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Abstract. We survey some results concerning the distribution of zeros in the

character table of a finite group and its influence on the structure of the group

itself.

1. Introduction

Let G be a finite group. If the character table of G is known, then some very

deep structural information on G can be deduced; in fact, an important problem in

character theory is to determine which structural features of G can be detected by

the knowledge of the character table of G and, on the other hand, which aspects of

the table are significant for this purpose.

Many results in the literature show that the distribution of zeros in the character

table is relevant in this contex. Our aim in this paper is to present an outline of this

research topic. We will discuss several aspects of the subject, from classical results

to recent developments, and point out some open problems that could be of interest.

(For the convenience of the reader, questions and conjectures are emphasized in

slanted text.)

A large number of the results quoted in this paper rely on the classification of

finite simple groups. This holds for virtually all the statements discussed from

Section 4 to Section 9, except in some obvious situations (for instance, when the

analysis involves only solvable groups). As for Sections 2 and 3, we indicate explic-

itly the cases in which the classification comes into play.

In what follows, every group is assumed to be finite and, for the notation, we

refer to [16].

2. A theorem by W. Burnside

As one of the triggers for the research concerning zeros of characters, we recall

a classical result by W. Burnside (Theorem (3.15) of [16]).
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Theorem 2.1. Let G be a group, and χ an irreducible character of G which is

nonlinear (i.e., whose degree is larger than 1). Then there exists g ∈ G such that

χ(g) = 0.

This important theorem has been extended in several directions. The following

result by G. Navarro yields Burnside’s theorem if the subgroup N is chosen to be

the trivial subgroup of G.

Theorem 2.2 ([30], Theorem A). Let G be a group, χ an irreducible character of

G, and N a normal subgroup of G. Then the restriction χN , which is a character

of N , is not irreducible if and only if there exists g ∈ G such that χ(x) = 0 for

every x ∈ gN .

As another kind of extension for Burnside’s theorem, G. Malle, G. Navarro and

J.B. Olsson investigated the relationship between the “arithmetical structure” of

the degree of an irreducible character and that of an element on which the character

vanishes.

Theorem 2.3 ([24], Theorem B). Let G be a group, and χ an irreducible character

of G which is nonlinear. Then there exists a prime number p and a p-element g ∈ G
such that χ(g) = 0.

Now, let p be a prime number. Recalling that, whenever a character χ of the

group G vanishes on a p-element of G, then the degree of χ is a multiple of p ([6,

Corollary 2.2]), the above theorem immediately yields the following nice corollary.

Corollary 2.4 ([24], Theorem A). Let G be a group, and χ an irreducible character

of G which is nonlinear. Assume that the degree of χ is a π-number, where π is a

set of primes. Then there exists a π-element g ∈ G such that χ(g) = 0.

The two aforementioned results of [24] rely on the classification of finite simple

groups.

In view of the previous statements, one may wonder whether it is true that if

χ(1) is a p-power, then χ does not vanish on p′-elements. This is false in general;

for instance, the Mathieu group M11 has an irreducible character of degree 11

which takes value 0 on an element of order 6. Moreover, a solvable example can

be obtained considering the wreath product G = C6 o C5 of a cyclic group of order

6 with a cyclic group of order 5; it is not hard to check that G has an irreducible

character of degree 5 (induced from the base group) which vanishes on an element

of order 6.

Nevertheless, in the solvable context and for primitive characters, the situation

is quite neat.

Theorem 2.5 ([29], Corollary B). Let G be a solvable group, and χ a primitive

character of G which is nonlinear. Assume that the degree of χ is a π-number,



ON ZEROS OF CHARACTERS OF FINITE GROUPS 3

where π is a set of primes. Then, for x ∈ G, we have χ(x) = 0 if and only if

χ(xπ) = 0, where xπ denotes the π-part of the element x.

Finally, another question that may arise looking at Theorem 2.3 is the follow-

ing: does a nonlinear irreducible character always have zeros of prime order? The

answer turns out to be affirmative for simple groups, as shown in [24] (in which

simple groups of Lie type and sporadic simple groups are treated) and in [2] (where

the authors consider alternating groups). On the other hand, the answer is neg-

ative in general: it is enough to consider the quaternion group Q8, in which the

unique element of prime order is central and therefore not a zero for any irreducible

character. The next result yields some information in this context.

Theorem 2.6 ([25], Theorem A). Let χ be a faithful irreducible character of G,

and assume that χ(1) is a power of a prime p. If χ(x) 6= 0 for every element

x ∈ G of order p, then the Sylow p-subgroups of G are either cyclic or generalized

quaternion groups.

Note that if the degree of a faithful irreducible character χ is not a p-power,

the condition that every element of order p is not a zero for χ does not imply that

the Sylow p-subgroups of G are cyclic or generalized quaternion groups. In fact,

consider G = PSL(2, 7); then G, which has dihedral Sylow 2-subgrops, also has an

irreducible character χ of degree 6, such that χ(x) 6= 0 for every involution x ∈ G.

