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ABSTRACT
Introduction: The number of patients with end-stage kidney disease is increasing worldwide, creating
an unprecedented organ shortage. The kidney is a highly complex structure performing many crucial
functions. Dialysis replaces filtration but not all other kidney functions and transplant is limited by
kidney availability. Numerous innovative ways are being explored to obtain new kidneys for disease
modeling and potentially replace lost kidney functions.
Areas covered: In this review, we will go through the different approaches that have been developed
over the years to build kidneys. We will first present the current advances in xenotransplantation and
generation of interspecies chimeras. Next, we will examine the attempts to create bioengineered
kidneys with hemodialysis-derived implantable devices and decellularized organs. Finally, we will
examine how organoids and microfluidic devices could answer important pathophysiological questions
and model the path toward creating in vitro functional organs, for example through 3D bioprinting.
Expert opinion: While all the aforementioned approaches to create new kidneys are promising, their
translation into clinical practice seems a long way off, except xenotransplantation. Nonetheless, these
novel technologies already consent disease modeling and drug testing at 3D level. We will review the
stages of progress toward patient therapy and advantages/drawbacks of the various strategies.
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1. Introduction

End-stage kidney disease (ESKD) represents a major healthcare
burden worldwide requiring costly renal replacement therapy
in the form of dialysis or transplantation [1]. However, kidney
transplantation as a treatment option is limited by the short-
age of healthy donors [2]. In an attempt to increase the
number of kidneys available for transplantation, the selection
criteria have been expanded to include marginal kidneys,
which are organs from suboptimal donors [3]. In 2010, an
estimated 5 to 10 million ESKD patients needed renal replace-
ment therapy worldwide. However, only about two and a -
half million people received a kidney transplant, suggesting
that at least 2 million people might have died prematurely
because of the lack of donors [4]. To account for organ short-
age, in the last 20 years much effort has been put toward
manufacturing bioengineered kidneys that would be able to
replace entirely or to complement the organ and improve the
renal function, with the final objective to free patients from
the burden of current renal replacement therapies, dialysis or
kidney transplant. Indeed, restoring as little as 10% of the
renal function would allow the patients in ESKD to avoid
dialysis, increasing significantly the quality of life [5].

The kidney offers a major challenge to organ (re)generation
scientists due to structural and functional reasons. The kidney
has a composite embryonic origin – from the metanephros, after

degeneration of the pronephros and mesonephros, and from
different progenitor lineages (nephron, ureteric, stromal and
endothelial) – and an extremely complex organ anatomy, that
is a unique epithelial, endothelial and interstitial architecture
integrated with a continent excretion pathway. In respect to its
function, the kidney has very elaborate and energy-consuming,
massive and together finely tuned, functional processes. Besides
its filtration (glomerular) function, the kidney also regulates
homeostasis, hormones production, reabsorbs fluid and noble
solutes into the blood stream and secretes toxic and unnecessary
ions and molecules. Accordingly, the evolution in the field of
kidney bioengineering has yet to match advances in other sim-
pler organs [6–10]. Despite this, from cell-based microsystems to
macroscopic devices, the bioengineered kidney scenario is
increasingly expanding and sustains high interest and expecta-
tions in the field of regenerative medicine.

In this review, we will focus on existing bioengineering
approaches to kidney (re)generation from an historical per-
spective, starting with the first xenogeneic experimental
efforts (xenotransplantation and chimeras), through the differ-
ent attempts to build a new whole organ (bioartificial portable
and implantable kidneys and recellularized scaffolds), ending
with the latest advances in creating in vitro functional
nephrons (kidney organoids and kidney-on-a-chip) and organs
(3D bioprinting) (Figure 1, Table 1).
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2. Transplantable kidney from another organism

2.1. Xenotransplantation of adult organs or embryonic
tissues

Cross-species transplantation, or xenotransplantation, offers an
attractive possibility to overcome the shortage of kidneys from
deceased and living donors. Patients unable to obtain an allo-
graft may benefit significantly from xenotransplantation, on var-
ious levels: avoidance of ethical issues such as coercion or
payment of living donors, reduction of stress from long wait for
a suitable donor, lower complication and costs related to long-
term dialysis. Additionally, xenotransplantation may provide
a chance to receive kidneys to patients who are highly HLA
sensitized [11].

The first attempt by Reemtsma et al. to graft kidneys from
a non-human primate (NHP) goes back to 1963, when 13
patients with ESKD were transplanted chimpanzee kidneys.
All hosts died from rejection or infection, between 11 days
and 2 months post-surgery, with a patient who exceptionally
survived for 9 months [12]. However, it rapidly appeared that
NHPs are not the best source of organs for transplant, mostly
due to limited availability, poor breeding potential and slow
growth, risk of transfer of infection, high maintenance costs
and mixed public opinion [13]. On the other hand, pigs seem
better suited to satisfy all the requirements, and their renal
function is similar to humans. With the advances in genetic
engineering and cloning technologies, they quickly became
a preferred source of organs for transplant. These new tech-
niques are allowing the researchers to lift the pathobiological
barriers of pig kidney transplantation, and while wild type pig
kidneys fail within minutes in NHPs, humanized pig kidneys
that express a single human complement-regulatory protein
have functioned for 3 months [14].

An important breakthrough in the field of xenotransplanta-
tion is the production of the α − 1,3-galactosyltransferase knock-
out (GalT-KO) pig in 2002 [15,16]. In 2005, the Boston group
showed their initial results demonstrating an 83-day survival of

a baboon bearing a life-supporting GalTKO pig kidney graft
without rejection, when a vascularized donor pig thymus was co-
transplantated from the same GalT-KO pig [17]. They have
recently demonstrated further survival of baboons of up to 193
days without rejection in 2018 [18], which is comparable to the
results of recent trials using multi-transgenic pigs as donors.
Genetic modifications performed in the years 2010s, i.e. deletion
of galactose-α 1,3-galactose, a pig antigen expressed on the
graft, together with complement-regulatory proteins and/or coa-
gulation-regulatory proteins, have extended the life of the graft
up to more than a year [19–21]. Therefore, although recent
advances in gene-editing technology have allowed multiple
transgenic pigs to act as organ donors for xenotransplantation,
determining which genes to add to the donors as well as the
clinically applicable immunosuppressive regimen would be the
next step toward clinical applicability.

