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Abstract: Aims.    Exercise performance is known to predict outcome in hypertrophic
cardiomyopathy (HCM), but whether sex-related differences exist is unresolved. We
explored whether functional impairment, assessed by exercise echocardiography, has
comparable predictive accuracy in females and males with HCM.
Methods.    We retrospectively evaluated 292 HCM patients (46±16 years, 72%
males), consecutively referred for exercise echocardiography; 242 were followed for
5.9±4.2 years. 
Results.    Peak exercise capacity was 6.5±1.6 metabolic equivalents (METs). Sixty
patients (21%) showed impaired exercise capacity (≤5 METs). Exercise performance
was reduced in females, compared to males (5.6±1.6 vs. 6.9±1.5 METs, p<0.001; peak
METs≤5 in 40% vs. 13%, p<0.001), largely driven by a worse performance in women
>50 years of age. At multivariable analysis, female sex was independently associated
with impaired exercise capacity (odds ratio [OR]: 4.67; 95% confidence interval [CI]:
1.83-11.90; p=0.001). During follow-up, 24 patients (10%) met the primary endpoint
(a combination of cardiac death, heart failure requiring hospitalization, sustained
ventricular tachycardia, appropriate implantable cardioverter defibrillator discharge,
resuscitated sudden cardiac death and cardioembolic stroke). Event-free survival was
reduced in females (p=0.035 vs. males). Peak METs were inversely related to outcome
in males (HR per unit increase: 0.57, 95% CI: 0.39-0.84, p=0.004) but not in females
(HR: 1.22, 95% CI: 0.66-2.24, p=0.53). 
Conclusions.    Female patients with HCM showed significant age-related impairment
in functional capacity compared to males, particularly evident in post-menopausal age
groups. While women were at greater risk of HCM-related complications and death,
impaired exercise capacity predicted adverse outcome only in men. These findings
suggest the need for sex-specific management strategies in HCM.
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ABSTRACT 

Aims. Exercise performance is known to predict outcome in hypertrophic cardiomyopathy (HCM), but 

whether sex-related differences exist is unresolved. We explored whether functional impairment, assessed 

by exercise echocardiography, has comparable predictive accuracy in females and males with HCM. 

Methods. We retrospectively evaluated 292 HCM patients (46±16 years, 72% males), consecutively referred 

for exercise echocardiography; 242 were followed for 5.9±4.2 years.  

Results. Peak exercise capacity was 6.5±1.6 metabolic equivalents (METs). Sixty patients (21%) showed 

impaired exercise capacity (≤5 METs). Exercise performance was reduced in females, compared to males 

(5.6±1.6 vs. 6.9±1.5 METs, p<0.001; peak METs≤5 in 40% vs. 13%, p<0.001), largely driven by a worse 

performance in women >50 years of age. At multivariable analysis, female sex was independently associated 

with impaired exercise capacity (odds ratio [OR]: 4.67; 95% confidence interval [CI]: 1.83-11.90; p=0.001). 

During follow-up, 24 patients (10%) met the primary endpoint (a combination of cardiac death, heart failure 

requiring hospitalization, sustained ventricular tachycardia, appropriate implantable cardioverter 

defibrillator discharge, resuscitated sudden cardiac death and cardioembolic stroke). Event-free survival was 

reduced in females (p=0.035 vs. males). Peak METs were inversely related to outcome in males (HR per unit 

increase: 0.57, 95% CI: 0.39-0.84, p=0.004) but not in females (HR: 1.22, 95% CI: 0.66-2.24, p=0.53).  

Conclusions. Female patients with HCM showed significant age-related impairment in functional capacity 

compared to males, particularly evident in post-menopausal age groups. While women were at greater risk 

of HCM-related complications and death, impaired exercise capacity predicted adverse outcome only in men. 

These findings suggest the need for sex-specific management strategies in HCM.  

Key Words: Hypertrophic Cardiomyopathy; Sex; Exercise echocardiography; Exercise performance; 

Outcome. 
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Introduction 

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease of the myocardium with incomplete 

penetrance and heterogeneous presentation and outcome 1–4. Despite an equal expected prevalence by sex, 

women are less represented than men in HCM cohorts, ranging from 45% to 22% 5–8. Regardless of ethnicity, 

females are generally older, with more advanced disease at diagnosis and greater likelihood of heart failure 

progression compared to males5,6,8–10; furthermore, female sex could be a minor risk factor for cardiovascular 

death in childhood HCM11. Reasons for such discrepancies are still unknown, and may reflect sex-related 

differences in the pathophysiology of HCM, ultimately relevant to risk stratification and management12. 