3. Vanishing elements

Another way of stating Theorem 2.1 is the following.

Let R be a row in the character table of a group G. Then R contains zeros if and

only if R corresponds to a nonlinear character.

(In fact, Theorem 2.1 provides the “if” part, whereas the “only if” part is an

elementary fact in character theory.) So, the problem of determining which rows

in the character table of a group actually contain zeros is completely solved.

Now, if one considers the “dual” question of which columns in the character

table of a group may contain zeros, the situation is much more complicated. In this

context the relevant objects are the so-called “vanishing elements”, introduced in

an important paper by I.M. Isaacs, G. Navarro and T.R. Wolf ([17]): an element

g ∈ G is a vanishing element if there exists an irreducibe character χ of G such that

χ(g) = 0. The question we are considering is therefore related to understanding

which elements of a group are vanishing elements.

Given the standard duality between results concerning rows (i.e., irreducible

characters) and columns (i.e., conjugacy classes) in the character table of a group,

one might naively ask whether the following holds.

Let C be a column in the character table of a group G. Is it then true that C
contains zeros if and only if C corresponds to a noncentral conjugacy class?



4 S. DOLFI, E. PACIFICI, AND L. SANUS

It is immediately clear that the “only if” part is true by elementary arguments,

but the “if” part fails in general. In order to see it, we can just consider a 3-

cycle in the symmetric group S3: such an element is obviously noncentral and also

nonvanishing in that group.

Certainly there are special situations in which the “if” part is also true (for

instance, it holds for nilpotent groups, as shown in Theorem B of [17]), but in

general a nonvanishing element of G can even fail to lie in any abelian normal

subgroup of G. Actually, in Section 5 of [17], the authors provide the following

family of examples: for every prime p, they construct a solvable group G having

nonvanishing p-elements (also, elements of order p when p 6= 2) which do not lie in

any abelian normal subgroup of G.

However, under some suitable assumptions, a nonvanishing element of G is forced

to lie in a nilpotent normal subgroup of G (i.e., it lies in the Fitting subgroup F(G)).

In fact, the main result of [17] is as follows.

Theorem 3.1 ([17], Theorem D). Let G be a solvable group. If g is a nonvanishing

element of G, then the image of g under the natural homomorphism onto G/F(G)

has 2-power order.

In particular, in a solvable group G, the nonvanishing elements of odd order lie

in F(G).

In [17], the authors actually conjecture that every nonvanishing element of a

solvable group G lies in F(G). They point out that their methods would prove this

claim, if it can be proved that every nonvanishing element of order 2 of a solvable

group G lies in an abelian normal subgroup of G (recall that, in [17, Section 5],

the authors provide a counterexample to a similar statement where 2 is replaced

by any odd prime). However, in a recent paper ([15]), M. Grüninger constructs an

example of a solvable group having a nonvanishing involution which fails to lie in

any abelian normal subgroup, thus showing that the prime 2 is not an exception.

In any case, at the time of this writing, the conjecture by Isaacs, Navarro and Wolf

is still an open problem.

On the other hand, the assumption of solvability is certainly crucial in Theo-

rem 3.1. If we look, for instance, at the character table of the alternating group A7

(whose Fitting subgroup is of course trivial), we see that there are nonvanishing

elements of order 2 and 6, but also of odd order (namely, of order 3).

In fact, the primes 2 and 3 do play a distinguished role in this context.

Theorem 3.2 ([8], Theorem A). Let G be a group, and g ∈ G an element whose

order is coprime to 6. If g is a nonvanishing element of G, then g ∈ F(G).

(The proof of the above theorem uses the classification of finite simple groups.)

It seems natural to think that, for any group G, the nonvanishing elements of G

should always lie in the generalized Fitting subgroup F∗(G), but this is not true.
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The group G = 211 : M24 has nonvanishing elements of order 2 and 4 not lying

in F(G) = F∗(G). However, we conjecture that any nonvanishing element of odd

order of a group G lies in F∗(G).

In order to give an idea of some methods that are relevant in the present context,

we close this section with two easy remarks and a last theorem.

Proposition 3.3. Let N be a normal subgroup of G, and let θ be an irreducible

character of N . Then every element of G not lying in
⋃
g∈G IG(θg) is a vanishing

element of G.

(In the above statement, IG(θ) denotes the inertia subgroup of θ in G, i.e., the

stabilizer of θ in the natural action of G on Irr(N).)

Proposition 3.4. Let N be a normal subgroup of G, and p a prime. If there exists

an irreducible character of p-defect zero of N (i.e., a character θ ∈ Irr(N) such that

p does not divide |N |/θ(1)), then every g ∈ N with p | o(g) is a vanishing element

of G.