In particular, these regimens are heavier than the ones used for
allotransplants, increasing the risk of recipient death, or involve
drugs not yet tested on humans [22]. This aspect is being
improved thanks to the latest advances in genome editing, in
particular, the CRISPR/Cas9 approach, which, applied to xenotrans-
plantation, have considerably sped progress toward clinical rele-
vance, as reviewed elsewhere [23]. Briefly, a whole panel of genes
vital to improving xenograft survival rate have been modified
using this technique, including cytidine monophosphate-
N-acetylneuraminic acid hydroxylase, B1,4N-acetylgalactosaminyl-
transferase, isoglobotrihexosylceramide synthase, class I MHC, von
Willebrand factor and C3. The risk of transmission of a porcine
infectious disease to the recipient, and subsequent health and
legal issues, is another problem faced by xenotransplantation.
Particular concerns involve porcine endogenous retroviruses
(PERVs), which are integrated into the pig genome and are present
within all transplanted tissues, but have shown no human trans-
mission so far [22,24]. However, PERVs can be inactivated using
CRISPR-Cas9 [25] or by currently available anti-retroviral drugs [26],
bringing clinical trials a step closer.

Importantly, ethical issues linked with xenotransplantation
remain to be addressed. This topic has been comprehensively
reviewed by Mann et al. [27], and include cultural and religious
concerns, as well as the need to respect both animal rights
and human dignity. And finally, regulation of clinical xeno-
transplantation must be undertaken [28].

Xenotransplantation of embryonic kidney offers a series of
advantages over adult kidney. The kidney primordium is geneti-
cally preprogrammed to develop a functional kidney. It requires
multiple organogenesis steps to be functional in embryogenesis
through adulthood. Indeed, metanephroi from pig embryos
transplanted into the omentum of unilaterally nephrectomized
adult pigs or mice that received costimulatoring blocking agents
(anti-CD45RB, anti-CD154, and anti-CD11a) developed into an
enlarged, vascularized structure formed of mature tubules and
glomeruli [29]. Another advantage is the fact that the primordia
attracts the host vasculature and is therefore less susceptible to
humoral rejection [30]. Human metanephroi transplanted into
immunodeficient mice exhibited rapid growth and develop-
ment. Embryonic kidney was shown to be less immunogenic
than adult organ when transplanted in fully immunocompetent
hosts [31]. Further analysis indicated no risk of malignant

Article highlights

● Human tissue bioengineering is a field of great fascination for world-
wide researchers. Huge advances in kidney bioengineering are gen-
erating new opportunities to develop renal replacement therapies.
However, the complexity of this organ from a structural and func-
tional point of view precludes their immediate clinical application.

● Xenotransplantation offers an attractive possibility to overcome the
shortage of kidneys. However, major challenges must be addressed
prior to the transition from pre-clinical studies to clinical trials, such
as immunosuppressive regimens, the risk of transmission of infectious
disease to the recipient and legal issues.

● Kidney bioengineering offers alternative solutions to renal replace-
ment therapy. However, assembling cells, biologically relevant mole-
cules and scaffolds into functional organs represents technical
challenges that remained to be solved.

● While creating a whole replacement kidney remains a technical chal-
lenge, the current technologies led to the development of nephron
parts, organoids and kidney-on-a-chip, combined or not with 3D
bioprinting, that can serve as a tool to understand kidney (patho)
physiology or eventually could be used as the elementary units of
bigger structures.

2 A. J. PEIRED ET AL.



transformation. Altogether, embryonic tissues represent a valid
alternative to adult tissue as a source of organ for
xenotransplantation.

2.2. Chimeras

Chimeras are defined as organisms composed of a mixture of
cell populations originated from different organisms. They
necessitate the combination of donor cells, which can be of
embryonic, fetal or adult origin, and a host, which provides the
physiological environment and life support to the donor cells.
Donor and host can be or not of the same species [32]. While
used for years as experimental models to study the pathophy-
siology of different organs, recent technological break-
throughs opened the door to potential applications for
organ generation. Two different approaches have been devel-
oped, blastocyst complementation and targeted organ com-
plementation [32].

2.2.1. Blastocyst complementation
The blastocyst complementation is a technique originally devel-
oped by Chen et al. in 1993 [33] to assay gene function in

lymphocyte development. It consists in injecting embryonic
stem cells (ESCs) into blastocysts, the initial embryonic stage
following fertilization, and to transfer the embryo into the uteri
of a foster mother. It has been applied to a wide range of tissues
over the years, including thymic epithelia [34], heart [35], germ
cells [36], hepatocytes [37] pancreas [38] and lungs [39]. Usui and
colleagues used this system to compensate for the developmen-
tal defect of the Sall1−/- mice, in which kidneys do not form [40].
Sall1 is expressed during embryonic development in epithelial
cellular lineages originating from the metanephric mesenchyme
and renal stroma, and mice deficient for Sall1 die right after birth
from kidney agenesis. The authors injected wild type murine
ESCs or induced pluripotent stem cells (iPSCs) into blastocysts
form Sall1−/- mice and observed the bilateral formation of kid-
neys entirely formed by the injected pluripotent stem cell (PSC)-
derived cells, with the exception of structures that do not
depend on Sall1 expression to develop, such as collecting
ducts from ureteric buds and microvascular endothelial cells.
This proof-of-principle study shows that this technique could
be used to generate donor PSCs-derived kidneys, but that in
order to generate an entire organ from PSCs-derived cells all
renal lineages must be absent from the blastocyst.