Exercise performance is known to predict outcome in HCM 13–16  but, unlike what has been shown in other 

cardiovascular diseases such as pulmonary arterial hypertension17, its clinical value with regard to sex 

remains unexplored. Specifically, the question whether a worse outcome in women is predicted by more 

profound functional impairment, compared to men, has not been previously addressed. In the present study, 

based on a large single-center HCM cohort, we therefore evaluated sex-related functional capacity, assessed 

by exercise echocardiography, and its relevance to outcome. 

Methods 

Study population 

In this single center study, we retrospectively evaluated 292 adults (>18 years) with a clinical 

diagnosis of HCM, consecutively referred to our center for exercise echocardiography between January 2004 

and June 2016, including 211 men and 81 women. HCM was diagnosed in the presence of non-dilated and 

hypertrophied left ventricle (end-diastolic wall thickness ≥15 mm at M-mode or 2D echocardiography), in 

absence of another cardiac or systemic disease capable of producing that magnitude of left ventricle 

hypertrophy 3. Patients with known obstructive coronary artery disease were excluded from the study. 

Genetic testing was performed in 224 patients by sequencing of 8 sarcomeric genes including myosin binding 

protein C (MYBPC3), β-myosin heavy chain (MYH7), essential and regulatory myosin light chains (MYL2, 

MYL3), cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), α-tropomyosin (TPM1), and cardiac actin 
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(ACTC), as well as 4 genes associated with non-sarcomeric HCM mimics: GLA (for Fabry’s disease), LAMP2 

(for Danon’s disease), PRKAG2 (for PRKAG2 cardiomyopathy) and TTR for wild-type transthyretin 

amyloidosis18,19. Patients with these 4 HCM mimics were excluded from the study. Our institutional review 

board authorized use of this database according to the principles outlined in the Declaration of Helsinki. 

Baseline characteristics of the study population are reported in Table 1. Supplementary Figure A summarizes 

the study design. 

Resting echocardiography 

Standard echocardiographic studies were performed using commercially available instruments. Peak 

instantaneous left ventricular outflow tract (LVOT) gradient was measured at rest (and with the Valsalva 

maneuver) by continuous-wave Doppler interrogation in the apical 5-chamber view, taking care to avoid 

contamination of the waveform by the mitral regurgitation jet 20. Resting LVOT obstruction was defined by a 

peak pressure gradient ≥30 mmHg at baseline3,20. Mitral regurgitation was graded as none or trivial, mild, 

moderate or severe using multiple criteria21.  Left ventricular (LV) volume, LV ejection fraction and left atrial 

volume were measured from the apical view, using the biplane Simpson’s rule method. Using M-Mode and 

2D, we measured LV diameter, left atrial end-systolic diameter and maximal end-diastolic LV wall thickness. 

The peak velocity of early (E) and late (A) transmitral flow waves and peak early diastolic mitral annular 

velocity were measured as recommended22; for the assessment of diastolic function we used lateral E’ and 

not average for its best correlation with functional capacity and because septal E’ is disproportionately 

reduced in most patients due to the typical localization of asymmetric LV hypertrophy23–25. 

 

Stress echocardiography 

Routinely used medications were not withdrawn before the test. Maximum, symptom-limited 

exercise tests were performed on a bicycle ergometer in the semi-supine position, with stepwise 25W 

increments every 2 minutes. Exercise echocardiography was performed under basal conditions and serially 

every 2 minutes during exercise  to identify and grade mitral regurgitation and estimate LVOT gradient with 
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continuous-wave Doppler. Clinically relevant exercise-induced LVOT obstruction was defined by a peak 

gradient ≥50 mmHg20. Data pertaining diastolic function reserve and estimated pulmonary artery pressures 

on effort were not routinely collected. Wall motion abnormalities were noted, but were present only in a 

small minority (<5%) and were therefore not included in our analysis.  

A 12-lead electrocardiogram was monitored continuously and recorded at baseline, at each minute 

during exercise, and after exercise. Arterial blood pressure was measured with a sphygmomanometer at 

baseline and every 2 minutes during exercise and in the post-exercise phase. Abnormal blood pressure 

response was defined by either a failure of systolic blood pressure to raise >20 mmHg or any fall in systolic 

blood pressure during exercise.  

