]). The goal is then to characterize
the Γ-limit G of Gε with respect to the weak* convergence of measures. In this way, the
minimizers ρε of Gε (or equivalently of Fε) will tend to minimizers of G in the weak*
convergence of measures. Since we are on the whole space R

3, the weak* convergence in
principle does not preserve the total mass, so we could expect that the limits ρ of ρε are
not anymore probabilities and only satisfy the inequality

∫

dρ ≤ 1.
The analysis of the limit functional G is then very important and the ultimate goal is to

characterize G explicitly in terms of the data. This would allow to determine the measures
ρ that minimize G and, by consequence, a deep information on the minimizers ρε of Fε.
For instance, an important issue is to establish if the optimal ρ for G consists of a sum of
Dirac masses located at the points Xk, that is

ρ =
M
∑

k=1

αkδXk
with αk ≥ 0 and

M
∑

k=1

αk = 1.

In this case the minimal value of the functional G would depend on the coefficients αk and
on the charges Zk:

G(ρ) = γ(Z1, . . . , ZM , α1, . . . , αM ).
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In principle the function γ above could be very involved, mixing the data in a very intricate
way; a better situation would occur if

γ(Z1, . . . , ZM , α1, . . . , αM ) =
M
∑

k=1

g(Zk, αk) (1.5)

where the function g can be deduced through the solution of an auxiliary problem with
only one nucleus. This seems to be the case, even if our proofs are complete only in the
case N ≤ 2 (for any number M of nuclei).

Nevertheless, several points on the asymptotic analysis of the functionals Fε can be
achieved in full generality. Due to some technical difficulties, mostly related to the analysis
of the correlation term C, we are able to obtain a complete characterization of the Γ-limit
functional G only when the number N of electrons is at most 2 (for any number M of
nuclei). In this case, we use a concept of fractional transport cost, which allows us to obtain
an explicit representation of the Γ-limit functional G. This will imply that the optimal
measures ρ for G are actually probabilities, and so the convergence of ρε to ρ is in the
narrow sense. In addition (see Theorem 5.7), formula (1.5) is shown to hold, together with
an expression of the function g that can be deduced by means of an auxiliary variational
problem.

The characterization of the Γ-limit of Fε as ε→ 0 is related to the semi-classical limit of
the so-called Hohenberg-Kohn energy or Levy-Lieb functional, which has been considered
in several recent papers (see for instance [2, 7, 8, 13]). However, since the potential term
U(ρ) is not continuous with respect to the weak* convergence, this Γ-limit cannot be
simply deduced from the one of εT (ρ) + bC(ρ), which reduces to the lower semicontinuous
envelope bC(ρ).

Here is the plan of the paper. In Sections 2 and 3 we introduce the notations used
in the following and show some basic properties of the functionals Fε and of its three
components. We also introduce the functionals Gε together with some of their asymptotic
properties. Section 4 is devoted to the non-interacting case b = 0, in which the electron-
electron correlation term is not present. This simplifies a lot the analysis and an explicit
characterization of the Γ-limit functional is obtained in this case. In Section 5 we treat the
case with the electron-electron interaction term C(ρ) and we provide, in the case N = 2,
a general expression of the Γ-limit functional G. Finally, in the last section of the paper
we discuss about the case N > 2 and some open issues, concluding the paper with some
comments about our future work program.

2. Introductory results on the correlation term C

In the following by P we denote the class of Borel probabilities in R
3 and by P− the

class of Borel subprobabilities on R
3, that is Borel measures µ with

∫

dµ ≤ 1. By
∗
⇀ and

⇀ we respectively denote the weak* convergence and the narrow convergence on P and on
P−, and by δX the Dirac mass at the point X. We also indicate by ‖ρ‖ the quantity

∫

dρ.
By T (ρ), C(ρ), U(ρ) we denote the functionals detailed in the Introduction, representing

respectively the kinetic energy, the correlation term, and the potential term of a density
ρ ∈ P. As noted in the introduction, the absolutely minimizing sequences for the function-
als Fε (or Gε) may only weak* converge to elements in P−, it is then convenient to extend
the functionals T (ρ), C(ρ) and U(ρ) to any non-negative bounded measure (in particular
on P−) by 1-homogenity. We shall denote these 1 homogeneous extensions by T (ρ), C(ρ)
and U(ρ) respectively : for T and U , this extension process obviously leads to the same
expression, and these two functionals are lower semicontinuous on P− for the weak* con-
vergence. For the correlation term C(ρ) this extension is also obtained through the same



BOND DISSOCIATING LIMIT IN DFT WITH STRONGLY CORRELATED ELECTRONS 5

expression (1.3) and reads

C(ρ) := inf

{
∫

R3N

c(x1, . . . , xN ) dP (x1, . . . , xN ) : π#i P = ρ, ∀i = 1, . . . , N

}

where we note that the transport plans P are non-negative Borel measures on R3N with
total mass ‖P‖ = ‖ρ‖.

While most of the readers are probably familiar with the first and third terms T and U
of Fε, we believe that the following results are useful to understand the correlation term
C.

Proposition 2.1. For every probability ρ on R
3 we have

C(ρ) ≤ N(N − 1)

2

∫

(R3)2

1

|x− y| dρ(x)dρ(y).

In particular, C(ρ) is finite for every bounded ρ with compact support.

Proof. From the definition of C(ρ), we may take ρ⊗ ρ⊗ · · · ⊗ ρ as a particular probability
P , so that

C(ρ) ≤
∫

R3N

c(x1, . . . , xN ) dρ(x1) . . . dρ(xN )

and this last integral reduces to

N(N − 1)

2

∫

(R3)2

1

|x− y| dρ(x)dρ(y)

by the symmetry of the function c. �

Proposition 2.2. For every probability ρ on R
3 we have

C(ρ) ≥ N(N − 1)

4
√

V ar(ρ)
,

where V ar(ρ) denotes the variance of the probability ρ. In particular, when ρ is a Dirac
mass, then V ar(ρ) = 0 and we recover that C(ρ) = +∞.

Proof. Let P be a probability on R
3N with π#i P = ρ for all i = 1, . . . , N and let γ =

(πi × πj)
#P be the projection of P on the product R

3 × R
3. Then we have

1 ≤
(
∫

(R3)2

1
√

|xi − xj |

√

|xi − xj | dγ
)2

≤
∫

(R3)2

1

|xi − xj|
dγ

∫

(R3)2
|xi − xj | dγ .

Without loss of generality we assume V ar(ρ) < +∞ (otherwise there is nothing to prove),
so that ρ has a finite expectation E(ρ) and we can write

∫

(R3)2
|xi − xj | dγ ≤

∫

(R3)2

(

|xi − E(ρ)|+ |E(ρ)− xj |
)

dγ

≤ 2

∫

|x− E(ρ)| dρ(x) ≤ 2
√

V ar(ρ) .

Thus
∫

(R3)2

1

|xi − xj |
dγ ≥ 1

2
√

V ar(ρ)
.

Summing on all 1 ≤ i < j ≤ N we obtain
∫

R3N

c(x1, . . . , xN ) dP (x1, . . . , xN ) ≥ N(N − 1)

4
√

V ar(ρ)

as required. �
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Remark 2.3. By 1-homogeneity, Propositions 2.1 and 2.2 yield

∀ρ ∈ P−,
N(N − 1) ‖ρ‖2

4
√

V ar(ρ)
≤ C(ρ) ≤ N(N − 1)

2 ‖ρ‖

∫

(R3)2

1

|x− y| dρ(x)dρ(y).

In particular 0 < C(ρ) for any non zero smooth ρ ∈ P− with compact support.

It turns out that the function C(ρ) is lower semicontinuous with respect to the tight
convergence of probability measures. However this is not sufficient for our purposes since
sequences with uniformly bounded energy (1.4) are not tight in general. Therefore we will
deal with the weak* convergence and accordingly it is useful to introduce the following
lower semicontinuous extension of C to subprobabilities:

∀ρ ∈ P−, C(ρ) := inf

{

lim inf
n→+∞

C(ρn) : ρn ∈ P, ρn ∗
⇀ ρ

}

.

A natural guess could be that C(ρ) is equal to C(ρ); however, this is not the case as the
following proposition shows.

Proposition 2.4. The functional C is convex on P−, and the lower semicontinuous enve-
lope C with respect to the weak* convergence satisfies

C(ρ) ≤ min

{

C(µ) : 0 ≤ µ ≤ ρ,

∫

dµ ≥ N

N − 1

[∫

dρ− 1

N

]}

. (2.1)

Note that as a corollary of (2.1) it holds
∫

dρ ≤ 1

N
=⇒ C(ρ) = 0 ∀ρ ∈ P−

which together with Remark 2.3 yields that C 6= C.

Proof. The convexity of C follows from the linearity of the constraint π#i P = ρ for all i.
For the second statement, we first note that when

∫

dρ ≤ 1/N , the minimum in (2.1) is
clearly 0 and attained for µ = 0. Moreover, since C is 1-homogeneous the second constraint
in (2.1) may be replaced by

∫

dµ = N
N−1

[∫

dρ− 1
N

]

whenever
∫

dρ ≥ 1/N . Note that this
minimum is then attained since the set of measures

{

µ : 0 ≤ µ ≤ ρ,

∫

dµ =
N

N − 1

[
∫

dρ− 1

N

]}

is tight and C is lower semicontinuous for the narrow convergence. We also note that (2.1)
obviously holds when ρ ∈ P since µ = ρ is then the only admissible choice.

