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ABSTRACT ARTICLE HISTORY

In the last decade satellite remote sensing has become an effect- Received 16 May 2019

ive tool for monitoring geo-hazard-induced ground motions, and Accepted 1 November 2019
has been increasingly used by the scientific community. Direct
and indirect costs due to geo-hazards are currently rising, causing
serious socio-economics and casualty losses. Therefore, creating a
priority list turns out to be essential to highlight the most rele-
vant ground deformations and to better focus risk management
practices at regional scale. The Sentinel-1 constellation, thanks to
the 6-days repeatability and the free availability of the data,
allows to easily update the geo-hazard-induced ground motions,
compared to other kind of satellite sensors. In this work, a hot-
spot-like method is presented by filtering a large stack of
Sentinel-1 images processed by means of the SqueeSAR algo-
rithm. Three periods, with six months repetitiveness, have been
analysed in order to evaluate the behaviour and evolution of
deformation clusters. The target area is Tuscany Region, located
in the central part of Italy and affected by a wide gamma of geo-
hazards, ranging from landslides to large subsidence areas. The
final output is a geo-database of ground motions that can be
used by regional authorities to prioritize and to effectively plan
local risk reduction actions.
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1. Introduction

Ground deformations, such as land subsidence and landslides, induced by natural
processes or human activities entail severe damages, in terms of human and economic
losses in Europe and worldwide, with direct and indirect costs for more than
1$billion year (Hu et al. 2002; Del Soldato et al. 2017; Herrera et al. 2018).
Uncontrolled urbanization has enhanced human influence on the natural environ-
ment, leading to an increased exposure of the population to different geohazards.
Among them, landslides play a key role causing serious socio-economics and casualty
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losses. For example, in Europe, a report of the European Environment Agency states
that landslides caused 312 fatalities and a total direct and indirect cost of €48 billion
between 1998 and 2009 (Spizzichino et al. 2010; Herrera et al. 2018). Subsidence is
commonly referred to a gentle and graduate lowering or to a sudden sinking of the
ground surface (Galloway and Burbey 2011). Subsidence can be triggered by several
kind of factors, such as ground water and natural gas extraction, compaction of fine-
grained sediments due to load imposition and underground mining activity (Herrera
et al. 2012). Usually, subsidence is a major threat in urban areas, especially for linear
infrastructures, such us bridges, roads and railways, caused by the continuous ground
lowering over time, and leads to relevant damage especially when differential settle-
ments occur (Solari et al. 2018b). In this case, the derived economic loss is not negli-
gible. Hu et al. (2004) determined that in China 45 cities recorded severe subsidence,
causing a total economic loss of around $100 million/year. Faunt et al. (2016)
reported that, between 1955 and 1972, the total cost of subsidence due to water with-
drawal reached $1.3 billion of damages only for California (United States).

Since ‘90s, Earth observation techniques exploiting SAR (Synthetic Aperture
Radar) images have been used in several fields of the natural sciences, but only in the
last twenty years the technological advances allowed the scientists to effectively study
landslides and geo-hazards in general (Massonnet and Feigl 1998; Bianchini et al.
2012; Tofani et al. 2013). The development of Multi Temporal Interferometric SAR
(MTInSAR) has improved and extended the applications of interferometric techni-
ques for geo-hazards monitoring and mapping (Bianchini et al. 2017), providing not
only scientific products, but operative information for Civil Protection purposes and
for regional and national authorities in charge of hydrogeological risk management,
as well.

The launch of the Sentinel-1 constellation, composed by two twin satellites
(Sentinel-1A and Sentinel-1B) designed by Europe Space Agency (ESA), ensures a
systematic and regular acquisition plan of radar images, by providing free data every
six days. (Torres et al. 2012). Sentinel-1 operates in several acquisition modes; for
geo-hazards detection the “Interferometric Wide Swath”, with a 250km wide swath
and 5x20 m ground resolution, is commonly used (Aschbacherand Milagro-Pérez
2012). Sentinel-1 data supports several applications as testified by a large number of
studies, such as landslide detection, mapping and characterization (Barra et al. 2016;
Intrieri et al. 2018; Del Soldato et al. 2018b; Solari et al. 2018c), landslides monitoring
(Dai et al. 2016; Raspini et al. 2018); mining activity (Abdikan et al. 2016; Ng et al.
2017; Zhang et al. 2018), subsidence phenomena (Sowter et al. 2016; van der Horst
et al. 2018) and earthquakes (Plank 2014; Wang et al. 2017; Vajedian et al. 2018).