Proposition 3.3 (whose proof is an immediate application of Clifford’s Theory)

is particularly useful in the case when N is an elementary abelian p-group for some

prime p (for instance, when N is an abelian minimal normal subgroup of G). In this

situation, the set Irr(N) is an elementary abelian p-group as well, and the natural

action of G on this set can be regarded as a module action. By Proposition 3.3

an element g ∈ G is a vanishing element provided, under this natural action, there

exists a deranged orbit for g, i.e., an orbit in which no element is fixed by g. So,

the study of certain orbit properties in module actions turns out to be crucial when

dealing with vanishing elements.

Also Proposition 3.4 can be proved by means of elementary character theory,

taking into account that an irreducible character of p-defect zero takes value zero

on every element of the group whose order is divisible by p. This proposition comes

into play when N is a nonabelian minimal normal subgroup of G. In this case, in

fact, N is a direct product S1 × · · · × Sk of pairwise isomorphic nonabelian simple

groups and, given a prime divisor p of |N |, irreducible characters of p-defect zero of

N very often exist (this happens in particular whenever the Si are simple groups

of Lie type).

We note that, as Proposition 3.4 may suggest, nonsolvable groups tend to have

a large number of vanishing elements (for instance, by the above remarks about the

existence of characters of p-defect zero, every nontrivial element of a simple group

of Lie type is vanishing); in other words, a small ratio of vanishing elements in the

group should imply solvability. In fact, we conjecture that the smallest value of this

ratio among nonsolvable groups is attained by the alternating group A7, in which

the vanishing elements are 2134 out of 2520 (∼ 85%).
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The two propositions above, together with some other techniques and ideas (and

the classification of finite simple groups), are used in order to prove the following

theorem, which is in turn very useful for locating vanishing elements.

Theorem 3.5 ([3], Corollary 4.4). Let A be an abelian minimal normal subgroup

of G. Let N/M be a chief factor of G such that |N/M | is coprime with |A| and

CN (A) = M . Then every element of N \M is a vanishing element of G.

4. Ito-Michler Theorem and vanishing elements

An important object that can be “extracted” from the character table of a group

G is the set cd(G), whose elements are the degrees of the irreducible characters of G.

Even this relatively small set of positive integers, as shown by many results in the

literature, encodes nontrivial information about the structure of G; in particular,

there is a significant interplay between the group structure and the arithmetical

structure of cd(G) (i.e., the way in which the numbers in this set decompose into

prime factors). As a famous example of this relationship, we recall the celebrated

Ito-Michler Theorem.

Theorem 4.1 (Ito-Michler). Let G be a group, and p a prime. Then every number

in cd(G) is not divisible by p if and only if G has an abelian normal Sylow p-

subgroup.

The above statement can be regarded as a model for a certain kind of results

that, following G. Navarro, we call “Ito-Michler type” theorems (see [31]). The

question addressed in such theorems is the following (or a variation of it): consider

a finite nonempty set X of positive integers which is attached to a group G, and

assume that a given prime p does not divide any number in X; which structural

properties of G can be derived as a consequence of this assumption?

Many sets of positive integers, related with a finite group G, have been considered

in the literature. Among them, some classical examples are the set o(G) of orders

of the elements of G, and the set cs(G) of conjugacy class sizes of G. Now, these

sets can be “filtered” by means of the irreducible characters of G, in terms of the

zeros appearing in the character table of G: namely, our following discussion will

focus on the sets

vo(G) = {o(g) | g is a vanishing element of G}

and

vcs(G) = {|gG| | g is a vanishing element of G},

where by gG we denote the conjugacy class of the element g in G.
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5. Ito-Michler type theorems: the set vo(G)

In this section we survey some Ito-Michler type theorems concerning the first of

the two sets introduced above (or theorems that, however, relate some arithmetical

properties of this set to the group structure). We start by considering the situation

when, given a prime p, the set vo(G) does not contain any p-power.

Theorem 5.1 ([12], Theorem A). Let G be a group, p a prime number, and P a

Sylow p-subgroup of G. Assume that, for every χ ∈ Irr(G) and x ∈ P , we have

χ(x) 6= 0 (i.e., assume that vo(G) does not contain any p-power). Then G has a

normal Sylow p-subgroup.

The above statement (which is a consequence of Theorem 3.2 if p is larger than

3) is actually a bit stronger than a classical Ito-Michler type theorem, as the as-

sumption that p does not divide any number in vo(G) clearly implies the hypothesis

of Theorem 5.1.

Also the original Ito-Michler assumption that p does not divide any number in

cd(G) implies the hypothesis of Theorem 5.1, because, as recalled in the paragraph

following Theorem 2.3, an irreducible character of G which vanishes on a p-element

has a degree divisible by p. On the other hand, the converse is not true. For exam-

ple, let G be the normalizer of a Sylow 2-subgroup in the Suzuki group Suz(8); then

G is a Frobenius group with a Frobenius complement of order 7 and a nonabelian

Frobenius kernel of order 26. It turns out that vo(G) = {7}, and cd(G) = {1, 7, 14}.
More generally, [6, Example 1] shows that there is no bound on the derived length of

the Sylow p-subgroup of a group G such that vo(G) does not contain any p-power.

