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Abstract We study the inverse boundary value prob-

lem for time-harmonic elastic waves, for the recovery

of P - and S -wave speeds from vibroseis data or the

Neumann-to-Dirichlet map. Our study is based on our

recent result pertaining to the uniqueness and a con-

ditional Lipschitz stability estimate for parametriza-

tions on unstructured tetrahedral meshes of this in-

verse boundary value problem. With the conditional

Lipschitz stability estimate, we design a procedure for

full waveform inversion (FWI) with iterative regular-

ization. The iterative regularization is implemented by

projecting gradients, after scaling, onto subspaces as-

sociated with the mentioned parametrizations yielding

Lipschitz stability. The procedure is illustrated in com-

putational experiments using the Continuous Galerkin

finite-element method of recovering the rough shapes
and wave speeds of geological bodies from simple start-
ing models, near and far from the boundary, that is,
the free surface.
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1 Introduction

Seismic data from land acquisition can mathematically
be represented by the Neumann-to-Dirichlet map [3]
since the normal traction (Neumann boundary value) is

applied to the boundary and the displacement (Dirich-

let boundary value) is measured. This map forms the

data for the inverse boundary value problem for time-

harmonic elastic waves corresponding with vibroseis data.

We present FWI with iterative regularization, which

aids in avoiding over-parameterization of the original

problem. This approach is based on our recent result
[6] pertaining to uniqueness and a conditional Lipschitz
stability estimate, that is, well-posedness for parametriza-
tions on unstructured tetrahedral meshes of this nonlin-

ear inverse boundary value problem. The unstructured

tetrahedral meshes form domain partitions, while the

wave speeds on these are chosen to be piecewise con-

stant. The conditional Lipschitz stability linking the
model differences and the data residuals provides theo-
retical control of the reconstruction on the stable sub-
space.

Following the mentioned parameterizations and a

natural tetrahedral mesh refinement procedure (while

elements may simply, randomly change as well), we
form a hierarchy of subspaces generating sequences of
increasingly accurate approximations of “true” models.

One may view these subspaces as setup for compres-

sion of true models [2]. The piecewise constant param-

eter representations are reminiscent of expansions of

parameters in terms of Haar wavelets [34]. We note

that the stability constant will grow exponentially in
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the number of elements of the mesh. This reflects the

ill-posedness of the problem. The study of the interplay

between growing stability constants and compression

rates in multi-level iterative reconstruction was studied

in generality by De Hoop et al. [18].

The contribution of this paper is a convergence study

of the above mentioned, multi-level approach to FWI

by computational experiments. We formulate the in-

verse Neumann boundary value problem in terms of a

constrained minimization of a suitable misfit functional

justifiably derived from a Hilbert-Schmidt norm. The

adjoint state method yields an adjoint boundary value

problem. Elastic-wave boundary value problems can be

naturally discretized by the finite-element method. To

mimic the target half-space problem with a Neumann

boundary condition on the top, we introduce a con-

straint for the damping function in constructing the
perfectly matched layers (PMLs) [4]. The local matrices
are constructed elementwise after discretizing the rele-
vant weak formulation. We construct the global matrix

pattern on unstructured meshes and then apply a par-

allel strategy for generating a distributed matrix. We

refer to [35] for the use of the finite-element method

and associated parametrizations in FWI. Unstructured
tetrahedral meshes aligned with finite-element discretiza-
tions [53] were considered using purely imaginary fre-

quencies.

Following earlier works [29, 57, 25] for the acoustic
wave equation, the reconstruction of subsurface elas-

tic parameters using iterative minimization was origi-
nally introduced in the time domain [37, 59]. The time-
harmonic or frequency-domain formulation of the seis-

mic inverse problem was later considered for the acous-

tic case [45] and then for the elastic case [43]. Multiscale

FWI [11, 55], was designed to mitigate the occurrence of

local minima without proof. However, many case stud-

ies [1, 7, 24, 27] have confirmed its computational ef-
ficiency. Here, frequency progression comes into play.
In our formulation, the optimal frequency for the next

level minimizes the Lipschitz stability constant for the

next level yielding the largest possible radius of conver-

gence to the next approximation. We illustrate this in

our computational experiments.

As far as optimization is concerned, the applica-

tion of Newton-type methods in FWI dates back to

the 1980s [37] and 1990s [44]. Typically, one adopts a
matrix-free approach through the adjoint state method.
We mention a few results describing various strategies

to mitigate the computational cost. The diagonal of the

Gauss-Newton Hessian [15] was used to scale the gra-

dients of the misfit function for P - and S -wave speeds,
presumably to speed up convergence. Other standard

methods, such as a limited-memory variant of the quasi-

Newton BFGS method known as the L-BFGS algorithm

[10] and the truncated Newton method [36] have also
been adopted in FWI. We limit ourselves to scaling the
gradient with the diagonal of the Gauss-Newton Hes-

sian primarily due to the computational cost in three-

dimensional multi-parameter reconstruction while the

efficiency of a Gauss-Newton method remains question-

able in any case.

We give a brief overview of recent work concerning

multi-parameter inversion. Multi-parameter FWI was

applied to marine and land data examples [41] and

studied for multicomponent ocean-bottom-cable data

over the Valhall field, where P - and S -wave speeds were

jointly updated [46]. Here, hydrophone data were uti-

lized to update the long and intermediate wavelengths

of the S -wave speeds from the amplitude-versus-offset
variations of the PP reflections. To reduce the computa-

tional costs, a multiscale FWI scheme, which promotes

the construction of full waveform tomographic mod-

els that describe the geological structures at multiple

scales, was used in [24, 63]. Multi-parameter FWI was

also applied to a large wide-azimuth long-offset land

data set in Oman [56], where large wave speed vari-

ations occur between shale and carbonate layers. The

data contained low frequencies down to 1.5 Hz with

long-offsets and wide azimuths. We feel that this case

study justifies the use of low-frequency data in our com-

putational experiments. Time-lapse FWI [47] as a mon-

itoring tool for directly resolving changes was applied

to elastic parameter models to detect a carbon dioxide

gas cloud. Incorporation of surface topography is im-

portant for successful elastic FWI of land seismic data
[39]. We note that surface topography can naturally
be incorporated into unstructured tetrahedral meshes.
Multi-component three-dimensional elastic FWI with

both surface and body waves has been recently applied

to detecting near-surface anomalies [8]. In our formu-
lation, surface and body waves co-exist. For the recov-

ery of a high-wave-speed variations, total variation reg-

ularization was used for blocky updates [19]. Such a

regularization is inherent in our approach. An iterative

solver of the Helmholtz problem was implemented using

a complex-shifted incomplete LU-based preconditioner

[40] and applied to elastic FWI recently.

As conventional elastic multi-parameter FWI [41,

46, 24, 63, 56, 8, 40] is commonly initiated with some

smooth tomographic model, we initiate our iterations

with a very coarse mesh with piecewise constant param-

eters. At low frequencies, this yields a relatively large

radius of convergence to a proper coarse approximation.