In this work, the regional-scale image capability of Sentinel-1 constellation has
been exploited for detecting and mapping active moving areas. Three different tem-
poral baselines have been analysed for evaluating the spatial evolution and multi-tem-
poral variations of the areas, in order to highlight the most representative ground
deformations at regional scale and to track their evolution. The study area is the
Tuscany Region, located in Central Italy and characterized by an extremely variegated
landscape. The methodology exploits radar images processed by means of SqueeSAR
algorithm to create a new geodatabase of moving areas at regional scale in Tuscany
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Region, useful not only from a scientific point view, but for risk management and
Civil Protection purposes, as well.

2. Geographical and geomorphological setting of tuscany region

The Tuscany Region is located in central Italy and extends up about 22.994 km?. It is
administratively subdivided into 279 municipalities and 10 provinces: Arezzo (AR),
Siena (SI), Grosseto (GR), Pisa (PI), Livorno (LI), Massa-Carra (MC), Pistoia (PT),
Prato (PR) and Lucca (LU). Furthermore, the Tuscan territory includes an island
archipelago composed by six main islands and other small ones. The regional capital
is Florence, the most populated city, with about 380.000 inhabitants.

Tuscany Region presents an extremely variegated landscape. Mountains cover
25.1% of the region from NW to SE along the Apennines, where mountain heights
can be higher than 2000 meters a.s.l. (the highest Monte Prado, 2054 meters a.s.l.).
The central part of the territory is mainly characterized by hills (66.5%) and flat areas
(8.4%), as well as by wide valleys where the main rivers flow (Figure 1(a)).

From the climatic point of view, the region is generally Mediterranean, with hot
and dry summers and moist and mild winters (Csa as in the Koppen-Geiger classifi-
cation) (Peel et al. 2007), even if it locally can vary according to the position of oro-
graphic elements and along the coast. Froma rainfall point of view, there are two
precipitation peaks: the main one during the autumn period, the second one during
the winter or the spring period. Summer is the driest season of the year (Rapetti and
Vittorini 1994). The major rainfall events are located along the Apennines, especially
in the NW part, with mean annual peaks up to 2000 mm/year in Apuan Alps.
Instead, the lower rainfall values are typical in the southern Tuscany, with mean
annual peaks lower than 600 mm/yr (Rapetti and Vittorini 1994; Rosi et al. 2012).

Froma geological point of view, Tuscany Region belongs to the Northern
Apennine. The geological setting is characterized by an overlapping of three main
geological units: Ligurian, Tuscanian and Umbro-Marchigian units. The Apennines
are one of the youngest mountain chains in the world, formed during the Neogene
and Quaternario. Active tectonic makes Apenninic area prone to several geological
hazards such as earthquakes and slope instability (Bortolotti 1992; Vai and
Martini 2013).

Tuscany Region is characterized by various geological and topographic patterns;
thus, geo-hazards are heterogeneously distributed throughout the territory. Figure 1b
shows the spatial distribution of typical phenomena observable by radar satellite, such
as landslides and subsidence. In this work, we used the landslides database published
by Rosi et al. (2018), based on the improvement of Italian Landslides Inventory
(IFFI) project, produced by the Institute for Environmental Protection and Research
(ISPRA). In this database 117.000 landslides are mapped and classified according to
their state of activity; 22% of them are classified as “active”, 74% as “dormant” and
4% as “stabilised”. Rosi et al. (2016) derived a subsidence database for the Tuscany
Region, on the basis of ERS 1/2 and Envisat interferometric products. This database
is composed of 13 main zones, with a total area of 2035km?, equals to 9% of the
Tuscany surface. Figure 1b shows the distribution of landslides or/and subsidence for
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Figure 1. Geographical characterization and Digital Elevation Model (DEM) of Tuscany Region (a)
and spatial distribution of geohazard observable by satellite radar data (b). Source: Author

each municipality. The 69% of the municipalities includes mapped landslides, while
the 28% records both landslides and known subsidence areas and only 0.4% of them
register no-known geohazards (i.e. 1 among279 municipalities). These data confirm
the need and importance of a priority list to manage geo-risks in an effective way.