Now let ρ ∈ P− with
∫

ρ < 1, we first assume that
∫

dρ ≥ 1/N . Let µ such that

0 ≤ µ ≤ ρ,
∫

dµ = N
N−1

[∫

dρ− 1
N

]

and µ optimal in (2.1). We set ν = ρ− µ. Let ξ1 = 0,

consider N − 1 distinct vectors ξ2, . . . , ξN ∈ R
3 \ {0}, and set for every n ∈ N

ρn,k = τn,k
#ν, k ∈ {1, . . . , N},

where τn,k := τ(n ξk), being τξ the translation by ξ defined on R
3 by τξ : x 7→ x + ξ. We

can now set

∀n, ρn := ρ+

N
∑

k=2

ρn,k = µ+

N
∑

k=1

ρn,k

and we note that ρn belongs to P for any n and ρn
∗
⇀ ρ as n → +∞. We also denote by

P an optimal plan for C(µ), then we set

∀n, Pn := P +
N
∑

i=1

(τn,σi(1) × . . .× τn,σi(N))
#ν ,
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where σ is the permutation on {1, . . . , N} such that σ(j) = j +1 and σ(N) = 1. Then for
all n the plan Pn satisfies

∀j ∈ {1, . . . , N}, π#j Pn = µ+
N
∑

i=1

τn,σi(j)
#ν = ρn

so Pn is admissible for C(ρn). We can now estimate

C(ρn) ≤
∫

R3N

c dPn =

∫

R3N

c dP +

N
∑

i=1

∫

c(τn,σi(1)(x), . . . , τn,σi(N)(x))ν(dx)

=

∫

R3N

c dP +N
∑

1≤i<j≤N

‖ν‖
n |ξi − ξj|

from which we conclude that

C(ρ) ≤ lim inf
n→+∞

C(ρn) ≤
∫

R3N

c dP = C(µ).

as required.
It remains to treat the case

∫

dρ ≤ 1
N . It follows from the preceding that C(ρ) = 0 for

any ρ such that
∫

dρ = 1
N , then by weak* lower semicontinuity of C and by approximation

this also holds for any ρ ∈ P− with
∫

dρ ≤ 1
N , which finishes the proof of (2.1) in this

case. �

The full characterization of C on P− is a quite involved problem, in particular it is an
open problem whether equality holds in (2.1) for N ≥ 3 but holds true for N = 2.

Proposition 2.5. In the case N = 2 it holds

C(ρ) = min

{

C(µ) : 0 ≤ µ ≤ ρ,

∫

dµ ≥ 2

∫

dρ− 1

}

∀ρ ∈ P−. (2.2)

Proof. In order to obtain the reverse inequality of (2.1), consider a sequence ρn in P
weakly* converging to ρ ∈ P−. For each n we denote by Pn an optimal plan for ρn, then

we may assume that Pn
∗
⇀ P for some non-negative Borel measure P over (R3)2, with

marginals π#1 P = π#2 P = µ for some µ ∈ P−. Then one gets

lim inf
n→+∞

C(ρn) = lim inf
n→+∞

∫

(R3)2
c(x1, x2)Pn(dx1, dx2)

≥
∫

(R3)2
c(x1, x2)P (dx1, dx2) ≥ C(µ)

We first claim that µ ≤ ρ: indeed, let φ,ψ ∈ C∞
c (R3) be non-negative and 0 ≤ ψ ≤ 1, then

we have

〈ρ, φ〉 = lim
n→+∞

∫

(R3)2
φ(x)Pn(dx, dy)

≥ lim
n→+∞

∫

(R3)2
φ(x)ψ(y)Pn(dx, dy)

=

∫

(R3)2
φ(x)ψ(y)P (dx, dy).

Now letting ψ ր 1 we obtain by the monotone convergence theorem that

〈ρ, φ〉 ≥
∫

(R3)2
φ(x)P (dx, dy) = 〈µ, φ〉

and, since this is true for any non-negative test function φ, we get the claim.
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It remains to prove that
∫

dµ ≥ 2
∫

dρ− 1. For this, consider a ball BR centered at the
origin such that ρ(∂BR) = 0; from what seen above this implies µ(∂BR) = P (∂B2

R) = 0.
Then for all n ∈ N one has

ρn(BR) = Pn(B
2
R) + Pn(BR ×Bc

R) ≤ Pn(B
2
R) + ρn(B

c
R) = Pn(B

2
R) + 1− ρn(BR)

so that, passing to the limit as n→ ∞ gives

2ρ(BR)− 1 ≤ P (B2
R) ≤ µ(BR),

and then the claim follows by letting R go to +∞. �

Remark 2.6. As a corollary of Propositions 2.4 and 2.5, it appears that when N = 2
one has C(ρ) > 0 if and only if

∫

dρ ≥ 1/2: indeed, if
∫

dρ ≥ 1/2, since the minimum

giving C(ρ) is attained for some µ with
∫

dµ = 2
∫

dρ − 1 > 0, we obtain µ 6= 0 so that

C(ρ) = C(µ) > 0.

3. Basic inequalities, properties of the sequence and rescaling

We now get back to the preliminary analysis of Fε. As proved by Lieb (Theorem 1.1
and Theorem 1.2 of [15]) the correct space where to minimize the functional Fε is

H =

{

ρ ∈ L1(R3) : ρ ≥ 0,

∫

ρ dx = 1,
√
ρ ∈ H1(R3)

}

.

Proposition 3.1. For every ε > 0 the functional Fε is convex.

Proof. To prove convexity we look separately at the three terms which compose the func-
tional Fε. The first term is convex with respect to the pair (ρ,∇ρ) thanks to the convexity
of the function (s, v) 7→ |v|2/s on R

+ × R
d. We notice that the kinetic energy can be also

written in the form

T (ρ) =

∫

|∇√
ρ|2 dx.

The transport cost C(ρ) defined in (1.3) is a linear problem with respect to the proba-

bility P on R
3N , with linear constraints π#i P = ρ, so that it is convex. The term U(ρ) is

linear with respect to ρ. �

The different behavior of the three terms with respect to the action of homotheties on
the probability measures has a relevance in the study of the Γ-limit.

Definition 3.2. For every probability measure ρ ∈ P and every s > 0 we set

ρs = h#s ρ

where hs : x 7→ x/s.

Remark 3.3. Note in particular that if ρ has a compact support then the support of ρs

is hs
(

supp(ρ)
)

. We shall use in the following sections that ρs ⇀ δ0 as s → +∞, which
straightly follows from the definition. Also notice that the map ρ 7→ ρs has for inverse
ρ 7→ ρ1/s. Finally, since the elements ρ ∈ P for which the functionals Gε are defined are in
L1, it is interesting to note that in this case the probability ρs is also in L1 with density

ρs(x) = s3ρ(sx) .

When M = 1 and X1 = 0, a simple calculation shows that the three terms in Fε scale
as follows:

T (ρs) = s2T (ρ), C(ρs) = sC(ρ), U(ρs) = U0(ρ
s) = sU0(ρ).

Therefore, minimizing the functional (1.2) with respect to ρs leads to minimize the quantity

εs2T (ρ) + s
(

bC(ρ)− U(ρ)
)

.
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A first minimization with respect to the variable s ≥ 0 reduces the problem inf
ρ
Fε to

minimize with respect to ρ the ratio

− 1

4ε

(

U(ρ)− bC(ρ)
)2

+

T (ρ)

where (·)+ denotes the positive part function. Then

inf
ρ∈P

Fε(ρ) = −K
ε
, (3.1)

where

K = sup
ρ∈P

(

U(ρ)− bC(ρ)
)2

+

4T (ρ)
.

This last supremum is finite as a consequence of the inequality
(

U − bC
)2

+
≤ U2 and of

Lemma 3.6 below applied to u2 = ρ for any probability ρ in the domain of Fε.
When M > 1 the potential term U does not have anymore the scaling property above

so we use the following estimate (setting Z =
∑

1≤k≤M Zk):

Fε(ρ) =
∑

1≤k≤M

Zk

Z

[

εT (ρ) + bC(ρ)−
∫

Zρ(x)

|x−Xk|
dx

]

,

so that
∑

1≤k≤M

Zk

Z
inf
ρ

[

εT (ρ) + bC(ρ)−
∫

Zρ(x)

|x−Xk|
dx

]

≤ inf
ρ
Fε(ρ)

≤ inf
ρ

[

εT (ρ) + bC(ρ)−
∫

Z1ρ(x)

|x−X1|
dx

]

.

It follows that, for suitable positive constants K1 and K2, we have

−K1

ε
≤ inf

ρ
Fε(ρ) ≤ −K2

ε
.

In conclusion the minimal values of Fε tend to −∞ with order 1/ε. This justifies the
introduction of the rescaled functionals

Gε(ρ) = εFε(ρ).

Due to the lack of compactness for the tight convergence, it is not clear whether the
functionals Fε and Gε admit minimizers in P. As we are interested in the asymptotics as
ε→ 0, we will use the following asymptotic notion of minimizer.

Definition 3.4. We say that {ρε}ε ∈ P is asymptotically minimizing for Gε (respectively
for Fε) whenever

lim
ε→0

[

Gε(ρε)− inf
P
Gε

]

= 0

(

respectively lim
ε→0

Fε(ρε)− infP Fε

ε
= 0

)

.

Let us emphasize that such a sequence of asymptotic minimizers converge (up to sub-
sequences) weakly* to an element of P−. We may now apply to the family Gε the Γ-
convergence theory in order to identify the Γ-limit functional G and so, as a consequence,
the behaviour of the asymptotically minimizing sequences, that will converge to minimizers
of G.

The functional Gε has also a physical interest by itself and deserves to be written ex-
plicitly

Gε(ρ) = ε2T (ρ) + εbC(ρ)− εU(ρ).
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The same homogeneities of the terms in the functional Fε allow us to rewrite

Gε(ρ) = T (ρε) + bC(ρε)−
∑

1≤k≤M

∫

Zkρ
ε(x)

|x−Xk/ε|
dx. (3.2)

Then letting ε go to 0 is equivalent to let the distance between the nuclei go to +∞. For
this reason, when considering a molecule, the limit as ε→ 0 of Gε models the dissociation
of chemical bonds between the atoms composing the molecule.

