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Chapter 1 - Thesis topic and outline 
This thesis describes the use and development of innovative tools, both radiological and bioengineering, in 

supporting clinical diagnosis of chronic obstructive pulmonary disease (COPD). Radiology was coupled with 

pulmonary function to better understand this complex and heterogeneous disease and to describe its phenotypes 

and endotypes. An overview of the clinical and radiological complexity of COPD and the current role of 

imaging is presented in the first part (Chapters 1 and 2). The second part (Chapters 3 to 7) focuses on statistical 

and mathematical models that classify patients for having the emphysematous phenotype based uniquely on 

clinical and functional data. Innovative imaging techniques have been tested and used as gold standards. The 

third part (Chapter 8 and 9) examines the ongoing questions and future directions of research in the field.  

Part I 

Chapter 1   COPD: a complex and heterogeneous disease  

Chapter 2   Radiology and Radiomics 

Part II 

Chapter 3   Emphysematous and nonemphysematous gas trapping in COPD 

Chapter 4   Statistical models: lung function and BMI 

Chapter 5   Statistical models: maximal expiratory flow-volume curve 

Chapter 6   Mathematical model and radiomics 

Chapter 7   Validation ESI model 

Part III 

Chapter 8   Which criteria to define COPD? 

Chapter 9   Future directions 

Chapter 10  Conclusions 
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Chapter 2 - COPD: a complex and heterogeneous disease 
Chronic obstructive pulmonary disease (COPD) is characterized by expiratory airflow limitation caused 

by increased resistance of the small airways and/or increased compliance of the lung as a result of emphysema. 

The volume of air that can be expired within 1 s after the beginning of a forced expiration (FEV1) is the 

hallmark of COPD, as expiratory airflow is affected by inflammation and remodeling of the small airways as 

well as by emphysematous destruction of lung parenchyma. Spirometric detection of not fully reversible 

airflow limitation unifies under the acronym COPD a spectrum of heterogeneous conditions, different from 

the clinical, functional, and pathological perspective. 

Fifty years ago Burrows described the distinctive clinical, functional, radiological, and pathological 

characteristics that differentiate those patients with COPD during life who presented with parenchymal 

destruction or involvement of the small airways at autopsy (1). The terms type A (pink puffer) and type B 

(blue bloater) introduced to empirically differentiate COPD patients with the emphysematous type from those 

with the small airway disease type of chronic airways obstruction are no longer in use because a direct 

association between clinically defined phenotypes and lung pathologic findings, such as centrilobular and 

panlobular emphysema, has never been demonstrated (2). The observation that the pathological findings of 

small airways disease and parenchymal destruction often coexist in the same patient has substantially 

contributed to the introduction and wide use of the term “COPD” for the whole population of patients with 

chronic irreversible airflow limitation. However, spirometric parameters, such as FEV1 and forced vital 

capacity (FVC), cannot provide a panoramic view of the complexity and heterogeneity of COPD. Different 

types of emphysema may coexist in the same patient and the mechanical properties of the lung differ according 

to the predominant type.  

In 2009 Ogawa et al. elegantly brought back to life and strengthened Burrows’ findings of the sixties by 

using high resolution computed tomography (CT) (3). They found that patients with COPD who had low 

attenuation areas (compatible with emphysematous destruction of lung parenchyma) were thinner than those 

who had bronchial wall thickening (compatible with chronic inflammatory changes of the small airways). A 

significant inverse relationship was found between body mass index (BMI) and emphysema extent at CT, 

whereas there was no correlation between BMI and thickness of the bronchial wall. FEV1 inversely correlated 

with BMI, CT emphysema extent and bronchial wall thickness, but there was no significant difference in FEV1 

between the two CT phenotypes of COPD (3). These findings suggest that patients with COPD may have 

different systemic clinical manifestations (phenotypes), reflecting different pathophysiological mechanisms 

(endotypes) of expiratory airflow limitation (4). Moreover, the various endotypes may respond differently to 

therapy, which could possibly explain the deceiving results of some pharmacological trials (8). 
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From: Woodruff P et al. The Lancet 2015 385, 1789-98. 

Endotypes can be characterized in vivo by using CT. Together with the emphysema extent, airway wall 

thickness on CT has been used to help classifying patients with expiratory airflow limitation as having either 

a predominant emphysema phenotype (increased lung compliance) or a predominant small airway disease 

phenotype (increased airway resistance) (5-7). The recent technological advances in imaging acquisition and 

post-processing of image data have brought to advances into the understanding of such a complex and 

heterogeneous disease as COPD. 
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Chapter 3 - Radiology and Radiomics 
Chest radiography has been used for many years to evaluate the entire chest in COPD patients. However, 

the advent of CT and the recent advances in acquisition as well as in post-processing of image data have lead 

to a significant improvement in the in vivo characterization of COPD. 

CT is the most widely available and precise imaging method for the characterization of COPD. CT is a 

well-validated technique to assess qualitatively and quantitatively the presence, pattern, and extent of 

emphysema (1, 2). Quantification of low-attenuation areas, expiratory gas trapping, and airway wall thickness 

can help define specific COPD subtypes with different clinical and physiologic features (3). 

The Fleischner Society in 2015 released a Statement on CT-definable subtypes of COPD that included a 

wide spectrum of emphysema and airway disease subtypes (4). The criteria to classify the subtypes rely on 

both quantitative and qualitative parameters.  

Qualitative analysis defines the presence and subtype of emphysema, airway wall thickening, and the 

features associated, such as tracheobronchomalacia, bronchiectases, coexistence of interstitial lung disease, 

pulmonary hypertension, morphology of chest wall and large airways (4). Semiquantitative scores to quantify 

pulmonary emphysema have been used, but quantitative analysis overtakes radiologists performance (5).  

Quantitative analysis can be performed nowadays by using many different software programs, either free 

or commercially available. Most of them execute a densitometric analysis of lung parenchyma and the 

segmentation of airways and lobes, providing parameters of low attenuation areas, airway wall thickening, and 

airway luminal area. More advanced programs can also provide parameters on pulmonary vasculature (i.e. 

vessel volume, vessel caliber, distinction between arteries and veins). Nowadays these software programs are 

fully automated and some of them allow the manual correction if any mistake occur. The time needed to 

perform these analyses vary according to the program used, ranging from 5 to 10 minutes per CT scan.  

Inspiratory CT scan is performed at total lung capacity, whereas expiratory scan can be performed either 

at forced vital capacity or at residual volume. Spirometric gating allows scanning the chest at predefined lung 

volumes to avoid the influence of the level of lung inflation during scanning on CT attenuation measurements 

(6, 7). However, the level of lung inflation is not the only parameter affecting the assessment of the disease at 

CT. Quantitative analysis can also be affected by a large number of factors, such as variability in technical 

parameters of acquisition (slice thickness, convolution kernels, iterative reconstructions, kVp and mAs), 

calibration of CT scanners, CT vendors, patient’s BMI, presence of motion or hard-beam artifacts, coexistence 

of other lesions, and post-processing image analysis (8). Recently a new factor has been added to this long list: 

the elastic deformation of paired inspiratory and expiratory scans performed at coregistration analysis. 

Coregistration analysis provides the relative volume of functional gas trapping, namely the gas trapped in 
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expiration not due to emphysema (9, 10). This deformation creates parametric response maps where each voxel 

has an attenuation value different from both the native paired CT scans. 

The exponential growth in medical image analysis has brought to an increased number of pattern 

recognition tools and the increase in data set sizes. These advances have facilitated the development of 

processes for high-throughput extraction of quantitative features that result in the conversion of images into 

mineable data and the subsequent analysis of these data for decision support. This practice is termed radiomics. 

Radiomics allows the simultaneous use of a large amount of parameters extracted from imaging data. These 

parameters are mathematically processed with advanced statistical methodologies (11). Radiomic data contain 

first-, second-, and higher-order statistics (12). These data are combined with other patient data and are mined 

with sophisticated bioinformatics tools to develop models that may potentially improve diagnostic, prognostic, 

and predictive accuracy (13). 

 

 

From: Gillies R et al. Radiology 2016; 278:563–77 

 

The novelty of the methodology carries many difficulties nowadays, especially in the choice of which 

parameters to extract from the images. Each tool calculates a different number of features, belonging to 

different categories, and the initial choice may appear somehow arbitrary. Nonetheless, the methodologies for 

data analysis strictly depend on the number of input variables, possibly affecting the final result. One approach 

is to start from all the features provided by the calculation tool and to perform a preliminary analysis to select 

the repeatable and reproducible parameters, to subsequently reduce them by correlation and redundancy 

analysis. Another approach is to make an a priori selection of the features, based on their mathematical 

definition, focusing on the parameters easily interpretable in terms of visual appearance, or directly 

connectable to some biological properties of the tissue. Alternatively, machine-learning techniques, underlying 

the idea that computers may learn from past examples and detect hard-to-discern patterns from large and 

complex datasets, are used and emerging today as a useful tool to select appropriate features (14, 15).  
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Although radiomics features can be calculated by dedicated software programs, which are user-friendly 

and timely wise, it is still mandatory to carefully check the quality of the input data and to select the optimal 

parameters to guarantee reliable and robust output (16). The huge amount of information provided by this new 

methodology should be accurately evaluated and its clinical meaning explored. 

Advances in technical equipment allowed the generation of microCT scans. The analysis of lung 

parenchyma at a 16.24μm isotropic voxel resolution allows visualizing the terminal bronchioles to the point at 

which they branched into respiratory bronchioles (17). An estimate of the total number of terminal bronchioles 

as well as the total cross-sectional area of all terminal bronchioles per lung can be obtained, providing useful 

information in the assessment of COPD subtypes. However, microCT can assess only frozen lung specimens, 

making microCT fully dedicated to research. 
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Chapter 4 - Emphysematous and nonemphysematous gas 
trapping in chronic obstructive pulmonary 
disease 

 

Emphysematous and nonemphysematous gas trapping in Chronic Obstructive Pulmonary 
Disease: Quantitative CT Findings and Pulmonary Function 

Mariaelena Occhipinti, Matteo Paoletti, Francesca Bigazzi, Gianna Camiciottoli, Riccardo Inchingolo,  

Anna R. Larici, Massimo Pistolesi 

Radiology 2018; 287:683–692 

 

4.1 Introduction 

The wide heterogeneity of clinical presentation makes chronic obstructive pulmonary disease (COPD) a 

complex disease, which deserves deeper insights beyond airflow obstruction detected at spirometry. The 

advent of computed tomography (CT) has brought in the last twenty years substantial progress in the 

assessment of the pathophysiologic mechanisms underlying airflow obstruction in COPD, namely emphysema 

and conductive airway disease (1). However, the possibility to accurately resolve by CT the relative 

contribution of emphysematous and non-emphysematous gas trapping in the determination of expiratory 

airflow obstruction is still matter of study, to our knowledge (2). Recently, Galban et al. proposed an innovative 

method called pulmonary parametric response map (pPRM), based on the co-registration of paired inspiratory 

and expiratory thoracic CT scans. This method can dissect and display the regional distribution of the persistent 

low density area (emphysematous gas trapping, due to parenchymal destruction), and the functional low 

density area (non-emphysematous or functional gas trapping due to conductive airway disease) (3). 

Although in an individual patient one of the two pathophysiologic conditions (endotypes) may prevail, most 

COPD patients present (phenotype) with a mixed disorder characterized by various combinations of both 

components, and a corresponding mixed CT subtype (4, 5). Knowledge of the prevalent subtype in each patient 

may be of interest in developing clinical and pharmacological trials designed to target patient therapy to the 

underlying pathophysiologic mechanism of airflow obstruction. Conductive airway obstruction and 

parenchymal destruction may not be targetable with the same therapy. Therefore, we aimed at identifying a 

prevalent CT subtype, by dissecting each contribution to total gas trapping. We also evaluated the prediction 

and grading by clinical and functional data the contribution of emphysema to total gas trapping as assessed 

using non-contrast thin-section thoracic CT. 
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4.2 Materials and Methods 

This two center study was approved by both institutional Ethics Committees of the University of Florence 

and the Catholic University of Sacred Heart in Rome. Written informed consent was obtained by all 

participants. M.O. reports consultancies from Imbio, LLC (Minnesota, MN) and a grant financed partly from 

MENARINI and partly from the University of Florence, during the conduct of the study. M.Pistolesi reports 

grants from Ministry of Health of Italy as well as from Ministry of University and Research of Italy, during 

the conduct of the study. The authors had control of the data and of the information submitted for publication. 

Our study was based on a retrospective interpretation of prospectively acquired data. From January 2012 

to December 2015, we recruited 224 consecutive eligible COPD patients (GOLD stages I-IV) meeting specific 

criteria, including being aged 40–85, with a smoking history of more than 10 pack-years, who showed non-

reversible post-bronchodilator airflow obstruction, and who underwent chest CT within 48 hours of pulmonary 

function evaluation. We excluded patients within one month of an exacerbation or who had clinical conditions 

interfering with pulmonary function or chest CT quantitative parameters assessment, including asthma, diffuse 

bronchiectasis, interstitial lung disease, acute heart failure, chemotherapy and/or radiation therapy, lung 

cancer, lung surgery, and metal objects in the chest. 

4.2.1 Pulmonary Function Testing 

All patients underwent complete pulmonary function evaluation within 48 hours of the CT examination. 

Pre-and post-bronchodilator spirometry data, static lung volumes, and single-breath diffusing capacity for 

carbon monoxide (DLco) were measured according to American Thoracic Society/European Respiratory 

Society (ATS/ERS) guidelines (6). 

4.2.2 Chest CT Scan 

Volumetric chest CT scans were obtained at full inspiration and expiration using the acquisition protocol 

adopted in the COPDGene study (7). CT parameters were set as follows: 120 kVp, 200 mAs, rotation time 

0.5s, pitch 1.1, slice thickness 0.75mm, and reconstructions kernels b31f and b70f. All CT scans were 

performed by the same team of diagnostic personnel in each center (lead by F.B. in Florence and A.R.L. in 

Rome, with 10 and 20 years of expertise in thoracic imaging, respectively) and by using the same CT scanner 

for all patients in each center (in Florence: SOMATOM Sensation 64, Siemens, Erlangen, Germany; in Rome: 

SOMATOM Definition FLASH 128, Siemens, Erlangen, Germany). Patients received prior careful 

instructions on how to perform the respiratory maneuvers while lying supine in the CT scanner with arms fully 

abducted. No contrast medium was administered. Post-processing image analysis was performed in images 

with reconstruction kernel b31f by a thoracic radiologist with 5 years expertise on quantitative imaging (M.O.). 

Thresholds at -950 Hounsfield Units (HU) and -856 HU were chosen as densitometric cut-off consistent with 

emphysema and total gas trapping, respectively (8-10). The relative volumes of lung attenuation area with 

values below -950 HU at inspiration (%LAA-950insp) and below -856 HU at expiration (%LAA-856exp) were 
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quantified by using the Pulmonary Workstation Apollo 2.1 (VIDA Diagnostics, Coralville, Iowa, USA). CT 

scans were also analyzed by LDA (Imbio LLC, Minneapolis, MN, USA), a U.S. FDA-cleared and CE 

(Conformité Européenne) mark certified medical device, which performs a deformable co-registration of 

paired inspiratory and expiratory CT scans, to obtain voxel-by-voxel attenuation maps. These maps, called 

pPRM, classify lung voxels into three different tissue patterns based on the attenuation values of each voxel: 

normal lung (% voxels with CT attenuation above -950HU at inspiration and above -856HU at expiration), 

functional low density area (%fLDA, voxels with CT attenuation above -950HU at inspiration and below -

856HU at expiration), and persistent low density area (%pLDA, voxels with CT attenuation below -950HU at 

inspiration and below -856HU at expiration) (3). Moreover, pPRM quantify the relative volumes of each lung 

pattern and show their regional distribution.  

4.2.3 Data analysis 

Scatterplots were used to show the distribution and the relationships among CT parameters. Pearson r 

coefficient was used to assess association between parameters, with p <0.05 indicating statistical significance.  

To quantify the contribute of functional gas trapping to the CT reduced x-ray attenuation using CT density 

thresholds without co-registration, we used the following computation:  

%fGT = [%LAA-856exp − (%LAA-950insp − 6%)] 

where 6% of voxels below -950HU is assumed as the threshold value to diagnose emphysema by 

quantitative CT (1). To validate this computation we compared %fGT with %fLDA.  

To help separating the contribution of functional gas trapping from emphysema, the scatterplot of %fGT 

and %LAA-950insp of the whole series of patients was subdivided into four areas by drawing a line from the 

mean value of %fGT on the x-axis (36.2%) and its perpendicular from the mean value of %LAA-950insp on the 

y-axis (14.9%). Welch's t, ANOVA, and Games-Howell post-hoc test were used to evaluate differences of 

clinical and functional data between the four groups of patients entailed in each area (11).  