As an immediate consequence of Theorem 5.1, we get the following refinement

of another famous result by Burnside, the so-called pαqβ Theorem.

Theorem 5.2 ([12], Corollary B). Let G be a group, and let p, q be prime numbers.

If every vanishing element of G is a {p, q}-element, then G is solvable.

In the next result the hypothesis of Theorem 5.1 is relaxed, assuming only that

vo(G) does not contain the prime p.

Theorem 5.3 ([12], Theorem 4.3). Let G be a group, and p a prime divisor of

|G|. Assume that either p is odd, or that p = 2 and G has no composition factor

isomorphic to M22, A7 or A15. If vo(G) does not contain p, then Op(G) 6= 1.

Before we proceed in our discussion related to Ito-Michler type theorems, we take

some time to consider the opposite situation in which the set vo(G) only contains

p-powers, or it even reduces to a single prime number.

Theorem 5.4 ([6], Theorem A). Let G be a nonabelian group, and p a prime. If

every number in vo(G) is a p-power, then one of the following holds.
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(a) G is a p-group.

(b) G/Z(G) is a Frobenius group with a Frobenius complement of p-power order

and Z(G) = Op(G).

Theorem 5.5 ([6], Theorem B). Let G be a nonabelian group, and p a prime. If

vo(G) = {p}, then one of the following holds.

(a) G is a p-group of exponent p.

(b) G = E × F , where E is a (possibly trivial) elementary abelian p-group and F

is a Frobenius group with a Frobenius complement of order p.

Theorem 5.6 ([6], Theorem C). Let G be a nonabelian group. Then vo(G) = {2}
if and only if G = E × F , where E is an elementary abelian 2-group and F is a

Frobenius group with a Frobenius complement of order 2.

Finally, we resume the discussion about Theorem 5.1 by observing that, as

shown by any nonabelian p-group, the converse of that statement is false. In other

words, Theorem 5.1 does not provide a characterization of normality for a Sylow

p-subgroup in terms of the character table of G.

The problem of achieving such a characterization along this line was considered

by G. Malle and G. Navarro in [23]. In that paper, the authors introduce one

particular set of irreducible characters of a group: given a group G, a prime p and

a Sylow p-subgroup P of G, they define

Irr((1P )G) = {χ ∈ Irr(G) | 〈χP , 1P 〉 6= 0},

i.e., the subset of Irr(G) whose elements are the irreducible constituent of the

character of G obtained by inducing the principal character of P .

Our discussion concerning Theorem 5.1 yields

p - χ(1) for every χ ∈ Irr(G)⇒ χ(x) 6= 0 for every χ ∈ Irr(G) and x ∈ P ⇒ P E G.

Now, if every occurence of Irr(G) in the previous line is replaced by Irr((1P )G),

then both the implications are in fact “if and only if”.

Theorem 5.7 ([23], Theorem B). Let G be a group, p a prime number, and P a

Sylow p-subgroup of G. Then the following conditions are equivalent.

(a) For every χ in Irr((1P )G), the prime p does not divide χ(1).

(b) For every χ in Irr((1P )G) and x ∈ P , we have χ(x) 6= 0.

(c) P E G.

Therefore, while Ito-Michler Theorem yields a characterization of normality and

abelianity of a Sylow p-subgroup in terms of the character table, the theorem above

provides a neat characterization of normality for a Sylow p-subgroup in terms of

the character table (namely, in terms of degrees and of the distribution of zeros in

the character table).



ON ZEROS OF CHARACTERS OF FINITE GROUPS 9

6. Ito-Michler type theorems: the set vcs(G)

In the same spirit as in the previous section, we now focus on the set of conjugacy

class sizes of a group. First of all, we state the classical Ito-Michler type theorem

on the whole set of class sizes, whose proof is an elementary exercise.

Theorem 6.1. Let G be a group, and p a prime number. Then p does not divide

any number in cs(G) if and only if G has a central Sylow p-subgroup (i.e., G has a

p-complement H that is a direct factor, and G/H is abelian).

What if the Ito-Michler assumption is required only for the sizes of the vanishing

conjugacy classes? In this case, the right idea is to focus on the principal p-block

(see for instance [28, p. 49]). In fact, the following lemma turns out to be a crucial

one.

Lemma 6.2. Let G be a group, p a prime, and B0 the principal p-block of G. If

χ is an (ordinary) irreducible character of G lying in B0, and x ∈ G is such that

χ(x) = 0, then p divides |xG|.

Proof. Let R be the ring of algebraic integers in the complex field, and let M be

a fixed maximal ideal of R containing the ideal generated by p. Also, denote by ∗

the natural homomorphism of R onto the field R/M .