In the following we denote by G+ and by G− respectively the Γ-limsup and the Γ-liminf
of the family Gε. Since the space P− endowed with the weak* convergence is metrizable
and compact, by the general theory of the Γ-convergence (see for instance [9]) we have
that a subsequence of Gε (that we still continue to denote by Gε) Γ-converges to some
functional G. If we are able to fully characterize this limit functional G independently of
the subsequence, we obtain that the full family Gε is Γ-convergent to G. Therefore, in the
following we may assume that Gε Γ-converges to some functional G and we concentrate
our efforts in obtaining a characterization of G in terms of the data only.

Since in general weak* limits of sequences of probabilities only belong to P−, we consider
G−, G+, and G as defined on P−. As a basic consequence of Γ-convergence theory (see
[1]) we have the following result.

Proposition 3.5. We have G− ≤ G+; moreover the functionals G− and G+ are both
weakly* lower-semicontinuous, and G+ is convex.

If we forget about the electron-electron interaction, i.e. the optimal transport term C
in Gε, we obtain an estimate from below and at the same time an easier problem to work
with. We will refer to this as the “non-interacting case” and the corresponding functionals
will be denoted as

G0
ε = ε2T (ρ)− εU(ρ).

We characterize first a wide space on which G = G+ = G− = 0.

Lemma 3.6. There exists a constant κ such that for every domain Ω (bounded or not) we
have

[ ∫

Ω

u2

|x| dx
]2

≤ κ

∫

Ω
u2 dx

∫

|∇u|2 dx ∀u ∈ H1(R3).

Proof. By using the embedding of H1(R3) into L6(R3) we have for every δ > 0
∫

Ω

u2

|x| dx ≤
∫

Ω\Bδ

u2

δ
dx+

∫

Bδ

u2

|x| dx

≤ 1

δ

∫

Ω
u2 dx+ ‖u‖2L6(R3)

∥

∥1/|x|
∥

∥

L3/2(Bδ)

≤ 1

δ

∫

Ω
u2 dx+ κ δ

∫

|∇u|2 dx.

Optimizing with respect to δ gives
∫

Ω

u2

|x| dx ≤ 2

[

κ

∫

Ω
u2 dx

∫

|∇u|2 dx
]1/2

as required. �

Proposition 3.7. For every probability ρ we have

−κM
4

∑

1≤k≤M

Z2
kρ({Xk}) ≤ G−(ρ) ≤ G+(ρ) ≤ 0, (3.3)

where κ is given in Lemma 3.6. In particular G−(ρ) = G+(ρ) = 0 for every probability ρ
that does not charge any of the points Xk.
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Proof. By Proposition 2.1 we have for every smooth ρ with compact support

Gε(ρ) = ε2T (ρ) + εbC(ρ)− εU(ρ) ≤ Kε

for a suitable constant K depending on ρ. Therefore

G+(ρ) ≤ lim
ε→0

Gε(ρ) ≤ 0,

and the last inequality in (3.3) follows by approximation and by the lower semicontinuity
of G+.

Let now ρε be a generic sequence weakly* converging to ρ; since the transport cost C(ρε)
is nonnegative we have, setting u2ε = ρε,

Gε(ρε) ≥ ε2
∫

|∇uε|2 dx− ε
∑

1≤k≤M

Zk

[

∫

Bδ(XK)

u2ε
|x−Xk|

dx+

∫

(Bδ(Xk))c

u2ε
|x−Xk|

dx

]

.

By using Lemma 3.6 and the fact that |x−Xk| ≥ δ on Bδ(Xk)
c we obtain

Gε(ρε) ≥ ε2
∫

|∇uε|2 dx− ε
∑

1≤k≤M

Zk

[

κ

∫

Bδ(XK)
u2ε dx

∫

|∇uε|2 dx
]1/2

− ε
Z

δ
.

Since ε2A− εB ≥ −B2/(4A), the sum of the first two terms in the last line gives

Gε(ρε) ≥ −κ
4





∑

1≤k≤M

Zk

[
∫

Bδ(XK)
u2ε dx

]1/2




2

− ε
Z

δ
.

As ε→ 0 we obtain, for every δ > 0,

G−(ρ) ≥ −κ
4





∑

1≤k≤M

Zk

[

ρ(Bδ(Xk))
]1/2





2

,

and finally, as δ → 0,

G−(ρ) ≥ −κ
4





∑

1≤k≤M

Zk

[

ρ({Xk})
]1/2





2

≥ −κM
4

∑

1≤k≤M

Z2
kρ({Xk})

which concludes the proof. �

4. The non-interacting case

In this case, thanks to the absence of the transport term C, we are able to identify the
limit functional G in a complete way. In order to stress the fact that b = 0 we denote the
sequence by G0

ε and the limit by G0.

4.1. The hydrogen atom. The simplest case is N = M = 1; in other words we have
a single nucleus with charge Z located at a point X1 (that without loss of generality we
can take the origin) and a single electron. In this is situation the non interacting case
maintains a physical meaning. The problem (3.1) then reduces to

inf
ρ∈P

F 0
ε (ρ) = inf

ρ∈P

{

εT (ρ)− U(ρ)
}

= inf
ρ∈P

{

− 1

4ε

(

U(ρ)
)2

T (ρ)

}

=
Z2

ε
inf
ρ∈P

{

−
(

U0(ρ)
)2

4T (ρ)

}

.

The value of the problem on the right hand side is the first eigenvalue (negative) of the
operator

−∆− 1

|x| .
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This is known to be equal to −1/4 with eigenfunctions proportional to

ρ =
1

32π
e−|x|/2

(see for instance Example 11.10 in [16]). Summarizing, in the case N = M = 1 the
minimizer ρε of the functional F 0

ε (or equivalently of the rescaled functional G0
ε) is equal

to

ρε(x) = ρ1/ε(x) =
1

4π(2ε)3
e−|x|/(2ε) ,

and tends, as ε→ 0, to the measure ρ(x) = δ0 with the minimal values Gε(ρε) → −Z2/4.
In fact, by applying Theorem 4.4 to this particular case, we infer that the Γ-limit functional
G0 is indentified on P− as

G0(ρ) = −Z
2

4
ρ({0}).

From the previous discussion we deduce

−Z
2

4
= inf

ρ∈P

{

T (ρ)− Z U0(ρ)
}

= inf
ρ

{
∫ |∇ρ|2

4ρ
dx−

∫

Zρ

|x| dx
}

. (4.1)

4.2. The general case N,M ≥ 1. We start by a localization lemma.

Lemma 4.1 (Localization). Let ρ ∈ P, and let δ > 0. Let θδ be a smooth cut-off function

such that |∇θδ|
2

θ is continuous and such that


















































θδ = 1 on Aδ :=
M
⋃

i=1

B(Xi, δ),

θδ = 0 outside
M
⋃

i=1

B(Xi, 2δ),

0 ≤ θδ ≤ 1 on R
3,

∣

∣

∣

∣

|∇θδ|2
θδ

− 2∆θδ

∣

∣

∣

∣

≤ K.

(4.2)

Let ν be smooth and compactly supported function such that:










εT (ν) ≤ K,

θδρ+ ν ∈ P,
dist

(

spt ν, {X1, . . . ,XM

)

≥ 3δ.

(4.3)

Then, setting Z =
∑

1≤k≤M Zk, we have

G0
ε(θδρ+ ν) ≤ G0

ε(ρ) + ε

(

(1 + ε)K +
Z

δ

)

.

Proof. We compute

|∇(θδρ)|2
θδρ

=
|θδ∇ρ+ ρ∇θδ|2

θδρ
= θδ

|∇ρ|2
ρ

+ ρ
|∇θδ|2
θδ

+ 2∇ρ · ∇θδ.

Concerning the second and third terms we remark that
∣

∣

∣

∣

∫

ρ
|∇θδ|2
θδ

+ 2∇ρ · ∇θδ dx
∣

∣

∣

∣

=

∣

∣

∣

∣

∫
( |∇θδ|2

θδ
− 2∆θδ

)

ρ dx

∣

∣

∣

∣

≤ K.

Summarizing, we have obtained
∫ |∇(θδρ)|2

4 θδρ
dx ≤ T (ρ) +K.
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Since the support of ν is away from that of θδρ we have that

ε2T (θδρ+ ν) = ε2T (θδρ) + ε2T (ν) ≤ ε2T (ρ) + (ε2 + ε)K.

Similarly,
∫

V (x)θδρ dx ≥
∫

V (x)ρ dx−
∫

Ac
δ

V (x)ρ dx ≥
∫

V (x)ρ dx − Z

δ
,

and
∫

V (x)ν dx ≥ 0.

Summing up the last inequalities give the desired estimate. �

Example 4.2. We give for completeness an example of functions θδ and ν satisfying the
assumptions of Lemma 4.1 above. We define the real functions

f(t) =

{

e−1/t if t > 0,

0 otherwise.
and g(t) :=

f(t)

f(t) + f(1− t)
.

When δ ≪ ‖Xi −Xj‖ for i 6= j one may consider

θδ(x) =
M
∑

i=1

g

(

2−
(‖x−Xi‖

δ

)2
)

.

Concerning ν it is enough to consider any positive function h with smooth
√
h supported

away from the points Xi and set ν = βh with β small enough so that θδρ+ ν ∈ P: in that
case the constant K in (4.3) does not depend on ε.

Lemma 4.3. We have

G0+(δXk
) ≤ −Z

2
k

4
.

Proof. It is enough to prove the inequality for X1 and Z1 and without loss of generality
we may assume X1 = 0. Consider a generic probability η and define

ρε(x) = η1/ε(x) =
1

ε3
η(x/ε).

We have that ρε weakly* converges to δ0, so that

G0+(δ0) ≤ lim sup
ε→0

G0
ε(ρε) = T (η)−

∫

Z1η

|x| dx.