The probability to have a %LAA-950insp above or below the sample mean was estimated by a ten-fold 

validated logistic regression model built from stepwise selection of anthropometric, clinical, and functional 

data (see online Supplemental Material for detail) (12). A predicted probability (P) value of 0.5 was arbitrarily 

selected as decision threshold. For the sake of clinical classification, patients with a P value lower than 0.5 

were subdivided in two subgroups according to a P value lower or higher than 0.2. Likewise, patients with a P 

value higher than 0.5 were subdivided in those with a P value higher or lower than 0.8. 

Data analysis and statistics were performed using S-Plus 2000 (Mathsoft, Cambridge, MA), SPSS/PC WIN 

11.5.1 (SPSS, Chicago, IL), Mathcad (version 2001; Mathsoft), and C++ programming language. 
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4.3 Results 

Two hundred and two (159 men, mean age 71, age range: 41-85; 43 women, mean age: 67, age range: 46-

84) out of the 224 patients enrolled were included in the analysis. Twenty-two patients were excluded for the 

presence of parenchymal consolidations (16/22) or incomplete clinical (4/22) or CT scan (2/22) data. 

Anthropometric, smoking history, lung function, and CT metrics data of the 202 patients are shown in Table 

1.  

Table 2 shows the correlations between clinical, pulmonary function, and CT data. The strongest 

correlations were observed between %pLDA and %LAA-950insp, %fLDA and %fGT, %LAA-856exp and 

FEV1/VC, and %LAA-856exp and FEV1/FVC. Conversely, poor correlations were observed between CT metrics 

of functional gas trapping (i.e. %fLDA and %fGT) and functional and CT parameters compatible with 

emphysema (i.e. DLco%, RV/TLC, and %LAA-950insp). CT metrics obtained by difference of density thresholds 

and those obtained by co-registration analysis correlated similarly with pulmonary function parameters. 

Figure 1 shows the scatterplot of the 202 patients using as coordinates %LAA-950insp and %LAA-856exp. The 

dispersion of data points increased progressively, with the increase in total gas trapping (%LAA-856exp), 

indicating that there was a wide grade of interaction of emphysematous and non-emphysematous contribution 

to total gas trapping. In particular, patients with similar values of %LAA-950insp had very different values in 

%LAA-856exp. The non-emphysematous contribution to total gas trapping is a function of the difference of the 

two variables at each level %LAA-950insp, as computed by %fGT. Figure 2 shows the strong correlation between 

%fGT and %fLDA, whose regression line essentially corresponds to the identity line.  

Figure 3 shows the relationship between %fGT, expression of functional gas trapping, and %LAA-950insp, 

expression of emphysematous gas trapping. As can be derived from the graphical subgrouping of patients 

shown in Figure 3, group Emph consisted of 29/202 (14.4%) patients with prevalent emphysema (%LAA-950insp 

higher than the mean value and %fGT lower than the mean value), whereas group Funct consisted of 46/202 

(22.8%) patients with prevalent functional (non-emphysematous) gas trapping (%LAA-950insp lower than the 

mean value and %fGT higher than the mean value). Groups Mixs 57/202 (28.2%) and Mixm 70/202 (34.6%) 

consisted of patients with a greater degree of severity of both components in group Mixs and a lower degree 

of severity of both components in group Mixm.  

Table 3 shows the mean values of anthropometric, smoking history, and pulmonary function data across 

the four groups (Emph, Mixs, Mixm, Funct in Figure 3). BMI was significantly higher in group Mixm 

(p<0.01), with a tendency to decrease as severity of disease increased. DLco% was the only parameter to differ 

significantly between group Emph and Funct (p<0.05).  

The logistic regression model was trained to classify COPD patients according to the probability to have a 

%LAA-950insp higher than the mean value of the sample. FEV1/VC, FEV1%, DLco%, and BMI were included 

as predictors of %LAA-950insp, and four groups were defined according to the probability output. The overall 
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accuracy of the probabilistic model was 81.1% in the training set and 79.2% in the validation set, with a higher 

accuracy (88.0%) in those patients with “milder” disease (probability of the output model <0.5) (Table 4). By 

combining functional indexes and BMI predictors, we classified each subject according to probability output 

values ranging from milder (group 1) to more severe (group 4) emphysema. The four outputs of the model had 

significantly different %LAA-950insp (or %pLDA) (p<0.01), as shown in panel A of Figure 4. Panel B of Figure 

4 shows the relationship between %fLDA and total gas trapping (%LAA-856exp). The different colors (from blue 

to yellow) correspond to the four groups of emphysema grade estimated by the model based on anthropometric 

and functional data. The regression line is fitted for data points with a model output less than 0.5 (r=0.89). 

Patients with milder emphysema (blue or dark-grey circles) are distributed mainly along the regression line. 

Conversely, patients with a more severe parenchymal destruction (light-grey or yellow circles) are scattered 

above the regression line. The data points distribution reveals that in this series of COPD patients, the 

emphysematous contribution to total gas trapping is absent for values of total gas trapping around or below 

30%. 

4.4 Discussion 

Our study provides evidence that imaging metrics obtained by density thresholds difference of inspiratory 

and expiratory CT scans can be used to identify and quantify the relative contribution of functional (non-

emphysematous) and emphysematous gas trapping and to identify a prevalent CT subtype. The evaluation of 

functional gas trapping obtained by density thresholds difference and co-registration analysis was comparable. 

The contribution of emphysema to total gas trapping, as assessed by CT, was estimated with reasonable 

accuracy by anthropometric and pulmonary function data. 

Airflow obstruction in COPD results from parenchymal destruction as well as from small conducting 

airway disease, with small airway disease preceding the development of parenchymal destruction (13-15). 

Both pathophysiologic processes lead to gas trapping into the lungs. The differentiation of emphysematous 

gas trapping (due to parenchymal destruction) from functional gas trapping (due to conductive airway disease) 

is difficult both by pulmonary function testing and CT scan (16, 17). Recently, the pPRMs obtained through 

co-registration analysis of inspiratory and expiratory CT scan overcame this issue, allowing discrimination of 

the two contributions to total gas trapping (2, 3, 18).  

We observed that the relationship between standard CT metrics (%LAA-950insp and %LAA-856exp) was greatly 

dispersed, suggesting that total gas trapping (%LAA-856exp) included both emphysematous and non-

emphysematous contributions. To determine these contributions we computed an index, called %fGT, derived 

from the difference between standard CT metrics (%LAA-950insp and %LAA-856exp) obtained from inspiratory 

and expiratory scans. The index had a strong correlation (r=0.99) with %fLDA, which is the reference 

parameter for the non-emphysematous gas trapping derived by co-registration (2, 3, 18-20). Likewise %fLDA, 

%fGT provides information on the amount of functional non-emphysematous gas trapping. In contrast to 

%fLDA, %fGT lacks localization of gas trapping. Gas trapping regional distribution can be provided only by 
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pPRM, and may play a role in the assessment of symptoms severity, as well as in the selection of patients for 

surgical and endoscopic lung volume reduction. However, %fGT can be easily obtained by using widely 

available software programs on lung density analysis. This measurement can be supplemented by the 

qualitative evaluation of the regional distribution of the lung pathologic changes. 

The weak correlation between CT metrics of parenchymal destruction (%LAA-950insp and %pLDA) and 

%fGT depicted the independent contribution of functional gas trapping and parenchymal destruction to airflow 

obstruction. This was in keeping with previous studies demonstrating weak correlations between indexes of 

emphysema severity and airway wall thickening (5, 21). 

The classification in four subgroups of patients (Emph, Mixs, Mixm, Funct) to assess the relative 

contribution of functional gas trapping and parenchymal destruction in the definition of COPD subtypes was 

very similar to that proposed in other studies (14, 21, 22). Our patients displayed a continuous spectrum of 

pathologic alterations of both conductive airway disease and emphysema. However, knowledge of the 

percentage of lung destruction may be of help in assessing patient prognosis and, possibly, in selecting the 

individual treatment (e.g. whether to add inhaled steroids to bronchodilators). Across the four subgroups of 

COPD patients we observed no statistically significant differences in smoking history. Statistically significant 

higher DLco% values were found in patients with prevalent functional (Funct) than in those with prevalent 

emphysema (Emph). Patients with milder disease (Mixm) had significantly higher BMI values than other 

subgroups. In agreement with previous studies, we found an inverse relationship between BMI and CT indexes 

of emphysema, including %LAA-950insp and %pLDA (22, 23). Accordingly, it is reasonable that BMI was 

included among the regressors of the probabilistic model to predict the contribution of emphysema to total gas 

trapping. It has very recently been shown that BMI as well as height itself (the denominator in the BMI 

formula) can be used to predict emphysema risk, with odds of emphysema increasing by 5% along with one 

cm increase in body height (24).  

Probabilistic models may help to characterize, without CT, the main pathophysiologic mechanism 

underlying airflow obstruction and may facilitate individualized treatment strategies. This may be of relevance 

considering the high prevalence of COPD in the general population and the unavailability of CT scan in most 

patients, even more if we consider that both inspiratory and expiratory scans are needed. We found that BMI 

combined in a predictive model with DLco%, FEV1, and FEV1/VC can be used to classify COPD patients 

according to CT parenchymal destruction (%LAA-950insp) with an acceptable level of accuracy. Previous studies 

have shown that parenchymal destruction on CT is related to both DLco% and FEV1, and that FEV1/VC is 

better related to CT indexes (%LAA-950insp) of airway obstruction with respect to FEV1/FVC (25, 26). 

According to previous results, spirometric indexes of airflow obstruction had a moderate inverse correlation 

with emphysema indexes on CT (27). These findings can be explained by the absence of a linear correlation 

between pulmonary function data and CT attenuation values, as demonstrated in a previous analysis (26). 
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The probabilistic index described here may help to differentiate, with acceptable approximation, the 

contribution of emphysema to total gas trapping in COPD. In patients with a predicted probability lower than 

0.5 as output of the model, functional gas trapping approximately corresponded to total gas trapping. In patients 

with a predicted probability greater than 0.5 as output of the model, parenchymal destruction added to 

functional gas trapping increasing the overall value of total gas trapping (%LAA-856exp). This is in keeping with 

the results obtained by McDonough and colleagues, who by measuring mean linear intercept on microCT 

showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD 

(15). In our patients, when total gas trapping was around or below 30% it had no significant emphysematous 

contribution, being derived almost completely from the non-emphysematous component. 

The main limitation of our study was the relatively small number of patients included in the cohort to be 

considered representative of the whole spectrum of COPD lung structural changes. Although our cohort was 

smaller than those of other studies (i.e. COPDGene, SPIROMICS), both the distribution and the mean of 

%LAA-950insp and %LAA-856exp obtained in our patients are comparable to those obtained in the COPDGene 

study, making the described model possibly suitable for application to other populations (28, 29). Another 

limitation of this study was the use of the fixed ratio FEV1/FVC according to GOLD guidelines to enroll 

patients, instead of using age-dependent reference equations such as the lower limit of normality (30, 31). The 

adoption of the fixed ratio may have over-diagnosed elderly patients, that represent the vast majority of our 

population. As far as CT was concerned, we lacked spirometric control of the level of lung inflation during the 

acquisition, and this may be an issue for reproducibility and data interpretation. However, all patients received 

careful instructions on how to perform the respiratory maneuvers while lying supine in the CT scanner. The 

presence of bronchiectasis and mucous impaction could have been another possible pitfall in the evaluation of 

lung density. However, none of our patients were studied during an exacerbation. Finally, the validation of the 

Logit model has been done on a training set (our cohort) and cross-validated by 10-fold leave-out test. It would 

be advisable to recruit a larger population in the near future, and to validate prospectively the model in a 

population different from that of the model derivation. A further limitation is the inclusion of only white 

Caucasian patients, which may limit the application of the observed associations to other ethnicities. 

In conclusion, our study demonstrated that standard imaging metrics obtained by inspiratory and expiratory 

thoracic CT scans can be used to identify and quantify the relative contribution of emphysematous and non-

emphysematous gas trapping, permitting a better definition of COPD subtypes. Co-registration analysis adds 

information on regional distribution of disease type, extent, and severity, which cannot be provided by standard 

densitometric analyses. Furthermore, the use of a probabilistic model including anthropometric and functional 

data can grade the relative contribution of parenchymal destruction to total gas trapping as assessed using CT. 

The application of this model may help in the definition of different COPD subtypes and may be used to design 

newer outcomes in developing clinical and pharmacologic trials.   
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4.5 Tables 

Table 1. Anthropometric, pulmonary function, and CT metrics data of 202 patients with COPD. Data are 

reported as mean ± SD. (*: quantitative CT data calculated by Apollo 2.1 VIDA Software; †: quantitative CT 

data calculated by LDA Imbio Software; %fGT is calculated as described in the Materials and Methods 

section)  

Age (years) 70.3 ± 8.1 

BMI (kg/m2) 26.3 ± 4.6 

Smoking history (Pack-years) 50.8 ± 25.5 

FEV1% 62.7 ± 26.3 

FEV1/VC (%) 47.1 ± 12.9 

FEV1/FVC (%) 51.4 ± 12.4 

FVC% 92.8 ± 25.0 

FRC% 128.6 ± 33.8 

TLC% 107.7 ± 17.6 

DLco% 68.5 ±23.6 

RV% 136.8 ± 48.3 

RV/TLC (%) 50.2 ± 17.1 

%LAA-950insp* 14.9 ± 12.4  

%LAA-856exp* 45.1 ± 20.5 

%Normal lung †  49.9 ± 21.1 

%fLDA† 36.1 ± 14.0 

%pLDA† 12.4 ± 12.7 

%fGT 36.2 ± 13.6 

 Legend: BMI = body mass index, DLco% = percentage of predicted diffusing capacity of lung for carbon monoxide, 
FEV1% = percentage predicted forced expiratory volume in 1 second, %fGT = percentage of functional gas trapping, 
%fLDA = percentage of functional low density area, FRC% = percentage of predicted functional residual capacity, FVC% 
= percentage of predicted forced vital capacity, %LAA-950insp = percentage of lung attenuation area with values below -
950HU at inspiratory CT scan, %LAA-856exp = percentage of lung attenuation area with values below -856HU at expiratory 
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CT scan, %pLDA = percentage of persistent low density area, RV% = percentage of predicted residual volume, TLC% = 
percentage of predicted total lung capacity, VC = vital capacity 
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Table 2. Pearson's correlation coefficients between %fGT and anthropometric, smoking history, pulmonary 

function, and CT imaging data. (*: p<0.01; †: p<0.05). 

 %LAA-950insp %pLDA %LAA-856exp %fLDA %fGT 

Age 0.05 0.04 0.06 0.07 0.04 

BMI -0.36* -0.37* -0.38* -0.22* -0.24* 

Pack-years 0.09 0.10 0.05 -0.02 -0.004 

FVC% -0.17† -0.20* -0.26* -0.21* -0.23* 

FEV1% -0.48* -0.50* -0.58* -0.43* -0.44* 

FEV1/VC -0.63* -0.64* -0.73* -0.52* -0.52* 

FEV1/FVC -0.66* -0.68* -0.72* -0.48* -0.48* 

TLC% 0.34* 0.33* 0.42* 0.33* 0.33* 

RV% 0.41* 0.43* 0.54* 0.42* 0.43* 

RV/TLC 0.35* 0.37* 0.42* 0.31* 0.31* 

FRC% 0.49* 0.50* 0.57* 0.40* 0.41* 

DLco% -0.43* -0.45* -0.43* -0.24* -0.25* 

%LAA-950insp 1 0.99* 0.76* 0.26* 0.24* 

%LAA-856exp 0.76* 0.76* 1 0.81* 0.81* 

%fLDA 0.26* 0.25* 0.81* 1 0.99* 

%pLDA 0.99* 1 0.76* 0.25* 0.25* 

%fGT 0.24* 0.25* 0.81* 0.99* 1 

 Legend: BMI = body mass index, DLco% = percentage of predicted diffusing capacity of lung for carbon monoxide, 
FEV1% = percentage predicted forced expiratory volume in 1 second, %fGT = percentage of functional gas trapping, 
%fLDA = percentage of functional low density area, FRC% = percentage of predicted functional residual capacity, FVC% 
= percentage of predicted forced vital capacity, %LAA-950insp = percentage of lung attenuation area with values below -
950HU at inspiratory CT scan, %LAA-856exp = percentage of lung attenuation area with values below -856HU at expiratory 
CT scan, %pLDA = percentage of persistent low density area, RV% = percentage of predicted residual volume, TLC% = 
percentage of predicted total lung capacity, VC = vital capacity. 
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Table 3. Mean values of anthropometric, smoking history, and pulmonary function data among the four 
groups (Emph – prevalent emphysema; Mixs – mixed severe; Mixm – mixed mild; Funct– prevalent functional 
gas trapping) shown in Figure 3, derived by the different contributions of %fGT and %LAA-950insp parameters. 
Differences between groups were analyzed by ANOVA and Games-Howell post-hoc tests. (*: p<0.01; †: 
p<0.05; NS: not significant).  