We note that the computational and parameter meshes

typically are not the same in our approach.
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The outline of the paper is as follows. In Section 2,

we introduce the direct problem for modeling land vi-
broseis data and the corresponding inverse boundary
value problem. In Section 3, we present the adjoint

state equation for the inverse boundary value prob-

lem and an idealized example to verify the theory. In

Section 4, we describe our multi-level, multi-frequency,

multi-parameter iterative scheme and illustrate its prop-
erties with a computational experiment recovering geo-
bodies from simple initial models. In Section 5, we show

two computational experiments where the true models

are piecewise smooth with high contrasts and do not

belong to the hierarchy of stable subspaces, to illus-

trate the recovery of best approximation in general ap-

plications. In Section 6, we discuss our approach and

the reasoning behind it. To ensure reproducibility of

our experiments, we present our use of the Continuous

Galerkin formula for Neumann boundary value prob-

lems with PMLs in Appendix A, and the first- and

second-order adjoint state method for inverse boundary

value problems in Appendices B and C, respectively.

2 Direct and inverse problem

We consider seismic land acquisition where the forward

modeling can be viewed as solving an elastic boundary

value problem. Vibroseis data (omitting correlation in

time) are modeled by the Neumann-to-Dirichlet map:

the boundary values are given by the normal traction

underneath the base plate of the vibroseis and are zero

(free surface) elsewhere. The applied signal is essen-

tially time-harmonic (suppressing the sweep) [3, (2.52)-

(2.53)]. The particle velocities – from which the dis-

placements can be obtained – are measured by the geo-

phones.

Time-harmonic elastic waves are described by the
operator,

Pil = −ρ(x)δil ω
2 +Ail, Ail = −∂xj

cijkl(x) ∂xk
, x ∈ X,

where i, j, k, l ∈ {1, 2, 3}, X ⊂ R
3 and X is the open

bounded domain of interest and ω denotes the frequency.

The relevant boundary value problem is given by

Pilul = 0, (1)

(cinkl∂xk
ul) νn|Σ = gi, (2)

where u is the displacement vector, Σ ⊆ ∂X signifies

the part of the surface on which the acquisition geome-

try is defined, and g denotes the time-harmonic bound-

ary normal traction, or the Neumann boundary con-

dition. The other computational boundaries that are

not the surface, i.e., ∂X/Σ, are treated as the PMLs.

Details are discussed in Appendix A. Let m represent

the model coefficients, m = (c, ρ). Proceeding as in the

analysis [6], we find a suitable range of frequencies, that
is away from the eigenfrequency of the problem (1)-(2),
such that the problem has a solution for any model

m satisfying suitable prior assumptions. The displace-

ment fields are measured at the surface, which are also

the Dirichlet data. Thus, we define the so-called local

Neumann-to-Dirichlet map

ΛΣ
m : g 7→ u|Σ ,

The vibroseis data probe the Neumann-to-Dirichlet map

via applying the boundary normal tractions at Σ and

collecting the displacement information atΣ. The prop-

erties of the data operator ΛΣ
m depend on the model m

and the acquisition set Σ. The forward map is given by

F : m→ ΛΣ
m. (3)

Here, we assume that the parameters are real-valued

and known in a neighborhood of Σ and otherwise piece-

wise constant on a tetrahedral partition. In the case of

isotropic media, cijkl = λδijδkl+µ(δikδjl+δilδjk). If the
parameters are piecewise constant on a domain parti-

tion, X =
⋃N

j=1Dj , where Dj , j = 1, 2, . . . , N are con-

nected and pairwise non-overlapping open subdomains,

here, tetrahedra, we arrive at the parametrizations,

λ =
N∑

j=1

λjχDj
(x), µ =

N∑

j=1

µjχDj
(x),

ρ =
N∑

j=1

ρjχDj
(x), (4)

where χ indicates the characteristic function. If the

partition is known with reasonable assumptions [6, As-

sumptions 2.4 - 2.6], we can show by choosing suitable

normal traction functions g that F is injective and that

F−1 is Lipschitz continuous [6, Theorem 2.7], i.e., there
exists a constant C such that

‖m1 −m2‖L2 ≤ C‖ΛΣ
m1

− ΛΣ
m2

‖∗, (5)

where m1 and m2 are two different real-valued coef-

ficients, i.e., the collections of {λj}
j=N
j=1 , {µj}

j=N
j=1 and

{ρj}
j=N
j=1 in (4); ∗ denotes the operator norm. The con-

stant C grows essentially exponentially with the num-

ber of subdomains. This number is directly related to
spatial scale. The idea is to pair scale and frequency
through the stability constant, which controls the ra-

dius of convergence within a subspace associated with

this scale.

Frequency progression is carried out as a multi-level

nonlinear projected steepest descent iteration, reminis-

cent of a multigrid approach, which was introduced
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and analyzed in [18]. We emphasize that the (scale-

dependent) meshes defining our domain partitions are

chosen independently from the (frequency-dependent)

computational meshes as illustrated in Fig. 1. The tetra-

hedral domain partitions are generated using Tetgen

[54]. The linear system (1) and (2) from a realistically
sized problem can be solved by a massively parallel al-

gorithm [61] with randomized numerical linear algebra
[33]. To solve a large-scale problem with above 10 mil-
lion model parameters, we may need to utilize an it-

erative method [32] with highly parallel matrix-vector

products [51] to construct a numerical solution at the

target frequency.

3 Adjoint state method for vibroseis data

In this section, we discuss the adjoint problem as a

boundary value problem and formulate the adjoint state

method for vibroseis data. We construct a constrained

optimization problem with the data residual norm as

our misfit functional. We derive the gradient in an ab-

stract setting for general parametrization and then con-

sider the isotropic case for piecewise constant parame-

ters on an unstructured tetrahedral mesh. For the appli-

cation of Newton’s method and a broader understand-

ing, we give the first- and second-order adjoint state

method for the Neumann-to-Dirichlet map as the data

in Appendices B and C.

3.1 Misfit functional of the inverse boundary value

problem

To implement a reconstruction procedure for the so-

lution of the inverse problem, we can reformulate the

problem as a constrained optimization problem. More

precisely, we consider

Ψ̃ =
1

2
‖ΛΣ

m − ΛΣ
m⋆‖2

∗
,

where m varies in the class of piecewise constant coeffi-
cients and m⋆ denotes the true model. From the theory

developed by [6], one should use the data operator norm
∗. Assuming our models are known in the subdomain of

the partition containing Σ on its boundary, ΛΣ
m − ΛΣ

m⋆

will be a Hilbert-Schmidt (HS) operator. We then in-

troduce the misfit functional using the HS norm [17],

Ψ̃ =
1

2
‖ΛΣ

m − ΛΣ
m⋆‖2HS

=
1

2

∞∑

j=1

‖(ΛΣ
m − ΛΣ

m⋆)ψj‖
2
H1/2(Σ), (6)

where {ψj}
∞

j=1 is an orthonormal basis of the space of
the boundary sources and {ΛΣ

m⋆ψj}
∞

j=1 are measured.