Figure 1. Current bioengineering strategies to build kidneys.
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Several seminal studies have shown that it was possible to
recreate interspecies chimeras, where PSCs from mice were
implanted in blastocysts from rat, or vice versa, to regenerate
pancreas [38,41], thymus [42] or even kidney [43]. However,
attempts to generate organs from human PSC-derived chimeras
using a mouse as a host were unsuccessful, as the authors failed
to see efficient incorporation of naive human cells into mouse
embryos [44–46]. Similarly, human PSCs robustly engrafted in
large animal species – pig and cattle – pre-implantation blasto-
cysts, but show limited contribution to post-implantation pig
embryos [47]. While this approach would allow the generation
of human organs in animals whose organ size, anatomy, and
physiology are closer to humans, the technique is still in its early
stages and host endothelial cells in the blastocyst-
complemented organ continues to be a problem.

2.2.2. Targeted organ complementation
In order to avoid any possible risk of human contribution to
gametes or neural tissue, and subsequent ethical concerns,

various research groups proposed to generate specifically an
organ, either by allowing PSCs to differentiate only into the
organ of interest [48], or by using committed progenitors or
organ buds instead of PSCs [49]. Rat nephron progenitor cells
(NPCs) injected into the fetal kidney of a NPC-deficient mouse
led to the formation of nephrons [50], suggesting that this NPC
replacement strategy could potentially be applied to the develop-
ment of human-animal chimeric kidney. In their 2019 article,
Yamanaka et al. transplanted allogenic mouse renal progenitor
cells, a heterogeneous population containing Six2-positive NPCs,
into the nephrogenic zone of mouse embryos [51]. They observed
the formation of transplant-derived, vascularized and functioning
glomeruli. In a second set of experiments, rat renal progenitor cells
implanted into kidney-deficient embryos led to the formation of
new nephrons connected to the host uretic bud. Although exo-
genous donor cells substantially formed part of the kidney, includ-
ing glomeruli and vasculatures, there was a substantial amount of
host-derived cells in the chimeric kidney. Thus, this organ genera-
tion system still requires immunosuppressive drugs for autologous

Table 1. Summary of advantages, disadvantages, and clinical relevance of each bioengineering approaches to kidney (re)generation.

Advantages Disadvantages Clinical relevance Ref.

Transplantable kidney from another organism
Xenotransplantation – Pig kidneys have similar size and internal

anatomy compared to human organs
– Genetic engineering can make pig kidneys
safer for xenotransplants

– Ethical and legal issues
– Risks of transmission of
infectious diseases

– Immunological barrier

Increase kidney
availability in terms
of number, time,
and location

[18,21,23]

Chimeras – Chimeras allow to grow human kidneys in an
animal host, avoiding xenotransplantation
issues such as immunologic barrier,
differences in organ size and physiology

– Limited contribution of
human PSCs to post-
implantation embryos

– Development of organs
formed of mixed donor/
host cells

Increase kidney
availability in terms
of number, time,
and location

[47,51]

Building bioengineered kidneys
Bioartificial kidneys – Bioartificial kidneys are biologic-artificial

hybrids that combine continuous blood
filtration with tubular, metabolic and
endocrine functions

– Potentially industrial production

– Technical feasibility
– Costs of production and
storage

Allow to move dialysis
patients outside the
clinic

[53,55,56,69]

Kidney-derived
scaffolds

– Faithfully preserve the kidney matrix
composition

– Evidence of urine filtration following
recellularization

– Efficient repopulation of kidney vasculature

– Lack of efficient
recellularization protocol
for the nephron

– Possible host
immunological response
to the decellularized
scaffold

– The need of a very high
number of cells to
successfully repopulate an
entire human kidney

Reconstitute
a functional kidney
for transplantation

[75,77,82]

Development of self-organizing nephrons
Kidney organoids Kidney organoids model anatomical and

functional hallmarks of the real organ
– Lack of vascular network
and urinary exit tract

– More immature than adult
kidney

– Difficulties to obtain
higher-order structures

– Poor reproducibility

Use for personalized-
disease modeling
and drug toxicity
testing

[90,91]

Kidney-on-a-chip – Microfluidics-based systems reproduce the
physiology of nephron portions

– Automation and high throughput screening

Analysis restricted to
a portion of the nephron

Use for personalized-
disease modeling
and drug toxicity
testing

[106,108,109,124,126,127,138,143]

3D bioprinting −3D kidney bioprints model the tissue
complexity and its microenvironment

– 3D kidney organoids are bioprinted for high-
throughput screening

Analysis restricted to
a portion of the nephron

Modeling and drug
toxicity testing

[155–157]
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kidney transplantation, at least briefly. However, these results
show that a kidney can regenerate from exogenous renal progeni-
tors and promise new avenues for renal organ regenerative
medicine.

3. Building bioengineered kidneys

Organ bioengineering emerged from the need to explore new
paths in order to obtain alternative sources of transplantable
organs. Scientists faced this challenge by assembling cells,
biologically relevant molecules, and scaffolds into functional
organs.

3.1. Bioartificial kidney

The idea of developing alternative solutions to renal replace-
ment therapy while ameliorating traditional dialysis perfor-
mance via the implementation of bioengineering technology
was conceived in the late nineties [52]. Humes et al. developed
a multi-fiber bioreactor in which synthetic hollow fibers of
a high-flux hemofiltration cartridge were seeded with porcine
primary tubular epithelial cells, thus forming a hybrid system.
This new bioartificial Renal Assist Device (RAD) was capable of
mimicking native kidneys' tubular functions by providing
active transport (differential reabsorption and secretion),
metabolic functions and endocrine functions for the first
time [53]. This new technology, using both porcine and
human primary tubular epithelial cells (renal tubule progeni-
tors harvested from kidney transplant discards and expanded),
when applied in series to a hemofilter, was able to improve
acute hemodialysis performance in uremic dogs [54], paving
the way to promising clinical trials in the intensive care unit
clinical setting [55,56]. The RAD is, up to now, the only bioar-
tificial kidney device successfully tested in humans. Despite
this success, cell sourcing, device manufacturing times and
costs, delicate storage requirements and distribution issues
proved to be important limitations to an extensive use of
this device for acute and chronic renal patients. To try to
overcome these problems, the same research group devel-
oped a Bioartificial Renal Epithelial Cell System (BRECS)
[57,58]. The BRECS technology, based on niobium-coated car-
bon and cryopreservable polycarbonate seeded with human
renal tubular epithelial cells derived from adult progenitor
cells, recently demonstrated efficacy when applied in series
to a hemofilter in a porcine septic shock model [59] and as
a wearable device connected to a peritoneal dialysis circuit in
an anephric sheep model [60]. Although promising, the BRECS
technology is yet to be applied in clinical trials. In the mean-
time, in an effort to create a fully functional bioartificial kidney,
Jansen and colleagues developed bioengineered kidney
tubules capable of uremic toxins removal via active transport
processes. This result was achieved by culturing human con-
ditionally immortalized proximal tubular epithelial cells
(PTECs), enriched with specific transporters, on traditional
hemofilters [61].