 Emph Mixs Mixm Funct Differences 

Age (years) 70.2 71.2 68.9 71.1 NS 

BMI (kg/m2) 25.1 24.4 28.6 25.9 Emph-Mixm * 

Mixs-Mixm * 

Funct-Mixm * 

Pack-years 56.3 52 48.6 49.1 NS 

DLco% 55.2 59 81.4 67.3 Emph-Mixm * 

Mixs-Mixm * 

Funct-Mixm * 

Emph-Funct † 

FVC% 97.9 87.5 98.6 87.3 Mixs-Mixm † 

Mixm-Funct † 

FEV1% 61.1 46.7 79.5 58.1 Emph-Mixs † 

Emph-Mixm * 

Mixs-Mixm * 

Funct-Mixm * 

Mixs-Funct † 

FEV1/VC (%) 44.2 36.8 57.9 45.3 Emph-Mixs † 

Emph-Mixm † 

Mixs-Mixm * 

Mixs-Funct * 

Mixm-Funct * 

FEV1/FVC (%) 48.4 40.8 61.3 51.1 Emph-Mixs † 
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Emph-Mixm † 

Mixs-Mixm * 

Mixs-Funct * 

Mixm-Funct * 

TLC% 110.9 115.5 99.5 108.5 Emph-Mixm † 

Mixs-Mixm * 

Mixm-Funct † 

RV% 135.6 163 109.3 140.6 Mixs-Mixm * 

Mixs-Funct † 

Mixm-Funct * 

RV/TLC (%) 49.3 59.4 42.3 51.2 Mixm-Funct * 

Mixs-Mixm * 

FRC% 131.9 150.3 109.2 129.2 Emph-Mixm * 

Mixs-Mixm * 

Mixm-Funct * 

Mixs-Funct * 

Legend: BMI = body mass index, DLco% = percentage of predicted diffusing capacity of lung for carbon monoxide, 
FEV1% = percentage predicted forced expiratory volume in 1 second, FRC% = percentage of predicted functional 
residual capacity, FVC% = percentage of predicted forced vital capacity, RV% = percentage of predicted residual volume, 
TLC% = percentage of predicted total lung capacity, VC = vital capacity 
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Table 4. Predictors, odds ratios, and accuracy of the logistic regression model trained to classify COPD 
patients according to their parenchymal destruction (%LAA-950insp) contribution to total gas trapping. The best 
regressors were selected after a step-wise procedure. The model classification cut-off was the predicted 
probability value P=0.5. Patients in class 1 included those with P<0.5 (groups 1 and 2 in Figure 4) and patients 
in class 2 included those with P>0.5 (groups 3 and 4 in Figure 4). In parentheses are the results obtained after 
ten fold cross-validation.  

 

Predictors Odds Ratio p 

DLco% 0.98 0.03 

FEV1/VC 0.87 <0.01 

BMI 3.41 <0.01 

FEV1% 1.03 0.02 

 

 Model estimation (cut-off P = 0.5) 

Class 1  Class 2 % Accuracy 

Observed: Class 1 

                 Class 2 

103 14 88.0% (88.0%) 

24 61 71.8% (67.0%) 

Overall Accuracy 81.1% (79.2%) 

Legend: BMI = body mass index, DLco% = percentage of predicted diffusing capacity of lung for carbon monoxide, 
FEV1% = percentage predicted forced expiratory volume in 1 second, P= predicted probability; VC = vital capacity  
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4.6 Figures 

Figure 1. Distribution of 202 patients with COPD according to CT imaging metrics of %LAA-950insp and 

%LAA-856exp. The two variables showed a substantial dispersion of data points which increased progressively 

with increasing severity of CT metrics changes. Patients with similar values of %LAA-950insp had very different 

values in %LAA-856exp. 

 

Legend: %LAA-950insp = percentage of lung attenuation area with values below -950HU at inspiratory CT scan, %LAA-

856exp = percentage of lung attenuation area with values below -856HU at expiratory CT scan. 
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Figure 2. Relationship between %fLDA and %fGT. The correlation between the two variables was strong, 

with a very high Pearson r coefficient (r= 0.99), and a regression line essentially corresponding to the identity 

line.  

 

Legend: %fGT = percentage of functional gas trapping, %fLDA = percentage of functional low density area. 
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Figure 3. Distribution of patients according to %fGT and %LAA-950insp. The correlation between the two 

variables was very weak (r=0.24, p<0.01). Lines representing mean values of %LAA-950insp and %fGT divide 

the scatterplot into four groups: group Emph (prevalent emphysema, %fGT lower than the mean value and 

%LAA-950insp higher than the mean value), group Mixs (mixed-severe disease, both %fGT and %LAA-950insp 

higher than the mean values), group Mixm (mixed-mild disease, both %fGT and %LAA-950insp lower than the 

mean values), and group Funct (prevalent functional gas trapping, %fGT higher than the mean value and 

%LAA-950insp lower than the mean value). 

 

Legend: %fGT = percentage of functional gas trapping, %LAA-950insp = percentage of lung attenuation area with values 
below -950HU at inspiratory CT scan. 
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Figure 4. A) Modified box-and-whiskers plot of mean values with corresponding 95% CI. The plot shws 

the distribution of %LAA-950insp across the four probability output groups of the logistic regression model. 

Group 1 (n=63, blue dot) represents a predicted probability output between 0 and 0.2, group 2 (n=61, dark 

grey dot) between 0.2 and 0.5, group 3 (n=44, light grey dot) between 0.5 and 0.8, and group 4 (n=34, yellow 

dot) between 0.8 and 1. These groups have significantly different %LAA-950insp (p<0.01). B) Relationship 

between %LAA-856exp and %fLDA across the four output groups of the logistic regression model. Patients with 

milder emphysema (blue circles) are distributed along the regression line (r=0.89), whereas patients with more 

severe parenchymal destruction (light grey and yellow circles) are scattered from this fitted line.  

 

Legend: %fLDA = percentage of functional low density area, %LAA-950insp = percentage of lung attenuation area with 
values below -950HU at inspiratory CT scan, %LAA-856exp = percentage of lung attenuation area with values below -
856HU at expiratory CT scan. 
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4.8 Supplemental Material 

4.8.1 Methods 

Patients were recruited at the Respiratory Unit of the University of Florence (181 patients) and at the 

Respiratory Unit of the Catholic University of Sacred Heart in Rome (43 patients). Clinical and pulmonary 

function data were acquired by pulmonologists (mean years of experience: 22.5 [10 to 40]), whereas 

radiologists (mean years of experience: 12.5 [5 to 20]) performed CT scans and post-processing image 

analysis. 

4.8.1.1 Pulmonary Function Testing 

All patients underwent pulmonary function evaluation using a mass-flow sensor and multi-gas analyzer (in 

Florence: V6200 Autobox Body Plethysmograph; Sensor Medics, Yorba Linda, USA; in Rome: Platinum 

Elite™ Body Plethysmograph, Medical Graphics Corporation, St. Paul, MN, USA). Blood gas analysis at rest 

was also performed by using a blood gas analyzer (in Florence: Radiometer ABL90 FLEX, Brønshøj, 

Denmark; in Rome: Radiometer ABL800 FLEX, Brønshøj, Denmark). 

4.8.1.2 Co-registration analysis 

To quantify the contribution of non-emphysematous gas trapping to total gas trapping, we introduced an 

index (called %fGT in the main part of the paper) calculated from standard CT metrics (%LAA-856exp and 

%LAA-950insp). The index %fGT was validated by comparison with %fLDA obtained by co-registration.  

4.8.1.3 Functional-based classification  

Considering the high prevalence of COPD in general practice [1E] and the unavailability of CT scans in 

the vast majority of patients, we also evaluated the possibility to estimate the severity of parenchymal 

destruction, as quantified by %LAA-950insp, using functional data routinely measured in clinical practice. In 

particular, we trained a logistic regression probabilistic model to classify patients according to the CT level of 

parenchymal destruction using anthropometric, clinical, and functional data as independent variables. The 

most statistically significant regressors of the model were identified by a step-wise procedure. Ten-fold 

validation was then performed to ascertain the total and partial predictive accuracy [2E]. One-way ANOVA 

(F-test) was used to verify the model performances in grading COPD patients according to the predicted 

probability (P) obtained as outputs. After the logistic regression model (Table 4 in main paper) was validated, 

we classified each subject according to the probability output value obtained by combining functional indexes 

and BMI predictors. Differences between groups of patients with progressively increasing severity of 

emphysema were assessed by ANOVA and F-test.  
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4.8.2 Results 

4.8.2.1 Co-registration analysis 

Figure 1E shows the distribution of the two pPRM indexes plotted with different colors according to FEV1% 

predicted grade. As shown in the figure, patients with similar FEV1 grade are randomly scattered in the 

diagram. The two different contributions to gas trapping could not be correctly assessed by using standard 

classification methods based on FEV1% thresholds. The two relative contributions to total gas trapping were 

weakly correlated (r=0.24, p<0.01, Table 2 of main manuscript). Lines in Figure 1E represent mean values of 

%pLDA (12.4%) and %fLDA (36.1%), dividing the scatterplot into four groups, in parallel with the division 

done in Figure 3 in the main manuscript. The four groups include Emph (prevalent emphysema, %fLDA lower 

than the mean value and %pLDA higher than the mean value), group Mixs (mixed-severe disease, both %fLDA 

and %pLDA higher than the mean values), group Mixm (mixed-mild disease, both %fLDA and %pLDA lower 

than the mean values), and group Funct (prevalent functional gas trapping, %fLDA higher than the mean value 

and %pLDA lower than the mean value). The distribution of the data points was very similar to that of Figure 

3 in the main manuscript. The small differences in data distribution were due to the differences in the mean 

value of %pLDA and %LAA-950insp (12.4% and 14.9%, respectively), while the mean values of %fLDA and 

%fGT were almost identical (36.1% and 36.2%, respectively). 

4.8.2.2 Functional-based classification 

Differences between the mean values of %LAA-950insp in the various groups are plotted in Figure 4 in the 

main text. Panel B of Figure 4 shows the relationship between %fLDA (x axis) and the total gas trapping 

amount as measured at expiration (y axis). The different colors (from blue to yellow) correspond to the four 

groups we introduced to grade emphysema extent estimation according to the output of the logistic regression 

model. 

The regression line is fitted for data points characterized by a predicted probability P value (model output) 

less than 0.5 classified as having “milder emphysema” extent. As shown in the figure, patients with milder 

emphysema (blue dots) are distributed along this regression line, so that the total gas trapping is directly 

associated with functional gas trapping (the emphysematous contribution is absent). Other patients, 

characterized by a more severe parenchymal destruction (light grey-yellow dots), are scattered far from this 

fitted line because the contribution of the emphysematous gas trapping caused a “shifting effect” towards 

higher values of %LAA-856exp (y values).  

 

Figure 1E. Distribution of the two pPRM indexes plotted with different colors according to FEV1% 

predicted grade. Lines representing the mean values of %pLDA (12.4%) and %fLDA (36.1%) divide the 

scatterplot into four groups, in parallel with the division done in Figure 3 in the main manuscript. The four 
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groups include group Emph (prevalent emphysema, %fLDA lower than the mean value and %pLDA higher 

than the mean value), group Mixs (mixed-severe disease, both %fLDA and %pLDA higher than the mean 

values), group Mixm (mixed-mild disease, both %fLDA and %pLDA lower than the mean values), and group 

Funct (prevalent functional gas trapping, %fLDA higher than the mean value and %pLDA lower than the mean 

value).  
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4.10  Advances in knowledge 

- As shown in 202 patients with COPD, the quantification of the relative contributions of emphysematous 

and non-emphysematous gas trapping was used to identify a prevalent CT subtype. 

- The emphysematous (persistent low density area, %pLDA) and non-emphysematous (functional low 

density area, %fLDA) contributions to total gas trapping provided by a pulmonary parametric response 

map (pPRM) could not be adequately assessed by standard classification methods based on FEV1%, 

which showed only a moderate correlation with %pLDA (r=-0.50) and %fLDA (r=-0.43).  

- The non-emphysematous contribution to total gas trapping (%fLDA) was highly correlated (r=0.99), 

with the difference of imaging metrics at standard density thresholds (%LAA-856exp and %LAA-950insp). 

- The emphysematous contribution to total gas trapping (%pLDA) was essentially absent for values of 

total gas trapping around or below 30%. 

- A functional model including FEV1/VC, FEV1%, DLco%, and BMI was used to predict the CT level 

of parenchymal destruction, with an overall accuracy of 81%. 

Implications for Patient Care: 

- The definition of the prevalent CT subtype (i.e. emphysema versus airway disease) of COPD obtained 

by a co-registration method as well as by standard CT metrics could potentially be used to target patient 

therapy to the underlying COPD endotype. 

- A logistic model combining BMI and pulmonary function data can be used to predict CT-based 

quantification of emphysema grade, which may prove useful when assessing COPD patients who do 

not undergo thoracic CT. 

Summary Statement: 

Standard imaging metrics obtained by inspiratory and expiratory CT can be used to identify and quantify 

the relative contribution of emphysematous and non-emphysematous gas trapping, permitting a better 

definition of COPD patient subtypes. 
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Chapter 5 - Statistical models: lung function and BMI 
In the previous study we have shown that a probabilistic model based on body mass index (BMI), FEV1 as 

percent of predicted, FEV1/VC and DLco as percent of predicted could be used to estimate emphysema 

quantified on CT. Limitations of that approach for clinical practice or clinical trials are that DLco is not always 

available and standard pulmonary function parameters have a wide inter-individual variability, even after 

normalization for ethnicity, age, and body size.  

We aimed to ascertain whether the probability of having emphysema, as defined by quantitative CT metrics, 

could also be estimated with a level of accuracy suitable for clinical practice and pharmacologic trials by a 

probabilistic model based on functional parameters directly derived from the spirometric flow-volume curve 

without standardization for sex, age, and ethnicity data. 

Lung function and BMI predictive models to assess CT emphysema extent in COPD 

Mariaelena Occhipinti, M Paoletti, F Bigazzi, J Sieren, M Palazzi, G Camiciottoli, M Pistolesi 

(Presentation at American Thoracic Society Conference, San Diego, 22-24/05/2018) 

 

5.1 Background 

Airflow limitation in COPD results from lung parenchymal destruction (emphysema) as well as from 

conductive airway disease. These two pathophysiologic conditions lead both to gas trapping within lungs. 

Spirometry cannot differentiate between emphysematous and functional gas trapping, whereas chest computed 

tomography (CT) with post-processing image analysis can quantify both components of gas trapping.  

 Although in each patient one of the two pathophysiologic conditions (endotypes) may prevail, either 

emphysema or conductive airway disease, most COPD patients present with a mixed phenotype characterized 

by various combinations of both components and a corresponding mixed CT subtype. Knowledge of the 

prevalent subtype in each patient may be of interest in developing clinical and pharmacological trials designed 

to target patients therapy to the underlying pathophysiologic mechanism of airflow obstruction. However, CT 

cannot be performed in all COPD patients, due to the high prevalence of COPD in the general population and 

the unavailability of CT scans in the vast majority of patients.  

Purpose: We aimed to predict by clinical and functional data the probability of having emphysema, as 

assessed on CT. 

5.2  Methods 

From January 2014 to December 2017 we recruited 133 non-consecutive COPD patients with the following 

criteria. 
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Inclusion criteria:  

- Age 40 to 85 years  

- Smoking history of more than 10 pack-years 

- Nonreversible post-bronchodilator airflow obstruction at PFTs 

- GOLD stages I to IV 

- Chest CT within 48 hours from pulmonary function evaluation 

Exclusion criteria:  

- History of exacerbation within one month  

- History of any clinical conditions interfering with pulmonary function or chest CT quantitative 

parameters assessment, including asthma, diffuse bronchiectasis, interstitial lung disease, acute heart 

failure, chemo-radiation therapy, lung cancer, lung surgery, metal objects in the chest. 

5.2.1 Pulmonary Function Tests (PFTs) 

All patients underwent complete pulmonary function evaluation within 48 hours of the CT examination. 

Pre-and post-bronchodilator spirometry data, static and dynamic lung volumes (FEV1, FEV1/VC, FEV1/FVC, 

VC, RV, TLC, RV/TLC, FRC), and single-breath diffusing capacity for carbon monoxide (DLco) were 

measured according to ATS/ERS guidelines. We also measured the lower limit of normality (LLN) according 

to ERS/ATS guidelines. 