In practice, we replace {ψj}
∞

j=1 by the finite set {ĝs}
Ns
s=1

and omit (1−∆Σ)
1/2 in our computational experiments

while dealing with H1/2 norm.

To estimate such an operator norm that is controlled

by the HS norm, the linear combination of sources and

receivers needs to be enough to probe the data oper-

ator. Within one Love wavelength, a few sources and

receivers are needed. Hence, choosing suitable bound-

ary sources {gs}Ns
s=1 withNs sufficiently large, the misfit

functional

ΨHS =
1

2

Ns∑

s=1

∫

Σ

χΣ(Ru
s − ΛΣ

m⋆gs)·

(Rus − ΛΣ
m⋆gs) dx, (7)

gives a good approximation of Ψ̃ . The Neumann-to-

Dirichlet map generates measurements ΛΣ
mg

s = Rus,

for s = 1, 2, . . . , Ns, where s is the source index, Ns is

the total number of sources, ΛΣ
m⋆gs represents the data

generated from the true model, R restricts us for each

boundary source to the surface and χΣ represents a
smooth cutoff function over Σ. In practice, we can use

fewer sources and receivers for reconstruction at low

frequency.

3.2 Adjoint state equation and gradient for the inverse

boundary value problem

The adjoint state method was introduced in optimal

control theory [31]. This method [13] was designed to

efficiently calculate the gradient of a functional without

computing Fréchet derivatives of the forward operator

F in (3). The standard formulation uses the elastic wave

equation and point-source data [58, 59].

Our adjoint state equation can be viewed as an

extension of the classic adjoint state method [42]. To

deal with the boundary data, we note that the adjoint

sources are essentially boundary values instead of body
forces, which is often overlooked. Since our model con-
tains sharp jumps, the use of the weak formula is neces-
sary. It is also beneficial for describing major geological

discontinuities. The adjoint equation for inverse bound-

ary value problem should be

−ω2ργlδil − ∂xjcijkl ∂xk
γl = 0, (8)

with the adjoint boundary value,

(cijkl∂xk
γl) νj |∂X = −χΣR(ũi − u⋆i ), (9)



A numerical study of multi-parameter FWI with iterative regularization using multi-frequency vibroseis data 5

(a) (b) (c)

Fig. 1: Illustrations of different meshes. The arrow and red triangles represent the source and receivers. (a) a coarse parameter
representation; (b) a finer parameter representation; (c) the computational mesh.

where γ denote the adjoint wave field; −χΣR(ũi − u⋆i )

denotes the adjoint source; ũ is the solution of the for-
ward problem (1) and (2). Since the objective function

ΨHS(ũ) depends on the model m, we then let

E(m) = ΨHS(ũ).

Combining contributions from all the available sources,

we obtain,

DmE [m] δm =
∑

s

{ ∫

X

−ω2ũsi γ̃
s
i

∂ρ

∂m
δm dx

+

∫

X

(∂xj ũ
s
i ) (∂xk

γ̃sl )
∂cijkl
∂m

δm dx
}
= (∇E , δm),

(10)

where γ̃ denotes the solution of the adjoint problem

(8) and (9); DmE [m] denotes the derivative and ∇E [m]

denotes the gradient. In this work, we will update VP
and VS alternatively from the updated Lamé parame-
ters. More details of the derivation can be found in Ap-

pendix B. It has been pointed out that the difference

between the derivative DmE [m] and gradient ∇E [m]

is sometimes overlooked and the corresponding scaling

of the gradient is essential for the convergence of the

gradient-based optimization approaches [30]. The scal-

ing factors rely on the choice of inner products. The
discretized inner product, (m1,m2) = mT

1Wm2, con-
tains a symmetric positive definite weight W. We note

that the weight W can naturally be constructed via

the Galerkin approximation from the predefined inner

product.

3.3 An idealized computational experiment using

single-frequency data

To follow the theory [6] closely, here, we use an ex-
ample to show the convergence using single-frequency

data, if the exact partition is known. Some preliminary

results can be found in [50]. We use a complex salt

problem using the extended SEG Advanced Modeling

Program (SEAM) phase I model [22]. To describe the

model using fully unstructured tetrahedral meshes, we

need to triangulate the exterior and internal disconti-

nuities. To illustrate the procedure, which is similar to

the work in medical imaging [21], we utilize image seg-

mentation for generating the surface meshes for discon-

tinuities using the Computation Geometry Algorithms

Library (CGAL) [20] and then construct the entire vol-

ume meshes. We separate the model into four domains

to capture the major geological features (see Fig. 2, sim-

ilar to the early work [62]). Once these surface meshes

are generated, we use Tetgen to generate the entire

unstructured tetrahedral mesh. We note that this pro-

cedure is flexible and allows us to control the quality

of our desired mesh, including the smoothness of the

surface mesh, the number of triangles and tetrahedra.

(a) (b)

(c) (d)

Fig. 2: Composition of the mesh of the extended SEAM phase
I model. (a) mesh underneath the salt body; (b) mesh of the
salt body; (c) mesh around the salt body; (d) mesh of the
original water bottom.

The true model, which is shown in Figs. 3(at) and

(bt) for VP and VS , respectively, are piecewise con-
stant. The model size is 7km×8km×3km. Each model

contains 14 subdomains that form the four main sub-

domains in Fig. 2. Each main subdomain is equally

divided into three to four subdomains. We use 3 Hz

data to perform the inversion with 40 iterations. 56
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2

3

4

1.49

4.79
Vp (km/s)(a0)

1

2

0.60

2.96
Vs (km/s)(b0)

2

3

4

1.49

4.79
Vp (km/s)(af)

1

2

0.60

2.96
Vs (km/s)(bf)

2

3

4

1.49

4.79
Vp (km/s)(at)

1

2

0.60

2.96
Vs (km/s)(bt)

Fig. 3: Left column: VP models, (a0) starting VP model,
(af) reconstructed VP model, (at) true VP model; right
column: VS models, (b0) starting VS model, (bf) recon-
structed VS model, (bt) true VS model. The model size is
7km×8km×3km. Middle slices, i.e., x = 3.5km, y = 4.0km,
z = 1.5km, are shown in all figures. The x axis points out-
wards and the y axis points from left to right.

(nx = 7, ny = 8) sources are regularly spaced on the

top boundary and represent three directional tractions.
56 (nx = 7, ny = 8) receivers are also regularly spaced

in the top boundary. The sources and receivers are not
spatially coincident. The smallest offset is around 50m.
In Figs. 3(a0) and (b0), we show the starting VP and

VS models. Since the partitioning of the true models

is known and the number of subdomains is small, we
match the assumption in the theory [6] and expect that
the stability constant is small. Hence, the reconstruc-

tion shown in Figs. 3(af) and (bf) is good. The values
of the bottom two layers are affected due to the PMLs.
We verify the theoretical analysis [6] using this example

with single-frequency partial boundary data and known

domain partition. The salt body that was completely

missing in the initial model is successfully recovered. In

fact, since the number of subdomains is known, we can

start with relatively higher frequency.