3. Data and method

The goal of the methodology is to highlight the most relevant ground deformations
in Tuscany Region, by means of satellite radar interferometry and using simple GIS
(Geographical Information System) tools, making an analysis from April 2017 to
April 2018 subdivided into three periods. The workflow is conceived to be reprodu-
cible and fast to apply, providing a geodatabase that contains interferometric and
qualitative parameters, concerning the hydrogeological phenomena.

The methodology is subdivided into three main steps:

1. deformation map generation;
2. active moving areas extraction;
3. cluster classification and persistence analysis.

3.1. Deformation maps generation

We used Sentinel-1A and Sentinel-1B images from October 2014 to April 2017, to
create the first deformation map, as baseline of our analysis, by means of SqueeSAR
algorithm (Ferretti et al. 2011). After that, other two deformation maps were
obtained, i.e. from October 2014 to October 2017, and from October 2014 to April
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Table 1. InSAR database.

Period Dates Constellation Geometry Number of images
1° October2014-April 2017 Sentinel-1A and Sentinel-1B Ascending 70
Descending 68
2° October 2014-April 2017 Ascending 99
Descending 96
3° October 2014-April 2017 Ascending 130
Descending 126

2018, in order to update the results every six months and highlight the evolution of
the hydrogeological phenomena (Table 1).

The SqueeSAR algorithm represents the evolution of the Permanent Scatterer SAR
Interferometry (PSInSAR) (Ferretti et al. 2001), which aimed at identifying radio-
metrically stable reflectors called Permanent Scatterers (PS), by exploiting the whole
stack of SAR images. Every PS represents a pixel of a SAR image with high signal
coherence, mainly corresponding to rock outcrops and man-made objects. The main
drawback of this technique is the low density of PS that could be obtained in agricul-
tural and peri-urban areas (< 10PS/km” using C-band radar images), compared to
the PS density in urban areas (> 100 PS/km” using C-band radar images).

The SqueeSAR algorithm was designed to overcome this limitation, defining a new
type of PS points: the Distributed Scatterers (DS). A DS is a target corresponding to
an area, where a certain number of neighbouring pixels shares similar reflectivity val-
ues and moderate interferometric coherence. By combining and merging the signal of
these pixels, it is possible to extract a point-like feature with high interferometric
coherence. DS typically match with homogeneous areas such as deserts, debris areas
or uncultivated area. The SqueeSAR approach jointly processes PS and DS, consider-
ing their different statistical behaviour. This is possible thanks to a space adaptive fil-
tering, DespecKS (Ferretti et al. 2011), that is able to statistically average
homogeneous pixels (SHP) preserving the information of point-wise associated to
point targets. The filter is based on Kolmogorov-Smirnov statistical test (Stephens
1970; Kvam and Vidakovic 2007). Basically, for every image-pixel, this kind of statis-
tical test is applied to all the pixels within a certain estimation window, centred on
the pixel under analysis to select SHP families (Ferretti et al. 2011). After that, it is
possible (1) to despeckle amplitude data; (2) to filter interferometric phase values; (3)
to estimate coherence values properly.

3.2. Active moving areas extraction

Extracting deformation maps from Multi-temporal InSAR technique represents a
good starting point to highlight possible relevant zones affected by hydrogeological
risk. In this work, we derived active moving areas using a simple hot-spot-like
method in GIS environment, already followed by other authors (Barra et al. 2017;
Solari et al. 2018a), divided into two main steps:

e Velocity filtering: PS and DS points were filtered with a velocity threshold of
+7,5mm/year. This value is equal to three times the standard deviation of the
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velocity values of both datasets. This value has been chosen to extract just the
most representative points for “fast” moving areas at regional scale.

o Cluster extraction: the resulting filtered map was further analysed to derive the
final moving areas. This product was obtained by buffering PS/DS. We choose a
buffer size of 100 meters and a cluster size with minimum three PS. We chose
this buffer size and cluster size based on our knowledge, defining the common
size of a landslide in the Tuscany Region. Each cluster is characterized by a value
of mean velocity, mean standard deviation and mean coherence of the time series
of PS/DS points composing the clusters.