Patients were encouraged to perform maximally to achieve their expected heart rate. The maximum 

predicted heart rate was calculated as 220 minus patient’s age, and heart rate attained was expressed as the 

percentage of predicted. Exercise was terminated when fatigue, dyspnea, chest pain, clinically relevant 

arrhythmia or hypotension intervened. Peak exercise was defined as the maximum workload attained before 

discontinuation. Peak functional capacity was extrapolated to metabolic equivalents (METs)13,14,26, with 1 

MET defined as the energy expended at rest, equivalent to an oxygen consumption of 3.5 ml/kg of body 

weight/ minute, as recommended27.  

Study endpoints 

Patients were followed up on an annual basis, or more often if clinically required. The primary 

endpoint was a combination of cardiac death, heart failure requiring hospitalization, sustained ventricular 

tachycardia, appropriate implantable cardioverter defibrillator (ICD) discharge or resuscitated sudden cardiac 

death and cardioembolic stroke. The secondary endpoint included the primary endpoint, plus new onset 

atrial fibrillation or symptomatic progression to New York Heart Association (NYHA) functional classes III/IV. 

In patients meeting both endpoints, time to the first event was considered.  

Statistical Methods 
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Continuous variables were expressed as mean ± SD, while categorical variables were reported as 

number of cases and percentage. The unpaired Student’s T test was used for comparison of normally 

distributed data after screening for normality. The chi-square test or Fischer’s exact test, as appropriate, were 

utilized to compare non-continuous variables. For the purpose of the present study, impaired exercise 

capacity was defined by a peak performance ≤5 METs, i.e. at or below the threshold identifying the lowest 

quartile for our cohort. Univariable and multivariable predictors of impaired exercise capacity were identified 

by binary logistic regression analysis; data are reported as odds ratio (OR) with 95% confidence interval (CI). 

To identify predictors of outcome, a Cox proportional hazard regression model was used; data are reported 

as hazard ratio (HR) with 95% CI. Multivariate analyses were performed with a stepwise forward regression 

model, and variables with a p value ≤0.05 based on univariate analysis were entered into the model. Survival 

curves were constructed according to the Kaplan-Meier method, and comparisons were performed using the 

log-rank test. All p values are two-sided and considered significant when <0.05. Calculations were performed 

using the SPSS 24.0 software (Armonk, NY: IBM Corp., USA).  

 

Results 

Baseline characteristics and sex 

 Of the 292 HCM study patients (mean age 46±16 years, maximum LV wall thickness 21±5 mm), 211 

(72%) were males and 81 (28%) females (Table 1). Forty-two patients (14%) had resting LVOT obstruction in 

basal conditions and 8 (3%) had prior history of surgical myectomy or alcohol septal ablation. The majority 

(n=270, 93%) were in NYHA class I or II. Of the 224 patients who underwent genetic testing, 137 (61%) carried 

one or more pathogenic/likely pathogenic sarcomere gene mutations.  

Compared to men, women were older (51±16 vs. 44±17 years, p=0.001) and more often complained 

of dyspnea (NYHA class >I) and angina (Table 1). Furthermore, women had LVOT obstruction at rest less 

frequently (7% vs 17% in males, p=0.04), had smaller LV end-diastolic volume and volume index (p<0.001 for 

both) and had indirect evidence of higher LV filling pressure (lateral E/E’ 9.4±4.5 vs. 7.6±3.4 in males, 
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p=0.002). All other baseline features including the prevalence of genotype positive individuals, BMI, maximal 

LV wall thickness, left atrial volume index and LV ejection fraction were comparable (Table 1). 

Comparison of exercise performance 

Mean exercise time for the whole cohort was 11±4 minutes, and peak exercise capacity was 6.5±1.6 

METs; 60 patients (21%) achieved ≤5 METs reflecting impaired exercise capacity (Table 2). There was no sex 

difference in the percentage of maximum predicted heart rate achieved (77±12% for males and 77±13% for 

females, p=0.82). Exhaustion was the most common reason for interruption and there were no significant 

complications during or after the test. During exercise, 82 patients (28%) developed exercise-induced LVOT 

obstruction ≥50 mmHg, 13 (4%) developed severe mitral regurgitation due to systolic anterior motion (SAM) 

of the mitral valve and 38 (13%) showed an abnormal blood pressure response.  