5.2.2 Chest CT Scan 

Volumetric chest CT scans were obtained at full inspiration and expiration using the acquisition protocol 

adopted in the COPDGene study. All CT scans were performed by using the same CT scanner for all patients 

(SOMATOM Sensation 64, Siemens, Erlangen, Germany).  

Patients received prior cautious instructions on how to perform the respiratory maneuvers while lying 

supine in the CT scanner with arms fully abducted. No contrast medium was administered.  

The relative volumes of lung attenuation area with values below -950 HU at inspiration (%LAA-950insp) and 

below -856 HU at expiration (%LAA-856exp) were quantified by using the Pulmonary Workstation Apollo 2.1 

(VIDA Diagnostics, Coralville, Iowa, USA). Thresholds at -950 Hounsfield Units (HU) and -856 HU were 

chosen as densitometric cut-off consistent with emphysema and total gas-trapping, respectively.  
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5.2.3 Predictive model 

 The CT level of parenchymal destruction was estimated by a ten-fold validated logistic regression model 

built from stepwise selection of anthropometric, clinical, and functional data. The most significant regressors 

of the model were identified by a step-wise procedure. Ten-fold validation was then performed to ascertain the 

total and partial predictive accuracy. The logistic regression model was trained to classify COPD patients 

according to the probability to have a %LAA-950insp higher than the mean value of the sample. By applying the 

model, each subject was classified according to probability output (pth) values, from milder (pth<0.5) to more 

severe (pth>0.5) emphysema.  

 After the logistic regression model was validated, we classified each subject according to the pth value 

obtained by combining functional indexes and BMI predictors. ROC curve (AUC) analysis was used to 

calculate the accuracy of the models after tenfold cross-validation considering the logistic pth at value of 0.5. 

The software programs included Mathcad (version 2001; Mathsoft), SPSS/PC WIN 11.5.1 (SPSS, Chicago, 

IL), and C++ programming language. Values of p lower than 0.05 indicated statistical significance.  

5.3 Results 

Anthropometric, clinical, functional, and imaging data of patients with FEV1/FVC<0.70 or 
FEV1/FVC<LLN.  

 

Anthropometric, clinical, functional, and imaging data of 133 patients with FEV1/FVC<0.70  

Age 70 (8) FEV1% 63 (27)  FVC % 93 (25) RV % 137 (48) Imaging 

BMI 26 (5) FEV1/VC 47 (13) FRC % 129 (34) RV/TLC 50 (17) %LAA-950insp 15 (12) 

Pack/yrs  51 (25)  FEV1/FVC 51 (12) TLC % 108 (18) DLco % 68 (24) %LAA-856exp 45 (20) 

Data are expressed as means (SD). 

Anthropometric, clinical, functional, and imaging data of 108 patients with FEV1/FVC<LLN 

Age 70 (8) FEV1% 56 (23)  FVC % 93 (25) RV % 146 (45) Imaging 

BMI 26 (5) FEV1/VC 44 (12) FRC % 136 (32) RV/TLC 53 (14) %LAA-950insp 16 (12) 

Pack/yrs  51 (24)  FEV1/FVC 49 (12) TLC % 111 (17) DLco % 64 (22) %LAA-856exp 49 (19) 

Predictors of %LAA-950insp in the two models, contingency tables and corresponding ROC curves in the 

group of patients with FEV1/FVC<0.70 
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MODEL A 

  

MODEL B 

  

 

MODEL A                                                                       MODEL B 

 

The concordance between the two models in the group of 133 patients with FEV1/FVC<0.70 was 84%. 

In the group of 108 patients with FEV1/FVC<LLN both models had 81% accuracy. The concordance 

between the two models in the group of patients with FEV1/FVC<LLN was 81%. 

5.4 Conclusions 

The predictive models including BMI and functional data predicted with a considerable accuracy the 

emphysema extent as assessed on quantitative CT, regardless of the criteria used for recruiting patients with 

COPD. These models, if validated in larger scale studies, may be suitable for daily clinical assessment of 

patients with COPD, to predict treatment response, and to design newer outcomes for clinical and 

pharmacologic trials in which CT scan cannot be performed. 

A B
A 
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Chapter 6 - Statistical models: maximal expiratory flow-
volume curve 

In the previous study we have shown that the probabilistic models including BMI and functional data can 

estimate with a considerable accuracy the emphysema extent as assessed on quantitative CT, regardless of the 

criteria used for recruiting patients with COPD. The importance of the maximal expiratory flow-volume 

(MEFV) curve parameters lead us towards an accurate analysis of the flow-volume curve throughout its shape. 

Moreover, a method based on the MEFV curve has recently been proposed by Topalovic et al. to predict the 

presence of emphysema, showing good specificity but low sensitivity (1). 

We aimed to find from the analysis of MEFV curve the parameter(s) most suitable for a probabilistic model 

to predict with high specificity and sensitivity the presence and extent of emphysema, as defined by 

quantitative CT metrics. 

 

6.1 Methods 

This was a two-centre study approved by the institutional Ethics Committees of the University of Florence 

and the Catholic University of Sacred Heart in Rome. The study was based on a retrospective interpretation of 

prospectively acquired data. From January 2012 to December 2016, subjects with clinical diagnosis of COPD 

were considered for inclusion if they satisfied the following inclusion criteria: age 40-85 years, smoking history 

>10 pack-years, no COPD exacerbations within one month, no diagnosis of asthma or cardiac disease, and 

acceptance to participate by written informed consent. From a total of 232 eligible subjects, 38 were excluded 

because incomplete data, or coexisting abnormalities on CT scan, thus 194 were included in the study.  

6.1.1 Functional and imaging evaluation 

Subjects underwent complete pulmonary function evaluation by using a mass-flow sensor and multigas 

analyser (V6200 Autobox Body Plethysmograph Sensor Medics, Yorba Linda, USA, or Platinum Elite™ Body 

Plethysmograph, Medical Graphics Corporation, St. Paul, MN, USA), arterial blood gases by Radiometer 

ABL90 FLEX or ABL800 FLEX (Brønshøj, Denmark), and CT scan within 48 hours of the clinical and 

functional evaluation. Pre- and post-bronchodilator spirometry, lung volumes, and single-breath DLco were 

obtained according to standard ATS/ERS (American Thoracic Society/European Respiratory Society) 

recommendations (8-10). 

In each center volumetric chest CT scans were obtained by the same team and the same CT scanner 

(SOMATOM Sensation 64, Siemens, Erlangen, Germany, or SOMATOM Definition FLASH 128, Siemens, 

Erlangen, Germany). CT scans were acquired at full inspiration and forced end-expiration using the acquisition 

protocol adopted in the COPDGene Study (11) with the following parameters: 120 kVp, 200 mAs, rotation 
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time 0.5s, slice thickness 0.6mm, pitch 1.1 and reconstructions kernels b31f (smooth) and b70f (sharp). 

Subjects were instructed on how to perform respiratory manoeuvres while lying supine in the CT scanner with 

arms fully abducted. No contrast medium was injected. Post-processing image analysis was performed with 

reconstruction kernel b31f. Thresholds at -950 Hounsfield Units (HU) and -856 HU were chosen as 

densitometric cut-offs for emphysema and total gas trapping, respectively (12-14). The relative volumes of 

lung attenuation area with values below -950 HU at inspiration (%LAA-950insp) and below -856 HU at expiration 

(%LAA-856exp) were quantified by using the Pulmonary Workstation Apollo 2.1 (VIDA, Coralville, IA, USA). 

Percentage of functional gas trapping (%fGT) was calculated as %fGT = %LAA-856exp – %LAA-950insp – 6%, 

which was validated and found strongly correlated (r2=0.98) with functional low density area (%fLDA) 

measured by co-registration analysis of paired inspiratory and expiratory CT scans (15). %fGT is the lung area 

with low attenuation values below -856HU on expiration and above -950HU on inspiration, representing the 

fraction of gas trapped at end expiration because of airway closure or extreme flow limitation. 

6.1.2 Data analysis and statistics 

The relationship between %LAA-856exp and %LAA-950insp was analyzed by fitting a local regression curve 

to CT raw data.  

A binary logistic regression model was trained to classify all subjects according to the probability of being 

affected by less or more severe emphysema according to their value of %LAA-950insp lower or higher than the 

mean value of the group, matching the same classification criteria published for larger cohorts (16). The input 

parameters were selected by a step-wise process using anthropometric data and parameters derived from the 

MEFV curve as independent variables.  

The shape of the MEFV curve was analysed by fitting segments of the descending limb at specific fractions 

of FVC. Curves with a difference between PEF and FEF25 less than 5% of PEF were discarded by the 

algorithm. 

ROC curve (AUC) analysis was used to calculate the accuracy of the model after tenfold cross-validation 

considering a logistic probability threshold (pth) at value of 0.5. 

Welch's t-test was used to evaluate differences in CT metrics among subgroups with different ranges of 

%LAA-950insp. Pearson r coefficient was used to describe the correlations between CT parameters.  

The software programs included Mathcad (version 2001; Mathsoft), SPSS/PC WIN 11.5.1 (SPSS, Chicago, 

IL), and C++ programming language. Values of p lower than 0.05 indicated statistical significance. Data are 

expressed as mean and standard deviation (SD). 



Phenotyping COPD: correlazione clinico-radiologica dei fenotipi della BPCO 

   Page 39 

6.2 Results 

Scatterplot of CT imaging metrics of %LAA-950insp and %LAA-856exp showed a non-linear monotonic 

relationship with two main segments with distinct slopes, different dispersion profiles (r2= 0.45 p<0.01 and 

r2= 0.30 p<0.01), and a breakpoint at the mean %LAA-950insp (14%) (Figure 1). In the group of 77 subjects with 

%LAA-950insp >14 the data points around the relative segment of the regression curve were more dispersed than 

in the group of 117 subjects with %LAA-950insp <14 (Figure 1). CT metrics, anthropometric and functional 

parameters were significantly different (p<0.05) between the two groups (Table 2). 

There was a significant correlation between %fGT and %LAA-856exp in both groups, but it was much stronger 

(r2= 0.96) in the group of subjects with %LAA-950insp <14 than in those with %LAA-950insp >14 (r2= 0.45). This 

difference suggests that total gas trapping was completely explained by %fGT in the latter, but not in the 

former. 

A binary logistic regression model including the slope of the flow-volume curve between 25% and 50% of 

FVC [S25-50= (FEF25 – FEF50) / 0.25 x FVC], BMI, and FEV1/FVC predicted the probability of having 

emphysema with 87% sensitivity and 81% specificity (85% accuracy). Examples of differences in MEFV 

curve of two subjects with different degrees of emphysema are shown in Figure 3.  

Figure 4 shows the scatterplot of %LAA-856exp vs %fGT relative to the model output of each patient.  

The vast majority of subjects with pth<0.5 were distributed along the identity line, suggesting that %LAA-

856exp was almost completely explained by %fGT, whereas most subjects with pth>0.5 were scattered above the 

identity line, suggesting that %LAA-856exp could be also explained by the emphysema contribution (Figure 4). 

The distance of each data point above the identity line gives an estimate of the contribution of emphysema to 

total gas trapping. 

6.3 Discussion 

The main finding of this study is that the probability of having emphysema, as defined by quantitative CT 

metrics, was estimated with accuracy by a probabilistic model including BMI and functional parameters 

derived from MEFV curve not requiring normalization by reference equations. 

Nowadays quantitative CT enables the definition of the relative volumes of emphysema and gas trapping 

in subjects with COPD by using CT metrics of low attenuation areas at inspiration (%LAA-950insp) and 

expiration (%LAA-856exp) (12, 13). In the present study a non-linear relationship between the above-mentioned 

CT metrics was observed with a breakpoint at 14 %LAA-950insp. This is close to the mean value observed in the 

COPDGene Study population (17) and recently proposed to define “severe” emphysema (16). The results of 

the present study show that this cut-off distinguished not only different degrees of emphysema, but also 

subjects with different mechanisms of airflow obstruction. Indeed, subjects with %LAA-950insp<14 had a 
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borderline (6.7%) percentage of emphysema (18) and their total gas trapping was almost completely explained 

by functional gas trapping, which was on average 34%, a value much higher than the 20% reported in healthy 

individuals (19). Therefore, in this group the gas trapping was mainly accounted for by conductive airway 

disease. Conversely, in subjects with %LAA-950insp >14 total gas trapping was mainly accounted for by the 

presence of emphysema, though it is not possible to exclude that functional gas trapping was also present due 

to coexisting airway disease or loss of airway support by peribronchial tethering (20).  

Traditionally, a reduction of DLco has been considered as a marker of emphysema in subjects with COPD 

(21). In this connection, a recent study from our group showed that a logistic model including DLco%, FEV1%, 

FEV1/VC, and BMI was able to accurately predict the presence of emphysema on CT (15). 

As early as in 1976, it was proposed that a kinging of the descending limb of the forced MEFV curve might 

represent a sign of airway collapse reflecting the presence of emphysema, as assessed by DLco (22). More 

recently the angle between two regression lines fitted to the descending limb of the MEFV curve resulted to 

be predictive of the presence of emphysema on CT scan, showing a good specificity but low sensitivity (1). 

The kinking of MEFV curve in emphysema can be interpreted on the grounds of the wave-speed theory (23). 

During forced expiration, alveolar pressure increases and gas is compressed within the lung, thus reducing 

lung volume and elastic recoil pressure. As a result, driving pressure and distending pressure at choke point 

are decreased, thereby reducing maximal flow. This effect may be magnified in emphysema because of the 

abrupt fall of lung elastic recoil at high lung volumes (21) and the larger amount of gas to be compressed, thus 

flattening the MEFV curve. By contrast, the scooping of MEFV curve in airway disease may reflect a smooth 

decrease of lung elastic recoil and a transition of the chock point towards the lung periphery with less gas 

compression. Mechanisms that may contribute to the kinking of forced expiratory flow in emphysema are a 

sudden airway narrowing due to sharp decrease in lung elastic recoil (24) and a sharp decrease of thoracic gas 

compression from mid to low lung volumes. Therefore, flattening of the MEFV curve from mid-to-low lung 

volumes should be a predictor of emphysema. In the present study, slopes of MEFV curves were determined 

at different lung volumes and compared with quantitative CT metrics to derive a probabilistic model for 

estimating the probability of having emphysema at CT. The logistic model of the present study predicted the 

presence of emphysema with sensitivity considerably higher than found by Topalovic et al. (1). Furthermore, 

the model described in the present study had slightly higher accuracy than the model previously described by 

our group based on BMI, FEV1%, FEV1/VC, and DLco% (15). Advantages of the present model over the 

previous one are that it does not require any normalization of parameters for anthropometric data and it is 

independent of the choice of spirometric criteria to define airflow obstruction. 

From a technical point of view the sensitivity of the model is critically dependent on the effort during the 

MEFV curve because this affects the magnitude of thoracic gas compression (25), which is a major determinant 

of the shape of MEFV curve, particularly in subjects with prevalent emphysema (Figure 2) (3). 
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This study has some limitations. First, it included a relatively small number of subjects, only white 

Caucasian, and cannot be considered representative of the whole spectrum of COPD subjects. However, the 

distribution of CT metrics and their average values were similar to that reported in the COPDGene Study, 

which included more than 10,000 subjects of two different ethnicities (17). Second, CT scans were acquired 

without spirometric control of lung inflation level during the acquisition. However, all subjects received prior 

cautious instruction on how to perform the respiratory manoeuvres just before undergoing CT scanning by 

dedicated personnel and quantitative measurements were obtained by using an objective and automated 

software using the thresholds for emphysema and gas trapping reported in current literature (12-14).  

In conclusion, this study demonstrates that the probability of having emphysema and its extent, as defined 

by quantitative CT metrics, can be estimated with accuracy by a probabilistic model based on BMI and 

functional parameters derived from the flow-volume curve. Being independent of reference values, the model 

could be helpful in clinical practice and also in patients’ selection for clinical trials.  
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6.4 Tables 

Table 1. Anthropometric, pulmonary function and CT metrics data. Data are mean (SD). Smoking history 

is expressed as pack-years.  