The pioneering work by Humes et al. has opened a new
perspective not only for improving renal replacement treat-
ment, but also for moving dialysis patients outside the clinic.
Indeed, the growing evidence for the efficacy and safety of

longer and more frequent dialysis treatment has led
a multitude of studies and new prototypes, the so-called
Portable and Wearable Artificial Kidneys (PAK, WAK). The
development and challenges of such highly engineered, non-
cell based, technologies go beyond the scope of this review
and have been recently reviewed elsewhere [62–64].
Combining the first experiences with RAD bioengineering
and new advances in miniaturization technology, a project
for an Implantable RAD, or implantable bioartificial kidney,
was described by Fissel and Roy [65,66]. The two main chal-
lenges that hinder engineering of an implanted system are i)
to reduce the large size and replicate the high permeability
coefficient of conventional hemofilters, and ii) to overcome
the need for a great amount of dialyzate. The first challenge
was tackled by the use of microelectromechanical system
technology and the creation of silicon nanopore membranes
capable of designing highly uniform pores [67]. This technol-
ogy guaranteed higher permeability and selectivity, mimicking
the glomerulus basement membrane structure, and allowed
to both reduce the filter size and the required pressure ahead
of the filter taking advantage only of the arterial-venous pres-
sure differential, with no need of a mechanical pump [66,67].
This silicon nanotechnology has been successfully tested in
large animals [68,69]. The second challenge could be tackled
by placing a system of selective reabsorption in series the
filtering unit permitted, by mimicking the nephron anatomy,
to overcome the need for a large volume of dialysate. This
could be possible by taking advantage of the bioartificial
kidney technology developed by Humes et al. in the RAD
and the BRECS, by seeding and differentiating human epithe-
lial cells over silicon and thin-film material substrates and
microelectromechanical system materials [70]. Despite limita-
tions and challenges, mostly represented by high costs of
production and storage, the ability to reabsorb a great volume
of water and solutes from the filtrate, and the durability of the
implanted device, this bioengineered artificial kidney could
represent a feasible alternative to renal replacement therapy
and transplantation.

3.2. Kidney-derived scaffolds

The generation of kidney-derived scaffolds may represent
a valid tool to create bioartificial kidneys. These biological
scaffolds are obtained upon removal of cellular components
through detergents and enzymes without affecting the extra-
cellular matrix (ECM), a process termed ‘decellularization’,
which has been developed within the past decade [71,72].
The resulting kidney acellular matrix is subsequently recellu-
larized through different cell seeding strategies. Importantly,
biological scaffolds permit signal exchange between the
matrix and the cells to induce migration, proliferation, and
differentiation. Despite those unique aspects of the decellular-
ization-recellularization technology, the number of donor cells
is limited from the point of view of costs and its technological
incompleteness. Achieving tissue/organ function genuinely
requires increasing its scale and advancement of the recellu-
larization-technology. The scaffold provides the environment
to promote such a cellular function. However, the chemical-
treated scaffold does not necessarily guarantee the
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presumable repopulation of the donor cells that support renal
organ function on the scaffold. The repopulation of billions of
properly aligned cells to achieve kidney function that is better
than dialysis demands further technological breakthroughs
and innovations.

While the clinical use of decellularized scaffolds has been
documented for some organs, like bladder [10] and dermis
[73], kidney engineering is still at its early stage. This is mostly
due to the complexity of the renal structure, composed of
more than 26 different types of highly specialized cells [74].
This is translated into a lack of satisfying recellularization
protocol to repopulate the whole kidney. In fact, for efficient
kidney regeneration, both the parenchyma and the vascula-
ture need to be entirely reconstructed with, ideally, patient-
derived cells that would not trigger immune rejection. So far,
the most promising results for kidney recellularization have
been obtained by using either epithelial cells in combination
with endothelial cells or PSCs that can differentiate toward
every other cell type. Song et al. showed encouraging results
by infusing human umbilical venous endothelial cells
(HUVECs) and rat neonatal kidney cells (NKC) in a rat kidney
scaffold. After cell infusion and maintenance in a whole-organ
bioreactor, the newly regenerated epithelium appeared to
resemble the native nephron. Importantly, the recellularized
kidney was able to produce rudimentary urine both in vitro
and, following transplantation into rats, in vivo [75]. The other
appealing source to repopulate the biological scaffolds is
represented by PSCs as they can potentially differentiate into
any of the adult renal cell types [76]. Ross et al. observed that,
after infusion through the renal artery, murine ESCs engrafted
mainly the vascular and glomerular structures of decellularized
rat kidneys. Notably, only murine ESCs in direct contact with
the basement membrane showed signs of differentiation
while the others became apoptotic, thereby forming lumens,
thus suggesting that the extracellular matrix directs commit-
ment of pluripotent cells [77]. More recently, Bonandrini et al.
developed an optimized protocol for rat whole-kidney scaf-
folds recellularization, by infusing murine ESCs through the
renal artery under controlled pressure perfusion with recircu-
lating medium for up to 72 h. Nevertheless, murine ESCs were
mainly distributed in the glomerular capillaries and the vascu-
lature and only occasionally reached the tubular structures
[78]. Attempts have been made also using human-derived
ESCs and human iPSCs. Using acellular scaffolds derived from
rhesus monkey kidneys, Batchelder et al. and Nakayama et al.
showed that human ESCs differentiate toward renal lineage
and formed tubular structures [79–81]. Remarkably, the age of
the donor was shown to affect the grafting success [81]. To
avoid the in vivo differentiation process of PSCs, which could
be partial, in 2016 Du et al. injected into mouse decellularized
kidney Pax2+ renal progenitor cells and endothelial cells
derived from human iPSCs [82]. Following implantation for
12 weeks of the recellularized kidney into immunodeficient
mice, the authors observed effective repopulation of the glo-
meruli only in the presence of both Pax2+ and endothelial
cells concluding that endothelial cells are required for cellular
assembly of the glomerular structures while they do not affect
tubule repopulation [82]. In addition, the presence of endothe-
lial cells positively influenced the filtration potential of the