By definition, since the irreducible character χ of G lies in B0, we get(
|gG| · χ(g)

χ(1)

)∗
= |gG|∗

for every g ∈ G. In particular, as χ(x) = 0, we have that |xG| is an integer lying in

pR; it follows that p divides |xG|, as claimed.

Define now

Van(B0) = {x ∈ G | χ(x) = 0 for some χ ∈ Irr(B0)}.

As an immediate consequence of Lemma 6.2, we obtain the following result.

Theorem 6.3. Let G be a group, and p a prime number. Then p does not divide

|xG| for every x ∈ Van(B0) if and only if G has a normal p-complement H and

G/H is abelian.

Proof. If G has a normal p-complement H, then [28, Theorem 6.10] yields that H

is the intersection of the kernels of all the irreducible ordinary characters in B0.

Therefore, if G/H is assumed to be abelian, these characters are in fact linear, so

that Van(B0) is empty and nothing else needs to be proved.

Conversely, if p does not divide |xG| for every x ∈ Van(B0), then Lemma 6.2

(together with Burnside’s Theorem 2.1) yields that the irreducible characters in B0

are all linear. Now, again Theorem 6.10 of [28] implies that G′ lies in Op′(G) (the

maximal normal p′-subgroup of G), and the desired conclusion easily follows.
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Thus, if G is a group and p is a prime which does not divide any number in

vcs(G), then G has a normal p-complement H and G/H is abelian. In fact, in

[5, Theorem C], the author obtains a strengthening of this statement: if p does

not divide the class size of any vanishing p′-element of G, then G has a normal

p-complement with abelian factor group.

Observe that the structural information which is lost in this context, with respect

to the stronger assumptions of Theorem 6.1, concerns the normality of a Sylow p-

subgroup of G. In fact, in the symmetric group G = S3, the class of transpositions

is the unique vanishing conjugacy class. This class has size 3, therefore the prime

2 does not divide any number in vcs(G); nevertheless, G does not have a normal

Sylow 2-subgroup.

Assume now that, for a given prime p, the group G has a p-complement H, and

let us define

Van(G | 1H) = {x ∈ G | χ(x) = 0 for some χ ∈ Irr(G) with 〈χH , 1H〉 6= 0}.

Taking into account that every irreducible constituent of the induced character

(1H)G lies in B0 (see [28, Theorem 2.27]) and arguing along the line of Theorem 6.3,

it is not difficult to prove the following result, that is very much in the spirit of the

work by Malle and Navarro in [23].

Theorem 6.4. Let p be a prime, and G a group having a p-complement H. Then

p does not divide |xG| for every x ∈ Van(G | 1H) if and only if H E G and G/H is

abelian.

We close this section remarking that, again in the spirit of the work by Malle and

Navarro in [23], it could be interesting to find a characterization of p-nilpotency for

a group G (i.e., the existence of a normal p-complement H ≤ G, but without any

extra condition on G/H) in terms of vanishing conjugacy classes.

7. Vanishing graphs

Given a nonempty finite set X of positive integers, a way to express the arith-

metical properties of the integers in X is as follows. Consider the so-called prime

graph on X, that is the simple undirected graph ∆(X) with vertex set

V(∆(X)) = {p prime | there exists x ∈ X divisible by p},

and define two vertices p, q to be adjacent in ∆(X) if there exists an integer x ∈ X
such that pq divides x.

(Similarly, another graph that comes naturally into consideration is the “common

divisor graph” Γ(X), whose vertex set is X \ {1} and x, y ∈ X \ {1} are connected

if gcd(x, y) 6= 1.)
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The main general question in this context is how the group structure of G is

related to the structure of the corresponding graphs ∆(X), for various sets X of

invariants of a group G.

As mentioned in Section 3, one of the earliest instances is the set X = o(G)

consisting of the orders of the elements of the group G. The corresponding graph

Π(G) = ∆(o(G)) is called the Gruenberg-Kegel graph and it has been extensively

studied both in the solvable as well as in the nonsolvable case.

Among the various graph properties, the most commonly studied in the present

literature are related to the diameter and the number of connected components.

In the following discussion, given a graph ∆, we denote by n(∆) the number of

connected components of ∆ and by diam(∆) its diameter. Finally, we denote by

ι(∆) the independence number of ∆, that is the largest size of an independent set,

i.e. a subset of pairwise nonadjacent vertices of ∆.

We recall that a group G is said to be a 2-Frobenius group if there exist two

normal subgroups F and L of G such that L is a Frobenius group with kernel F ,

and G/F is a Frobenius group with kernel L/F . For the Gruenberg-Kegel graph of

solvable groups, we have:

Theorem 7.1 ([21], [35]). Let G be a solvable group.

(a) n(Π(G)) ≤ 2, i.e. Π(G) has at most two connected components.

(b) If Π(G) is disconnected, then G is either a Frobenius or a 2-Frobenius group

and each connected component of Π(G) is a complete graph.