N 194 

Sex (M:F) 154:40 

Age (yr) 70.2 (8.0) 

BMI (kg/m2) 26.5 (4.6) 

Smoking history 51.7 (27.0) 

FEV1 (% pred) 62.6 (25.8) 

FEV1/VC 47.5 (13.2) 

FEV1/FVC 52.3 (13.1) 

TLC (% pred) 108.2 (16.5) 

DLco (% pred) 68.9 (23.5) 

RV (% pred) 137.0 (46.7) 

FRC (% pred) 129.5 (32.6) 

RV/TLC 49.9 (14.1) 

%LAA-950insp 14.3 (11.7) 

%LAA-856exp 45.2 (20.3) 

%fGT 36.9 (13.7) 

Legend: BMI = body mass index, DLco = lung diffusing capacity of lung for carbon monoxide, FEV1% = forced 
expiratory volume in 1 s, %fGT = percentage of functional gas-trapping, FRC = functional residual capacity, FVC = 
forced vital capacity, % LAA-950insp = percentage of lung attenuation area with values <-950 Hounsfield Units at 
inspiratory CT scan, %LAA-856exp = percentage of lung attenuation area with values <-856 Hounsfield Units at expiratory 
CT scan, RV = residual volume, TLC = total lung capacity, VC = vital capacity.  
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Table 2. Mean values of CT metrics, anthropometric and functional data in relation to emphysema extent 

(%LAA-950insp).  

 %LAA-950insp < 14 %LAA-950insp ≥ 
14 

 p 

N 117 77  

%LAA-950insp 6.7 25.9 <0.01* 

%LAA-856exp 34.5 61.4 <0.01* 

%fGT 33.8 41.5 <0.01* 

Age (yr) 69.2 71.6 0.04* 

BMI (kg/m2) 27.7 24.7 <0.01* 

Smoking history 49.7 54.7 0.19 

FEV1 (%) 70.2 50.9 <0.01* 

FVC (%) 92.8 92.9 <0.01* 

FEV1/VC 53.5 38.5 <0.01* 

FEV1/FVC 58.7 42.6 <0.01* 

TLC (%) 103.8 114.9 <0.01* 

RV (%) 125.1 155.1 <0.01* 

RV/TLC 46.3 55.5 <0.01* 

FRC (%) 118.0 146.8 <0.01* 

DLco (%) 77.6 55.9 <0.01* 

PEF (%) 77.9 54.5 <0.01* 

S25-50 (degrees) 65.1 37.7 <0.01* 

PEF= peak of expiratory flow, S75-50 = slope of the descending limb of flow-volume curve between 75 and 
50% of FVC. Other notations as in Table 1. 
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6.5 Figures 

Figure 1. Scatterplot of %LAA-950insp and %LAA-856exp in 194 patients with COPD. The local regression 

curve (grey line) of the two CT metrics depicts the non-linear monotonic relationship of the variables. The 

dashed line indicates the breakpoint corresponding approximately to the mean value of %LAA-950insp of the 194 

patients. Pearson's correlation coefficient value is r2= 0.45 (p<0.01) in the first segment and r2= 0.30 (p<0.01) 

in the second segment.  

 

 

Legend: %LAA-950insp = percentage of lung attenuation area with values below -950 Hounsfield Units at inspiratory CT 
scan; %LAA-856exp = percentage of lung attenuation area with values below -856 Hounsfield Units at expiratory CT scan. 
(Open circles are 37 subjects with FEV1/FVC<0.70 but greater than lower limit of normality) 
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Figure 2. ROC curves of the two logistic models. The curves represent the DLco-based model (left panel) 

and the MEFV curve-based model (right panel). 

 

 

 

 

Figure 3. Maximal expiratory flow-volume curves of two representative subjects, with severe emphysema 

(left panel: 24% LAA-950insp, 50% LAA-856) or airway disease (right panel: 4% LAA-950insp, 53% LAA-856exp). 

Note the flatter slope between 25 and 50% of FVC in the former when flow was plotted against expired volume 

(black lines) but not pletysmographic thoracic volume (grey lines), indicating greater thoracic gas compression 

at high-to-mid lung volumes. 
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Figure 4. Scatterplot of %LAA-856exp and %fGT with colours ranging from white to black according to the 

probability values estimated by the logistic model. Data points lying on the identity line indicate subjects in 

whom the total gas trapping can be totally explained by functional gas trapping. The distance of each data 

point above the identity line quantifies the contribution of emphysema to total gas trapping. 
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Chapter 7 - Mathematical model and radiomics 
In the previous studies we have shown that the statistical models including either BMI and functional data 

or parameters of the flow-volume curve can estimate with a considerable accuracy the emphysema extent as 

assessed on quantitative CT, regardless of the criteria used for recruiting patients with COPD (FEV1/FVC<0.70 

or FEV1/FVC<LLN). The most relevant limitation of these approaches is the intrinsic nature of the statistical 

models, namely they rely on regression coefficients reflecting the characteristics of the training set. 

Mathematical models can overcome this limitation and in the past they have been developed to study the 

biomechanical characteristics of the lung function.  

We aimed at developing a mathematical model, based on the analysis of the maximal expiratory flow-

volume (MEFV) curve, to provide an emphysema severity index (ESI) and to compare it with the COPD 

subtypes defined by quantitative CT and CT-based radiomics. 
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Brusasco, Massimo Pistolesi 
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7.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a complex condition with a wide spectrum of clinical 

presentations and pathological features unified under the spirometric definition of airflow obstruction. Airway 

narrowing and parenchymal destruction are recognized as the mechanisms responsible for airflow obstruction 

in COPD, but they cannot be distinguished by standard spirometry. However, standard spirometry is one of 

the most employed variables for patients enrollment and outcome evaluation in clinical and pharmacologic 

studies.  

In recent years, chest computed tomography (CT) allows to depict and measure in vivo the lung pathologic 

changes of COPD by quantifying parenchymal destruction, the direct sign of emphysema, as well as bronchial 

wall thickening and gas trapping, which represent direct and indirect signs of conductive airway disease, 

respectively. (1,2) A closer imaging definition of whether conductive airway disease or emphysema is the 

predominant mechanism of airflow obstruction has been lately obtained by using co-registration analysis of 

inspiratory and expiratory CT scans. (3) Nowadays more information is extracted from imaging data using 

advanced feature analysis representing what is called “radiomics”. (4) Artificial neural networks and statistical 
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models are available to provide radiologists and clinicians with objective and reproducible computer-based 

evaluations of lung parenchyma. In particular, CALIPER (Computer Aided Lung Informatics for Pathology 

Evaluation and Rating) recently developed at Mayo Clinic (Rochester, MN), is a computational platform for 

the near real-time characterization and quantification of lung parenchymal patterns on CT scan. (5,6) 

Altogether, quantitative and qualitative studies have shown that CT can allow distinguishing not only 

between airway and parenchymal abnormalities, but also between subtypes of emphysema, i.e. centrilobular, 

panlobular, and paraseptal. (7) However, a widespread routine use of CT for the assessment of COPD in 

clinical practice and clinical and pharmacologic studies cannot be currently foreseen due to radiation exposure 

and limited instrumental availability in the face of the COPD rapidly increasing prevalence of the disease. (8) 

In a previous study we have shown that a probabilistic model based on body mass index, FEV1 as percent 

of predicted, FEV1/VC and DLco as percent of predicted could be used to estimate emphysema quantified on 

CT. (9) Limitations of that approach for clinical practice or clinical and pharmacologic trials are that DLco is 

not always available and that standard pulmonary function parameters have a wide inter-individual variability, 

even after normalization for ethnicity, age, and body size. (10) Furthermore, probabilistic models rely on 

regression coefficients that reflect the characteristics of the training set. These limitations may be possibly 

overcome by mathematical models studying directly the biomechanical characteristics of airway function of 

each patient. (11) 

The aim of the present study was to assess whether a mathematical model designed to fit the shape of the 

maximum expiratory flow-volume curve (MEFV) obtained by standard spirometry could provide estimates of 

the presence and the severity of emphysema comparable with parameters used to assess emphysema extent 

derived from quantitative CT and CT-based radiomics.  

7.2 Methods 

This two-center study was approved by the institutional Ethics Committees of the University of Florence 

and of the Catholic University of Sacred Heart in Rome. The study is based on a retrospective interpretation 

of prospectively acquired data. From January 2012 to December 2016, subjects with diagnosis of COPD (post-

bronchodilator FEV1/VC<0.70) (12,13) were considered for inclusion if they satisfied the following inclusion 

criteria: age 40-85 years, smoking history >10 pack-years, no COPD exacerbations within one month, no 

diagnosis of asthma or cardiac disease, and acceptance to participate by written informed consent. Thirty-eight 

out of 232 eligible subjects were excluded because of incomplete data or coexisting abnormalities on CT scan.  

7.2.1 Functional evaluation 

Subjects underwent complete pulmonary function evaluation by using a mass-flow sensor and multigas 

analyser (V6200 Autobox Body Plethysmograph Sensor Medics, Yorba Linda, CA, USA, or Platinum Elite™ 

Body Plethysmograph, Medical Graphics Corporation, St. Paul, MN, USA), arterial blood gases by 
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Radiometer ABL90 FLEX or ABL800 FLEX (Brønshøj, Denmark). Pre- and post-bronchodilator spirometry, 

lung volumes, and single-breath DLco were obtained according to standard ATS/ERS (American Thoracic 

Society/European Respiratory Society) recommendations. 14 

7.2.2 CT scanning technique and analysis 

In each center volumetric chest CT scans were obtained by the same team and the same CT scanner 

(SOMATOM Sensation 64 or SOMATOM Definition FLASH 128, Siemens, Erlangen, Germany) within 48 

hours of the functional evaluation. CT scans were acquired at full inspiration and forced end-expiration using 

the acquisition protocol adopted in the COPDGene Study (15) with the following parameters: 120 kVp, 200 

mAs, rotation time 0.5 sec, slice thickness 0.6 mm, pitch 1.1 and reconstructions kernels b31f (smooth) and 

b70f (sharp). Subjects were instructed on how to perform respiratory maneuvers while lying supine in the CT 

scanner with arms fully abducted. No contrast medium was injected. Post-processing image analysis was 

performed on images with reconstruction kernel b31f by using three different software programs: VIDA, Imbio 

LDA, CALIPER (Figure 1A-F). 

- VIDA analysis (Figure 1B). We used the Pulmonary Workstation Apollo 2.1 (VIDA, Coralville, IA, 

USA) installed onsite to segment airways and lungs and to calculate the relative volumes of lung 

attenuation area with values below -950 Hounsfield Units (HU) at inspiration (%LAA-950insp) and below -

856HU at expiration (%LAA-856exp). Thresholds at -950 HU and -856HU were chosen as densitometric 

cut-offs for emphysema and total gas trapping, respectively. (1,16,17) The analysis was fully automated 

with the possibility to correct manually any mistake in airway or lobe segmentation. 

- Imbio LDA analysis (Figure 1C-D). Co-registration analysis performed by Imbio LDA 

(Minneapolis, MN, US) automatically pairs inspiratory and expiratory CT scans to provide percentages 

of normal lung (percentage of voxels with CT attenuation greater than -950 HU at inspiration and greater 

than -856HU at expiration), persistent low density area (%pLDA, voxels with CT attenuation below -

950HU at inspiration and below -856HU at expiration), and functional low density area (%fLDA, voxels 

with CT attenuation above -950HU at inspiration and below -856HU at expiration). (3) %fLDA 

represents the non-emphysematous contribution to total gas trapping, namely the fraction of gas trapped 

at end expiration because of airway closure or extreme flow limitation. Moreover, Imbio LDA provides 

parametric response maps showing the regional distribution of each lung pattern. The analysis was fully 

automated and performed on an online platform called Imbio Launchpad. 

- CALIPER analysis (Figure 1E-F). Inspiratory CT scans were post-processed by using CALIPER 

(Mayo Clinic, Rochester, MN, USA), a computational platform for the near real-time characterization 

and quantification of seven lung parenchymal patterns on CT scans, including Normal, Mild Low 

Attenuation Area (LAA), Moderate LAA, Severe LAA, Ground-glass, Reticular, and Honeycombing 

(Figure 1E). (5) CALIPER is based on histogram signature mapping techniques trained through expert 

radiologist consensus assessment of pathologically confirmed datasets obtained through the Lung Tissue 
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Research Consortium (6,18). For each subject, CALIPER outputs a glyph similar to a radial space-filling 

plot providing an iconic summary of the volumetric parenchymal classification, thus facilitating the 

comprehension of the multidimensional source data. (6) The area of the glyph represents the computed 

total lung volume.  The glyph is partitioned with radial lines to illustrate the relative volumes of the left 

and right lungs and further divided into three regions, each representing the upper/middle/lower lung 

zones (Figure 1F). CALIPER analysis was fully automated and was performed onsite in the laboratory. 

7.2.3 Emphysema Severity Index (ESI) 

ESI is based on a parametric biomechanical model representing a theoretical approximation of the shape of 

the descending limb of the MEFV curve computed by assuming that at a given time the pressure lost by a fluid 

flow conveyed in a cylindrical duct is inversely related to its diameter and directly related to the fluid specific 

friction factor, density, and velocity (see the Supplemental Material for theoretical and mathematical details). 

The computation does not require standardization of input parameters, as it is directly related to the shape of 

the curve. Therefore, ESI is independent from percentage predicted values of pulmonary function variables. 

ESI value was computed in each patient using a specifically developed software application, whose theoretical 

basis is reported on the online supplement. A numerical output value ranging from 0 to 10 was used to stratify 

the dataset of 194 COPD patients according to the estimated emphysema severity.  

7.2.4 Data analysis and statistics 

By using the two thresholds of %LAA-950insp reported in literature to define absence of significant 

emphysema (6%) (7) and severe emphysema (14%) (19) we classified the patients in three subgroups: no 

emphysema (NE, %LAA-950insp <6), moderate emphysema (ME, 6≤ %LAA-950insp <14), and severe emphysema 

(SE, %LAA-950insp ≥14). 

A pairwise dissimilarity matrix was derived using SILA (Scale Indicative of Lung parenchyma 

Abnormality). SILA between a pair of CALIPER quantified CT lung volumes was computed as a cumulative 

aggregate of the differentials of normalized distributions of ordered (as mild, moderate, and severe) CALIPER 

exemplars. The unique clusters representing similar groups of patients were identified by unsupervised 

clustering of the 194x194 dissimilarity matrix using affinity propagation. The method does not require an a 

priori specification of the number of desired clusters.  

Chi-squared test was used to determine any significant differences between expected and observed 

frequencies in the clusters obtained by CALIPER and the three groups defined on the basis of %LAA-950insp 

ranges (NE, ME, SE). 

Analysis of variance, Welch’s t, and Games-Howell post-hoc tests were used to evaluate differences of the 

mean values of pulmonary function tests and ESI mean values among the three groups of emphysema severity 

defined by VIDA and Imbio LDA, as well as the clusters obtained by CALIPER.  



Phenotyping COPD: correlazione clinico-radiologica dei fenotipi della BPCO 

   Page 53 

To evaluate the performances of the ESI software as a classification tool we used logistic regression 

analysis. In each patient we estimated the probability of being affected by “severe” emphysema (%LAA-950insp 

≥14, data computed by VIDA) given the ESI value obtained by spirometry. In a similar manner we estimated 

the probability of “absence” of significant emphysema (%LAA-950insp <6, data computed by VIDA) given the 

ESI value.  

A ten-fold cross validation was performed over the entire dataset and we calculated the True Positives and 

False Positives rates for each fold. Sensitivity, specificity and AUC were evaluated by ROC curve analysis. In 

particular we estimated in each patient the probability of being affected by “severe” emphysema (%LAA-950insp 

>14, data provided by VIDA) given the value of ESI score obtained by spirometry;  π = Pr (Y = “Severe” | X 

= ESI) and the probability of “absence” of emphysema (%LAA-950insp <6, data provided by VIDA) given the 

value of ESI score obtained by spirometry;  π = Pr (Y = “Absence” | X = ESI). 

The software programs included Mathcad (version 2001; Mathsoft), SPSS/PC WIN 11.5.1 (SPSS, Chicago, 

IL), C++ programming language, and Orange. (20) Values of p lower than 0.05 indicated statistical 

significance. Data are expressed as mean and standard deviation (SD). 

7.3 Results 

Table 1 describes anthropometric, pulmonary function, and CT metrics data of the 194 subjects included in 

the study. Subjects were distributed across all GOLD stages: 55 stage I, 62 stage II, 56 stage III, and 21 stage 

IV.  

Figure 1 shows CT images of a patient with advanced destructive emphysema before (Fig. 1A) and after 

post-processing image analysis by using the three different software programs: VIDA (Fig. 1B), Imbio LDA 

(Fig. 1C-D), and CALIPER (Fig. 1E-F).  

Figure 2 illustrates the patients subdivision according to the pairwise dissimilarity matrix that identified 

three clusters (G1-G3), based on the SILA metric derived from the features extracted by CALIPER. Cluster 

G1 consisted of 95/194 (49%) subjects, G2 of 65/194 (33.5%) subjects, and G3 of 34/194 (17.5%) subjects. 