4 Computational study: Progressive refinement

In this section, we develop a computational, multi-level

approach consistent with the theory accounting for the

fact that the stability constant will grow exponentially

with the number of subdomains in the partition. This
multi-level technique allows the radius of convergence
to be enlarged. We scale the gradient with the diago-

nal of the Gauss-Newton Hessian, HGN say; this scal-

ing appears as a weight matrix on the left-hand side of

(10). We note that the use of projections (correspond-

ing to iterative regularization) allows us to avoid over-

parameterization. We demonstrate the convergence with

piecewise constant models containing shallow and deep

geological structures. The true model used in this sec-
tion contains complex geological features using men-
tioned tetrahedral representations.

In the iteration, we make a simplification by choos-

ing a fixed step size following rules explained below. We
update VP and VS alternatively from the updated Lamé
parameters. A level-wise stopping criterion, as well as

rules for gradual refinement of the domain partition to-
gether with frequency progression, are discussed in the

following subsections. We demonstrate that a piecewise

constant 1D layered initial model suffices to obtain con-

vergence. This initial model has very few parameters

and will be an approximation (in L2 norm) to the true

model. We typically start the multi-level scheme with

1.0 or 1.5 Hz data necessitated by the general complex-

ity of the true models.

4.1 Iterative regularization and strategy

In this subsection, we discuss our iterative regulariza-

tion strategy and rules associated with the aforemen-

tioned multi-level projected steepest descent method.

Our initial subdomains have roughly cubical shapes

since we have limited knowledge about the subsurface.

We choose the frequency roughly proportional to the

cubic root of the number of subdomains, N . This choice
is motivated by minimizing the upper bound for the sta-

bility constant (maximizing the radius of convergence)

in frequency for a given number of subdomains [5, (41)].

In the acoustic case, the stability constant is studied

quantitatively as well and the choice of frequency can

be evaluated via the quantitative estimates [5]. Given r
as the average radius of the subdomain and cm as the

shortest (shear-)wave speed, we have

N =
Vol(X)

r3
=

Vol(X)

[α(cm/ω)]3
= α−3ω3c−3

m Vol(X), (11)

where α = r/(cm/ω) is a scaling factor. In Table 1,
we summarize our observations of different choices of

(ω,N) pairs. A small N may cause an issue of poor

resolution while a large N may result in divergence. If

N is increased to rapidly the current model might no

longer be within the radius of convergence of the next

level approximation of the “true”model. In Fig. 4, we

show that the choices of (ω,N) pairs in later sections.
In practice, we relate the diameter of a subdomain, r,

to the wavelength and determine the normalization of

the diameter of a subdomain by the shortest (shear-

)wavelength, cm/ω. This is not dissimilar from homog-

enization [12].

The (fixed) step length is chosen in accordance with

the following rule. First, we scale the gradient of the
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choices observations

ω ≪ αcm[N/Vol(X)]1/3 possible to diverge
ω ≈ αcm[N/Vol(X)]1/3 relatively optimal
ω ≫ αcm[N/Vol(X)]1/3 convergence with poor resolution

Table 1: Observations of different choices of (ω,N) pairs.

10 2 10 4

N

1

1.5

2

2.5

3

/2
 (

H
z
)

Section 4.3

Section 5.1

Section 5.2

Fig. 4: Choices of different (ω,N) pairs in different sections.

misfit functional by the diagonal of the Gauss-Newton
Hessian. Then, we determine the energy norm of the
gradient and multiply it with the maximum value of VP
or VS at the current iteration. Since the computational

cost for linear search is quite high, we typically take 10%
of this value as the step size. At the lowest levels, we

can enlarge the step size for computational efficiency.

It will also help us to check if we obtain linear con-

vergence, since the stability constant C in (5) is related
to the slope of the residual curve, which is shown in

Section 5. We monitor the decrease in residual as well
as the norm of the gradient [38, Chapter 3]. We stop the
level-wise iteration when the relative change in residual
when updating VS is less than 1%; however, if the norm

of the gradient determining the update of VS , becomes

less than 1% of the norm of the initial gradient, we stop
the iteration as well.

We also monitor the initial convergence rate: if it is

linear, we are within the radius of convergence to ob-
tain the best approximation at the next level. The con-
vergence is valid only on the projected space. Hence,

a range of models can be good approximations to the

true one as long as they stay in the convergence radius

of the next level. Here we exploit that due to Lipschitz

stability, the convergence is necessarily linear as proved

in [18]. We adjust the refinement of the domain parti-

tioning accordingly. The choice of N in (4) and ω pair

is important. The initial convergence rate can illustrate

the success of the reconstruction and let us know if the

starting model is in the convergence radius.

(a) (b) (c)

Fig. 5: Refinement (from (a) to (b) to (c)) on the parametric
representations: (a) a single piece at the first level; (b) 8
pieces at the second level; (c) 64 pieces at the third level.

4.2 Domain partition

The computational subdomain refinement procedure is

important for the reconstruction. In principle, the fully

unstructured mesh allows us to design arbitrary domain

partition. Fig. 5 illustrates the local refinement of the
parametric representations from level to level. At each
level, we partition the computational mesh into the sub-
domains with a size of approximately half of the shear

wavelength. During the inversion, these subdomains are
utilized as the projections onto a hierarchy of stable
subspaces. In later Section 4.3 and 5, we utilize box-like

partitions at different levels as shown in Fig. 5. Ideally,

the local partition can be performed based on the gra-

dient and model information. Other techniques, such

as the random mesh projectors [28] used in machine

learning community and shape optimization [52] can

further be applied to improve the modeling of complex

geological features. We note that the classical Tikhonov

weights can also be space-dependent and can help to ad-

just the local velocities. The meshing technique extends

the generality and can help to model known discontinu-

ities, such as topography, arid terrains and karst fields

[48].

4.3 An idealized computational experiment illustrating
convergence radii

To verify that our proposed iterative regularization us-

ing projections onto a hierarchy of stable subspaces

leads to convergence, we present a computational ex-

periment in which the true model is piecewise constant,

and it is recovered on a tetrahedral mesh. We consider

geological bodies with rough shapes and high-contrast

variations in P - and S -wave speeds. In the experiment,

the wave speeds at the boundary are assumed to be

known. The model contains a background structure of

three (plane) layers with constant wave speeds while

the heterogeneous bodies are contained in the middle

layer. The background structure is used as the starting

model.