glomerular units measured by employing a bioreactor
in vitro. More recently, Ciampi et al. showed efficient repopu-
lation of kidney vasculature in all the compartments, from
glomerular capillaries to peritubular capillaries and small ves-
sels, using iPSC-derived endothelial cells [83]. The detection of
fenestrated endothelium in glomerular capillaries, but not in
the vascular capillaries, clearly suggested site-specific
endothelial cell specialization.

One of the many hurdles to translating such recellularized
scaffolds into clinical practice is represented by the need to
achieve an efficient repopulation of the kidney. In an attempt
to overcome this obstacle, different delivery routes have been
tested. When cells are infused via the renal artery, they can
only reach glomerular capillaries [77,84], while the infusion
through the renal vein [84] allowed the cells to spread in the
peritubular capillary, at the cortical and medullary level, but
only focally. To improve the engraftment, Song et al. delivered
endothelial cells through the renal artery and epithelial cells
through the ureter while maintaining negative pressure out-
side the kidney scaffold [75]. This protocol permitted the
repopulation of the tubular structures, although it was limited.
In order to further increase the degree of recellularization,
a specialized bioreactor was designed to infuse cells through
the renal artery at high pressure [85]. In this case, the authors
were successful in recellularizing about 50% of the renal
volume. However, the observed cell translocation to the peri-
tubular structures was likely the result of capillary and tubular
membrane rupture due to the high pressure applied, an
observation confirmed also by Ciampi et al. [83].

Despite the encouraging results reported so far, we are still
far from translating this technology into clinical settings due
to uncertainty of complete decellularization methods without
disrupting the remaining matrix [86], and/or the host immu-
nological response to the decellularized scaffold [87].

4. Development of self-organizing nephrons

While creating a whole replacement kidney remains
a technical challenge, the current technologies led to the
development of nephron parts, that can serve as a tool to
understand renal (patho)physiology or eventually could be
used as the elementary units of bigger structures.

4.1. Kidney organoids

Kidney organoids are self-organizing 3D aggregations derived
from ESCs or iPSCs that respond to environmental cues. The
generation of kidney organoids was first reported in 2014 and
a whole body of work has been published since then, as
comprehensively reviewed by Little and Combes [88] and by
Nishinakamura [89]. Kidney organoids represent a remarkable
tool, in particular for disease modeling, as illustrated by two
recent reports that underline their potential for personalized
medicine. In the first one, the authors generate human iPSCs
able to form organoids from the urine of pediatric patients
affected with congenital anomalies of the kidney and urinary
tract (CAKUT) [90]. This approach validates the use of urine as
a reliable source of iPSCs from infants and children with
kidney diseases. In the second one, kidney organoids were
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obtained from iPSCs produced from the somatic cells of
a patient with hereditary c-met-mutated papillary renal cell
carcinoma, and represent the first proof of concept of
a ‘hereditary renal cancer in a dish’ model [91]. Several major
pitfalls still hamper the use of organoids as transplantable
organs. First, while kidney organoids are composed of glomer-
uli and structures resembling proximal and distal tubules, their
organization does not mimic one of mammalian kidneys.
Although some glomeruli present endothelial cells, the major-
ity of them lack a vascular network. However, organoids
implanted under the renal capsule of an immunodeficient
mouse become vascularized, and endothelial cells have been
found to originate either from the host [92] or from the graft
[93]. Independently of their origin, the neovessels are much
smaller than renal arteries, and could compromise blood fil-
tration by the organoids [89]. Secondly, single cell RNA
sequencing of kidney organoids has revealed that the orga-
noids are more immature than the adult kidney [94], being
more similar to embryonic kidneys from the first trimester of
gestation [95]. Maturation, as well as size increase, would
therefore be essential to obtain transplantable kidneys [89].
Recently, Homan and colleagues developed an in vitro method
for culturing human PSC-derived kidney organoids on printed
millifluidic chips under high fluidic shear stress, which allowed
the formation of a glomerular vasculature within the orga-
noids and an improved morphological maturation of the glo-
merular and tubular cells [96]. Whether or not the
microvascular networks present within these kidney organoids
are readily perfusable is still unknown. Nonetheless, this
method represents a significant advancement in the field of
kidney organoids. Then, Taguchi and Nishinakamura gener-
ated murine higher-order kidney organoids, that presented
branching ureter with nephron progenitor niches and differ-
entiated nephron components [97]. Unfortunately, they failed
to form higher-order organoids from human iPSCs, mitigating
the enthusiasm for this new protocol. Finally, organoids
require a urinary exit tract to be connected to the host’s ureter
or bladder. Possible solutions involve surgery to fashion
a urinary drainage system from embryonic ureter and/or blad-
der tissues [98]. Alternatively, the lower urinary tract could be
generated from human stem cells, such as in the method
proposed by Suzuki et al. for the directed differentiation of
human iPSCs into mature stratified bladder urothelium [99].
Meanwhile, several research groups are studying the molecu-
lar cues that direct the development of the ureter and urinary
bladder. For example bone morphogenetic protein 4-soaked
beads placed near an organoid broke the symmetry of the
system, causing a nearby collecting duct to develop into an
ureter-like ‘trunk’, while away from the bead collecting duct
branching and nephron formation were not disturbed [100].
On a side note, considerable variations between experiments,
clones, as well as research groups, have been reported, which
could partly be related to the several protocols currently used
to obtain kidney organoids [101]. The whole field would
greatly benefit from a standardization of the methods.
Overall, organoids represent an advance in the development
of self-organizing nephrons.