Taking the infimum with respect to η and using (4.1) gives what required. �

Theorem 4.4. The limit functional G0 exists and is given by the formula

G0(ρ) = −1

4

∑

1≤k≤M

Z2
kρ({Xk}). (4.4)

Proof. We prove that

−1

4

∑

1≤k≤M

Z2
kρ({Xk}) ≤ G0−(ρ) ≤ G0+(ρ) ≤ −1

4

∑

1≤k≤M

Z2
kρ({Xk}). (4.5)

The last inequality in (4.5) follows by the convexity of the functional G0+ and Lemma 4.3.
Indeed, we can write for every probability ρ

ρ =
∑

1≤k≤M

αkδXk
+ α0

ρ⊥

α0

where
αk = ρ({Xk}), ρ⊥ = ρ⌊

{

R
3 \ ∪1≤k≤M{Xk}

}

, α0 = ρ⊥(R3).
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Since α0 +
∑

1≤k≤M αk = 1 the convexity of G+ gives

G0+(ρ) ≤
∑

1≤k≤M

αkG
0+(δXk

) + α0G
0+(ρ⊥/α0).

By Lemma 4.3 we have

G0+(δXk
) ≤ −1

4
Z2
k

and, since G0+(ρ) = 0 whenever ρ does not charge any of the points Xk (see Proposition
3.7), we have G0+(ρ⊥/α0) = 0 so that the desired inequality follows.

In order to prove the first inequality in (4.5) we have to show that for every ρε weakly*
converging to ρ we have

−1

4

∑

1≤k≤M

Z2
kρ({Xk}) ≤ lim inf

ε→0
G0

ε(ρε).

We apply Lemma 4.1 to ρε with δ small enough and fixed, so that we can replace ρε by

θδρε + νε =
M
∑

k=1

θδρε⌊B(Xk, 2δ) + νε =
M
∑

k=1

ρkε + νε

where we defined ρkε := θδρε⌊B(Xk, 2δ) and νε is chosen as in Example 4.2 with a fixed
function h so that the constant K does not depend on ε. We then have

lim inf
ε→0

G0
ε(ρε) ≥ lim inf

ε→0

(

G0
ε(

M
∑

k=1

ρkε + νε)− εKδ

)

= lim inf
ε→0

G0
ε(

M
∑

k=1

ρkε + νε),

where we can take Kδ = 2K + Z
δ for ε ≤ 1 and

G0
ε(

M
∑

k=1

ρkε + νε) =

M
∑

k=1

(

ε2T (ρkε)− εZkUXk
(ρkε)

)

+ ε2T (νε)− εU(νε).

Concerning the first M terms we infer from (4.1) that

ε2T (ρkε)− εZkUXk
(ρkε) =

(

ε2T

(

ρkε
∫

dρkε

)

− εZkUXk

(

ρkε
∫

dρkε

))
∫

dρkε ≥ −Z
2
k

4

∫

dρkε .

As ε→ 0 we have

lim
ε→0

∫

dρkε =

∫

B(Xk ,2δ)
θδρ ≤ ρ

(

B(Xk, 2δ)
)

.

The last term ε2T (νε)− εU(νε) vanishes as ε→ 0. Summing up we obtained

lim inf
ε→0

G0
ε

(

M
∑

k=1

ρkε + νε

)

≥ −
M
∑

k=1

Z2
k

4
ρ
(

B(Xk, 2δ)
)

.

Letting now δ → 0 gives the desired inequality. �

Remark 4.5. Since the correlation term C is non-negative, we obtain from the preceding
that

∀ρ ∈ P, G−(ρ) ≥ G0−(ρ) = −1

4

∑

1≤k≤M

Z2
kρ({Xk}).

which is a more precise lower estimate of G− than that obtained in Proposition 3.7.

Remark 4.6. The explicit form of G0 given in (4.4) allows to directly deduce that

argminG0 =

{

ρ =
∑

i∈Imax

αiδXi : 0 ≤ αi ≤ 1,
∑

αi = 1

}

,
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where Imax denotes the set of indices i such that Zi = max{Z1, . . . , ZM}. In other words,
the optimal configurations for the limit functional G0 concentrate on the points Xi having
the highest nuclei charges Zi. We shall see in Remark 5.10 below that the situation is
somewhat more intricate in the interacting case b > 0.

5. The interacting case for N = 2

The complete characterization of the functional G defined as the Γ-limit of the func-
tionals Gε as ε → 0, in the general case M ≥ 1 and N ≥ 1 seems a very difficult issue,
mainly due to the general form of the localization Lemma 5.1 below, that is at the moment
unavailable. We then limit ourselves in this section to consider the case N = 2 that we
can handle completely.

For every ρ ∈ P− we denote by ρ# the atomic measure

ρ# =

M
∑

i=1

ρ({Xi})δXi

where Xi are the (fixed) positions of the nuclei (i = 1, . . . ,M). We also denote by ρ⊥ the
measure

ρ⊥ = ρ− ρ#

that does not charge any of the points Xi. In other words, ρ# and ρ⊥ are respectively the
restrictions of ρ to the sets {X1, . . . ,XM} and to its complement.

The following Lemma extends the localization argument of Lemma 4.1 in presence of
the correlation term C.

Lemma 5.1. (Localization) Let N = 2, ρ ∈ P, and δ > 0, and let θδ and ν be as in
Lemma 4.1. Assume further that ν = ν1 + ν2 with ‖ν1‖ = ‖ν2‖ and spt(ν1)∩ spt(ν2) = ∅.
Then we have

Gε(θδρ+ ν) ≤ Gε(ρ) + ε

(

(1 + ε)K +
Z + 2b

δ
+

b

dist(spt(ν1), spt(ν2))

)

.

Proof. By Lemma 4.1 we only need the following estimate of the transport term C:

C(θδρ+ ν) ≤ C(ρ) +
2

δ
+

1

dist(spt(ν1), spt(ν2))
.

It is convenient to introduce the set R = R
3 \ Aδ, being Aδ defined in (4.2)).

We denote by P an optimal transport plan for ρ, which is also symmetric with respect
to a permutation of the variables and we define a new transport plan P̃ as below.

P̃ 1 = P̃|Aδ×Aδ
= min{θδ(x), θδ(y)}P|Aδ×Aδ

,

P̃ 2 = P̃|Aδ×R = (θδρ− π#1 P̃
1)⊗ ν

‖ν‖ ,

P̃ 3 = P̃|R×Aδ
=

ν

‖ν‖ ⊗ (θδρε − π#2 P̃
1) ,

P̃ 4 = 2

(

1− ‖θδρε − π#2 P̃
1‖

‖ν‖

)

(

ν1 ⊗ ν2 + ν2 ⊗ ν1
)

The fact that P̃ 2 ≥ 0 (and similarly that P̃ 3 ≥ 0) follows from P̃ 1 ≤ θδ(x)P|Aδ×Aδ
. To

check that P̃ 4 ≥ 0 it is enough to compute

‖ν‖ − ‖θδρ− π#2 P̃
1‖ = 1− ‖θδρ‖ − (‖θδρ‖ − ‖π#2 P̃ 1‖)

= 1 + ‖π#2 P̃ 1‖ − ‖θδρ‖ − ‖θδρ‖

=

∫

[1 + min{θδ(x), θδ(y)} − θδ(x)− θδ(y)] dP (x, y) ≥ 0
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where the last inequality follows since the integrand is non-negative. Also note that

ν − π#1 P̃
3 =

(

1− ‖θδρε − π#2 P̃
1‖

‖ν‖

)

ν

so that π#1 P̃4 = ν − π#1 P̃
3.

In order to show that the two marginals of P̃ coincide with θδρ+ν, since P̃ is symmetric,
it is enough to check the first marginal. Since R is the complement of Aδ we compute the
restriction of the marginal to these two sets. Then

on Aδ we have π#1 P̃ = π#1 P̃
1 + π#1 P̃

2 = π#1 P̃
1 + θδρ− π#1 P̃

1 = θδρ ,

on R we have π#1 P̃ = π#1 P̃
3 + π#1 P̃

4 = π#1 P̃
3 + ν − π#1 P̃

3 = ν .

Since the quantity
∫

(R3)2 c dP to be minimized in C is linear with respect to P it is enough

to estimate it for each of the components of P̃ above and using the facts that










dist
(

spt(ν1), spt(ν2)
)

> 0,

0 ≤ min{θδ(x), θδ(y)} ≤ 1,

dist
(

spt ν, {X1, . . . ,XM}
)

≥ 3δ,

we obtain
∫

(R3)2
c(x, y) dP̃ (x, y) ≤

∫

(R3)2
c(x, y) dP (x, y) +

1

δ
+

1

δ
+

1

dist(spt(ν1), spt(ν2))

which is the desired inequality. �

We are now in position to prove both the existence of the Γ-limit of the functionals
Gε and a property of it that will be very useful in the following to obtain an explicit
representation formula.

Theorem 5.2. For every ρ ∈ P− the Γ-limit G of the functionals Gε exists and we have

G(ρ) = G(ρ#).

Proof. By the compactness of the Γ-convergence, the Γ-limit G exists, at least for a subse-
quence εn → 0; as stated in Section 3, since later we will characterize this Γ-limit explicitly,
we may assume it does not depend on the subsequence, so that the entire family Gε Γ con-
verges and G− = G+ = G. Let ρ ∈ P−. Writing ρ = ρ# + ρ⊥, it is then enough to show
the inequalities below:

G−(ρ# + ρ⊥) ≤ G+(ρ#) ,

G+(ρ# + ρ⊥) ≥ G−(ρ#) .
(5.1)

Let us prove the first inequality in (5.1) for ρ ∈ P in the special case that ρ⊥ = ρ⊥1 + ρ⊥2
with ‖ρ⊥1 ‖ = ‖ρ⊥2 ‖, ρ⊥i smooth, with disjoint and compact supports; in addition we assume
that dist(spt ρ#, spt ρ⊥) > 0. Denote by ρε a family weakly* converging to ρ# and such
that

G+(ρ#) = lim sup
ε→0

Gε(ρε).