(c) For any choice of three vertices of Π(G), at least two of them are adjacent in

Π(G) (i.e. ι(Π(G)) ≤ 2).

Aiming at filtering the elements of the set o(G) by properties related to character

values, in Section 4 we introduced the set vo(G) consisting of the orders of the

vanishing elements of G. Accordingly, one defines the vanishing Gruenberg-Kegel

graph Πv(G) = ∆(vo(G)) of G as the prime graph on the set of the orders of the

vanishing elements of G. Clearly, Πv(G) is a subgraph of Π(G). Still, it is not

an induced subgraph: as an example, consider G = S3 × D10, where 3 and 5 are

vertices of Πv(G) which are linked in Π(G), but not in Πv(G).

In the process of comparing Π(G) and Πv(G), one can first ask about the differ-

ence between the vertex sets V(Π(G)) and V(Πv(G)).

Theorem 7.2 ([13]). Let G be a nonabelian group, p a prime number, and P ∈
Sylp(G). If p is a vertex of Π(G) but not of Πv(G), then P E G, G/Op′(G) is a

Frobenius group with kernel POp′(G)/Op′(G) and Op′(G) is nilpotent.

We say that a group G is a nearly 2-Frobenius group if there exist two normal

subgroups F and L of G with the following properties: F = F1 × F2 is nilpotent,

where F1 and F2 are normal subgroups of G, G/F is a Frobenius group with kernel
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L/F , G/F1 is a Frobenius group with kernel L/F1, and G/F2 is a 2-Frobenius

group. The next result should be compared with Theorem 7.1.

Theorem 7.3 ([14]). Let G be a solvable group. Then the following conclusions

hold.

(a) Πv(G) has at most two connected components. If Πv(G) is disconnected, then

each component is a complete graph, and G is a Frobenius or a nearly 2-

Frobenius group.

(b) diam(Πv(G)) ≤ 4.

We remark that the bound diam(Πv(G)) ≤ 4 is sharp ([14, Example 5.2]).

By contrast, the similarity of the ordinary and vanishing Gruenberg-Kegel graphs

breaks down when one considers independence numbers: while one has independent

sets of maximal size two, the other can have arbitrarily large independent sets.

Theorem 7.4 ([14], Theorem B). For every positive integer k, there exists a solv-

able group G such that Πv(G) has an independent set of size k.

Removing the assumption of solvability, from [19] and [35] it is possible do derive

the following result.

Theorem 7.5.

(a) If S is a nonabelian simple group, then n(Π(S)) ≤ 6.

(b) Let G be a nonsolvable group. If Π(G) is disconnected, then G has a unique non-

abelian composition factor S, and n(Π(G)) ≤ n(Π(S)). Hence, n(Π(G)) ≤ 6.

Similarly, for the vanishing Gruenberg-Kegel graph:

Theorem 7.6 ([13], Theorem A). Let G be a finite group. Then the following

conclusions hold.

(a) Πv(G) has at most six connected components.

(b) If Πv(G) is disconnected, then G has a unique nonabelian composition factor

S, and n(Πv(G)) ≤ n(Π(S)) unless G is isomorphic to A7.

In fact, it turns out that A7 is the unique nonabelian simple group S such that

Πv(S) 6= Π(S). Note that n(Πv(A7)) = 4, while n(Π(A7)) = 3.

We stress that, notwithstanding the similarities among the two graphs, the edge

set in the graph Πv(G) can be quite smaller than in the graph Π(G); for any integer

k, there exists a (nonsolvable) group G such that Π(G) has a complete subgraph on

k vertices, that instead induces an independent set in Πv(G) ([13, Example 6.5]).

Other graph properties, like connectivity, chromatic number or girth, might be

subjects for further investigation.

Also the arithmetical properties of the sets cd(G) and cs(G), that have been

introduced in Section 3, can be studied via the prime graph. Several properties
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of the graphs ∆(cd(G)) and ∆(cs(G)), as well as their connection to the algebraic

structure of the group, have been studied in the last two decades. For an overview

up to 2008, we refer to the survey paper [20].

In the same spirit, we now focus on the set vcs(G) of the sizes of vanishing classes.

As we observed in Section 6, if a prime number p is not a vertex of ∆(vcs(G)), then

G has a normal p-complement and abelian Sylow p-subgroups. We also observed

that the vertex set of ∆(vcs(G)) can be smaller than that of ∆(cs(G)). Yet, if one

assumes that G has a nonabelian minimal normal subgroup, then the two vertex

sets coincide, as proved in [3]. In this situation, the absence of an edge in the graph

∆(vcs(G)) reflects in the normal structure of G.

Theorem 7.7 ([3], Theorem A). Let G be a finite group, and suppose that G has

a nonabelian minimal normal subgroup. If p and q are vertices of ∆(vcs(G)), but

there is no vanishing conjugacy class of G whose size is divisible by pq, then G is

{p, q}-solvable.