4.2. Kidney-on-a-chip

4.2.1. Glomerulus-on-a-chip
The main function of the glomerulus is to filter fluids and
electrolytes from the blood and to prevent the loss of proteins
[102]. This activity occurs at the level of the glomerular filtra-
tion barrier (GFB) and is coordinated by the interaction of two
highly specialized glomerular cells, the fenestrated endothe-
lium and the podocytes, which are separated by a thin layer of
glomerular basement membrane (GBM) [102]. Conventional
tissue culture methods fail to reproduce the structural and
functional characteristics of the glomerulus [103] and systems-
level analysis of podocyte biology and kidney disease mechan-
isms largely rely on animal studies [104]. However, the process
often fails to predict human responses because traditional
animal models do not accurately mimic human pathophysiol-
ogy; meanwhile, a staggering number of animals are used
[104]. For these reasons, there is a broad need for alternative
ways to model human diseases in vitro to accelerate the
development of new drugs and advance personalized medi-
cine. In the past 5 years, the development of human organs-
on-a-chips, in which microscale engineering technologies
enable the recapitulation of the microarchitecture and func-
tions of living human organs, has opened entirely new possi-
bilities to create in vitro models that reconstitute more
complex 3D organ-level structures and to integrate crucial
dynamic mechanical cues as well as chemical signals [105].

Zhou et al. used the glomerulus-on-a-chip concept to
develop a model of hypertensive glomerulopathy, composing
a glomerulus-on-a-chip microdevice with conditionally immor-
talized glomerular endothelial cells and mouse podocyte pre-
cursor cells co-cultured on opposite sides of a laminin-coated
PDMS membrane [106]. The physiological and pathological
glomerular microenvironment was then established by supply-
ing perfusion flow in the upper microchannel and regulating
mechanical forces (e.g. glomerular capillary pressure, shear
force, and stretch stress) to act on the membrane [106].
Wang et al. subsequently reported the use of a glomerulus-
on-a-chip microdevice lined by isolated primary glomerular
microtissues that experience fluid flow for studying early-
stage diabetic nephropathy, providing further proof of princi-
ple that these devices could serve as disease models of glo-
merulopathy [107].

In 2019, Petrosyan et al. described a glomerulus-on-a-chip
constituted by human podocytes of different origin (primary-,
immortalized-, and amniotic fluid-derived podocytes) and
human glomerular endothelial cells co-cultured in a three-
channel version of the OrganoPlate® in the absence of an
artificial membrane separating them [108]. This system repro-
duced a functional GFB that can perform differential clearance
of albumin and inulin and was disrupted following exposure
to puromycin aminonucleoside (PAN). Intriguingly, when
exposed to sera from patients with anti-podocyte autoantibo-
dies, the chips showed albuminuria proportional to patients’
proteinuria, phenomenon not observed with sera from healthy
controls or individuals with primary podocyte defects. The
authors also validated the chip as a disease-modeling platform
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for diabetic nephropathy and genetic diseases affecting the
podocytes and for drug testing [108].

The development of a functional glomerulus-on-a-chip had
been hindered by the lack of functional podocytes until the
work of Musah et al., who obtained terminally differentiated
podocytes inducing direct differentiation of human iPSCs with
high efficiency within 26 days under chemically defined con-
ditions [109]. The iPSC-derived podocytes recapitulated the
cell/cell interface and the molecular filtration properties of
the glomerular capillary wall when co-cultured with primary
human glomerular endothelial cells in a microfluidic device
[110]. In this device, the GBM was mimicked by using a porous
and flexible polydimethylsiloxane (PDMS) membrane functio-
nalized with the protein laminin and cyclic mechanical strain
was applied to cell layers by stretching the flexible PDMS
membrane, using vacuum. The glomerulus-on-a-chip was not
designed to engineer the whole kidney, but it represents an
advanced standard for modeling the GFB, thanks to the pos-
sibility to modulate both physical forces and chemical stimuli
controlling glomerular cell functions.

4.2.2. Tubule-on-a-chip
The main tubular functions are categorized as excretion of
endogenous and exogenous waste products, reabsorption of
compounds from the glomerular filtrate and regulation of
water and electrolytes. For an in-depth understanding of
renal tubular physiology, engineered platforms able to repro-
duce functional portions of the nephron are increasingly
expanding. The first rudimental device has been developed
in 2001 [111]. Over the last 20 years, the bioengineering
research has led to the development of several on-chip plat-
forms that have been proved to be useful elements to model-
ing of human kidney disease in vitro and to predicting drug
toxicity [112,113]. A tubule-on-a-chip is a device where tubular
cells are cultured in a three-dimensional (3D) channel, repro-
ducing the microenvironment of human kidney tubule and its
functions of reabsorption and secretion at the same micro-
scale as living cellular milieu. Several investigators have suc-
cessfully tested different synthetic materials in combination
with various natural polymer-based devices to better mimic
the natural physiological scaffolds [112–115]. A critical issue in
designing and developing tubule-on-a-chip is the cell source.
The majority of current tubule-on-a-chip systems utilizes
immortalized cell lines such as canine (Madin-Darby canine
kidney, MDCK) tubular epithelial cells, the porcine LLC-PK1
(Lilly Laboratories cell, porcine kidney) cells, and the immorta-
lized human renal tubular cell line HK-2 (human kidney 2).
Unfortunately, none of these cell lines fully recapitulates the
primary cell phenotype, nor do they display proximal tubular
functions because of considerable phenotypic and genetic
divergences [116]. Primary human PTECs are the most promis-
ing in terms of functionality, even if this model is hampered by
donor variability, a limited proliferation capacity and cell ded-
ifferentiation upon prolonged culture [115]. More robust cell
models that ensure constant availability and a stable pheno-
type are preferred over primary cells for applications of high-
throughput screening. To this aim, engineered cells such as
the conditionally immortalized human PTECs might be

promising suitable models for the implementation of tubule-
on-a-chip technology [114]. Embryonic stem-cell-derived
human PTECs are also promising but have not been suffi-
ciently characterized in microfluidic systems [117]. Renal pro-
genitor cells represent an attractive option because they can
be easily isolated from either renal tissue or urine, expanded in
culture and differentiated in both tubular cells and podocytes
[118,119]. Two independent studies developed microfluidic
tubule-on-a-chips, starting from renal progenitor cells isolated
from human kidneys and urine. The use of renal progenitors
isolated from patients may pave the way to the development
of personalized-disease-modeling [120,121].