Define, for δ small enough and θδ as in Lemma 4.1, ρ̃ε = θδρε + νε where we choose
νε = aερ

⊥ = aερ
⊥
1 + aερ

⊥
2 and aε is such ρ̃ε ∈ P. Then the assumptions of Lemma 5.1 are

satisfied. Then ρ̃ε
∗
⇀ θδρ

# + ρ⊥ and we have by Lemma 5.1

Gε(ρ̃ε) ≤ Gε(ρε) + εKδ,

where the constant Kδ only depends on δ. Passing to the limit as ε→ 0 we have

G−(θδρ
# + ρ⊥) ≤ G+(ρ#).
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Using now the lower semicontinuity of G− we have, as δ → 0

G−(ρ# + ρ⊥) ≤ G+(ρ#).

In order to extend the inequality above to the general case of ρ ∈ P− with general ρ⊥ we
use again the lower semicontinuity property of G− and a density argument.

To prove the second inequality in (5.1) we argue in a similar way: take as ρε a family
weakly* converging to ρ = ρ# + ρ⊥ and such that

G+(ρ# + ρ⊥) = lim sup
ε→0

Gε(ρε).

Thanks to Lemma 5.1, we may construct ρ̃ε = θδρε+νε as above, with the cut-off function
θδ as in (4.2) and taking, for example,

νε(x) = aε

[

h(x− x0
ε
) + h(x+

x0
ε
)
]

,

with h ≥ 0 smooth and compactly supported, x0 6= 0 and aε suitably chosen so that

ρ̃ε ∈ P. We get νε
∗
⇀ 0 and

Gε(ρ̃ε) ≤ Gε(ρε) + εKδ.

Then, passing to the limit as ε→ 0, we have

G+(ρ# + ρ⊥) ≥ G−(θδρ);

passing now to the limit as δ → 0 gives G+(ρ# + ρ⊥) ≥ G−(ρ#) as required. �

By Theorem 5.2 all Γ-limits of subsequences Gεn depend only on ρ#. In Theorem 5.7 we
will characterize by an explicit formula the Γ-limit of Gεn independently of the subsequence
εn, obtaining in this way the Γ-limit of the whole family Gε.

The following definition of partial or fractional transport cost appeared in the w∗ relax-
ation C of C in equation (2.2) and will appear in the formula for the Γ-limit:

C(ρ, 2α − 1) =

{

min
{

C(µ) : 0 ≤ µ ≤ ρ, ‖µ‖ = 2α− 1
}

if α ≥ 1/2,

0 otherwise.

Definition 5.3. For all b, Z > 0 and 0 ≤ α ≤ 1 we define

gb(Z,α) := inf
‖ρ‖=α

{T (ρ) + bC(ρ, 2α− 1)− Z U0(ρ)} . (5.2)

Remark 5.4. Using again the different homogeneities of the three addenda with respect
to the rescaling of measures we have

gb(Z,α) = −1

4
sup

‖ρ‖=α

(

Z U0(ρ)− C(ρ, 2α− 1)
)2

+

T (ρ)

so that for α ≤ 1/2 the equality

gb(Z,α) = −1

4
αZ2

holds. Moreover from (5.2), again rescaling the measures, for every ε > 0 we have

ε2T (ρ) + εC(ρ, 2α − 1)− εZ U0(ρ) ≥ gb(Z,α)

for all ρ ∈ P− with ‖ρ‖ = α.

It is clear from the definition of gb that it is concave non-increasing in Z, and we shall
prove in Lemma 6.3 (using the other equivalent Definition 6.1) that it is convex non-
increasing in α. Discussing the existence of minimizers is out of the scope of this paper,
however we will need some almost optimal measures which we study in the next proposition.
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Proposition 5.5. For all λ > 0 there exist r = r(λ) and ρ ∈ P− with ‖ρ‖ = α such that
spt(ρ) ⊂ B(0, r) and

T (ρ) + bC(ρ, 2α − 1)− Z U0(ρ) ≤ gb(Z,α) + λ.

Proof. This is an indirect variant of Lemma 5.1 in which the fractional transport cost
appears and ε = 1. So we carefully apply Lemmas 4.1 and 5.1. We start from ρ̃ ∈ P− such
that ‖ρ̃‖ = α and

T (ρ̃) + bC(ρ̃, 2α − 1)− Z U0(ρ̃) ≤ gb(Z,α) +
λ

3
.

We need to modify ρ̃ so that the support becomes compact. Let also µ̃ ≤ ρ̃ with ‖µ̃‖ =
2α− 1 and C(µ̃) = C(ρ̃, 2α − 1). Consider θδ and ν as in Lemma 5.1 with δ large enough
so that we may have K small and

2K +
Z + 2b

δ
+

b

dist(spt(ν1ε ), spt(ν
2
ε ))

≤ λ

3
.

Here we set ρ = θδρ̃+ ν and assume ‖ρ‖ = α (instead of ρ ∈ P as in Lemma 5.1). Then
∫

ν dx = α− ‖θδρ̃‖.

By Lemma 4.1 with ε = 1 we have

T (ρ)− ZU0(ρ) ≤ T (ρ̃)− ZU0(ρ̃) +
λ

3
.

To estimate the fractional transport term C(ρ, 2α − 1) we consider µ = θδµ̃ + β0ν where
β0 is such that the total variation of µ is equal to 2α− 1. To show that µ ≤ ρ we need to
show that β0 ≤ 1. This is equivalent to say that

2α− 1−
∫

θδdµ̃ ≤
∫

dν = α−
∫

θδdρ̃

which is the inequality
∫

θδd(ρ̃− µ̃) ≤ 1− α =

∫

d(ρ̃− µ̃).

We then apply the transport estimate of Lemma 5.1, up to a rescale of the measures, to
get

C(ρ, 2α− 1) ≤ C(µ) ≤ C(µ̃) + λ

3
= C(ρ̃, 2α − 1) +

λ

3
.

which concludes the proof. �

A short investigation of the structure of certain optimal transport plans will be used in
the next theorem.

Lemma 5.6. Let X0, . . . ,XM ∈ R
d and let δ > 0 be such that δ ≪ mini,j |Xi − Xj |.

Consider ρ =
∑M

i=0 αiρi with ρi probability measures such that spt ρi ⊂ B(Xi, δ) and
∑M

i=0 αi = 1. Let P be an optimal transport plan for ρ, then
{

P (B(Xi, δ) ×B(Xi, δ)) = 0 if αi ≤ 1/2 ,

P (B(Xi, δ) ×B(Xi, δ)) = 2αi − 1 if αi > 1/2 .

It follows that there exists K depending only on mini 6=j |Xi −Xj | − 2δ such that the fol-
lowing alternative holds

(1) C(ρ) ≤ K if αi ≤ 1/2 for all i,
(2) if αi > 1/2 for some i then

C(αiρi, 2αi − 1) ≤ C(ρ) ≤ C(αiρi, 2αi − 1) +K.
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Note that in the above statement we add a point X0, not corresponding to a nucleus,
to the points X1, . . . ,XM : this will be handy in the proof of Theorem 5.7 below.

Proof. Let i ∈ {0, . . . ,M} and let l1 := P (B(Xi, δ) ×B(Xi, δ)), we may compute

P ((B(Xi, δ) × R
d) ∪ (Rd ×B(Xi, δ))) = P (B(Xi, δ) × R

d) + P (Rd ×B(Xi, δ))

− P (B(Xi, δ) ×B(Xi, δ)) ≤ 2αi − l1.

For the case αi ≤ 1/2, if l1 > 0 then, since 2αi − l1 < 1, there exist j, k 6= i such that

l2 := P (B(Xj , δ) ×B(Xk, δ)) > 0.

Define s = min{l1, l2} and

P1 =
s

l1
P|B(Xi,δ)×B(Xi,δ), P2 =

s

l2
P|B(Xj ,δ)×B(Xk ,δ),

and rewrite P = P1+P2+PR where PR is defined by this same equality. Since the quantity
c(P ) =

∫

(R3)2 c dP is linear in P we have

c(P ) = c(P1) + c(P2) + c(PR) ≥
s

2δ
+ c(PR).

Define P̃ by

P̃ = π#1 P1 ⊗ π#2 P2 + π#1 P2 ⊗ π#2 P1 + PR ,

so that it has the same marginal as P . Concerning the transportation cost we have

c(P̃ ) ≤ s

|Xi −Xk| − 2δ
+

s

|Xj −Xi| − 2δ
+ c(PR)

which is smaller than c(P ) for δ as in the assumptions, and this contradicts the optimality
of P .

Analogously, if αi > 1/2, since ρ
(

R
d \B(Xi, δ)

)

= 1− αi we have

l1 = P
(

B(Xi, δ)×B(Xi, δ)
)

= P
(

B(Xi, δ)× R
d
)

− P
(

B(Xi, δ) × (Rd \B(Xi, δ)
)

≥ αi − (1− αi) = 2αi − 1.

The strict inequality would imply again that 2αi− l1 < 1 and then again there exist j, k 6= i
such that P (B(Xj , δ)×B(Xk , δ)) > 0. This would contradict the optimality of P as in the
first case.

To deduce (1) we consider an optimal transport plan Popt and remark that for x in the
support of Popt for all i, j

1

|xi − xj |
≤ 1

mini 6=j |Xi −Xj | − 2δ

so that we can take

K =
N(N − 1)

2mini 6=j |Xi −Xj | − 2δ
.

To prove the first inequality in (2) consider a symmetric optimal transport plan P for C(ρ).