First, we study the reconstruction of shallow hetero-

geneities. Figs. 7(at) and (bt) show the true VP and VS
models. Fig. 7(bt) shows the mesh. These shallow bod-



8 Jia Shi et al.

2.4

2.8

3.2

3.6

2.100

4.000
Vp (km/s)(a0)

1.4

1.6

1.8

2

2.2

1.228

2.310
Vs (km/s)(b0)

2.4

2.8

3.2

3.6

2.100

4.000
Vp (km/s)(a1)

1.4

1.6

1.8

2

2.2

1.228

2.310
Vs (km/s)(b1)

2.4

2.8

3.2

3.6

2.100

4.000
Vp (km/s)(a2)

1.4

1.6

1.8

2

2.2

1.228

2.310
Vs (km/s)(b2)

Fig. 6: Left column: VP models, (a0) starting VP model, (a1)
reconstructed VP model at the first level, (a2) reconstructed
VP model at the first level; right column: VS models, (b0)
starting VS model, (b1) reconstructed VS model at the first
level, (b2) reconstructed VS model at the second level. The
model size is 8km×4km×3km. In the bottom layer, VP =
4.0km/s and VS = 2.31km/s.

ies have different shapes and wave speed values higher

or lower than the background wave speed values. The

sizes of the bodies vary from 200m to 3km. The P -wave

speed contrast varies from -0.9 km/s to 0.8 km/s and

the S-wave speed contrast varies from -0.52 km/s to

0.46 km/s. At 1.0Hz, the diameter of the subdomain is

0.5 km and the shortest wavelength is around 1 km.

The depths of the bodies range from 200 m to 1.5
km. The starting model has three constant P - and S -

wave speeds in layers shown in Figs. 6(a0) and (b0). The

model size is 8km×4km×3km and contains 1.3 million

elements.

We design three levels for the recovery, with each

level providing a rough box-like domain partition of

the model. The first level contains 252 (nx = 14, ny =
6, nz = 3) subdomains, the second level contains 2016

(nx = 28, ny = 12, nz = 6) subdomains, and the third
level contains 16128 (nx = 56, ny = 24, nz = 12) sub-

domains. For each level, we perform a maximum of 150

iterations for the reconstruction at a fixed frequency.

Eighty (nx = 16, ny = 5) sources are regularly spaced in

the top boundary and represent three directional trac-
tions. Eighty (nx = 16, ny = 5) receivers are also regu-

larly spaced in the top boundary. The sources and re-
ceivers are not spatially coincident. The smallest offset
is around 50m.

Following Section 4.1, at the first level, we select

1.0Hz data, and the results are shown in Figs. 6(a1)
and (b1). At the second level, we select 2.0Hz data; the
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Fig. 7: Final reconstructions: (a3) inverted VP model at the
third level, (b3) inverted VS model at the third level; true
model: (at) VP , (bt) VS. The model size is 8km×4km×3km.
In the bottom layer, VP = 4.0km/s and VS = 2.31km/s.

results are shown in Figs. 6(a2) and (b2). At the third

level, we select 3.0Hz data, and the results are shown in
Figs. 7(a3) and (b3). Fig. 8 shows the true uy data at

different frequencies. Figs. 8(a1-a2, b1-b2, c1-c2) shows
a uy data residual (associated with a centrally located

source) from level to level.

For the piecewise constant case, the model represen-
tation follows (4) exactly. Since we begin with a con-

stant layered model, low-frequency data is important
to find the rough anomalies. The later local refinement
allows us to capture details of the anomalies. The multi-

level strategy with subdomain refinement is suitable for

us to capture the main anomalies.

5 Computational experiments:

Multi-parameter elastic FWI

In this section, we study the performance of our FWI
algorithm in two cases as the best approximate models

are computed in a hierarchy of stable subspaces defined
by tetrahedral mesh refinement. We note that both true
models are piecewise smooth. The true data is gener-
ated from the true model with the true mesh with com-

plicated geometries. The simulated data is generated

from the model with the computational mesh. In cur-

rent experiments, no noise is included in the simulated

data. However, for the low-frequency updates, since we

use fewer subdomains, the stability constant is small,

the reconstruction can tolerate noise.

5.1 SEG thrust model

To verify that our proposed iterative regularization (us-

ing projections onto a hierarchy of stable subspaces)

leads to convergence, we present one computational ex-

periment, in which the true model is represented and
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Fig. 8: Data differences from a given boundary traction at the center of the upper surface: at 1.0Hz, (a1) uy difference between
the starting (cf. Fig. 6(a0,b0)) and true (cf. Fig. 7(at,bt)) models, (a2) uy difference between the level 1 (cf. Fig. 6(a1,b1))
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Fig. 9: A vertical slice of the SEG thrust model from a three-
dimensional regular file.

recovered on a tetrahedral mesh. In this example, we

use the SEG thrust model as the true one.

To illustrate the mesh generation, we use a two-

dimensional slice see Fig. 9, as an example to perform

image segmentation. The top row of Fig. 10 shows sev-

eral individual features in Fig. 9. We illustrate the three-

dimensional surface mesh in the bottom row of Fig. 10.

This procedure is helpful for multi-resolution analysis.

Figs. 11(a0) and (b0) show the starting VP and VS
models, which are far away from the true models in

Figs. 12(at) and (bt). The starting models can be ob-

tained from tomographic results. The size of the SEG

thrust model is 16km×4.41km×3km. The left columns

in Figs. 11 and 12 show the vertical slice of the VP
models at y = 1.5km and both right columns show the

horizontal slice of the VS models at z = 0.8km. As men-

tioned in Section 1, we start from 1.5Hz, which can be

obtained in the field [56].

We design three levels for the recovery, with each

level providing a rough box-like domain partition of

the model. The first level contains 960 (nx = 24, ny =

8, nz = 5) subdomains, the second level contains 3840

(nx = 48, ny = 8, nz = 10) subdomains, and the third

level contains 7680 (nx = 48, ny = 16, nz = 10) subdo-

mains. For each level, we perform a maximum of 120

iterations for the reconstruction at a fixed frequency.

240 (nx = 30, ny = 8) sources are regularly spaced
in the top boundary and represent three directional

tractions. These three components are treated sepa-
rately. 240 (nx = 30, ny = 8) receivers are also regu-

larly spaced in the top boundary. The sources and re-
ceivers are not spatially coincident. The smallest offset

is around 50m.

Following Section 4.1, at the first level, we select

1.5Hz data, and the results are shown in Figs. 11(a1)

and (b1). At the second level, we select 2.385Hz data;

the results are shown in Figs. 11(a2) and (b2). At the

third level, we select 3.0Hz data, and the results are

shown in Figs. 12(a3) and (b3). The width of the PMLs
is 0.7km and the models (16km×4.41km×3km) that are

shown contain the PMLs. Hence, the boundary box of

the VS shown in Fig. 12(b3) is not well updated.