We remark that the assumption concerning the existence of a nonabelian minimal

normal subgroup in G is critical in the above statement. In fact, whenever p and

q are primes such that p ≥ 7 and q ≡ 1 (mod 5p), it is possible to construct

a Frobenius group H whose kernel is elementary abelian of order q2 and whose

complements are isomorphic to Cp × SL(2, 5); it is not difficult to see that p is

not a vertex in ∆(vcs(H)). Now, take p = 7, q = 71, and consider G = D10 × H
(where D10 is the dihedral group of order 10); clearly, 2 and 7 are nonadjacent

vertices in ∆(vcs(G)) (although they are adjacent in ∆(cs(G))), nevertheless G is

not 2-solvable. (The authors whish to thank Victor Manuel Ortiz Sotomayor for

pointing out this kind of examples; a solvable one is G = D10 ×A4, in which 2 and

3 are nonadjacent vertices of ∆(vcs(G)) that are adjacent in ∆(cs(G)).)

A consequence of the previous theorem is that, still assuming the existence of

a nonabelian minimal normal subgroup in G, if a vertex p of ∆(vcs(G)) is not

complete (i.e. adjacent to all other vertices), then the group G is p-solvable.

Moreover, if the group has no abelian normal subgroup, then the graph ∆(vcs(G))

is complete.

Theorem 7.8 ([3], Theorem B). Let G be a finite group with trivial Fitting sub-

group. Then every prime divisor of |G| is a vertex of ∆(vcs(G)), and ∆(vcs(G)) is

a complete graph.

We are not aware of any examples where, under the assumption that G has a

nonabelian minimal normal subgroup, two primes p and q are vertices of ∆(vcs(G))

that are not adjacent in this graph, but adjacent in ∆(cs(G)). In other words, it is

an open question whether in this case ∆(vcs(G)) = ∆(cs(G)).
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8. The number of conjugacy classes of vanishing elements

Given an irreducible character χ of G, we define v(χ) = |{xG : χ(x) = 0}|, the

number of zero entries in the row corresponding to χ in the character table of G.

By Burnside’s theorem, v(χ) = 0 if and only if χ is a linear character.

It is natural to ask how the largest number

M(G) = max
χ∈Irr(G)

v(χ)

of zeros in a row of the character table of G is related to the structure of G.

Theorem 8.1 ([26], Theorem A). There exist two real numbers c1 and c2 such

that, for every solvable group G with M(G) > 1,

h(G) ≤ c1 log logM(G) + c2 ,

where h(G) is the Fitting height.

In [26], Moreto and Sangroniz also prove that the index of suitable terms of

the Fitting series of a solvable group G can be bounded in terms of M(G) ([26,

Theorem B]). Furthermore, the order of a nilpotent group can be bounded by some

function of M(G). This is not true in general, as the dihedral groups show.

Similarly, one can consider the minimum number of zeros

m(G) = min
χ∈Irr(G),χ(1)>1

v(χ)

appearing in the rows of the character table of a group G. Moreto and Sangroniz

prove that the derived length of a p-group P can be bounded by a function of m(P )

([26, Theorem E]). They also propose the following conjectures.

Conjecture 8.2 ([26], Conjectures F and G). Let G be a solvable group. Then

(a) the derived length dl(G) and the index |G : F(G)| can be bounded in terms of

M(G);

(b) the Fitting height h(G) can be bounded in terms of m(G).

The finite groups whose irreducible characters vanish on “few” conjugacy classes

have been classified.

Theorem 8.3 ([1], Theorem 5; [7], Proposition 2.7). M(G) = 1 if and only if G

is a Frobenius group with complement of order 2.

Theorem 8.4 ([4], Theorem 1.1; [26], Theorem H). M(G) = 2 if and only if

G ' S4,A5,PSL(2, 7), or there is a normal subgroup N with M(G/N) = 1 and

|N | = 2 or G is a Frobenius group with complement of order 3 and abelian kernel.

Finally, a classification of the groups G such that M(G) = 3 is given in [32].

Dually, looking at the columns of the character table of a group G, one defines

v∗(g) = |{χ ∈ Irr(G) : χ(g) = 0}| and M∗(G) = maxg∈G{v∗(g)}.
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Theorem 8.5 ([27, Theorem A]). The number of nonlinear irreducible characters

of G is bounded in terms of M∗(G). Hence, if G is solvable, the derived length

dl(G) is bounded above by M∗(G).

In [34], one finds a complete classification of the groups G such that M∗(G) < p,

where p is the smallest prime divisor of |G|; they are either isomorphic to A5 or

they belong to one of seven families of solvable groups ([34, Theorem 1.1]).

A natural question in this context is about groups that have “few” orbits of van-

ishing conjugacy classes, or of conjugacy classes that are zeros for single irreducible

characters, under some natural actions (e.g. Galois conjugation).

Finally, we mention a result that outlines a connection between rows and columns

(from the point of view of zero entries) in a character table.