Across the three different clusters patients lungs were represented by a glyph, illustrating the regional 

composition of classified lung volume with color-coded sections proportional to the percentage of lung patterns 

within the region (Figure 1F). G1 was characterized by predominant Normal and Mild LAA patterns, G2 by 

predominant Moderate LAA pattern, and G3 by predominant Severe and Moderate LAA patterns. Patients 

clustered as G1 by CALIPER had either NE or ME at VIDA, whereas patients clustered as G2 had ME or SE 

and all patients clustered as G3 had SE. 

Table 2 displays the mean values of ESI and the functional data of the three groups of patients stratified by 

quantitative CT (VIDA, Imbio LDA) according to the thresholds to define different degrees of emphysema 

(NE, ME, SE) and by radiomics (CALIPER) according to the clusters of progressive emphysema severity (G1, 
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G2, G3). Patients allocation differed within the three groups defined by each of the quantitative CT post-

processing techniques. However, a significant progressive impairment from patients classified NE or G1 to 

patients classified SE and G3 was observed. Pulmonary function data were significantly different among the 

subgroups with various degrees of emphysema with a few exceptions (for further detail see the Table 1S on 

the online supplement). Lower ESI values (<5) were typical for MEFV curves obtained in COPD patients with 

NE or ME, whereas higher values (>5) were observed in patients with SE. Mean of the ESI values differed 

significantly among the three emphysema groups defined by %LAA-950insp by VIDA (p<.001) as well as among 

the three Imbio LDA groups (p<.001) and CALIPER clusters (p<.001).  

Table 3 depicts the functional differences between groups with various degrees of emphysema as classified 

by VIDA and Imbio LDA (NE, ME, SE) and by CALIPER (G1, G2, G3). 

The graph in Figure 3A represents the ten folds averaged ROC curve obtained by varying the classification 

threshold over the range of the logistic regression model output π = Pr (Y = “Severe” | X = ESI) for the 

probability of “severe” emphysema (%LAA-950insp >14, data provided by VIDA). The best results in terms of 

sensitivity and specificity were relative to the threshold value 0.47, with sensitivity=0.82 and specificity=0.87. 

The total AUC area was of 0.88. 

The graph in Figure 3B represents the ten folds averaged ROC curve obtained by varying the classification 

threshold over the range of the logistic regression model output π = Pr (Y = “Absence” | X = ESI) for the 

probability of “absence” of emphysema (%LAA-950insp <6, data provided by VIDA). The best results in terms 

of sensitivity and specificity were relative to the threshold value 0.37, with sensitivity=0.80 and 

specificity=0.85. The total AUC area was of 0.86. 

Therefore, NE is differentiated from ME/SE with a sensitivity of 0.80 and a specificity of 0.85, whereas SE 

is differentiated from ME with a sensitivity of 0.82 and a specificity of 0.87 by using the MEFV curve.  

Figure 4 shows differences in MEFV curves of two representative subjects with severe emphysema and no 

emphysema. The former has a flatter slope when flow is plotted against expired volume but not at 

pletysmographic thoracic volume, indicating greater thoracic gas compression at high-to-mid lung volumes. 

 

7.4 Discussion 

The extensive application of CT scan post-processing techniques has shown that presence and severity of 

emphysema as assessed by CT does closely reflect lung function presentation in COPD. The main finding of 

this study is that a mathematical model developed to fit the descending limb of the MEFV curve approximates 

the multimodality CT-validated emphysema stratification with an accuracy that could be suitable for clinical 
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and research purposes. The model is based only on MEFV curve morphology and, consequently, it is 

independent from percentage predicted values of pulmonary function. 

In recent years quantitative CT enabled radiologists to quantify and localize the relative volumes of 

emphysema and gas trapping in subjects with COPD by using standard CT metrics of low attenuation areas at 

pre-determined inspiratory and expiratory X-ray attenuation thresholds. (1,16) Beside CT quantification of 

emphysema, the new computational radiomics approach allows to extract multiple features from imaging data 

and to process them in order to objectively and reproducibly characterize the main pathologic changes in the 

course of lung diseases. Radiomics artificial intelligence can be used to develop non-invasive imaging 

biomarkers, which could be helpful in phenotyping heterogeneous diseases, such as COPD. (21)  

As shown in Table 2, patients allocation in an emphysema severity subgroups varies with the different CT 

metrics and radiomics approaches used. Despite this heterogeneity of classification reflecting the underlying 

methodological differences of the three CT post-processing analyses, ESI differentiates the progressive 

severity of emphysema whatever the CT method used to classify patients.  

A recent study from our group showed that a probabilistic model including DLco%, FEV1%, FEV1/VC, 

and BMI dissects with accuracy emphysematous from non-emphysematous gas trapping as assessed by 

standard CT metrics in patients with COPD. (9) Reduction in DLco is considered a marker of emphysema in 

subjects with COPD. (22) However, measurement of DLco is not widely performed and standard pulmonary 

function parameters have a wide inter-individual variability, even after normalization for ethnicity, age, and 

body size. (10) In the current study we overcame these limitations by a model depending only from MEFV 

curve morphology that does not require normalization by reference equations and, being a mathematical model 

and not a probabilistic one, it does not depend from regression coefficients reflecting the characteristics of a 

training set.  

A role for the MEFV curve in predicting the risk of emphysema was introduced as early as 1976 by 

Saltzman et al. (23) They proposed that a kinging of the descending limb of the MEFV curve might represent 

a sign of airway collapse reflecting the presence of emphysema. (23) More recently the angle between two 

regression lines fitted to the descending limb of the MEFV curve resulted to be predictive of the presence of 

emphysema on CT scan with good specificity but low sensitivity. (24) 

The kinking of MEFV curve in emphysema can be interpreted on the grounds of the wave-speed theory. 

(25) During forced expiration, alveolar pressure increases and gas is compressed within the lung, thus reducing 

lung volume and elastic recoil pressure. As a result, driving pressure and distending pressure at choke point 

decrease, thereby reducing maximal flow. As demonstrated in a recent study, this effect may be magnified in 

emphysema because of the abrupt fall of lung elastic recoil at high lung volumes and the larger amount of gas 

to be compressed. (26) The composite result of these physical phenomena is a flattening the MEFV curve. By 

contrast, the scooping of MEFV curve in COPD patients with predominant conductive airway disease may 
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reflect a smooth decrease of lung elastic recoil and a transition of the choke point towards the lung periphery 

with less gas compression. (27) Mechanisms that may contribute to the kinking of forced expiratory flow in 

emphysema are a sudden airway narrowing due to sharp decrease in lung elastic recoil and a sharp decrease of 

thoracic gas compression from mid-to-low lung volumes. (28) Therefore, flattening of the MEFV curve from 

mid-to-low lung volumes (Figure 4) could be a predictor of emphysema. At variance with the above quoted 

paper on the analysis of the MEFV curve, (24) the model presented here predicts presence and severity of 

emphysema with a considerable level of accuracy.  

This study has some limitations. First, it included a relatively small number of white Caucasian subjects 

that cannot be considered representative of the wide clinical spectrum of COPD in the general population. 

However, the distribution of CT metrics and their average values were similar to those reported from the 

COPDGene Study that included more than 10,000 subjects of two different ethnicities. (9,29) Second, the CT 

scans were acquired without spirometric control of lung inflation level during the acquisition. However, all 

subjects received prior cautious instruction on how to perform the respiratory maneuvers just before 

undergoing CT scanning by dedicated personnel. Third, radiomics is very sensitive to protocol acquisition 

parameters, algorithm definitions, and image processing. (21) Lack of standardization of these components 

severely hampers reproducibility and comparability of results. In this study all CT scans were acquired with 

the same protocol by the same personnel in each study center, and after calibration of CT scanner before each 

examination. Fourth, models based on MEFV curve strictly depend on patient effort during spirometry, as it 

affects the magnitude of thoracic gas compression. (30) This is a major determinant of the shape of the MEFV 

curve, particularly in subjects with predominant emphysema. (13) However, accurate technicians training 

could overcome this limitation. 

7.4.1 Conclusions 

This study demonstrates that the presence of emphysema and its severity in patients with COPD, as defined 

on inspiratory-expiratory CT scan by standard metrics and co-registration analysis, as well as by a 

computational unsupervised CT-based radiomics, can be accurately estimated by a mathematical model based 

on MEFV curve morphology. The model is independent from reference values and, if confirmed in larger 

populations of patients with COPD, it could be helpful in clinical practice to personalize therapy, to select 

patients for clinical and pharmacologic trials, and for the interpretation of their results whenever spirometry is 

the only available examination.  
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7.5 Tables 

Table 1. Anthropometric, pulmonary function and CT metrics data. 

N 194 

Sex (M:F) 154:40 

Age (yr) 70 (8.0) 

BMI (kg/m2) 27 (4.6) 

Smoking history (pack-years) 52 (27) 

FEV1 (% pred) 63 (26) 

FEV1/VC 48 (13) 

FEV1/FVC 52 (13) 

TLC (% pred) 108 (17) 

DLco (% pred) 69 (24) 

RV (% pred) 137 (47) 

FRC (% pred) 130 (33) 

RV/TLC 50 (14) 

 VIDA %LAA-950insp 14 (12) 

 %LAA-856exp 45 (20) 

 Imbio LDA %pLDA 12.2 (12.5) 

 %fLDA 37.1 (14.0) 

 % Normal 49.1 (21.1) 

Data are expressed as mean (SD). Legend: BMI = body mass index, DLco = lung diffusing capacity of lung for carbon 
monoxide, FEV1% = forced expiratory volume in 1 s, %fLDA = percentage of functional low density area, FRC = 
functional residual capacity, FVC = forced vital capacity, % LAA-950insp = percentage of lung attenuation area with values 
<-950 Hounsfield Units at inspiratory CT scan, %LAA-856exp = percentage of lung attenuation area with values <-856 
Hounsfield Units at expiratory CT scan, % Normal= percentage of normal lung, %pLDA= percentage of persistent low 
density area, %pred= percentage of predicted, RV = residual volume, TLC = total lung capacity, VC = vital capacity.
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Table 2. Relationship among ESI values and functional data across the groups of patients with various degrees of emphysema.  
 Emphysema severity N ESI score FEV1 % FVC % FEV1/FVC % TLC % RV % FRC % DLco % 

VIDA NE 57 1.1 (1.5) 76.1 (23.6) 93.5 (22.8) 63.1 (8.0) 100.1 (11.8) 115.0 (30.5) 109.3 (18.2) 79.7 (22.9) 

ME 58 3.1 (2.6) 63.6 (23.9) 91.4 (21.0) 54.1 (10.2) 106.9 (18.8) 134.1 (51.7) 125.3 (31.0) 75.6 (21.6) 

SE 79 6.8 (2.5) 49.9 (23.7) 91.2 (27.8) 42.4 (10.8) 115.2 (15.1) 157.6 (48.2) 147.9 (33.7) 55.9 (19.8) 

 ANOVA / Welch’s test p  <.001 <.001 .002 <.001 <.001 <.001 <.001 <.001 

Imbio LDA NE 86 1.5 (1.8) 72.6 (22.9) 92.9 (20.9) 60.5 (9.2) 101.1 (15.6) 118.2 (42.0) 111.5 (23.7) 78.9 (23.2) 

ME 46 4.6 (2.7) 63.8 (27.5) 94.1 (25.2) 52.1 (10.1) 111.9 (15.0) 145.6 (47.4) 135.4 (30.5) 72.6 (18.1) 

SE 62 7.7 (3.3) 44 (18.8) 88.6 (28.2) 39.6 (9.5) 115.7 (15.5) 160.7 (46.2) 152.1 (32.5) 51.9 (18.9) 

 ANOVA / Welch’s test p  <.001 <.001 .442 <.001 <.001 <.001 <.001 <.001 

CALIPER G1 95 1.7 (2.1) 71.9 (23.7) 92.8 (21.9) 59.8 (9.6) 101.2 (14.6) 118.7 (39.4) 113.2 (24.3) 78.4 (23.2) 

G2 65 5.4 (2.8) 59.7 (24.9) 97.1 (26.5) 48.8 (11.0) 113.4 (16.5) 145.9 (47.6) 137.9 (30.7) 65.6 (19.0) 

G3 34 8.0 (1.7) 36.8 (14.3) 79.5 (23.2) 36.5 (8.0) 118.2 (13.6) 177.3 (44.0) 163.4 (29.9) 48.1 (18.5) 

 ANOVA / Welch’s test p  <.001 <.001 .002 <.001 <.001 <.001 <.001 <.001 

Differences among groups were assessed by analysis of variance and Welch’s tests, expressed in italics and in bold if significant. Values are expressed as mean (SD). DLco %= 
percent predicted diffusing lung capacity for carbon monoxide, FEV1 %= percent predicted forced expiratory volume in 1 s, FRC% = percent predicted functional residual capacity, 
FVC% = percent predicted forced vital capacity, %LAA-950insp = percentage of lung attenuation area with values <-950 Hounsfield Units at inspiratory CT scan, ME (moderate 
emphysema, 6 ≤%LAA-950insp <14 if VIDA or 6 ≤%pLDA <14 if Imbio LDA), NE (no emphysema, %LAA-950insp <6 if VIDA or %pLDA <6 if Imbio LDA), RV% = percent predicted 
residual volume, SE (severe emphysema, %LAA-950insp ≥14 if VIDA or %LAA-950insp ≥14 if Imbio LDA), TLC% = percent predicted total lung capacity.  
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Table 3. Functional differences between groups with various degrees of emphysema. Groups are defined 

according the classification performed by VIDA and Imbio LDA (NE, ME, SE) and by CALIPER (G1, G2, 

G3). Differences were analyzed by Games-Howell post-hoc test and p values are displayed (significant p 

values are in bold). Legend: DLco %= percent predicted diffusing lung capacity for carbon monoxide, FEV1 

%= percent predicted forced expiratory volume in 1 s, FRC% = percent predicted functional residual capacity, 

FVC% = percent predicted forced vital capacity, %LAA-950insp = percentage of lung attenuation area with 

values <-950 Hounsfield Units at inspiratory CT scan, ME (moderate emphysema, 6 ≤%LAA-950insp <14 if 

VIDA or 6 ≤%pLDA <14 if Imbio LDA), NE (no emphysema, %LAA-950insp <6 if VIDA or %pLDA <6 if 

Imbio LDA), RV% = percent predicted residual volume, SE (severe emphysema, %LAA-950insp ≥14 if VIDA 

or %LAA-950insp ≥14 if Imbio LDA), TLC% = percent predicted total lung capacity.  

  FEV1% FVC% FEV1/FVC% TLC% RV% FRC% DLco% 

VIDA p NE/ME <.01 <.01 <.01 .28 <.01 <.01 <.01 

p NE/SE <.01 <.01 <.01 <.01 <.01 <.01 <.01 

p ME/SE <.01 .52 <.01 <.01 <.01 <.01 <.01 

Imbio LDA p NE/ME .16 .96 <.01 <.01 <.01 <.01 .21 

p NE/SE <.01 .56 <.01 <.01 <.01 <.01 <.01 

p ME/SE <.01 .54 <.01 .42 .23 .02 <.01 

CALIPER p G1/G2 <.01 .52 <.01 <.01 <.01 <.01 <.01 

p G2/G3 <.01 <.01 <.01 .28 <.01 <.01 <.01 

p G1/G3 <.01 <.01 <.01 <.01 <.01 <.01 <.01 
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7.7 Figures 

Figure 1. Lung parenchyma representations at CT scan after post-processing with different software 

programs in a patient with severe emphysema. A. Axial CT scan shows advanced destructive emphysema 

with a giant bulla in the right lower lobe adjacent to an area of passive atelectasis. B. Volume rendering of the 

densitometric analysis performed by VIDA shows the location and severity of emphysema at inspiratory scan 

(threshold -950HU) displaying spheres whose diameter is proportional to the relative volume of emphysema 

in each region. C-D. Coronal and Sagittal 2D images obtained by co-registration of inspiratory and expiratory 

CT scans by Imbio LDA show the location of emphysema (red), functional airways gas trapping (yellow), and 

normal lung (green). E. Volume rendering of the lung texture analysis performed by CALIPER shows the 3D 

distribution of the different lung patterns, including Normal (dark green), Mild Low Attenuation Area (LAA, 

light green), Moderate LAA (light blue), Severe LAA (dark blue), Ground-glass (yellow), Reticular (orange). 