Exercise capacity was significantly lower in women, compared to men (peak METs 5.6±1.6 vs. 6.9±1.5, 

respectively, p<0.001; exercise time 8±3 vs 12±4 minutes, respectively, p<0.001), largely driven by the inferior 

results observed in women >50 years of age (Figure 1A). Conversely, peak METs were comparable between 

sexes in the age classes ≤30, 31-40 and 41-50 years. The proportion of patients with impaired exercise 

capacity (≤5 METs) was significantly larger in women than in men (n=32, or 40% vs. n=28, or 13%, 

respectively; p<0.001; Figure 1B). Of the 32 women achieving ≤5 METs, only 4 (12%) had exercise-induced 

LVOT gradients >50 mmHg, as opposed to 11 of the 28 men (39%; p=0.035). At the other end of the exercise 

performance spectrum, 103 men (49%) achieved ≥7 METs compared to only 15 women (18%) (p<0.001).   

At multivariable logistic regression analysis, female sex proved to be an independent predictor of 

impaired exercise capacity (≤ 5 METs at peak), together with BMI, NYHA functional class, presence of resting 

LVOT obstruction and small LV cavity dimensions (defined as an end-diastolic volume in the lowest tertile for 

the study group; Table 3). Specifically, female sex was independently associated with an almost 5-fold 

increase in likelihood of impaired exercise capacity (OR: 4.67; 95% CI: 1.83-11.90; p = 0.001).  

Outcome 
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Fifty patients were excluded from survival analysis due to a follow-up <1 year. The remaining 242 

HCM patients were followed over a median follow-up of 5.9±4.2 years after exercise echocardiography 

(5.7±4.1 years in males vs. 6.3±4.2 in females; p=0.39). Of the 242 patients, 24 (10%) met the primary 

endpoint and 55 (23%) the secondary endpoint (Supplementary Table A). The breakdown of individual 

endpoints was as follows: 6 cardiovascular deaths (2%), 2 episodes of sustained ventricular tachycardia (1%), 

1 resuscitated sudden cardiac death (0.4%), 9 heart failure episodes requiring hospitalization (4%) and 13 

cardioembolic strokes (5%). In addition, 40 patients developed new onset atrial fibrillation (16%) and 8 

progressed to NYHA class III/IV (3%).  

Event-free survival for both the primary and secondary endpoint was significantly lower in women 

compared with men (Figure 2): event rates for the primary endpoint at 1, 3 and 5 years were 3%, 9% and 12% 

in females vs. 1%, 2% and 3% in males, respectively (p=0.035). At univariate analysis, female sex (HR: 2.32, 

95% CI: 1.04-5.22, p=0.04) and lower peak METs (HR per unit increase: 0.68, 95% CI: 0.53-0.87, p=0.003) 

predicted the primary endpoint. Similar results were observed for the secondary endpoint (HR: 2.13, 95% CI: 

1.24-3.66, p=0.006 for female sex; HR: 0.73, 95% CI: 0.62-0.86, p<0.001 for METs). At multivariate analysis 

(including age, NYHA class and LVOT obstruction at rest) only lower peak METs were independently 

associated with outcome (HR per unit increase: 0.68, 95% CI: 0.53-0.87, p=0.003 for the primary endpoint; 

HR: 0.80, 95% CI 0.67-0.95, p=0.013 for the secondary endpoint).  

When sexes were analyzed separately, peak METs were inversely related to outcome in males (HR 

per unit increase: 0.57, 95% CI: 0.39-0.84, p=0.004 for primary endpoint) but not in females (HR: 1.22, 95% 

CI: 0.66-2.24, p=0.53). Among males, a peak exercise METs <7 proved the best threshold for the prediction 

of adverse events (Supplementary Figure B), with very high sensitivity (100%) but low specificity (50%); 

negative and positive predictive values were 100% and 14%, respectively.  

Discussion 

Our main result was the novel finding that exercise performance is more diffusely impaired in HCM 

women compared to men, particularly after mid-life and, in the present series, largely unrelated to 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 
 

obstruction. Furthermore, we found that exercise performance, previously shown to predict outcome in HCM 

13–16 , seems to have true predictive value in male patients only, while the occurrence of clinical endpoints in 

females was largely independent of exercise capacity. Of note, females showed reduced exercise capacity 

both in terms of absolute METs and exercise time and were almost four time more represented (40% vs 13%) 

in the lowest exercise capacity group (peak METs ≤5) compared to males. Conversely, the occurrence of 

exercise-induced obstruction was lower in women, suggesting that - while a substantial proportion of HCM 

men may owe their reduced performance to provocable LVOT gradients - this is often not the case in women. 