3.3. Cluster classification and persistence analysis

The classification of each cluster is based on radar interpretation, as firstly defined by
Farina et al. (2007), introducing the PSI analysis cross-compared with ancillary data,
such as geology, geomorphology, multi-temporal orthophotos, regional technical
maps. For every type of geohazard the following databases were used:

e for landslides (La) phenomena, the IFFI inventory improved with ERS 1/2 and
Envisat interferometric data (Rosi et al. 2018);

e for subsidence (Su) and uplift (Up) phenomena, the inventory published by Rosi
et al. (2016);

o for deformations due to geothermal activity (GA), the geothermal inventory of
Tuscany Region and

o for deformations due to mining activity (MA), the mining inventory of
Tuscany Region.

Furthermore, the three periods were analysed to highlight possible temporal and
geometric persistence areas (TGPA) among clusters. A TGPA is defined when clusters
of moving points, which are present in each period and acquisition geometry, overlap
each other. TPGAs represent the most enduring and representative ground deforma-
tions, thus they are useful to highlight the most relevant situations that have to be
prioritized.

4, Results

In this chapter, the results obtained by following the methodology are presented.
Some examples of active moving areas will be presented as well.

4.1. Deformation maps

The first step of the methodology is devoted to the generation of three deformation
maps performing a SqueeSAR analysis of Sentinel-1 images. Figure 2a,b shows the
deformation maps regarding the first period (October 2014-April 2017), representing
the starting point for the multi-temporal comparison of deformation clusters. These
maps offer a great wealth of information on ground velocity distribution and they
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Figure 2. Deformation map in ascending geometry (a) and descending geometry (b) from October
2014 to April 2017 using SqueeSAR algorithm. (1) Firenze-Prato-Pistoia basin, (2) Larderello-Travale
area. Source: Author

Table 2. Statistics of deformation maps. 1° period: October 2014 to April 2017, 2° period:
October 2014 to October 2017, 3° period: October 2014 to April 2018.

Velocity (mm/yr)

Period Geometry Images PS/DS Min Mean Max Mean coherence
1° Asc 70 858.000 —63 0.9 26 0.89
1° Desc 68 855.000 —104 0.87 43 091
2° Asc 99 863.000 -77 0.95 22 0.9
2° Desc 96 861.000 —43 0.92 43 0.9
3° Asc 130 860.000 —65 1.2 21 0.9
3° Desc 126 859.000 -39 1.1 34 0.88

can be used to highlight the most unstable areas at regional scale. It is possible to
observe two main areas in red (representing points with negative velocities, i.e. move-
ments away from the sensor), the first one located in northern Tuscany and the big-
gest one in the south-western part. These areas are well-known in scientific
environment, both referred to subsidence phenomena: the first one along the Firenze-
Prato-Pistoia basin (Colombo et al. 2003; Del Soldato et al. 2018b) and the second
one in the Larderello-Travale area where geothermal activities take place (Batini et al.
2003), producing relevant subsidence effects (Manzella et al. 2018). In the same way,
it is possible to observe the presence of PS/DS points probably attributable to land-
slides phenomena, both in the Apennine area and in the southern part of the
Tuscany Region.

Table 2 shows the information about PS data of the three analysed periods. The
deformation maps were obtained starting from a minimum of 68/70 radar images for
the first period (October 2014-April 2017) to a maximum of 126/130 images for the
last period (October 2014-April 2018). The number of PS/DS extracted is between
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Table 3. Statistics for filtered deformation maps. 1° period: October 2014 to April 2016, 2° period:
October 2014 to October 2017, 3° period: October 2014 to April 2018.

Period Geometry PS/DS Clusters Overlapping percentage
1° Asc 5.818 127 50

2° Asc 5.490 94

3° Asc 4.328 86

1° Desc 5.694 120 62

2° Desc 5.113 123

3° Desc 4.845 102

855.000 and 863.000, with a mean density of 33 points/km?® This latter parameter
turns out to be maximum in urban areas, while minimum or equal to zero in culti-
vated areas and forested Apennine areas.