Differently from static culture systems, a fundamental advance
in tubule-on-a-chip technology was the microfluidic device that
provided a mechanical stimulus, the fluid shear stress (FSS), that
affects the cellular structure and the expression of proteins linked
to specific tubular functions [122–124]. More importantly, the
generation of leak-tight, polarized kidney tubules enabled to
recapitulate physiological (trans-epithelial) activity including cellu-
lar uptake of albumin [120,121,125], secretory clearance of albu-
min-bound uremic toxins [61], transportation of sodium/
potassium, urea, creatinine, glucose and bicarbonate, and vitamin
D activation [115]. In addition, microsensors to measure transe-
pithelial electrical resistance may be embedded in tubule-on
-a-chips, improving real-time assessment of tubular physiology
in response to environmental changes [125]. This is helpful when
microfluidic systems are used to model human kidney disease
in vitro. A first attempt of modeling human kidney disease was
the study of the pathological role of human PTECs in the devel-
opment of kidney fibrosis during proteinuric nephropathy [126].
The epithelial cells exposed to serum proteins showed apoptosis
or epithelial-mesenchymal-transition (EMT) similar to in vivo pro-
cesses [126]. A further disease model regarded the study of the
mechanisms of stone formation in the tubule in real time after
injection of CaCl2 and Na3PO4 into the device [127]. In the future,
it is expected that tubule-on-a-chip would be used to model
various kidney tubular diseases.

In contrast to proximal tubule, few studies have examined
the physiology of distal tubular and cortical collecting duct cells
cultured in microfluidic devices [128]. However, in order to be
physiologically and pathophysiologically relevant, microfluidic
devices must integrate cell–cell interactions, such as those
in vivo in the nephron. Although Weinberg et al. proposed the
first computational model for a nephron including the four
major components (the glomerulus, proximal tubule, loop of
Henle and connector), a true kidney-on-a-chip model in vitro
has yet to be achieved [129]. The first attempt was a microfluidic
system that consists of a peristaltic micropump (heart), a dialysis
component that mimics glomerular filtration and a tubular
secretion component [130]. Moreover, complex metabolic inter-
actions were reconstructed by using dedicated organ-on-a-chip
platforms. A recent example is the use of a multi-compartment
microfluidic chip to recapitulate hepatic vitamin D metabolism
and renal bio-activation [131]. However, many challenges have
to be overcome because the structural and functional complex-
ity of kidney make the development of a true kidney-on-a-chip
more than just a sum of individual nephron components.

Recently, Peired et al. developed a preclinical model of
renal papillary tumor, by growing renal progenitor cells
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(RPCs) infected with NOTCH1-overexpressing lentivirus [132] in
a tubule-on-a-chip generating tumor-like masses [133].

The most diffusely and appealing application of tubule-on
-a-chip is drug-induced nephrotoxicity screening [134–136].
This technology was helpful to reproduce the in vivo cisplatin
and gentamicin toxicity, demonstrating that the once-a-day
bolus dosing method was less nephrotoxic than the continuous
infusion method [137]. Moreover, the combination of tubule-on
-a-chip systems with innovative detection methods to analyze
novel biomarkers specific for nephrotoxicity identifies this tech-
nology as a fully compatible platform with automation and high
content screening equipment [134–141]. However, the goal stan-
dard in understanding nephrotoxicity is the integration of multi-
ple cell types from different organs. This strategy is crucial in
evaluating secondary drug toxicities resulting from drug meta-
bolism. An example is ifosfamide, that is not nephrotoxic, but
chloroacetaldeyde, a hepatic metabolite of ifosfamide, is the
major cause of ifosfamide-induced nephrotoxicity. Co-culture of
HepaRG hepatocytes and MDCK cells reproduced the effect of
ifosfamide metabolism on nephrotoxicity and confirmed the
systemic interaction of the liver and kidney [142]. Following
this, multi-organ-on-a-chip models comprising intestine
(human enterocytes), liver (human hepatocytes), skeletal muscle
(human myocytes), skin (human biopsy), nervous system (iPSC-
derived human neurons and astrocytes) and kidney (human
PTECs) were developed to assess drug absorption, distribution,
metabolism, and excretion as well as multiorgan toxicity
[143–145].

Overall, the tubule-on-a-chip technology has shown strong
promises in mimicking the complexity of native tissues in vitro
and ex vivo, showing recent significant advances to study the
kidney and its diseases.

4.2.3. 3D bioprinting
A step further in the direction of reproducing in vitro the tissue
complexity is represented by 3D bioprinting. Bioprinting con-
sists in the layer-by-layer deposition of cells and supporting
components into complex 3D functional living tissues. So far,
3D bioprinting has been applied to the generation of skin,
cartilage, bone, and vascular tissue to be transplanted in recon-
structive surgery [146–148]. However, bioprinting of more com-
plex tissues, like the kidney, presents several challenges: 1. the
technical difficulty to reproduce the complex renal architecture;
2. the choice of cell types; 3. the choice of proper biomaterials
that permit the preservation of renal structure and functionality
[149–153]. Because of these difficulties, currently 3D printing
technology is principally employed for the generation of por-
tions of the nephron that would allow the development of
a more accurate model from an architectural and functional
point of view. King et al. used a 3D bioprinting platform to
create an interstitial interface containing human renal fibro-
blasts, HUVEC and human PTECs. This model demonstrated to
be able to maintain human PTECs morphology, viability and
function for at least 2 weeks in culture [154]. The tissues also
showed to be sensible to cisplatin-induced nephrotoxicity, that
was reverted by inhibiting the cationic uptake transporter OCT2,
confirming the successful mimicking of native tissue.
Subsequently, the Lewis bioprinting team worked to create
a 3D kidney tissue able to replicate human kidney physiology