Theorem 8.6 ([33]). For any finite group G, the following conditions are equiva-

lent.

(a) v(χ) ≤ 1 for all but one of the irreducible characters χ of G;

(b) v∗(xG) ≤ 1 for all but one of the conjugacy classes of G.

Moreover, G satisfies one of the above condiditions if and only if G is one of the

following groups:

• an extra-special 2-group;

• SL(2, 3), S4 or A8;

• a Frobenius group which is either 2-transitive with an abelian complement

or it has a complement of order 2.

9. Brauer characters

Unlike ordinary characters, it is possible that a nonlinear irreducible Brauer

character does not vanish on any element. For instance, in characteristic 7, the

irreducible Brauer characters of PSL(3, 2) of degree 5 and 7 do not take the value 0.

Even more, there exist nonabelian groups G whose Brauer character table, in

some characteristic p, does not contain any zeros: consider for instance G = S4 and

p = 3. However, for odd characteristic, this phenomenon can only happen when G

is a solvable group (see Theorem 9.2 below).

The next result shows that, for p odd, all nonabelian simple groups have an

irreducible p-Brauer character that vanishes on a full Aut(G)-orbit of p-regular

elements.

Theorem 9.1 ([22, Theorem 1.1]). Let G be a nonabelian simple group and p a

prime. Then there exists a φ ∈ IBrp(G) and a p-regular g ∈ G such that φ(gα) = 0

for all α ∈ Aut(G), unless p = 2 and

• G = L2(2m), m ≥ 2;

• G = L2(q), q = 2m + 1 m ≥ 2;

• G = 2B2(22m+1), m ≥ 1;
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• G = S4(2m), m ≥ 2.

In these cases, the degrees of all irreducible 2-Brauer characters of G are powers

of 2.

From the above result, one derives the following

Theorem 9.2 ([22, Theorem 1.3]). Assume that G is not solvable and p 6= 2. Then

there exists an irreducible p-Brauer character of G which vanishes on some p-regular

element of G.

An open question in this context is whether the degrees of the irreducible Brauer

characters of a group G are necessarily all 2-powers if the 2-Brauer character table

of G has no zeros.

It is natural to guess that solvable groups whose p-Brauer character table has

no zeros, must have a structure of somewhat restricted type relatively to the prime

p. There are examples of such groups with both p-length (lp(G)) and p′-length

(lp′(G)) equal to 2 ([9, Example 4.1]), but this is (for p 6= 3) the worst it can get.

Theorem 9.3 ([9], [10]). Let p be prime and let G be a finite group such that the

p-Brauer character table of G contains no zeros. Then

(a) If p ≥ 5, then the Hall p′-subgroups of the factor group G/F(G) are abelian;

so, lp′(G/F(G)) ≤ 1, lp′(G) ≤ 2 and lp(G/Op(G)) ≤ 2.

(b) If p = 3, then then G/F(G) is a subgroup of a direct product A × B, where

A is a {2, 3}-group with elementary abelian Sylow 2-subgroups and 3′-length at

most 1 and B ' (Sym(3) o Sym(3)) o P , where P is a 3-group. In particular,

l3′(G) ≤ 3, l3(G/O3(G)) ≤ 3.

(c) If p = 2 and G is solvable, then G/F(G) is a {2, 3}-group with elementary

abelian Sylow 3-subgroups; also, l2′(G) ≤ 2, l2(G/O2(G)) ≤ 2.

(d) If p = 2 and G is nonsolvable, then there exist normal subgroups R,N of G,

R ≤ N , with R solvable, l2′(R) ≤ 4, N/R a direct product of simple groups as

listed in Theorem 9.1 and G/N a group of 2-power order.

We remark that no examples are known of groups with no zeros in the 3-Brauer

character table and with 3′-length greater than 2. So, part (b) of the above theorem

can possibly be improved.

Let p be a prime; a p-regular element of a group G is called a p-nonvanishing

element of G if no irreducible p-Brauer character of G takes value zero on it. The fol-

lowing statement, which strengthens Theorem 9.3 for p > 7, locates p-nonvanishing

elements of a solvable group G with respect to the p-series of G. It should be

compared with Theorem 3.1.

Theorem 9.4 ([11, Theorem A]). Let p be a prime number greater than 3, let G

be a finite solvable group with Op(G) = 1, and let g be a p-regular element of G
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that is p-nonvanishing. Then g lies in Op′pp′(G), unless p ∈ {5, 7} and the order

of g is divisible by 2 or 3.

It is unknown, at the moment, whether the assumption p > 7 is really needed in

the above statement. The ideas used in [11] break down for small primes, but other

methods could take over. Another issue that is wide open concerns the distribution

of p-nonvanishing elements in nonsolvable groups.
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[26] A. Moretó, J. Sangroniz, On the number of conjugacy classes of zeros of characters, Israel

J. Math. 142 (2004), 163–187.
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