The glyph (F) provided by CALIPER summarizes the location and amount of the different lung patterns. The 

overall area of the glyph represents the computed total lung volume, the partitions with thick radial lines 

illustrate the relative volumes of the left (L) and right (R) lungs, which are further divided with thin radial lines 

into three regions, each representing the upper (U), middle (M), lower (L) lung zones. In this patient severe 

LAA dominates in the right lower and middle lung zones, whereas middle and lower left zones are 

characterized by mild and moderate LAA.  
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Figure 2. The three clusters of COPD patients stratified represented as glyphs. Clusters (G1 to G3) 

were the result of quantitative unsupervised clustering based on a dissimilarity matrix that captures the 

distribution of classified parenchymal patterns recognized by CALIPER. G1 was characterized by predominant 

Normal (dark green) and Mild LAA (light green) patterns, whereas G2 by predominant Moderate LAA (light 

blue) pattern and G3 by predominant Severe (dark blue) and Moderate LAA (light blue) patterns. The size of 

each glyph represents patient lung volume. 
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Figure 3. ROC curve over the range of the logistic regression model output for severe emphysema 

(A) and no emphysema (B). Severe emphysema was defined at CT scan as %LAA-950insp ≥14 by VIDA 

whereas no emphysema was defined at CT scan as %LAA-950insp <6 by VIDA. The total AUC area was of 0.88 

for severe emphysema and 0.86 for no emphysema. 
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Figure 4. Maximal expiratory flow-volume curves of two representative subjects with severe 

emphysema or no emphysema. Patient with severe emphysema (left panel) had %LAA-950insp =24 whereas 

the patient with no emphysema (right panel) had %LAA-950insp=4 at CT. Note the flatter slope in the former 

when flow was plotted against expired volume (black lines) but not pletysmographic thoracic volume (grey 

lines), indicating greater thoracic gas compression at high-to-mid lung volumes.  

 

 

7.8 Supplemental Material 

7.8.1 Theoretical background and description of ESI method 

In the past many studies in human subjects have shown the presence of a functional association between the 

airflow at mouth, the instantaneous volume of the lung, and the pressure applied on the surface of the lung. 

(11,31,32) In particular the analysis of the MEFV curve has been used for many years to characterize the 

functional behavior of the bronchial tree and the surrounding parenchyma. 

In this study we tested a parametric biomechanical model representing a theoretical approximation of the 

shape of the descending limb of the MEFV curve to assess the severity of emphysema in patients with COPD 

by spirometry. The Emphsyema Severity Index (ESI) application software is based on a mathematical model 

developed to approximate the MEFV curve of each subject to ultimately provide a quantitative score ranging 

from 1 to 10. The ESI score represents a practical application of a biomechanical model developed a priori. 

No retrospective statistical inference or standardization of input parameters was required. 

The main physical principle inspiring this approach is that the pressure lost (Pl) at a given time t along an 

airway segment could be considered proportional to a specific friction factor (Ff), the air density (d) and the 

air velocity (v), similarly to the theory of the circular ducts. An inverse relationship between the pressure lost 
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and the mean diameter (D) of the airway is also supposed obtaining the following equation (better known as 

Darcy equation): 

 [1] 

By considering the hypothesis of laminar flow, the calculus of the friction factor depends uniquely on the 

Reynolds number Rn 

 [2] where  [3] 

k1 is a constant and the variable vis is the dynamic viscosity of the air fluid. 

Substituting equations [2] and [3] into equation [1] we obtain the pressure drop in the case of laminar flow 

as: 

[5] 

Considering a circular airway section we can write the air velocity in the segment as: 

 [6] 

where Φ is the resulting flow and D is the mean inner diameter of the airway segment. Substituting equation 

[6] into [5] we obtain the association between the airflow and the pressure lost, as of laminar flow hypothesis. 

 [7] 

Equation [7] shows that the relationship between the pressure lost and the airflow seems to be linear in 

laminar flow approximation. 

 

In the past some authors proposed lumped parametric models to fit the MEFV curve acquired during 

maximal effort test, taking into account linear association profiles between airways resistance and airflow. The 

studies obtained acceptable waveforms and good fitting of the curve. (32) 

Pl= Ff ⋅ d⋅ v2

2⋅ D

Ff = k1
Rn Rn= v⋅ D

vis

Pl= k1/2⋅ vis⋅ d⋅ v
D2

v= 4⋅Φ
D2⋅π

Pl= k2⋅ vis⋅ d⋅Φ
D4
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At variance with past models, we proposed a mathematical model for the approximation of the MEFV curve 

developed under the hypothesis that the airflow measured at the mouth through standard spirometry could not 

be considered as a laminar flow. As a consequence the Ff variable could not be calculated as a scaled inverse 

of the Reynolds number Rn (laminar flow), but a more complex calculation is required to estimate the pressure 

drop. Colebrook proposed the following equation for the calculation of the friction factor, where Ru is the 

mean relative roughness of the airway segment (4): 

 [8] 

Although the Colebrook’s equation is usually solved numerically due to its implicit nature, simplified 

versions have been proposed in the past (i.e. the Altshul-Tsal (33) formulation to estimate an approximated Ff 

factor). Nonetheless, despite of the analytical procedure for the estimation of Ff, the final equation that 

describes the pressure drop is the following: 

 [9] 

where K3 and Ff are constant values for a specific patient and airway segment, d is the air density, Φ is the 

resulting flow and D is the mean inner diameter. 

One interesting observation deriving from these mathematical models is that the pressure drop Pl along a 

segment is inversely proportional to the diameter of the airway power 4 or 5. It follows that a minimal variation 

in airway diameter is amplified to cause a significant pressure drop along the whole segment. This shows how 

the regulation of the respiratory airways walls efficiently modulates the airflow. 

Another important characteristic of the non-laminar flow hypothesis is the quadratic association between 

the airflow and the pressure lost along the airways, while this relationship would be linear if the measured flow 

at the mouth was hypothesized as laminar.  

As a consequence the lumped parametric model of a maximal flow volume curve implemented in the ESI 

model is based on the following non-linear equation: 

 [10] 

1
Ff 0.5 =− 2⋅ log10 ( Ru

3.7⋅ D + 2,51
Rn⋅ Ff 0.5 )

Pl= K3⋅ Ff ⋅ d⋅Φ2

D5

Φ(V )= 1− a1⋅ V 2

a2+ a3⋅ V 2
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where the numerator represents a simple model of the quadratic pressure profile during a maximal function 

test and the denominator represents the model of the exhaled volume-dependent quadratic airways resistance 

profiles. The best a1, a2 and a3 coefficients are estimated iteratively by the software, which performs a Least 

Mean Squares fitting of the descending limb of the MEFV curve. 

Once the best mathematical model fitting the raw data is obtained, the software then proceeds to the calculus 

of the first and second derivatives for the specific fitted MEFV curve. This procedure is performed to search 

the inflection point Vf of the descending limb of the MEFV curve.  

 [11] 

The point Vf is very important in assessing emphysema severity, as its abscissa represents the lung volume 

(in liters) at which the resistance profile becomes influenced by the lost in elastic recoil due to the parenchymal 

destruction. This creates an inversion in the concavity of the descending limb of the MEFV curve.  

This type of analysis was not possible before because of the hypothesis of the above-mentioned linear 

models. Indeed, in those models the second derivatives profiles did not admit acceptable solutions to the 

equation [11]. 

After the solutions of equation [11] are calculated, the first derivative is then evaluated in correspondence 

of the acceptable solution (volume value) Vf and re-mapped between 0-10 over the angle range (20° - 80°) 

generating the quantitative index called ESI. The computation does not require standardization of input 

parameters, as it is directly related to the shape of the curve. Therefore, ESI is independent from percentage 

predicted values of pulmonary function variables. ESI value was computed in each patient using a specifically 

developed software application, based on the above theoretical basis. A numerical output value ranging from 

0 to 10 was used to stratify the dataset of 194 COPD patients according to the estimated emphysema severity.  

 

The Figure 1S shows a box-plot representing the %LAA-950insp distribution (I-III quartiles) in the validation 

dataset in three subgroups: no emphysema (NE, %LAA-950insp <6), moderate emphysema (ME, 6≤ %LAA-950insp 

<14), and severe emphysema (SE, %LAA-950insp ≥14). The intersection of the ESI values (red line) with the 

corresponding box indicates the most probable severity class for the case analyzed. In this example the case 

analyzed had a low probability of having SE. 

∂ ' ' Φ(V )
∂V

= 0
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7.8.2 Post-processing imaging techniques 

Figure 2S show images obtained by using VIDA software program in two COPD patients. Panel A shows 

the results obtained in a patient with advanced destructive emphysema whereas panel B shows the results 

obtained in a patient with small airway disease. In panel A the parenchymal destruction at axial CT scan 

correlates with the big bullae of %LAA-950insp detected by VIDA analysis. Vessels are lacking in 

emphysematous areas. In panel B the thickening of airway walls and the tiny bilateral ground-glass 

micronodules on axial CT scan are consistent with small airway disease. Although no significant areas of 

emphysema were found by VIDA analysis, the gas trapping at end-expiration due to airway disease was 

evident. 
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Figure 3S shows coronal and sagittal pulmonary parametric response maps obtained by using Imbio LDA 

analysis in a subject with emphysema predominantly located in lower lobes. The parametric response maps 

identify and localize the three color-coded density patterns at co-registration analysis: normal lung in green 

(percentage of voxels with CT attenuation greater than -950 HU at inspiration and greater than -856 HU at 

expiration), persistent low density area in red (%pLDA, voxels with CT attenuation below -950HU at 

inspiration and below -856HU at expiration), and functional low density area in yellow (%fLDA, voxels with 

CT attenuation above -950HU at inspiration and below -856HU at expiration). 
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Figure 4S shows the permuted dissimilarity matrix illustrating the abnormality based pairwise 

dissimilarities (brighter the shade higher the dissimilarity) among the features extracted by CALIPER and 

obtained with SILA. The nine blocks represent the first-pass clusters and the three diagonal blocks represent 

the final three unique stratified clusters (G1, G2, G3). 
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The value of maximal expiratory flow-volume curve in estimating the presence and 
severity of emphysema as assessed on CT 

Mariaelena Occhipinti, Matteo Paoletti, Elizabeth Regan, David A. Lynch, James D. Crapo, Stefano 
Colagrande, Edwin K. Silverman, Massimo Pistolesi and the COPDGene investigators 

(Accepted for Presentation at American Thoracic Society Conference, Dallas, 17-18/05/2019) 

 

Chapter 8 - Validation ESI model 
In the previous chapter we have proposed a mathematical model (ESI method) to predict the presence of 

emphysema as assessed at CT by using functional parameters derived from MEFV curve. The model was built 

using the Italian cohort of CLIP-COPD Study. To validate our model we tested it in the largest population of 

COPD patients available worldwide: the COPDGene Study population. Despite our cohort, this population 

included thousands of subjects and different ethnicities. 

  

 

 

 

 

 

Rationale: To assess whether a mathematical model derived from the maximal expiratory flow-volume 

(MEFV) curve could predict with accuracy the severity of emphysema as defined by parameters derived from 

quantitative computed tomography (CT). To validate the model in a large population of subjects with chronic 

obstructive pulmonary disease (COPD).  

Methods: CT metrics of emphysema were assessed on the inspiratory CT scans of 194 white COPD patients 

who underwent pulmonary function testing. Three groups of emphysema severity were identified according to 

CT metrics of emphysema (low attenuation area below -950HU at inspiration, %LAA-950insp): no emphysema 

(%LAA-950insp<6%), mild-moderate emphysema (6%<%LAA-950insp<14%), and severe emphysema (%LAA-

950insp>14%).  

An index to estimate emphysema severity (ESI) as assessed by CT was developed by using a parametric 

mathematical model fitting the descending portion of MEFV curve. A numerical output value ranging from 0 

to 10 was used to stratify the dataset according to the estimated emphysema severity. Model outputs were then 

compared to CT metrics to evaluate the performances of ESI model. Validation of the model was performed 

on 4000 COPDGene subjects, including whites and African Americans.  

Analysis of variance, Welch t, and Games-Howell post-hoc tests were used to evaluate differences between 

the three groups of emphysema defined by CT metrics. ROC curve (AUC) analysis was used to calculate the 

accuracy of the model by varying the threshold over the range of the ESI score. 

 

Results: Subjects were distributed across GOLD stages I to IV and evenly distributed across the three 

groups of emphysema severity (59 with no emphysema, 58 with moderate emphysema, 77 with severe 



Phenotyping COPD: correlazione clinico-radiologica dei fenotipi della BPCO 

   Page 75 

emphysema). Mean of the ESI score differed significantly among the three emphysema severity groups 

(p<.001) in both the first cohort and the COPDGene population, with lower scores (<5) in subjects with severe 

emphysema and higher scores (>5) in patients with no or mild emphysema. The model had an overall 85% 

accuracy (87% sensitivity and 83% specificity) in the first cohort and 82.5% accuracy (82% sensitivity and 

83% specificity) in the COPDGene population.  

Conclusions: Milder and severe emphysema as assessed by quantitative CT can be accurately estimated 

by a mathematical model based on the MEFV curve. The model was created uniquely on unstandardized 

functional data derived from the MEFV curve, avoiding the use of percent-predicted values, anthropometric 

and ethnicity parameters. These characteristics make this approach convenient for clinical trials as well as for 

clinical routine. 
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Chapter 9 - Which criteria to define COPD? 
In the previous chapters we have shown that statistical models including either BMI and functional data or 

parameters of the flow-volume curve can estimate with a considerable accuracy the emphysema extent as 

assessed on quantitative CT in a population of subjects diagnosed with COPD. However, the criteria to define 

expiatory airflow obstruction are still matter of international debate (1)(2).  

We aimed at investigating the functional and radiological presentation of those subjects defined as COPD 

by Global Initiative for Chronic Obstructive Lung Disease (GOLD) criterion (FEV1/FVC<0.70) but excluded 

by European Respiratory Society/American Thoracic Society criterion (FEV1/FVC<LLN). 

 

Unmasking COPD in patients excluded by the lower limit of normality 

Mariaelena Occhipinti, M Paoletti, C Nardi, M Palazzi, G Camiciottoli, R inchingolo, S Colagrande, AR 
Larici, M Pistolesi 

 (Oral presentation at the ESTI Congress - European Society Thoracic Imaging, Geneva, 24-26/05/2018) 

 

9.1 Background 

Airflow limitation has been defined by the GOLD when the post-bronchodilator fixed ratio of FEV1 to FVC 

is less than 0.7, regardless of age and sex of the patient (3). Despite of the its simplicity of use in daily clinical 

practice (4), the fixed ratio does not take into account the normal age-dependent decline in lung function, with 

a consequent overdiagnosis of chronic obstructive pulmonary disease (COPD) in older people and 

underdiagnosis in younger people (5, 6). At 80 years of age 20–25% of the reference population would have 

low values compatible with pathological airflow limitation instead of the expected 5%, with a consequent high 

rate (75–80%) of false positive results (5).  

Due to the general aging of the population, age differences are going to play an important role in the 

definition of disease in next future. To overcome the issue of overdiagnosis in the elderly, the European 

Respiratory Society/American Thoracic Society task force recommended to use a criterion based on the lower 

limit of normal (LLN) values, appropriate for age, sex, and ethnicity of the individual to define obstruction at 

spirometry (1, 2, 7). Equations to predict the correct reference values for spirometry in each individual were 

derived from about 80,000 subjects of both sexes and many ethnicities, across all ages (3 to 95 years) (8). 

According to the LLN criterion, patients diagnosed with COPD by GOLD criteria may be excluded and 

considered as non-obstructed.  

As the population gets older, recognition of the imaging features of “normal” aging is likely to become 

increasingly important to differentiate from clinically significant disease (9). The lungs age and it has been 

suggested that COPD is a condition of accelerated lung aging (10). The distinction between normal aging lung 
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and COPD is a big challenge and of great interest nowadays. Post-processing imaging tools enable the 

quantification of parenchymal destruction as well as small airway disease. However, qualitative analysis of 

chest CT images provides invaluable data on the presence not only of COPD signs but also of 

paraphysiological abnormalities due to aging. 

We aimed at investigating the presence of imaging findings indicative for COPD with both quantitative and 

qualitative analyses of CT scans in those subjects excluded by LLN criteria, a group older than those included 

by LLN criteria. Furthermore, we used qualitative analysis to define the COPD subtypes in this subset of 

population and to assess the concordance between readers. Finally, we evaluated the accuracy of our predictive 

statistical models in estimating the risk of having emphysema at CT in the group of subjects included by GOLD 

and in those included by ERS criteria. 

9.2 Methods 

This was a two-center study approved by the institutional Ethics Committees of the University of Florence 

and the Catholic University of Sacred Heart in Rome. The study was based on a retrospective interpretation of 

prospectively acquired data. From January 2012 to December 2016, subjects with diagnosis of COPD 

(FEV1/VC<0.70) (2, 7, 11) were considered for inclusion if they satisfied the following inclusion criteria: age 

40-85 years, smoking history >10 pack-years, no COPD exacerbations within one month, no diagnosis of 

asthma or cardiac disease, and acceptance to participate by written informed consent. Sixteen out of 232 

eligible subjects were excluded because of incomplete data. Part of the 216 subjects enrolled participated in 

previous studies (12-14).  