4.2. Active moving areas extraction

Once the deformation maps are obtained, it is possible to extract the active moving
areas as described in Section 3.2. After applying the velocity filtering equal to +
7.5mm/yr, the PS/DS number is decreased by 99% in all the acquisition periods and
geometries. In Table 3 the statistics about clusters extraction are summarised. “PS/
DS” column indicates the number of remaining points after velocity filtering; this
number decreases from the first period to the third one, with a maximum of 5.818
points in the first one, and a minimum of 4.328 points in the third one. This is due
to a reduction of the general noise level of the datasets connected to the increase of
the number of radar images analysed that grants an improvement of the accuracy of
the results and of the velocity estimation. Consequently, the number of single points,
that could represent false positive, is reduced. In the same way, clusters extracted
from the deformation maps decrease from the first period to third one as well, with a
minimum of 86 in the 3° period, to a maximum of 127 in the first period. The per-
centage of clusters overlapping in different periods is equal to 50% in ascending
geometry and 62% in descending orbit.

4.3. Clusters classification

Following the last step of the methodology, the deformation clusters are classified on
the basis of their triggering factor. Figure 3 shows the classification and position of
the clusters and TGPA. The clusters due to landslides are located especially in the
mountain areas (88%) along the Apennine chain and near Mt. Amiata. The landslide
cluster with the highest PS/DS density is located in the municipality of Cavriglia
(Arezzo province), shows a maximum number of PS/DS points of 210 in the second
period and a minimum of 90 in the third period, over an area of 1.6 km?. The max-
imum LOS velocity recorded is equal to 24 mm/yr. The 100% of the clusters due to
geothermal activity are located in Larderello-Travale area, which is the most ancient
exploited geothermal field in the world (Batini et al. 2003). The clusters due to sub-
sidence phenomena are mainly found in the Pisa and Livorno provinces, with a per-
centage equal to 60% of the total. They are mainly located in agricultural areas, likely
due to the exploitation of groundwater, and in harbour areas, related to sediment
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Figure 3. Cluster classification and TGPA maps. a): 1° period (October 2014 - April 2017); b): 2°
period (October 2014 — October 2017); c): 3° period (October 2014 — April 2018); d): Temporal and
Geometric Persistent Areas. GA: Geothermal Activity; La: Landslide; Su: Subsidence; MA: Mining

Activity; Up: Uplift. (1) Firenze-Prato-Pistoia basin; (2) Cavriglia's landslide; (3) Livorno freight ter-
minal and (4) Larderello-Travale area. Source: Author.
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Figure 4. Classification statistics of the clusters in TR during the 1° period (October 2014—April
2017), 2° period (October 2014-October 2017), 3° period (October 2014-April 2018) and
Temporally and Geometric Persistent Areas. GA: Geothermal Activity; La: Landslide; Su: Subsidence;
MA: Mining Activity; Up: Uplift. Source: Author.

compaction. In this zone, the main group of clusters, with an area of 9km?, affects
the structures of the Livorno freight terminal, started to be built in 2000, and com-
posed by heavy facilities, such as warehouses and commercial areas. The subsidence
probably depends on the consolidation process of compressible soils induced by the
construction of heavy buildings. LOS velocities reach the maximum rate of 40 mm/yr.
Another interesting and relevant group of subsidence clusters is situated along
Firenze-Prato-Pistoia basin. This group is composed of five clusters covering a total
area of 44km” during the first period. The number of PS/DS points forming the clus-
ters decreases along the time, therefore also their areal distribution decreases, reach-
ing 39km” in the third monitored period (October 2014-April 2018). LOS velocities
recorded a little variation of few mm/yr, with maximum subsidence rates decreasing
from 21 mm/yr to 18 mm/yr.

Figure 4 shows the temporal evolution of moving areas over Tuscany Region and
their classification. The results indicate a homogeneous percentage among geohazard,
with the landslides as the most occurring phenomenon, followed by the subsidence
and the geothermal activity. On the other hand, the most common triggering cause
for TPGA is subsidence (47%), followed by landslides (21%) and geothermal activity
(14%). The percentage of landslides is reduced by more than a half considering the
first and the last monitoring period, whereas the percentage of subsidence-related
clusters is doubled. This is due to three main factors: (i) in general, the subsidence
has a deformation velocity more linear and regular than a movement caused by a
landslide, and with a lower spatial and temporal variability; (ii) subsidence phenom-
ena are located in flat areas, which are not subjected to typical radar distortions, such
as foreshortening, layover and shadowing. Sometimes from a slope, on the basis of its
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Figure 5. Example of TGPA in Pistoia - Prato - Firenze basin affected by subsidence phenomena.
The PS/DS data correspond to the period from October 2014 to April 2018. The black, blue, green
and red circles indicate the PS points from which time series were extracted. Source: Author

aspect, it can be easier to extract data in ascending geometry, rather than in descend-
ing geometry and vice versa, with differences in terms of PS/DS density and velocity;
(iii) landslide phenomena are connected with rainfall, therefore during periods with
low rainfall rates, the landslide velocity could fall below the used threshold.