We show that the proposed strategy can work on

the classic layered model problem. While the conven-

tional FWI approaches usually begin with a smooth

tomographic model as the starting model, based on the

analysis, we start with a low-dimensional piecewise con-

stant model. We check if the start model is in the con-
vergence radius by monitoring convergence rates Fig. 13
shows the residuals of the misfit at different levels. The
residuals drop to 10%, 17%, 30% of the starting value

at the first, second and third levels, respectively. It also
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Fig. 10: Surface mesh generation. Top row: image segmentations of each individual geological features; Bottom row: three-
dimensional surface mesh for the coressponding features.
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Fig. 11: Top row: VP models; (a0) starting VP model, (a1) reconstructed VP model at the first level, (a2) reconstructed VP

model at the second level; Bottom row: VS models; (b0) starting VS model, (b1) reconstructed VS model at the first level, (b2)
reconstructed VS model at the second level. The model size is 16km×4.41km×3km. In (a0), (a1) and (a2), y = 1.5km and the
slice size is 16km×3km. In (b0), (b1) and (b2), z = 0.8km and the slice size is 16km×4.41km.
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Fig. 12: Final reconstructions: (a3) inverted VP model at the third level, (b3) inverted VS model at the third level; true model:
(at) VP , (bt) VS. The model size is 16km×4.41km×3km. In (a3) and (at), y = 1.5km and the slice size is 16km×3km. In
(b3) and (bt), z = 0.8km and the slice size is 16km×4.41km.

shows the residual decay with a much larger N = 61448

at the third level. The residual decay is slow and the

updated model does not have much improvements. It

confirms our observations in Table 1. Since the slope

of the residuals stays approximately constant, it is con-

sistent with the analysis that the slopes of the residual

curves are proportional to the stability constant C in

(5). We monitor the residual curves and stop the itera-

tion when the residual decay is roughly no longer linear.

We expect that the results can further be improved us-

ing higher-frequency data with higher computational

costs.

5.2 SEAM

Here, we return to the SEAM as our example. In our

test case, the starting model shown in Figs. 14(a0–

b0) has six planar layers; on each layer the P - and

S -wave speeds are constant. The true model shown in

Figs. 15(at–bt) is adapted from SEAM Phase I; the

original water layer and model size have been modified.

The top layer contains a Poisson solid with constant P -

wave speed 2.1 km/s. Note that the true model is piece-

wise smooth, but not piecewise constant, and therefore

lies outside the stable subspace hierarchy. The model

size is 7km×8km×3km and each model contains 1.1

million elements. Fig. 16 shows the true vertical dis-

placements at different frequencies. At 1.0Hz, the di-

ameter of the subdomain is again about 0.5 km and

the shortest wavelength is around 1 km.

As before, we design three levels for the recovery,

each level providing a rough box-like domain partition

of the model. In this example, we also include lateral

PML regions for the update. The first level contains

840 (nx = 14, ny = 12, nz = 5) subdomains, the sec-

ond 6720 (nx = 28, ny = 12, nz = 10) subdomains, and
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Fig. 13: The residuals of the misfit at different levels. The
residuals drop to 10%, 17%, 30% of the starting value at the
first, second and third levels, respectively. The purple line
shows the residual decay with a much larger N = 61448 at
the third level. Y-axis is on the log scale. The red lines show
that the residuals reach the stopping criteria.

2.775

3.45

4.125

2.100

4.800

Vp (km/s)

(a0)

1.6

2

2.4

1.200

2.800

Vs (km/s)

(b0)

2.775

3.45

4.125

2.100

4.800

Vp (km/s)

(a1)

1.6

2

2.4

1.200

2.800

Vs (km/s)

(b1)

2.775

3.45

4.125

2.100

4.800

Vp (km/s)

(a2)

1.6

2

2.4

1.200

2.800

Vs (km/s)

(b2)

Fig. 14: Left column: Vp models; (a0) starting VP model, (a1)
reconstructed VP model at the first level, (a2) reconstructed
VP model at the first level; Right column: VS models; (b0)
starting VS model, (b1) reconstructed VS model at the first
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Fig. 15: Final reconstructions: (a3) inverted VP model at
the third level, (b3) inverted VS model at the third level; true
model: (at) VP , (bt) VS. The model size is 7km×8km×3km.

the third 53760 (nx = 56, ny = 24, nz = 20) subdo-

mains. At each level, we perform 75 iterations for the

reconstruction at a fixed frequency. 56 (nx = 7, ny = 8)

sources are regularly spaced on the top boundary and

represent three directional tractions. 56 (nx = 7, ny =

8) receivers are also regularly spaced in the top bound-
ary. The sources and receivers are not spatially coinci-

dent. The smallest offset is around 50m.

We also select 1.0Hz, 2.0Hz, and 3.0Hz data re-

spectively for the first level (Figs. 14(a1–b1)), second
(Figs. 14(a2–b2)), and third levels (Figs. 15(a3–b3)).

Figs. 16(a1–a2, b1–b2, c1–c2) show the decay in uz data

residual (for a centrally located source) from level to

level.

In Figs. 17 and Figs. 18, we show data and model

errors during our iterations. Fig. 17(a) plots the data

residual over the course of the algorithm at different

levels. As the plot shows, the behavior of the residual

change is consistent with a projected gradient-based

method. In the first several iterations, the errors de-
cay linearly, which indicates the procedure is converg-
ing to the next best approximation that we can obtain.

In Fig. 17(b), we plot the data residual over different

number of subdomains (N = 120, 840, 3200, plus a fixed

near surface layer) at the first level. It shows that when

N is too small, i.e., the diameter of the subdomain is

too large, the residual may diverge in the later inver-
sion because the inverted model may not stay in the
convergence radius of the next level; when N is too

large, i.e., the diameter of the subdomain is too small,
the residual may also diverge even using a smaller step
size. It confirms our observations in Table 1. Since we

start without prior information in this experiment, it is

challenging to capture large-scale anomalies. It is im-
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Fig. 16: Data differences from a given boundary traction at the center of the upper surface: at 1.0Hz, (a1) uz difference
between the starting (cf. Fig. 14(a0,b0)) and true (cf. Fig. 15(c,d)) models, (a2) uz difference between the level 1 and true
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portant to set up a proper N and ω pair. As described

in Section 4.1, we check whether the coupled choice of
N and ω brings us within the radius of convergence. We

point out that the convergence is solid only on the pro-

jected space. We check this by monitoring convergence

rates as illustrated in Figs. 17(a) and (b). The pro-

jected model errors in Fig. 18 show linear convergence

rates at different levels as they should. The slopes of

the residual curves are related to the stability constant

C in (5). These linear convergence rates apply directly

to the reconstructions level by level, as illustrated in

Fig. 18. The convergence of the best approximations in

each level to the true model and relative residuals is

illustrated in Table 2. We note that the projected true

model may not always be the best approximation at

each level.