9.2.1 Functional evaluation 

Subjects underwent complete pulmonary function tests by using a mass-flow sensor and multigas analyser 

(V6200 Autobox Body Plethysmograph Sensor Medics, Yorba Linda, USA, or Platinum Elite™ Body 

Plethysmograph, Medical Graphics Corporation, St. Paul, MN, USA), arterial blood gases by Radiometer 

ABL90 FLEX or ABL800 FLEX (Brønshøj, Denmark). Pre- and post-bronchodilator spirometry, lung 

volumes, and single-breath DLco were obtained according to standard ATS/ERS (American Thoracic 

Society/European Respiratory Society) recommendations (15-17). All subjects had FEV1/FVC<0.70 and 157 

also below the lower limit of normality (LLN) criterion, defined as the 5th percentile of the reference population 

(Table 1) (2, 7, 11). LLN individual values were obtained by using the online calculator 

(http://gligastransfer.org.au/calcs/spiro.html) by the Global Lung Function Initiative of the ERS. The 

automated calculator uses prediction equations derived from about 80,000 subjects of both sexes and many 

ethnicities (8).  

9.2.2 CT scanning technique and analysis 

In each center volumetric chest CT scans were obtained by the same team and the same CT scanner 

(SOMATOM Sensation 64, Siemens, Erlangen, Germany, or SOMATOM Definition FLASH 128, Siemens, 

http://gligastransfer.org.au/calcs/spiro.html
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Erlangen, Germany) within 48 hours of the functional evaluation. CT scans were acquired at full inspiration 

and forced end-expiration using the acquisition protocol adopted in the COPDGene Study (18) with the 

following parameters: 120 kVp, 200 mAs, rotation time 0.5 sec, slice thickness 0.6 mm, pitch 1.1 and 

reconstructions kernels b31f (smooth) and b70f (sharp). Subjects were instructed on how to perform respiratory 

maneuvers while lying supine in the CT scanner with arms fully abducted. No contrast medium was injected.  

Quantitative analysis was performed on images with reconstruction kernel b31f by using two different 

software programs (VIDA and Imbio LDA). VIDA software provided relative volumes of lung attenuation 

areas with values below -950 HU at inspiration (%LAA-950insp) and below -856 HU at expiration (%LAA-856exp) 

to quantify emphysema and total gas trapping, respectively. Imbio LDA provided relative volumes of 

functional low density area (%fLDA), persistent low density area (%pLDA), and normal lung (%Normal).  

Qualitative analysis was performed according to the Fleischner Statement criteria to define COPD subtypes, 

including advanced destructive emphysema (ADE), confluent centrilobular emphysema, moderate 

centrilobular emphysema, mild centrilobular emphysema, trace centrilobular emphysema, panlobular 

emphysema, mild paraseptal emphysema, substantial paraseptal emphysema, and airway-predominant disease 

(19). Two radiologists (one dedicated thoracic radiologist and one general radiologist) evaluated all CT scans 

first separately and then after 4 months in consensus. 

9.2.3 Statistical model application 

The binary logistic regression models presented in Chapter 3 (BMI, FEV1%, FEV1/VC, DLco%) and 

Chapter 5 (BMI, FEV1/FVC, slope of the flow-volume curve between 25% and 50% of FVC) were applied to 

the whole group of subjects (FEV1/FVC <0.7) as well as in the subgroup with FEV1/FVC <LLN. 

9.2.4 Data analysis and statistics 

Welch's t-test was used to evaluate differences in functional, anthropometric, and CT metrics data among 

groups included and excluded by LLN criterion. 

Agreement between the two readers was tested by using k-Cohen coefficient.  

ROC curve (AUC) analysis was used to calculate the accuracy of the models considering a logistic 

probability threshold (pth) at value of 0.5. 

The software programs included Mathcad (version 2001; Mathsoft), SPSS/PC WIN 11.5.1 (SPSS, Chicago, 

IL), and C++ programming language. Values of p lower than 0.05 indicated statistical significance. Data are 

expressed as mean and standard deviation (SD). 

9.3 Results 

The use of the LLN to our population excluded 46/216 (21.3%) patients. The anthropometric, functional, 

and imaging characteristics of the group excluded by LLN criteria is detailed in Table 1. Sex, age, BMI, and 
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smoking history were not statistically different between the group included and the group excluded by LLN 

criteria. The group excluded by LLN criteria had a significantly higher FEV1/FVC, FEV1/VC, DLco% and 

lower TLC, RV, FRC, RV/TLC. Emphysema and gas trapping were significantly lower in the group excluded 

by LLN criteria, with average values of normality (19, 20). 

Patients complained of cough (28/46, 61%), sputum (18/46, 39%), and wheezing (1/46, 2%), with an 

average modified Medical Research Council questionnaire of 2. Smoking history was similar to those defined 

COPD by using the GOLD criteria. 

At quantitative CT analysis the group excluded by LLN differed significantly from those included as of 

amount of emphysema (%LAA-950insp and %pLDA), total gas trapping (%LAA-856exp), and functional gas 

trapping (%fLDA) (Table 1). 

At qualitative CT analysis consensus reading identified signs of COPD in all 46 subjects excluded by LLN 

criteria. In particular, 3 subjects presented with airway disease, 16 with paraseptal emphysema, and 27 with 

centrilobular emphysema (Table 2). Nineteen out of 46 cases (41%) were moderate-to-severe emphysema 

subtypes, by grouping those with any kind of moderate-to-severe emphysema (substantial paraseptal 

emphysema, advanced destructive emphysema, confluent centrilobular emphysema, and moderate 

centrilobular emphysema). Sixteen out of 46 cases (35%) excluded by LLN criterion had paraseptal 

emphysema, which is a higher rate than in the general COPD population reported in literature. 

Concordance between the readers was good (k= 0.61) (Figure 1). This result suggests that a dedicated 

training is not mandatory to classify COPD subtypes. The biggest difference was noted between airway disease 

and mild centrilobular emphysema, as the cases defined as airway disease by the thoracic radiologist were 

classified as either mild or trace centrilobular emphysema by the general radologist (Figure 2). 

The binary logistic regression model including the slope of the flow-volume curve between 25% and 50% 

of FVC (S25-50), BMI, and FEV1/FVC predicted the probability of having emphysema with 85% accuracy (87% 

sensitivity and 81% specificity) in the whole group of subjects (GOLD criterion) and 82% accuracy (82% 

sensitivity and 83% specificity) in the subgroup with FEV1/FVC<LLN (ERS/ATS criterion) (Figure 3). The 

probabilistic model including BMI, FEV1%, FEV1/FVC, and DLco% predicted the probability of having 

emphysema with 80% accuracy in the whole group of subjects (GOLD criterion) and 77% accuracy in the 

subgroup with FEV1/FVC<LLN (ERS/ATS criterion) (Figure 3). 

9.4 Tables 

Table 1. Anthropometric, pulmonary function, and CT metrics data of: A) GOLD dataset (patients with 

COPD enrolled according to GOLD criterion of the fixed ratio of FEV1/FVC <0.70); B) LLN dataset (patients 

with COPD enrolled according to LLN criterion); C) patients excluded by LLN criterion. Data are reported as 

mean (SD). Welch's t robust test was used to test the hypothesis that the two B-C subgroups had equal means. 

Smoking history is expressed as pack-years.  
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 A) GOLD dataset B) LLN dataset C) Patients excluded 
by LLN criteria 

Welch's t test 
(B vs C) 

N 216 170 46  

Sex (M:F) 169:47 131:39 39:7 - 

Age (years) 70.2 (8.0) 69.9 (8.3) 71.2 (7.2) ns 

BMI (kg/m2) 26.5 (4.6) 26.3 (4.5) 27.5 (4.84) ns 

Smoking history 51.7 (27.0) 50.8 (23.9) 55.1 (37.3) ns 

FEV1% 62.6 (25.8) 56.0 (22.6) 90.0 (21.0) p<.01 

FEV1/VC (%) 47.5 (13.2) 43.9 (11.6) 62.8 (7.2) p<.01 

FEV1/FVC (%) 52.3 (13.1) 48.6 (11.5) 67.6 (7.1) p<.01 

TLC% 108.2 (16.5) 110.7 (16.6) 97.6 (11.3) p<.01 

DLco% 68.9 (23.5) 64.3 (22.1) 86.6 (22.3) p<.01 

RV% 137.0 (46.7) 146.3 (45.5) 97.7 (26.8) p<.01 

FRC% 129.5 (32.6) 135.7 (32.0) 103.9 (19.6) p<.01 

RV/TLC (%) 49.9 (14.1) 52.6 (13.9) 38.7 (8.2) p<.01 

%LAA-950insp 14.3 (11.7) 16.3 (12.0) 6.1 (5.2) p<.01 

%LAA-856exp 45.2 (20.3) 49.2 (19.0) 28.4 (16.7) p<.01 

%fLDA 36.9 (13.7) 38.8 (12.8) 28.3 (14.5) p<.01 

%pLDA 12 (11.7) 16.3 (12.0) 7.5 (5.2) p<.01 

Legend: BMI = body mass index, DLco% = percentage of predicted diffusing capacity of lung for carbon monoxide, 
FEV1% = percentage predicted of forced expiratory volume in 1 second, %fLDA = percentage of functional low density 
area, FRC% = percentage of predicted functional residual capacity, FVC% = percentage of predicted forced vital capacity, 
%LAA-950insp = percentage of lung attenuation area with values below -950 Hounsfield Units at inspiratory CT scan, 
%LAA-856exp = percentage of lung attenuation area with values below -856 Hounsfield Units at expiratory CT scan, 
%pLDA = percentage of persistent low density area, RV% = percentage of predicted residual volume, TLC% = percentage 
of predicted total lung capacity, VC = vital capacity. 

 

Table 2. Qualitative analysis of chest CT scans. Distribution of COPD subtypes in subjects with FEV1/FVC 

>LLN. Data represent case numbers. 
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9.5 Figures 

Figure 1. Distribution of COPD subtypes at qualitative CT analysis performed by a dedicated thoracic 

radiologist and a general radiologist in 46 subjects excluded by LLN criterion. Differences in classification 

were greater in airway disease and mild centrilobular emphysema. 

 

Legend: AD=airway disease, ADE= advanced destructive emphysema, CLE= centrilobular emphysema, PSE= paraseptal 
emphysema. 

 

Figure 2. Similarities and dissimilarities in classification of COPD subtypes at qualitative CT analysis 

performed by a dedicated thoracic radiologist and a general radiologist in 46 subjects excluded by LLN 

criterion. 

Centrilobular emphysema (27) Paraseptal emphysema 
(16) 

Airway 
disease 

ADE Confluent Moderate Mild Trace Panlobular Substantial Mild  

2 4 6 6 9 0 7 9 3 
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Legend: AD=airway disease, ADE= advanced destructive emphysema, CLE= centrilobular emphysema, PSE= paraseptal 
emphysema. 

 
 

Figure 3. ROC curves of the two logistic models. The black curves represent the MEFV curve-based model 

for subjects with FEV1/FVC<0.70 (left panel) and for subjects with with FEV1/FVC<LLN (right panel). The 

grey curves represent the DLco-based model for subjects with FEV1/FVC<0.70 (left panel) and for subjects 

with with FEV1/FVC<LLN (right panel). Grey curves data are derived from reference (21). 
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Chapter 10 - Future directions 
The evolution of knowledge concerning COPD covers 200 years (1). Although recently the interest towards 

COPD has increased and research in the field is growing fast, there are still many questions to answer.  

Our next studies will focus on the longitudinal evaluation of patients with COPD in order to investigate the 

natural history of this disease by using on one hand cutting-edge radiological methodologies and on the other 

hand a close clinical approach. The collaboration with researchers with great expertise in the field (the 

COPDGene Study research group) will be the key to answer interesting questions of basic research that may 

rapidly translate into key points for patient treatment.  

A few physicists around the world are developing post-processing imaging techniques to assess pulmonary 

vessels without the need of contrast media injection (2). The application of these tools may contribute to an 

accurate characterization of the different endotypes. Many years ago post-mortem studies have already shown 

significant differences in lung vascularization between patients with emphysema and those with small airway 

disease (3, 4). However, the in vivo characterization of lung vessels could help in the management of those 

patients that are prone to develop pulmonary hypertension. 

The use of innovative radiological tools will be combined with an accurate qualitative assessment of chest 

CT scans, according to the Fleishner Society Statement (5). The evaluation will not be limited to the definition 

of CT-subtypes, but it will take into account associated features of COPD, such as tracheobronchomalacia, 

bronchiectases, coexistence of interstitial lung disease, pulmonary hypertension, morphology of chest wall and 

large airways. 

Further development of the online App based on the ESI model described in Chapter 6 is ongoing to 

eventually help pulmonologists and primary care physicians in defining COPD endotypes tomorrow and in 

targeting therapy accordingly.  
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Chapter 11 - Conclusions 
This thesis describes the use and development of innovative tools, both radiological and bioengineering, in 

supporting clinical diagnosis and phenotypization of chronic obstructive pulmonary disease (COPD). 

Radiology was coupled with pulmonary function to better understand this complex and heterogeneous disease 

and to describe its phenotypes and endotypes.  

An overview of the clinical complexity and heterogeneity of COPD and the current role of imaging is 

presented in chapter 1. Chapter 2 explains the current role of qualitative and quantitative imaging, recent 

advances in post-processing image analysis and imaging tools dedicated to research in this field.  

The studies described from chapter 3 to chapter 7 are the core of the thesis, consisting of the models 

developed from clinical and functional data to evaluate the presence of emphysema in patients with expiratory 

airflow obstruction. Imaging tools are used to assess CT endotypes and as referring gold standard for the 

models. In chapter 3 we demonstrated that standard imaging metrics obtained by inspiratory and expiratory 

CT scans can be used to identify and quantify the relative contribution of emphysematous and non-

emphysematous gas trapping, allowing a better definition of COPD patient subtypes. The definition of the 

prevalent CT subtype (i.e. emphysema versus airway disease) of COPD could potentially be used to target 

patient therapy to the underlying COPD endotype. Moreover, a logistic model combining BMI, DLco%, 

FEV1%, and FEV1/VC proved to be accurate in predicting CT-based quantification of emphysema grade, 

which may prove useful when assessing COPD patients who do not undergo chest CT.  

In chapter 4 and 5 we further explored the chances to use functional parameters to estimate the presence of 

emphysema at CT by using statistical models. In chapter 4 we tried to exclude DLco and to use only functional 

parameters directly derived from the spirometric flow-volume curve without standardization for sex, age, and 

ethnicity data. In chapter 5 we took into account the shape of the flow-volume curve itself. The level of 

accuracy of both models was high and suitable for clinical practice as well as for pharmacologic trials. 

The deep thoughts on the flow-volume curve inspired us to develop a mathematical model (ESI) entirely 

based on the curve, as described in chapter 6. This model classifies patients with milder or more severe 

emphysema, as defined by quantitative CT metrics, without the need of anthropometric or standardized 

parameters. Moreover, in this chapter lung texture analysis was used to study the presentation of lung patterns 

in COPD patients. An unsupervised radiomics approach identified three clusters of patients and their 

presentation at pulmonary function tests was described. The ESI model created from a cohort of Caucasians 

was then validated in the largest population of COPD patients ever studied (the COPDGene Study) including 

different ethnicities (chapter 7). The application of the ESI model to such a big and heterogeneous population 

supported the results obtained in our small cohort. This result put the foundations for using ESI model in 

randomized controlled trials to test treatment efficacy according to COPD endotypes and not only to the 

simplistic approach of FEV1 reduction and exacerbation rate that overlook the physio-pathogenetic 

mechanisms underlying airflow obstruction. 
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In chapter 8 and chapter 9 we examined the ongoing questions and future directions of research in the field. 

In particular, in chapter 7 we wonder about the criteria to define COPD, as the adoption of the LLN criterion 

excluded subjects with relevant COPD findings at CT scan. Moreover, we explored the concordance between 

a dedicated thoracic radiologist and a general radiologist to define COPD CT-subtypes. In chapter 8 I discussed 

the future research directions towards the need for longitudinal studies, assessment of lung vessels, qualitative 

assessment of COPD subtypes, and development of a handy App for clinicians to define the presence of 

emphysema without undergoing chest CT scan. 

All the work presented is the result of a strict and passionate collaboration of experts in different fields: 

pulmonologists, radiologists, and bioengineers. This collaboration is challenging, intriguing, stimulating, and 

fundamental for making advances in research when the topic is as complex and heterogeneous as COPD.
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