[155]. Briefly, their multi-material 3D printing platform permitted
the creation of a perfusable, convoluted proximal tubule by
printing the fugitive ink within an engineered extracellular
matrix composed of a gelatin–fibrin hydrogel, housed within
a customized perfusion chip. The ink was then removed, estab-
lishing an open lumen that was then seeded with immortalized
human PTECs. This fabrication method allowed the formation of
3D proximal tubule models with customized diameter, length,
and curvature lined with confluent layer of epithelium that
preserved viability for up to 2 months. Moreover, the immorta-
lized human PTECs showed morphological (dense brush border)
and functional (albumin uptake) properties which were
enhanced if compared to the same cells growing in 2D and
comparable to native proximal tubule epithelial cells. In addi-
tion, when treated with different concentration of Cyclosporine
A, a high number of cells died determining the disruption of the
epithelial barrier function. In 2019, to better mimic the micro-
environment of a native kidney tissue, the same team created
a vascularized proximal tubule model [156]. These 3D renal
tissues were made up of neighboring ducts that were seeded
with immortalized human PTECs and glomerular microvascular
endothelial cells, incorporated in a permeable-engineered extra-
cellular matrix, and independently addressed using a closed-
loop perfusion system. Both epithelium and endothelium
showed a healthy and mature phenotype and exhibited active
reabsorption of solutes via tubular – vascular exchange. These
characteristics permitted the authors to evaluate the epithelium-
endothelium cross-talk in basal and disease conditions (hyper-
glycemic state).

Recently, Higgins et al. used the 3D bioprinting technology
to produce kidney organoids in a way that was reproducible,
rapid and transferable between cell lines [157]. This technique
will greatly facilitate high content compound screening. The
studies mentioned above demonstrated that the 3D bioprint-
ing is a reliable tool for creation of in vitro kidney disease
model and drug testing. There is great hope that the 3D
bioprinting technology would be applied to the construction
of fully functional whole kidneys, resolving the issue of organ
availability for renal transplantation.

4D bioprinting is a new technology characterized by
a fourth dimension, ‘time’, that is incorporated within the 3D
bioprinting [158]. Utilizing a particular type of hydrogel
responsive to external stimuli as physical (e.g. water, tempera-
ture, light, electric field, and magnetic field); chemical (e.g. pH
value and ion concentration) or biological (e.g. glucose and
enzymes) ones, the printed material can modify reversibly its
shape and better mimic the physiological dynamic changes of
native tissue. However, despite its enormous potential, the 4D
bioprinting is still in the stage of proof-of-concept study.

5. Conclusion

Huge advances in kidney bioengineering are generating new
opportunities to develop renal replacement therapies. Although
these techniques represent attractive strategies, the complexity
of the organ from a structural and functional point of view
precludes their immediate clinical application. Nevertheless,
the microscale engineering technology combined with stem
cell technology (organoids, microfluidic devices and 3D
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bioprinting of nephron portions) are creating interesting possi-
bilities to investigate the physiology and the pathophysiology of
the kidney. Collectively, these kidney bioengineering techniques
allow to envision the creation of new organs in the future, and at
present to generate advanced experimental models of renal
diseases and tools to address drug toxicity. This can be tailored
to the individual patient in the context of personalized medi-
cine, providing new solutions for a steadily increasing number of
chronic and ESKD patients (Table 1).

6. Expert opinion

Bioengineered kidneys hold promises for future clinical practice.
While not tested yet in clinical settings, xenotransplantation of
pig kidney may be a strategy for renal replacement therapy.
Once removed the last immunological barriers, spatial and tem-
poral issues related to transplantation would be reduced, as pig
kidneys may be prepared on site and on demand. The develop-
ment of personalized interspecies chimaeras would significantly
reduce the issues of immune rejection. However, no viable
human-animal chimera has been produced so far, highlighting
the technical challenge involved. Because of their similarity to
humans and despite legal and ethical issues, the development of
human organs in NHP would alleviate many technical difficulties.

Bioengineered artificial kidneys represent an alternative
approach to renal replacement therapy and transplantation. The
combination of engineering, biomaterial science, cell biology,
and reconstructive microsurgery led to the development of the
RAD, the only bioartificial kidney device successfully tested in
humans. The RAD could not only improve renal replacement
therapy, but also move dialysis patients outside the clinic.
Nevertheless, given the complexity of renal architecture and
matrix composition, moving from RAD to whole kidney genera-
tion is virtually impossible with the current technologies.
Biological scaffolds derived from allogenic or xenogeneic kidneys
would permit to circumvent these issues. As custom bioreactors
enable complete kidney decellularization, the remaining hurdle is
obtaining fully functional recellularized scaffolds with the recon-
stitution of the entire nephron structure to restore renal function,
neovascularization, and nervous innervation. Collectively, these
approaches could produce a virtually unlimited supply of organs
that could potentially permit to lower the staggering human and
societal costs of ESKD patients worldwide.

However, creating a de novo, fully functional, bioartificial
kidney that could replace the native kidney with efficiency
and safety remains an unmet, although plausible goal.
Breakthroughs in stem cell technology, involving iPSCs or
renal progenitors, paved the way to recreating the complex
architecture of the adult organ with kidney organoids, which
revealed themselves optimal tool for disease modeling and
drug testing. However, their small size, poor vascularization
and lack of drainage system currently impede their transla-
tion into the clinic. Meanwhile, advances in bioengineering
and cell biology allowed the production of microfluidics-
based systems that enable to control cell microenviron-
ments, reproducing accurately the physiology of nephron
portions. These technologies have been successfully applied
to renal disease modeling and drug toxicity testing, using
patient-specific cells, showing their potential to reduce

patient morbidity and mortality associated with unpredicted
adverse drug reactions. Still, drug-induced nephrotoxicity
screening needs standardized microfluidic tubule-on-a-chip
models compatible with automation and high throughput
screening equipment. The combination of microfluidics with
bioprinting could be a valid approach to support pharma-
ceutical research, to reduce animal experimentation, to limit
the costs of development of new and safer drugs, and to
form the basis to eventually engineer a whole kidney.
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