Let P ′ = P ⌊B(Xi, δ) × B(Xi, δ) and let µ := π#1 P
′(= π#2 P

′). Clearly 0 ≤ µ ≤ αiρi and
‖µ‖ = ‖P ′‖ = 2αi − 1, then

C(αiρi, 2αi − 1) ≤ c(P ′) ≤ c(P ′) + c(P − P ′) = C(ρ).

For the second inequality in (2), let µ ≤ αiρi with ‖µ‖ = 2αi − 1 be such that

C(µ) = C(αiρi, 2αi − 1),

and let Pµ be an optimal plan for µ. Consider an optimal plan PR for ρ − µ. The plan
P = Pµ + PR ∈ Π(ρ) and then

C(ρ) ≤ c(P ) = c(Pµ) + c(PR) = C(µ) + C(ρ− µ) = C(αiρi, 2αi − 1) + C(ρ− µ).
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We conclude observing that

C(ρ− µ) = ‖ρ− µ‖C
(

ρ− µ

‖ρ− µ‖

)

≤ K ‖ρ− µ‖ ≤ K

since

ρ− µ = α0ρ0 + · · · + (1− αi)ρi + · · · + αMρM

and

α0, . . . , 1− αi, . . . , αM ≤ 1

2
< αi =

‖ρ− µ‖
2

so (1) applies to ρ−µ
‖ρ−µ‖ . �

By Theorem 5.2 we may now focus on the formula for G(ρ#).

Theorem 5.7. Let ρ ∈ P− be such that

ρ# =

M
∑

i=1

αiδXi with αi ≥ 0 and
∑

i

αi ≤ 1.

Then the following formula holds:

G(ρ) =
∑

i

gb(Zi, αi).

Proof. It follows from Theorem 5.2 that G(ρ) = G(ρ#), so we shall prove the result for
ρ = ρ#.

Let δ > 0 be such that δ ≪ mini,j |Xi −Xj |. We start with the Γ− lim sup inequality.
For every ε > 0 we add to the M -uple (X1, . . . ,XM ) an additional point Yε such that

lim
ε→0

‖Yε‖ → ∞.

Let λ > 0, let ρi be a measure with compact support obtained from Proposition 5.5 applied
with parameters λi =

λ
M , αi, Zi. Let h ∈ C∞

0

(

B(0, δ)
)

a positive function such that
∫

hdx = 1 and

∫ |∇h|2
h

dx < +∞

and define

ρ0ε(x) = α0h(x− Yε) with α0 = 1−
M
∑

i=1

αi .

For i = 1, . . . ,M let

ρiε(x) = ρ
1/ε
i (x−Xi) =

1

ε3
ρi

(

x−Xi

ε

)

and ρε(x) =

M
∑

i=0

ρiε(x) .

For ε small enough the supports of ρ0ε and ρiε are contained in B(Yε, δ) and B(Xi, δ)
respectively. We estimate Gε(ρε) from above. Since

T (ρε) =

M
∑

i=1

T (ρiε) + α0T (h),

U(ρε) ≥
M
∑

i=1

Zi UXi(ρ
i
ε),

we deduce

Gε(ρε) ≤
M
∑

i=1

(ε2T (ρiε)− εZi UXi(ρ
i
ε)) + ε2α0T (h) + εC(ρε). (5.3)
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We then need to decompose C(ρε). By Lemma 5.6 if αi ≤ 1/2 for all i then C(ρε) ≤ K
and passing to the lim sup

G+(ρ#) ≤ lim sup
ε→0

Gε(ρε) ≤
∑

i

gb(Zi, αi) + λ

because the last two terms in (5.3) go to 0, and the first term is computed by the homo-
geneity of the energy and the choice of ρi. If for one i ∈ {1, . . . ,M}, αi > 1/2, we assume
without loss of generality that it is α1, then by Lemma 5.6

C(ρε) ≤ C(ρ1ε, 2α1 − 1) +K.

Then

Gε(ρε) ≤ ε2T (ρ1ε)− εUZi(ρ
1
ε) + εC2(ρ

1
ε, 2α1 − 1)

+

M
∑

i=2

(ε2T (ρiε)− εUZi(ρ
i
ε)) + ε2α0T (h) + εK

and again we conclude by the homogeneity of the energy and the choice of ρi. The case
α0 > 1/2 can be excluded by considering a second sequence Ỹε = −Yε and then defining

ρ0ε =
α0

2
h(x− Yε) +

α0

2
h(x− Ỹε),

which has the same properties needed in the proof but do not concentrate too much
mass in a ball of radius δ: we are then applying Lemma 5.6 with the M + 2 points
X1, . . . ,XM , Yε, Ỹε.

We now deal with the Γ− lim inf inequality. Let ρε
∗
⇀ ρ#. By Lemma 5.1 we can replace

ρε by θδρε+νε with νeps chosen as in Example 4.2 so that the constant K does not depend
on δ. Since

lim inf
ε→0

Gε(θδρε + νε) ≤ lim inf
ε→0

Gε(ρε).

We denote by ρiε := θδρε|B(Xi,2δ) and we have, for some constant Kδ that does not depend
on ε, the inequality

Gε(ρε) ≥
M
∑

i=1

(ε2T (ρiε)− εUZi(ρ
i
ε)) + ε2α0T (νε) + εC(ρε)− ε

K

2δ
.

Again we need to look at C(ρε). If αi ≤ 1/2 for all i we just use that C(ρε) ≥ 0 and get

Gε(ρε) ≥ −1

4

M
∑

i=1

Z2
i ‖ρiε‖+ ε2α0T (νε)− ε

K

2δ
.

When ε→ 0 and then δ → 0 we obtain

lim inf
ε→0

Gε(ρε) ≥ −1

4

M
∑

i=1

Z2
i

∫

B(Xi,2δ)
ρdx

δ→0−→ −1

4

M
∑

i=1

Z2
i αi =

∑

i

gb(Zi, αi)

which concludes the proof in this case.
If α1 > 1/2 (or any αi up to reindexing) then for ε small enough ‖ρεi‖ = ρ1ε

(

B(X1, 2δ)
)

>
1/2 and then by Lemma 5.6

Gε(ρε) ≥ ε2T (ρ1ε) + εC(ρ1ε, 2‖ρ1ε‖ − 1)− εUZ1(ρ
1
ε)

+

M
∑

i=2

(ε2T (ρiε)− εUZi(ρ
i
ε)) + ε2α0T (νε) + ε

K

2δ
.

By the homogeneity of the three terms

Gε(ρε) ≥ gb(Z1, ‖ρ1ε‖)−
1

4

M
∑

i=2

Z2
i ‖ρiε‖+ ε2α0T (νε) + ε

K

2δ
.
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Passing again to the limit for ε → 0 and then δ → 0, and using the lower semi-continuity
of gb(Zi, ·) allows to conclude in this case. �

Remark 5.8. Since
∑

i αi ≤ 1 at most one of the αi may be greater then 1/2 and we will
always assume that is the first α1. Then, recalling that by definition,

ρ = ρ# + ρ⊥ =

M
∑

i=1

αiδXi + ρ⊥ ∀ρ ∈ P−,

we have two possible cases:

G(ρ) = G(ρ#) = −1

4

M
∑

i=1

αiZ
2
i , if α1 ≤

1

2
,

or

G(ρ) = G(ρ#) = gb(Z1, α1)−
1

4

M
∑

i=2

αiZ
2
i , if α1 >

1

2
.

We are now in a position to study the minimization problem

min
{

G(ρ) : ρ ∈ P−
}

. (5.4)

Theorem 5.9. Let us assume that M ≥ 2. Then the minimization problem (5.4) has a
solution ρ ∈ P−. Moreover, every such a minimizer ρ belongs to P and is of the form

ρ = ρ# =
M
∑

i=1

αiδXi with
M
∑

i=1

αi = 1.

Note that the case M = 1 is discussed in Remark 6.6 below.

Proof. The existence of an optimal ρ follows from the weak∗ compactness of P− and lower
semicontinuity of the Γ-limit G. For such a ρ , set αi = ρ({Xi}). Then, by Theorem 5.7,

ρ# :=
∑M

i=1 αiδXi is also optimal and we claim that
∑M

i=1 αi = 1. Indeed if
∑M

i=1 αi < 1,
then there exists j such that αj < 1/2 and we may consider ρ̄ := ρ+ ηδXj where η is such
that

0 < η < min

{

1

2
− αj, 1−

∑

αi

}

.

Then, by applying again Theorem 5.7, we obtain

G(ρ̄) = G(ρ# + ηδXj ) = −(αj + η)

4
Z2
j +

∑

i 6=j

gb(Zi, αi)

= −1

4
ηZ2

j +G(ρ#) < G(ρ#)

where we used the fact that αj + η < 1/2. �

Remark 5.10. To illustrate the previous analysis, we now discuss the structure of the
minimizers of problem (5.4) in the special case N =M = 2. Without loss of generality we
may assume that Z1 ≥ Z2, then it follows from Theorem 5.9 that the minimizers of (5.4)
are of the form

ρ = αδX1 + (1− α)δX2

with α ∈ [0, 1] minimizing the problem

min
{

gb(Z1, α) + gb(Z2, 1− α) : α ∈ [0, 1]
}

. (5.5)
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From Proposition 6.7 and Remark 6.8, we know that the convex non-increasing functions
β 7→ gb(Zi, β) satisfy











gb(Zi, β) = −Z
2
i

4
β for β ∈

[

0, 12
]

,

gb(Zi, β) > −Z
2
i

4
β for β ∈

]

1
2 , 1
]

.

As a consequence for Z1 = Z2 we obtain that the minimum is uniquely attained for α = 1
2 :

we thus recover a more precise result than in Remark 4.6 where in that case any α ∈ [0, 1]
would lead to a solution. Here, due to the correlation term C, each nucleus gets exactly
one electron (see also Remark 5.11 below).
We now turn to the case Z1 > Z2. In that case it holds gb(Z1, β) ≤ gb(Z2, β) for all β.
Moreover from the above properties of gb it follows that the minimum in (5.5) is equal to

min

{

gb(Z1, α)−
Z2
2

4
(1− α) : α ∈

[

1

2
, 1

]}

.