6 Discussion

We presented a scheme for multi-parameter elastic FWI
with iterative regularization, motivated by a new result
[6] on uniqueness and a conditional Lipschitz stability

estimate for model representations that are piecewise

constant on unstructured tetrahedral meshes in the in-

relative errors start level 1 level 2 level 3

VP (L2) 1.0 0.447 0.272 0.192
VS (L2) 1.0 0.361 0.213 0.168

L2 residuals at 1.0Hz 1.0 0.027
L2 residuals at 2.0Hz 1.0 0.0632
L2 residuals at 3.0Hz 1.0 0.125

Table 2: Final model relative errors between models at dif-
ferent level and the projected true model and final relative
residuals at different levels and frequencies.
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Fig. 17: Error log plots for data: (a) the data residuals at
different levels; the red lines show that the residuals reach
the stopping criteria; the circle indicates that we stop at the
maximum iteration; (b) the data residual at the first level
with different number of subdomains coupled with different
frequencies. The blue curve is the same blue curve in (a).
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Fig. 18: Error log plots for Figs. 14 and 15: (a) the projected
λ model errors at different levels; (b) the projected µ model
errors at different levels. Here we compute the errors between
the current model and the best projected model at the current
level.

verse boundary value problem associated with vibro-
seis data. We developed a procedure to generate a hier-
archy of such representations or parametrizations via

adaptive mesh refinement. Such a hierarchy enabled

an implementation of the multi-level scheme — with

frequency-scale progression — introduced and analyzed

in [18] which comes with conditions for convergence.

The study of the interplay between growing stability

constants and compression rates in multilevel iterative

reconstruction was studied in generality as well [18].
The iterative regularization is numerically implemented
to avoid over-parameterization of the original problem.
Note that we do not need strict mesh refinement as

we can change coarser elements from level to level. We

could even run Poisson-Voronoi with multiple realiza-

tions at each level. In a second pass, for each level, you

can search for the best linear combination of the realiza-
tions. The hierarchy of parametrizations allows robust
estimation of salt bodies with rough shapes and com-
plex geological structures from simple starting models.

Our starting models are typically constructed with a

few blocks. Recent progress in the development of mas-

sively parallel structured direct solvers [61] makes it

possible to apply our scheme to realistically sized prob-

lems. From the underlying mathematical analysis, we

expect that the estimation of highly complex geological

structures far from, say, models with piecewise smooth

P - and S -wave speeds, requires low-frequency data as
confirmed by our computational experiments. This is in

agreement with the recent work [49].
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A Formulation of perfectly matched layers with

the Neumann boundary conditions

The PML technique [4] was first implemented and used in
a finite-difference time-domain method for the computation
of electromagnetic waves. A more straightforward and con-
venient approach [14] was introduced by using complex co-
ordinate stretching to build the same PMLs. Here, we will
follow the work for the isotropic case [64] with the caveat
that the half-space problem with a Neumann boundary con-
dition on the top requires some adaptations. That is, we will
need a constraint for the damping function in constructing
the PMLs.

We let Si(xi) be a complex-valued damping function. We
note that each Si(xi) is only a function of xi and is indepen-
dent of other coordinates. We adjust the partial derivatives,
∂xi

→ 1

Si
∂xi

, with Si being identically one in the domain of

interest and complex-valued inside the PML region. Numeri-
cally, we expect ul|∂X/Σ → 0. The boundary value problem
(1)-(2) takes the form
{
(−ρ(x)ω2δil −

1

Sj
∂xj

cijkl(x)
1

Sk
∂xk

)ul = 0,

(cijkl
1

Sk
∂xk

ul) νj |Σ = gi.
(12)

To arrive at the weak formulation, we need to carry out the
following steps. We multiply both sides of (12) by S1S2S3,

(−S1S2S3ρ(x)ω
2δil − ∂xj

cijkl(x)
S1S2S3

SjSk

∂xk
)ul = 0,

noting that S1S2S3/Sj is not a function of xj . We now in-
troduce coefficients,

ρ̃(x) = S1S2S3ρ(x), c̃ijkl(x) = cijkl(x)
S1S2S3

SjSk

,

x ∈ X ∪ ∂X, (13)

where X ∪ ∂X is the computational box with PML inside X.
When we apply the classical PML coefficient Sj , we observe
the reflected surface waves from the corners of the upper sur-
face. This is because we have a mismatch between PML and
the Neumann boundary condition. Here we modify the PML
coefficient so that we can deal with the boundary conditions
properly. We let

Sj |∂X = 1, for j = 1, 2, 3. (14)

We multiply S1S2S3 to both sides of the Neumann boundary
condition,

(cijkl
S1S2S3

Sk

∂xk
ul) νj |Σ = (cijkl

S1S2S3

SjSk

∂xk
ul) νj |Σ

= (c̃ijkl∂xk
ul) νj |Σ = S1S2S3ui. (15)

We note that we replace the original coefficients cijkl with
the new coefficients c̃ijkl at the boundary. Considering that
S1S2S3gi|Σ = gi|Σ , we obtain the modified strong formula-
tion,

(−ρ̃(x)ω2δil − ∂xj
c̃ijkl(x)∂xk

)ul = 0, (16)

(c̃ijkl∂xk
ul) νj |Σ = gi. (17)

Since we now have standard derivatives without any complex
functions, we are now able to apply the Continuous Galerkin
finite-element approximation to the system with PMLs. We
then construct the local matrices on each element and assem-
ble these local matrices into the global matrix. The strategy
is similar to the standard work [26].

B First-order adjoint state method: The

gradient

Elastic FWI can be formulated as an optimization problem
with equality constraints. Since we deal with inverse bound-
ary value problems, to extract the adjoint boundary values
for misfit functional, we revisit the classical first-order adjoint
state method. We consider a single source g here and sum
over all the available sources later. The optimization problem
minimizing ΨHS(u) in (7) takes the form,

argmin
m

ΨHS(u) subject to

∫

X

(
− ω2ρuivi + (∂xj

vi)cijkl∂xk
ul

)
dx

=

∫

Σ

givi dx, ∀v ∈ H1(X), (18)

where the constraint in (18) represents the weak form of
the entire boundary value problem (1)-(2), u denotes the
weak solution and v denotes the test function. H1 denotes
the Sobolev space of square-integrable functions with square-
integrable weak first-order derivatives. We point out that the
boundary value problems with discontinuities in the media
can naturally be solved in the weak sense. Additionally, to
obtain the adjoint boundary value, one needs to derive the
adjoint formula in the weak sense. To compute the gradient
of the functional involved, we use a Lagrangian approach, the
constrained optimization problem is cast into a formulation
with Lagrange multipliers γ,

L(m,u, γ) =
1

2

∫

∂X

χΣR(ui − u⋆
i ) ·R(ui − u⋆

i ) dx

+

∫

X

(
− ω2ρuiγi + (∂xj

ui) cijkl ∂xk
γl
)
dx

−

∫

Σ

giγi dx, (19)

where u⋆ denotes the solution in the true model m⋆. Given
some m, we let ũ = ũ(m) be the solution to the forward
boundary value problem and write

L(m, ũ, γ) = ΨHS(ũ) = E(m). (20)

Since we consider piecewise constant models as described in
(4), E is a Fréchet differentiable function E : V → R, where V
is a finite-dimensional vector space, the derivative DmE[m]
exists. Since the Fréchet derivative is continuous, the Riesz
representation theorem can be applied, here, using the L2

inner product in the model space [9]:

DmE[m]δm = (∇E, δm), ∀m ∈ V,

where ∇E denotes the gradient and DmE is defined as the
linear operator

DmE[m] : δm 7→
d

dt

∣∣∣
t=0

E(m+ tδm), δm ∈ V.