Rather, these findings suggest more severe degrees of myocardial dysfunction in female patients, which 

become overt after mid-life. Indeed, the impact of age on exercise performance was striking in women with 

HCM. Despite female sex could be a minor risk factor for cardiovascular death since childhood11, limited 

discrepancy in peak METs was seen in younger age categories, while the sex gap became evident in the group 

>50 years (Figure 1A). This is probably due to the fact that older women had more advanced heart failure at 

time of referral for HCM evaluation compared to men, reflected in a higher prevalence of congestive 

symptoms (NYHA class II or III) at the time of enrollment. Such finding leads to speculate that postmenopausal 

endocrine changes may impact the phenotypic expression and clinical course of women with HCM, consistent 

with prior observations by our group5, including loss of the protective role of estrogens seen in animal 

models28,29. In addition, the contribution of a more sedentary lifestyle in reducing exercise tolerance of older 

women might be hypothesized30. 

The fact that exercise impairment appears related to intrinsic myocardial dysfunction, rather than 

dynamic obstruction, appears relevant to the adverse prognosis of HCM women, as their form of heart failure 

seems to be less “reversible”7,31. Heart failure secondary to dynamic obstruction is known to be associated 

with no or minimal LV fibrosis and to have a favorable natural history following successful relief of the 

gradient 31. Conversely, heart failure in the context of primary myocardial dysfunction, generally subtended 

by diffuse microvascular dysfunction and fibrosis2, tends to progress despite optimal care, reflecting a 

substantial lack of disease-modifying drugs for HCM32. 
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Furthermore, while baseline phenotypic expression limited to LV hypertrophy did not differ between 

sexes, LV cavity size, considered genetically determined in HCM 33,34, was significantly smaller in women35, 

even when indexed per body size, suggesting more severe disease involvement. A small LV cavity size, defined 

as an end-diastolic volume in the lowest tertile, proved to be an independent predictor of exercise capacity 

in our cohort, consistent with the recent report by Axelsson et al. 36. For any given value of ejection fraction, 

a smaller LV cavity is associated with reduced stroke volume, which may account for impaired exercise 

capacity. In addition, the combination of small cavity dimensions and LV hypertrophy may synergistically 

determine higher diastolic filling pressures and diastolic dysfunction during effort, emphasizing the role of 

exercise-induced diastolic dysfunction as a main determinant of functional capacity in HCM 37.  

The main clinical implication of our study is that exercise performance evaluated by stress 

echocardiography confirms its value in the prognostication of male HCM patients but does not seem to have 

a similar role in women. Specifically, no male patients with a peak exercise capacity above 7 METs met the 

primary endpoint, confirming the recent observation by Desai et al. 14. A potential interpretation is that the 

male HCM spectrum is more heterogeneous and includes patients with truly well compensated forms of 

disease, deserving reassurance. Conversely, females exhibit a more diffuse and severe clinical instability and 

their risk of adverse outcome cannot be ruled out as confidently by preserved exercise capacity. These data 

require confirmation in larger datasets and, in a broader perspective, point out the need for further research 

addressing the sex gap in survival in HCM. For example, a recent randomized trial showed that moderate-

intensity exercise produces a significant increase in exercise capacity in HCM patients30. It is intriguing to 

speculate that tailored activities and well-conducted training programs might provide a safe and effective 

measure to overcome functional impairment associated with sex in post-menopausal women.  

The present study has several limitations. A notable one, shared by similar studies 38, is that only 28% 

of our patients were females, suggesting underrepresentation of women in exercise testing referral. By 

comparison, the prevalence of females in the whole Florence cohort is 41%. This may reflect the fact that 

females presented at an older age, had more severe limitations and presented obstruction at rest more 

frequently, compared to men, thus representing less suitable candidates for stress testing5,8. Conversely, 
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males are more often young and active, exerting more pressure upon physicians in order to be allowed 

sporting activities, resulting in preferential referral for exercise testing39. In general, however, female 

underrepresentation may also reflect a complex mix of social bias, reduced patient awareness40 and reduced 

access to medical screening programs 41.  