Figure 5 presents an example of TGPA, related to subsidence due to water overex-
ploitation, located in the plain between the cities of Prato and Pistoia, in the central
portion of the Firenze-Prato-Pistoia basin. The Firenze-Prato-Pistoia basin has an
extension of approximately 824 km2 and a mean elevation of ca. 50 m a.s.l. The plain
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is crossed by the Ombrone creek in the Pistoia area, by the Bisenzio River in the
Prato province and by the Arno River in the Florence area. The plain has an oblong
shape in the NW-SE direction and is approximately 35km wide and 100km long
(Del Soldato et al. 2018b). By the geological point of view, this plain is an intermoun-
tain valley formed during the late extensional phase of the formation of the northern
Apennines and later filled with alluvial deposits, reaching a thickness of hundreds of
meters. The shape is defined by normal faults in the NO flank, forming a semi-gra-
ben filled by a significant thickness of marshy-lacustrine sediments (Capecchi et al.
1975). The hydrogeological setting of the area is characterised by several confined
aquifers situated at different depth, composed by clay lenses where water is extracted.
Such aquifers supply the municipal aqueducts, the textile industries as well as trees
and flowers nurseries that characterize the economical importance of this area. The
aquifers were overexploited for more than thirty years, creating large subsidence bowl
already detected by means of ERS 1/2 and Envisat interferometric products (Colombo
et al. 2003; Del Soldato et al. 2018b). The TGPA (12km?) is composed by an average
of 1756 PS/DS in the first period, 1730 for the second one, 1717 for the last one. The
velocity analysis shows that the mean velocity is equal to 10.4 mm/yr and the max-
imum 19.3 mm/yr; for the second one the mean velocity is 10.1 mm/yr and the max-
imum 21 mm/yr; for the last one a mean velocity of 9.9 mm/yr and the maximum of
17.2mm/yr. The time series of deformation show a linear and constant motion over
the whole investigated period, the series shown in Figure 5 is an example.

Figure 6 shows an example of TGPA related to a landslide motion in the munici-
pality of Abbadia San Salvatore located in the Siena province along the eastern flank
of the Amiata Mountain (1780 a.s.l.), a Middle-Late Pleistocene volcano. Froma geo-
logical point of view, Amiata Mountain is characterized by a superimposition of dif-
ferent tectono-stratigraphic units, through the action of low-angle normal faults of
different ages. The geological setting is subdivided from the bottom to the top as fol-
lows: the Tuscan Nappe succession (Late Triassic), the Ligurian Complex (Middle
Jurassic — Olocene), the sediments of Radicofani basin (Early-Middle Pliocene), the
magmatic complex (300ka) Calamai et al. (1970), Gianelli et al. (1988),and Brogi
(2008). According to the study of Coltorti et al. (2011), Abbadia San Salvatore and
the eastern flank of the Volcano are characterized by a deep-seated gravitational slope
deformation (DSGSD), subdivided in a deeper part with an activity difficult to verify
and an active shallower part. The TGPA (500 m®), located in the northern part of the
municipality, is composed by 99 PS/DS in the first period, whit a maximum velocity
of 24mm/yr and a mean velocity of 14 mm/yr. The second period has a total of
79 PS/DS with a maximum velocity of 19 mm/yr and a mean velocity of 12.1 mm/yr.
The last one has 67 PS/DS, with a maximum velocity of 18 mm/yr and a mean vel-
ocity of 11.7mm/yr. The motion is linear through the whole monitored period in
both orbits, as testified by the time series shown in Figure 6.