Since the Fréchet derivative of ũ(m) exists, the Fréchet deriva-
tive of E(m) with respect to m in the direction δm, attains
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the form

DmE[m] δm = DmL(m, ũ, γ) δm

=

∫

X

−ω2ũiγi
∂ρ

∂m
δm dx+

∫

X

(∂xj
ũi)(∂xk

γl)
∂cijkl

∂m
δm dx

+

∫

X

(
− ω2ργi(Dmũi[m] δm)

+ ∂xj
(Dmũi[m] δm) cijkl ∂xk

γl
)
dx

+

∫

∂X

(
R(Dmũi[m] δm)χΣR(ũi − u⋆

i )
)
dx. (21)

We choose the adjoint state, γ̃ = γ̃(m), so that (m, ũ, γ̃) is a
stationary point of the Lagrangian [16, 60, 42]. Thus, applying
the calculus of variations, we let γ̃ solve

∫

X

(
− ω2ργivi + (∂xj

vi) cijkl (∂xk
γl)

)
dx

+

∫

∂X

vi χΣR(ũi − u⋆
i ) dx = 0, ∀v ∈ H1(X). (22)

From (22), it follows that the first-order adjoint state equation
for the boundary value problem takes the form of (8) and (9).
Clearly, the adjoint boundary value problem (8)-(9) is well-
posed in the weak sense. Substituting v = Dmũ[m] δm in
(21), we avoid computing Dmũ[m] explicitly and obtain,

DmE[m] δm = (∇E, δm) =

∫

X

−ω2ũiγ̃i
∂ρ

∂m
δm dx

+

∫

X

(∂xj
ũi)(∂xk

γ̃l)
∂cijkl

∂m
δm dx. (23)

Summing over all available sources, we arrive at (10).

C Second-order adjoint state method for the

inverse boundary value problem

Since the vibroseis data leads to the inverse boundary value
problems, we present the evaluation of (full and Gauss-Newton)
Hessian-vector multiplication. For the analogous evaluation in
the case of traditional FWI, several previous works [44, 23, 36]
have been performed.

C.1 Full Hessian-vector product computation

To begin with, we consider the optimization problem with
equality constraints with a single source,

min
m

Ψ1 (u, u1) subject to
∫

X

(
− ω2ρuiv1i + (∂xj

v1i) cijkl ∂xk
ul

)
dx

=

∫

Σ

giv1i dx, ∀v1 ∈ H1(X),

∫

X

(
− ω2ρu1ivi + (∂xj

vi) cijkl ∂xk
u1l

)
dx

= −

∫

X

(
− ω2(δlρ)uivi + (∂xj

vi) (δl
c)ijkl ∂xk

ul

)
dx

+

∫

∂X

−
[
(δlc)ijkl∂xk

ul

]
νjvi dx, ∀v ∈ H1(X),

in which

Ψ1 (u, u1) = DmΨ(u)δl =

∫

∂X

χΣR(ui − u⋆
i )Ru1i dx, (24)

where Ψ was introduced in (18), δl is the parameter pertur-
bation, m + δl, δlc is the stiffness tensor part of parameter
perturbation δl, δlρ is the density part of parameter pertur-
bation δl and u1 is the first-order perturbed field with respect
to m along δl.

We derive the full Hessian-vector product for the inverse
boundary value problem. We have two forward problems: ũ is
the weak solution to the direct problem (1)-(2) and the other
generates ũ1, which is the solution to

Pilu1l = ω2(δlρ)ũlδil + ∂xj
(δlc)ijkl ∂xk

ũl,

supplemented with the boundary condition,

(cijkl∂xk
u1l) νj |∂X = −

[
(δlc)ijkl∂xk

ũl

]
νj |∂X ,

We introduce two Lagrangian multiparameters γ and γ1 to re-
place v and v1. Following a similar argument in Section B, we
choose γ̃ to be the weak solution to the first adjoint boundary
value problem (8)-(9), and γ̃1 to be the weak solution to the
the second adjoint boundary value problem, which is given
by

Pilγ1l = δlρω2γ̃lδil + ∂xj
[(δlc)ijkl∂xk

γ̃l],

(cijkl∂xk
γ1l) νj |∂X = −((δlc)ijkl∂xk

γ̃l) νj |∂X − χΣRũ1i.

When summing over available boundary sources, gs, we ob-
tain the Hessian-vector product,

Hδl(·) =

∑

s

∫ [
−ω2ũ1

s
i γ̃

s
i

∂ρ

∂m
(·) + (∂xj

ũ1
s
i ) (∂xk

γ̃s
l )

∂cijkl

∂m
(·)

]
dx,

+

∫ [
−ω2ũs

i γ̃1
s
i

∂ρ

∂m
(·) + (∂xj

ũs
i ) (∂xk

γ̃1
s
l )

∂cijkl

∂m
(·)

]
dx

+

∫
(∂2

mPδl(·) ũs) · γ̃s dx, (25)

where the data residual information is hidden in the adjoint
wavefield, γ̃s and γ̃1

s; Pδl is a short-hand representation of
Pil acting on δl.

C.2 Gauss-Newton Hessian-vector product

computation

For the Gauss-Newton method, we consider the least-squares
misfit and aim to compute the Gauss-Newton Hessian-vector
product via the constrained minimization problem [36]. We
consider a new objective function ΨGN ,

min
m

ΨGN (u) subject to
∫

X

(
− ω2ρuivi + (∂xj

vi)cijkl∂xk
ul

)
dx

=

∫

Σ

givi dx, ∀v ∈ H1(X),

in which

ΨGN (u) =

∫

∂X

χΣRuiRũ1i dx.
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With analogous derivation as the second-order adjoint state
method, we introduce a Lagragian multiplier η and let η̃ to
be the weak solution to the Gauss-Newton adjoint equation

Pilηl = 0, (26)

νj(cijkl∂xk
ηl)|∂X = −χΣRũ1i. (27)

We have a new adjoint equation for Gauss-Newton Hessian-
vector product, which means we need to solve one more equa-
tion to retrieve a Gauss-Newton Hessian-vector multiplica-
tion. Then, for any choice of the parameters, we have

HGN δl(·) =
∑

s

{ ∫
−ω2ũs

i η̃
s
i

∂ρ

∂m
(·) dx

+

∫
(∂xj

ũs
i ) (∂xk

η̃s
l )

∂cijkl

∂m
(·) dx

}
, (28)

Note that δl is hidden in the Gauss-Newton adjoint wavefield
η̃.
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