In the present study, we chose to measure exercise capacity by estimated metabolic equivalents 

(METs) from external work rate. Although calculated METs are less robust than peak VO2 values by 

cardiopulmonary testing, they are easier to obtain and widely usable in clinical practice. Previous studies14 

expressed functional capacity as a percentage of age and sex predicted METs. However, this approach 

requires the use of additional dated formulas derived from healthy population, that could definitely add bias. 

Furthermore, functional capacity expressed as an absolute value has an important role in prognostic 

stratification, as already shown in other clinical settings such as pulmonary arterial hypertension, pre-

operative cardiac risk evaluation and perioperative management of patients undergoing non-cardiac surgery 

42,43.  

In our retrospective study we used exercise echo mainly to assess provocable LV outflow tract 

obstruction, while diastolic function reserve and pulmonary artery systolic pressure during stress were not 

routinely available (as noted in the Methods section on page 5). Regional wall motion analysis was performed 

in all, but abnormalities proved rare (<5%), whereas ST-T segment abnormalities during effort were more 

common but are notoriously nonspecific in HCM. Therefore, we were not able to dissect the pathophysiologic 

basis of sex-related differences in performance. These issues will be addressed in a large-scale prognostic 

validation of stress echo in HCM recently started as a specific subproject of the “SE 2020” study endorsed by 

the Italian Society of Echocardiography 44. 

Finally, due to the low event rate of hard events during follow-up - a well-established feature of the 

natural history of HCM, the study unavoidably employed less robust, combined endpoints, consistent with 

prior literature13,14. 
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In conclusion, female patients with HCM showed significant age-related impairment in functional 

capacity compared to males, particularly evident in post-menopausal age groups. While women were at 

greater risk of HCM-related complications and death, impaired exercise capacity predicted adverse outcome 

only in men. These findings suggest the need for sex-specific management strategies in HCM. 
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FIGURE TITLES AND LEGENDS 

 

FIGURE 1. Sex-Related Differences in Functional Capacity. Panel A: Comparison of exercise performance 

between males and females according to age. Panel B: Sex distribution among different functional classes. 

 

FIGURE 2. Outcomes According to Sex. Event-free survival according to sex for the primary (A, combination 

of cardiac death, heart failure requiring hospitalization, sustained ventricular tachycardia, appropriate 

implantable cardioverter defibrillator (ICD) discharge or resuscitated sudden cardiac death and 

cardioembolic stroke) and secondary endpoint (B, the primary endpoint, plus new onset atrial fibrillation or 

symptomatic progression to New York Heart Association (NYHA) functional classes III/IV). 

 

SUPPLEMENTARY FIGURE A. Study flowchart. CAD: Coronary artery disease. 

 

SUPPLEMENTARY FIGURE B. Outcome in Male Patients based on METs at Peak Exercise. Kaplan Meier 

curves depicting survival free from primary endpoint (combination of cardiac death, heart failure requiring 

hospitalization, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator (ICD) 

discharge or resuscitated sudden cardiac death and cardioembolic stroke) according to functional capacity. 

No difference was observed in females. 
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TABLE 1. Baseline Characteristics of the Study Population by sex 
 Total Cohort 

 (n = 292) 
Males 

(n = 211) 
Females                     
(n = 81) 