Now, since gb(Z1, 1) > −Z2
1
4 we may choose Z2 close enough to Z1 (yet keeping Z2 < Z1)

such that

gb(Z1, 1) > −Z
2
1 + Z2

2

8
,

in which case the minimum in (5.5) is attained for some α < 1 : this is quite different from
what obtained in Remark 4.6 where the minimum would be only for α = 1. Somehow this
allows for a continuity of the solution set of (5.5) as Z2 gets closer to Z1.

Since ρ represents the probability distribution of the N electrons, the presence of values
of αi which are not of the form k/N should be interpreted as the presence of a fractional
number of electrons. This fact already appeared in the literature (see for instance [17, 19])
and has a reasonable interpretation in terms of time-averaging.

Remark 5.11. We now discuss more extensively the H2 molecule bond dissociation, and
we show how our results compare to the results of [5, Theorem 5.1]. The H2 molecule
corresponds to M = 2 nuclei with charges Z1 = Z2 = 1 and N = 2 electrons. The physical
total energy for this molecule when the nuclei are located at Xi/ε is given by

2ε

|X1 −X2|
+ inf

{

2T (ρ) + C(ρ)− 2(UX1/ε(ρ) + UX2/ε(ρ)) : ‖ρ‖ = 1
}

(5.6)

where the first term in the nucleus-nucleus Coulomb interaction and is vanishing with ε.
The inf part corresponds to 2 inf Gε for b = 1/2. The representation of the Γ-limit of Gε

in this case is given by

G(ρ) = gb(1, ρ({X1})) + gb(1, ρ({X2}))
and, according to Remark 5.10 above, the minimum of G is attained for ρ({X1}) =
ρ({X2}) = 1

2 . It follows that the energy (5.6) above converges, as ε→ 0 to

4 gb

(

1,
1

2

)

= 4min

{

T (ρ)− U0(ρ) : ‖ρ‖ =
1

2

}

= 2min {T (ρ)− U0(ρ) : ‖ρ‖ = 1}

which is twice the energy of an hydrogen atom as proved in [5, Theorem 5.1]. Note that
with our normalization ‖ρ‖ = 1

2 represents the energy of one electron when N = 2.

6. The general interacting case

In this section we consider the general case b > 0 and N ≥ 3, for which the proof of
existence as well as a full characterization of the Γ-limit G of the family of functionals
{Gε}ε seems a hard issue. In view of the successive steps of the preceding section §5 for
the case N = 2, we expect to have the following properties on G over P−:
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(P1) G(ρ) only depends on the restriction of ρ to the nuclei X1, . . . ,XM in the sense

G(ρ) = G(ρ# + ρ⊥) = G(ρ#)

where we use the decomposition ρ = ρ# + ρ⊥ of Section 5 with

ρ# =
M
∑

i=1

ρ({Xi})δXi ;

(P2) there exists a function gb given as a generalization to any N ≥ 2 of the Definition
5.2 such that

G(ρ#) =
M
∑

i=1

gb(Zi, ρ({Xi})) .

Note that in the case N = 2 of Section 5, (P1) is obtained in Theorem 5.2 via the local-
ization Lemma 5.1 which allows to control the transport term C. On the other hand, the
proof of (P2) relies mainly on Lemma 5.6 which is linked to a deep understanding of the
lower semicontinuous envelope C of C, that is only fully characterized for this particular
value of N .

In Subsection 6.1 below, we do obtain the properties (P1) and (P2) for the general case
under some regularity assumptions on the subprobability ρ, which in particular is required
to give small mass to the nuclei Xi (precisely ρ({Xi}) ≤ 1/N for all i). Then in Subsection
6.2 we derive (P2) for the special case M = 1, i.e. when there is only one nucleus.

6.1. Full characterization of G for particular subprobabilities. We consider the
general case b > 0, M ≥ 1 and N ≥ 2.

We represent every measure ρ ∈ P− as

ρ =

M
∑

i=1

αiδXi + ρ⊥

with ρ⊥ which does not charge the points Xi. In Proposition 3.7 we already showed that
whenever α1 = · · · = αM = 0 then G(ρ) = 0. In this section we compute G in the case
αi ≤ 1/N for all i. A particular case is M = N and αi = 1/N for all i which is the
expected optimal configuration for the hydrogen molecule HN .

In the following proof, we shall need the notion of concentration of a finite measure ρ,
which is denoted µ(ρ) and defined by

µ(ρ) := lim
r→0

sup
x
ρ(B(x, r)).

In particular µ(αδX ) = α and, in general µ(ρ) ≥ α implies that ρ = αδX + σ for some
point X and a nonnegative measure σ. We can now state our result.

Theorem 6.1. Let ρ = α1δX1+· · ·+αMδXM
+ρ⊥ with αi ≤ 1/N for all i and µ(ρ⊥) ≤ 1/N ,

then

G(ρ) = −
M
∑

i=1

αi
Z2
i

4
.

Proof. Since for every ρ

G−(ρ) ≥ G0(ρ) = −
M
∑

i=1

αi
Z2
i

4
,

it is enough to prove that

G+(ρ) ≤ −
M
∑

i=1

αi
Z2
i

4
.
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We first consider the case ρ ∈ P. By Theorem 4.4, there exists a sequence ρε
∗
⇀ ρ such

that

G0
ε(ρε) = ε2T (ρε)− εU(ρε) −→ −

M
∑

i=1

αi
Z2
i

4
.

Note that since ρ ∈ P the sequence {ρε}ε converges narrowly to ρ and lim supµ(ρε) ≤ µ(ρ).
Assume first that µ(ρ) < 1/N . Then by a result of [6] (a proof of this result is also
available in [23] or, in Proposition 2.5 of [3] for the more restrictive case µ(ρ) < 1

N(N−1)2 )

the transport cost C is uniformly bounded on the family {ρε}ε, so we have

lim
ε→0

εC(ρε) = 0.

We conclude that

G+(ρ) ≤ lim sup
ε→0

Gε(ρε) = G0(ρ) = −
M
∑

i=1

αi
Z2
i

4
.

We obtain the general case by approximation since G+ is lower semicontinuous and the
right hand side is upper semicontinuous with respect to weak* convergence. �

6.2. The special case M = 1 and b > 0. In this case, we may assume that the position of
the unique nucleus is X1 = 0. We prove (P2) with the following definition for the function
gb.

Definition 6.2. For R > 0, Z ∈ R+ and α ∈ [0, 1] we define

gRb (Z,α) := inf

{

T (ρ) + bC(ρ)− Z U0(ρ) : ρ ∈ P,
∫

B(0,R)
dρ ≤ α

}

and then set

gb(Z,α) := sup
{

gRb (Z,α) : R > 0
}

. (6.1)

Note that the definition above could look ambiguous because we already defined the
function gb in (5.2). However, we shall obtain as a consequence of Theorem 6.4 that the
two definitions of the function gb given in (6.1) above and in (5.2) do coincide for the case
N = 2 (see Remark 6.5 below).

Let us state some properties of the fonctions gb and gRb that shall be usefull below.

Lemma 6.3. For any R > 0, the functions α 7→ gRb (Z,α) is convex, continuous and

non-increasing on [0, 1] and gRb (Z,α) ≥ −Z2

4 α. The same holds for α 7→ gb(Z,α).

Proof. First note that the functions gRb (Z, ·) and gb(Z, ·) may in fact be defined through the
same formulas on [0,+∞[ , then being constant and equal to gb(Z, 1) on [1,+∞[ . Moreover,
the functions gRb (Z, ·) are clearly non-increasing, so that this also holds for gb(Z, ·). Finally

the convexity of α 7→ gRb (Z,α) follows from the convexity of the map

ρ 7→ G1(ρ) = T (ρ) + bC(ρ)− Z U0(ρ),

and taking the supremum over R yields the convexity for gb(Z, ·). It remains to show the
continuity on [0, 1]. To see this we first compute

∀R > 0, ∀α ∈ [0, 1], gRb (Z,α) ≥ inf
ρ∈P

G0
1(ρ) = inf

ρ∈P
G0 = −Z

2

4
,

where the last equality follows from (4.1). Consider now R > 0 and ρ ∈ P smooth and

such that
∫

B(0,R) dρ = 0, then for all λ > 1 one has
∫

B(0,R) dρ
1/λ = 0 and

gRb (Z, 0) ≤ G1(ρ
1/λ) ≤ 1

λ2
T (ρ) +

b

λ
C(ρ)− Z

λ
U0(ρ)
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and letting λ go to infinity yields gRb (Z, 0) ≤ 0. From the preceding we thus get the

continuity of gRb (Z, ·) and gb(Z, ·) at α = 0. Finally these convex non-increasing functions

take their values in
[

−Z2

4 , 0
]

, so they are bounded and thus continuous on ]0,+∞[ . �

We are now in position to prove our main result in this particular case.

Theorem 6.4. For M = 1 and X1 = 0 it holds

∀α ∈ [0, 1], G(αδ0) = gb(Z,α) (6.2)

where gb(Z,α) is given by (6.1). Moreover, it holds

G−(αδ0 + ρ⊥) ≥ gb(Z,α) (6.3)

for all α ∈ [0, 1] and for all ρ⊥ such that ρ⊥({0}) = 0 and αδ0 + ρ⊥ ∈ P−.

Remark 6.5. In view of the above result, it follows from Theorem 5.7 applied to ρ = αδ0
that the two definitions of gb in (5.2) and (6.1) coincide in the case N = 2. Unfortunately,
at the moment for N ≥ 3 we do not have an explicit definition for gb that would involve a
kind of general partial transport as in (5.2).