P Value 

Demographic     

Age, years 46 ± 16 44 ± 17 51 ± 16 0.001 

BMI, Kg/m2 25 ± 3 25 ± 3 25 ± 3 0.16 

Family history of SCD  56 (19%) 37 (17%) 19 (23%) 0.25 

Family history of HCM  115 (39%) 77 (36%) 38 (47%) 0.11 

Medical History     

Syncope  42 (14%) 31 (15%) 11 (14%) 0.9 

NSVT 30 (10%) 22 (10%) 8 (10%) 0.9 

Atrial Fibrillation  31 (11%) 23 (11%) 8 (10%) 0.8 

Angina  69 (24%) 43 (20%) 26 (32%) 0.045 

Diabetes 22 (7%) 14 (7%) 8 (10%) 0.33 

Hypertension  66 (23%) 46 (22%) 20 (25%) 0.64 

LVOT gradient at rest > 30 mmHg  42 (14%) 36 (17%) 6 (7%) 0.04 

ASA or myectomy 8 (3%) 3 (1%) 5 (6%) 0.04 

Aborted Cardiac Arrest/ SVT 7 (2%) 4 (2%) 3 (4%) 0.4 

ICD  8 (3%) 7 (3%) 1 (1%) 0.45 

NYHA class    0.003  

NYHA I 186 (64%) 147 (70%) 39 (48%) 0.001 

NYHA II 84 (29%) 51 (24%) 33 (41%) 0.006 

NYHA III 22 (7%) 13 (6%) 9 (11%) 0.21 

Pharmacological Treatment     

Beta – Blockers  137 (47%) 98 (46%) 39 (48%) 0.8 

Verapamil / Diltiazem  20 (7%) 11 (5%) 9 (11%) 0.12 

Disopyramide  19 (6%) 12 (6%) 7 (9%) 0.43 

Amiodarone 21 (7%) 14 (7%) 7 (9%) 0.6 

RAAS inhibitors  26 (9%) 19 (9%) 7 (9%) 1 

Diuretics  22 (7%) 15 (7%) 7 (9%) 0.63 

Genetic testing     

With Pathogenic/likely pathogenic sarcomere gene 
mutations* 

137/224 (61%) 96/160 (60%) 41/64 (64%) 0.65 

Resting Echocardiography     

LA diameter, mm 42 ± 7 43 ± 7 40 ± 6 0.001 

LA volume, ml 80 ± 29 83 ± 31 71 ± 24 0.002 

LA volume indexed, ml/mq 42 ± 15 43 ± 16 41 ± 14 0.44 

LVEDD, mm 45 ± 5 46 ± 5 43 ± 5 < 0.001 

LVEDV, ml 101 ± 27 108 ± 26 84 ± 20 < 0.001 

LVEDV indexed, ml/mq 54 ± 12 56 ± 12 48 ± 10 < 0.001 

LVESV, ml 34 ± 13 36 ± 14 27 ± 9 < 0.001 

LVESV indexed, ml/mq 18 ± 7 19 ± 7 15 ± 5 < 0.001 

LVEF, %  67 ± 7 67 ± 7 67 ± 6 0.95 

Maximal LV thickness, mm 21 ± 5 21 ± 5 20 ± 4 0.31 

Mitral Regurgitation     0.95  

   None 140 (48%) 101 (48%) 39 (48%)  

   Mild  131 (45%) 94 (44%) 37 (46%)  

   Moderate 18 (6%) 14 (7%) 4 (5%)  

   Severe 3 (1%) 2 (1%) 1 (1%)  

E, cm/s 71 ± 20 70 ± 19 73 ± 23 0.18 

A, cm/s 62 ± 22 60 ± 22 66 ± 22 0.04 

DTE, msec 230 ± 75 230 ± 74 228 ± 78 0.9 

E/A  1.3 ± 0.6 1.3 ± 0.6 1.2 ± 0.6 0.35 

E’ septal, cm/s 6.8 ± 2.8 7.1 ± 2.8 6.1 ± 2.8 0.04 

E’ lateral, cm/s 10.1 ± 3.8 10.5 ± 3.9 8.9 ± 3.1 0.004 

E/E’ septal 11.9 ± 5.2 11.3 ± 4.6 13.7 ± 6.4 0.004 

E/E’ lateral 8.1 ± 3.8 7.6 ± 3.4 9.4 ± 4.5 0.002 

LVOT gradient at rest, mmHg 17 ± 19 18 ± 20 14 ± 15 0.13 

Heart rate, beats/min 68 ± 13 68 ± 13 68 ± 14 0.72 

SBP, mmHg 121 ± 15 121 ± 15 122 ± 17 0.58 

Value are mean ± SD or n (%). *On 224 genotyped patients. 
A = peak velocity of diastolic filling during atrial contraction; ASA = alcohol septal ablation; BMI = body max index; DTE = deceleration time of the E wave; E 
= peak velocity of early diastolic filling; E’ = early diastolic mitral annular velocity; E/E’ = early diastolic velocity ratio; HCM = hypertrophic cardiomyopathy; 
ICD = implantable cardioverter defibrillator; LA = left atrial; LV = left ventricular; LVEDD = left ventricular end-diastolic diameter; LVEDV = left ventricular 
end-diastolic volume; LVEF = left ventricular ejection fraction; LVESV = left ventricular end-systolic volume; LVOT = left ventricular outflow tract; NSVT = 

Table 1



non-sustained ventricular tachycardia; NYHA = New York Heart Association; RAAS = renin angiotensin aldosterone system; SBP = systolic blood pressure; 
SCD = sudden cardiac death; SVT = sustained ventricular tachycardia. 