Remark 6.6. It follows from (6.2) and (6.3) that, in the case M = 1, the minimum of the
Γ-limit G is attained for any ρ = αδ0 such that α minimizes gb(Z, ·) on [0, 1] : since this
function is non-increasing, we note that in particular the probability δ0 is thus a particular
solution. It would be the unique solution in case gb(Z,α) attains has unique minimum
α = 1 on [0, 1], which seems a reasonable conjecture but still an open question.

Proof of Theorem 6.4. We first show (6.3). Take admissible α and ρ⊥ and consider a family
{ρε}ε>0 in P weakly* converging to αδ0 + ρ⊥. Fix η > 0, then for r > 0 small enough we
have

∫

B(0,r) ρ
⊥ ≤ η/2, so that for ε > 0 small enough it holds

∫

B(0,r) dρε ≤ α + η. Thus

denoting by ρεε(x) the rescaled version of ρε

ρεε(x) = ε3ρε(εx)

we have
∫

B(0,r/ε)
dρεε ≤ α+ η and Gε(ρε) = G1(ρ

ε
ε) ≥ g

r/ε
b (Z,α + η)

where gRb (Z, ·) is extended on R+ as in the proof of Lemma 6.3. This yields lim infε→0Gε(ρε) ≥
gb(Z,α + η) and since this holds for any such family {ρε}ε we infer G−(αδ0 + ρ⊥) ≥
gb(Z,α + η). The claim then follows by continuity of α 7→ gb(Z,α) on [0, 1].

We now turn to (6.2), so we have to prove the inequalities

∀α ∈ [0, 1], gb(Z,α) ≤ G−(αδ0) ≤ G+(αδ0) ≤ gb(Z,α) .

Note that G−(αδ0) ≥ gb(Z,α) follows from the preceding with ρ⊥ = 0. It remains to show
G+(αδ0) ≤ gb(Z,α). We first note that this holds for α = 1: indeed, in that case one has

gb(Z, 1) = inf{G1(ρ) : ρ ∈ P} ≥ G+(δ0)

where in the last inequality we again use that G1(ρ) = Gε(ρ
1/ε) for all ε > 0 and ρ1/ε

∗
⇀ δ0

as ε→ 0. Let now α such that 0 ≤ α < 1 and consider a family {ρR}R>0 in P such that
∫

B(0,R)
dρR ≤ α ∀R > 0 and lim

R→+∞
G1(ρR) = gb(Z,α) .

Up to extracting a subfamily, we may assume that {ρR}R>0 weakly* converges to some
ρ ∈ P−. Then one has

∫

dρ = β for some β ≤ α. We infer :

• for fixed ε > 0, ρ
1/ε
R

∗
⇀ ρ1/ε as R→ +∞,

• ρ1/ε
∗
⇀ β δ0 as ε→ 0,
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and since the weak* topology on P− is metrizable, we can extract a subfamily {ρRε
}ε>0

such that ρ
1/ε
Rε

∗
⇀ β δ0 with Rε → +∞. Now we compute

lim sup
ε>0

Gε

(

ρ
1/ε
Rε

)

= lim sup
ε>0

G1

(

ρRε

)

= gb(Z,α) .

Since ρεRε

∗
⇀ β δ0, this implies G+(βδ0) ≤ gb(Z,α). If β = α, the proof is complete.

Otherwise β < α and thanks to the first step we infer

gb(Z, β) ≤ G−(βδ0) ≤ G+(βδ0) ≤ gb(Z,α) .

Since gb(Z, ·) is convex non-increasing, this implies that this function is constant on [β, 1].
But then we have

G+(βδ0) ≤ gb(Z,α) = gb(Z, 1) and G+(δ0) ≤ gb(Z, 1) = gb(Z,α)

and by convexity of G+ on [β δ0, δ0] we get the desired inequality G+(αδ0) ≤ gb(Z,α). �

We conclude this subsection with some properties of the function gb(Z, ·).
Proposition 6.7. It holds

∀α ∈
[

0,
1

N

]

, gb(Z,α) = −Z
2

4
α

and

gb(Z,α) > −Z
2

4
α whenever C(ρ) > 0 for any ρ ∈ P− such that

∫

dρ = α.

Remark 6.8. In the case N = 2, it follows from Remark 2.6 that C(ρ) > 0 for any ρ ∈ P−

such that
∫

ρ > 1
2 , so in that case gb(Z,α) > −Z2

4 α for any α > 1
2 .

Proof of Proposition 6.7. It follows from Theorems 6.1 and 6.4 applied to ρ = αδX1 that

gb(Z,α) = −Z2

4 α whenever α ≤ 1
N .

We now turn to the second claim, and assume that C(ρ) > 0 for any ρ ∈ P− such

that
∫

dρ = α. From Lemma 6.3 we already know that gb(Z,α) ≥ −Z2

4 α, we assume

by contradiction that gb(Z,α) = −Z2

4 α. Then there exists a sequence (ρn)n in P and a
sequence Rn → +∞ such that

T (ρn) + bC(ρn)− Z U0(ρn) → −Z
2

4
α and ∀n,

∫

B(0,Rn)
dρn ≤ α .

If we set un :=
√
ρn then

∫

u2n dx = 1 for all n and since C(ρn) ≥ 0 we get

lim sup
n

∫
[

|∇un|2 − Z
u2n
|x|

]

dx = lim sup [T (ρn)− Z U0(ρn)] ≤ −Z
2

4
α .

Now up to extracting a subsequence we may assume that (un) weakly converges in L2(R3)
to some function u and the above limsup is a limit, so we can apply Lemma 6.9 below and
get
∫

u2dx ≥ α and

∫ [

|∇u|2 − Z
u2

|x|

]

dx ≤ lim
n

∫ [

|∇un|2 − Z
u2n
|x|

]

dx ≤ −Z
2

4
α .

From the properties of ρn we infer that
∫

B(0,Rn)
u2n ≤ α for all n, so that

∫

u2dx ≤ α. This

implies that
∫

u2dx = α, and from (4.1) we get
∫ [

|∇u|2 − Z
u2

|x|

]

dx ≥ −Z
2

4
α .
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Summarizing we obtain

lim
n

[T (ρn)− Z U0(ρn)] = lim
n

∫
[

|∇un|2 − Z
u2n
|x|

]

dx = −Z
2

4
α

and then limC(ρn) = 0. On the other hand, lim inf C(ρn) ≥ C(u2) > 0 since
∫

u2 = α,
which is the desired contradiction. �

Lemma 6.9. Let (un) be a sequence in H1(R3) that weakly converges in L2(R3) to some
function u, and such that

∀n,
∫

u2n dx = 1, and lim
n

∫ [

|∇un|2 − Z
u2n
|x|

]

dx ≤ −Z
2

4
α

for some α ∈ ]0, 1]. Then (un)n weakly converges in H1(R3) to u and

∫

u2dx ≥ α and

∫
[

|∇u|2 − Z
u2

|x|

]

dx ≤ lim
n

∫
[

|∇un|2 − Z
u2n
|x|

]

dx ≤ −Z
2

4
α .

Note that in the above result when α = 1 it follows that (un)n strongly converges in
L2(R3) to u and the function u2 is a solution of the problem (4.1).

Proof. We first note that for n large enough one has

∫

|∇un|2 ≤ Z

∫

u2n
|x| dx

which together with Lemma 3.6 yields that (∇un)n is bounded in L2(R3,R3). Since (un)n
is also bounded in L2(R3), we infer that it is bounded in H1(R3), so it converges weakly
in H1(R3) to u. By the weak lower semicontinuity of the H1 seminorm we obtain

∫

|∇u|2 dx ≤ lim inf
n

∫

|∇un|2 dx.

Moreover, for every R > 0 we have

lim sup
n

∫

u2n
|x| dx ≤ lim sup

n

[ ∫

BR

u2n
|x| dx+

1

R

]

=

∫

BR

u2

|x| dx+
1

R

where BR denotes the ball in R
3 of radius R centered at the origin. Since R is arbitrary,

we get

lim sup
n

∫

u2n
|x| dx ≤

∫

u2

|x| dx.

Then we deduce
∫

[

|∇u|2 − Z
u2

|x|
]

dx ≤ lim
n

∫

[

|∇un|2 − Z
u2n
|x|
]

dx ≤ −Z
2

4
α . (6.4)

It remains to prove that
∫

u2 dx = β ≥ α. Assume by contradiction that β < α. We first
note that β > 0 otherwise u = 0 which contradicts the inequalities in (6.4). Then the
probability ρ = 1

βu
2 satisfies

∫ [ |∇ρ|2
4ρ

− Z
ρ

|x|

]

dx ≤ −Z
2

4

α

β

which contradicts (4.1) since α
β > 1. �
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6.3. Perspectives and future work. A general proof (for any N and M) of (P1) and
(P2) would give a full characterization of the Γ-limit functional G. It would then be
even more interesting if the function gb introduced in Definition 6.2 could be interpreted
as the ground state energy of a molecule with one nucleus. This is precisely what we
obtained in Section 5 in the case N = 2. It seems that a necessary tool for this program
is an expression for the relaxation C of the transport cost C with respect to the weak*
convergence of measures. It would be also interesting to carry out a study (numerical and
theoretical) of the minimizers of the Γ-limit functional G which could explain how the bond
dissociation happens (i.e. how the electrons are divided among the resulting molecules).
A numerical study could also help to understand if the function α 7→ gb(Z,α), which is
non increasing in [0, 1], attains its minimum uniquely for α = 1 (see Remark 6.6).

Another interesting issue is the existence, for a fixed ε > 0, of minimizers ρε ∈ P for the
functional Fε defined in (1.2). The existence of a solution ρ̄ε ∈ P− for the relaxed func-
tional F̄ε (with respect to the weak* convergence of measures) follows straightforwardly
from the direct methods of the calculus of variations; the question if

∫

dρ̄ε = 1 is some-
times called ionization conjecture and is part of our future work, together with a complete
characterization of the relaxed correlation functional C.
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