 



TABLE 2. Exercise Echocardiography by sex 

 Total Cohort       
 (n = 292) 

Males 
 (n = 211) 

Females  
(n = 81) 

P Value 

Echocardiographic Parameters     

Peak Stress Mitral Regurgitation     0.13  

   None 108 (37%) 70 (33%) 38 (47%)  

   Mild  121 (41%) 90 (43%) 31 (38%)  

   Moderate 46 (16%) 39 (18%) 7 (9%)  

   Severe 13 (4%) 10 (5%) 3 (4%)  

LVOT gradient at peak  stress, mmHg 40 ± 34 45 ± 37 26 ± 18 < 0.001 

With LVOT gradient at peak stress > 50 mmHg 82 (28%) 74 (35%) 8 (10%) < 0.001 

LVOT gradient post-stress, mmHg 47 ± 43 54 ± 47 32 ± 26 < 0.001 

With LVOT gradient post-stress > 50 mmHg  88 (30%) 74 (35%) 14 (17%) 0.001 

Hemodynamic Parameters     

Peak SBP, mmHg 166 ± 29 168 ± 29 160 ± 27 0.04 

Abnormal BP response  38 (13%) 23 (11%) 15 (18%) 0.12 

Peak heart rate, beats/min 134 ± 25 135 ± 25 129 ± 25 0.08 

Percent of maximum predicted HR 77 ± 12% 77 ± 12% 77 ± 13% 0.82 

Exercise Parameters     

Exercise time, min 11 ± 4 12 ± 4 8 ± 3 < 0.001 

Peak WATTS 119 ± 37 131 ± 32 87 ± 30 < 0.001 

Peak METs  6.5 ± 1.6 6.9 ± 1.5 5.6 ± 1.6 < 0.001 

Peak METs ≤ 5 60 (21%) 28 (13%) 32 (40%) < 0.001 

Symptoms /Arrhythmias    0.38  

Dyspnea  21 (7%) 12 (6%) 9 (11%)  

Angina  3 (1%) 2 (1%) 1 (1%)  

NSVT  3 (1%) 3 (1%) 0 (0%)  

Value are mean ± SD or n (%) 
BP = blood pressure; HR = heart rate; METs = metabolic equivalent; other abbreviations as in Table 1.  
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TABLE 3. Predictors of Poor Functional Capacity (≤5 METs at Peak Exercise) at Univariable and Multivariable 
Logistic Regression Analysis 

 Univariable Analysis Multivariable Analysis 

Variables OR (95% CI) p Value OR (95% CI) p Value 

Age (per year increase) 1.04 (1.02-1.06) <0.001 - - 

Female sex 4.27 (2.35-7.76) <0.001 4.67 (1.83-11.90) 0.001 

BMI (per unit increase) 1.20 (1.10-1.31) <0.001 1.22 (1.08-1.37) 0.002 

Beta-blockers, Verapamil or Diltiazem 1.50 (0.84-2.67) 0.17 - - 

NYHA class (per unit increase) 3.41 (2.20-5.31) <0.001 2.68 (1.48-4.86) 0.001 

LVOT gradient at rest >30 mmHg 2.88 (1.43-5.82) 0.003 3.61 (1.31-9.96) 0.013 

LV Ejection Fraction (per unit increase) 0.97 (0.93-1.01) 0.15 - - 

Maximum LV Wall Thickness (per unit increase) 1.03 (0.97-1.09) 0.36 - - 

LA volume (per unit increase) 1.01 (1.00-1.02) 0.17 - - 

LVEDV (per unit increase) 0.99 (0.98-1.00) 0.085 - - 

LVEDV < I° tertile (<88 ml) 2.40 (1.34-4.30) 0.003 2.99 (1.20-7.46) 0.019 

E/E’ lateral  (per unit increase) 1.17 (1.08-1.27) <0.001 - - 

Moderate or severe MR at rest  1.61 (0.60-4.34) 0.35 - - 

Presence of pathogenic/likely pathogenic sarcomere 
gene mutations 

0.94 (0.48-1.83) 0.86 - - 

CI = confidence interval; MR = mitral regurgitation; OR = odds ratio; other abbreviations as in Table 1 and 2. NS = not significant. 
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