4.4. Update of the landslide’s state of activity

The cluster database can be a reliable tool for checking landslide’s State of Activity
(SoA). In Figure 7a the municipalities map is shown, classified on the basis of the
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Figure 6. Example of TGPA Abbadia San Salvatore (SI) affected by landslides phenomena. The PS/
DS data correspond to the period from October 2014 to April 2018. The black and the red circles
indicate the PS points from which time series were extracted. Source: Author

Landslides Activity Index (LAI), which is the ratio between the number of active

landslides and the total number of landslides, in order to highlight the municipalities
with the higher critical level. Figure 7b shows the municipalities where the landslide’s
state of activity is changed, and where new landslides are found thanks to the analysis
of Sentinel-1 data. In 50 municipalities at least one landslide changed its SoA with

respect to the IFFI database (already updated by means of ERS 1/2 and Envisat data)

(Rosi et al. 2018) and 12 of these register the presence of potential “new detected”

landslides. A total of 197 landslides have been updated from “dormant” to “stable”.



2270 (%) R. MONTALTI ET AL.

AT0TN

4300N

Legend

. [ No Activity Changing
£ Il Actiey Changing

420U

120
L] umsne Clustars. — e Kilometers

10°00°E 1M00°E 12°00°E ID'D’U’E 114 D’D E 12 D’U'E

Figure 7. (a) shows the municipalities classified based on Landslide Activity Index. (b) shows in red
the municipalities where the landslides changed their state of activity in “active” and, in green, if
there are also new landslides in municipalities’ territories. Source: Author

5. Discussion

In this work, a “hot-spot” analysis at regional scale has been performed over the
Tuscany Region to highlight relevant ground deformations such as landslides, subsid-
ence and uplift, starting from large MTInSAR dataset updated three times. With this
approach, it was possible summarising hundreds of thousands of points in single clus-
ters, grouped into a geo-database containing interferometric parameters, geographical
and geomorphological information, a brief evaluation of the possible triggering cause
and information about the temporal evolution of moving areas.

A large number of geo-hazards affects Tuscany Region, in fact 117.000 landslides
in the IFFI inventory and 1094km” of subsidence areas are mapped. Therefore, it is
important to create priority list of the main active phenomena on the territory, in
order to help the local administrator to correctly allocate funds and plan proper
remedial actions.

In this work, we do not carry out a simple clusters analysis of a single deformation
map, but rather a comparison among three several periods: (i) the first one from
October 2014 to April 2017, (ii) the second one from October 2014 to October 2017,
(iii) the third one from October 2014 to April 2018. In this way, it was possible to
study the spatial and temporal evolution of the deformation clusters, updated every
six months starting from the first period, and to detect the most significant ones. In
fact, although the clusters are extracted from deformation maps elaborated over a
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long period, sometimes they may represent unrepresentative episodic phenomena
(14% of the total). In addition, the TGPAs, which represent the overlapping clusters
detected in different periods and acquisition geometries, have been defined. These
areas provide an idea about the persistence of the motions, highlighting the most
enduring and representative areas affected by geohazards.

The analysis of the three periods points out a decreasing trend of PS/DS density
and as a consequence a decrease of the spatial distribution of the clusters. LOS vel-
ocity values register a little decrease as well. On one side, this is probably due to the
increase of radar images used during the processing phase, along the three analysis
periods, which improve the accuracy of the output data. On the other side, the
absence of intense rainfall periods during the monitored period caused a long-term
reduction of landslides motion, determining some of the cluster of the first period to
fall outside the fixed moving threshold.

The cluster database, obtained every six months, can be a reliable tool for updating
the geo-hazard inventories. In fact, it was possible to easily update the regional land-
slide database, checking the actual state of activity of the landslides. The result does
not report new areas affected by subsidence, nevertheless this methodology may
ensure the mapping of new phenomena in the future. Detecting new areas affected by
subsidence, potentially connected with excessive exploitation of the ground-water, can
play a role key for the water source managing as well.

6. Conclusion

In this work, we exploited Sentinel-1 images for active moving areas detection at
regional scale. The study area is Tuscany Region, located in central Italy and charac-
terized by an extremely variegated landscape with different geohazards, ranging from
landslides to subsidence.

A hotspot-like methodology is proposed, exploiting the temporal repetitiveness of
Sentinel-1 data analysed by means of the SqueeSAR algorithm to create deformation
maps in three different periods with a six months update. Thanks to a filtering
approach based on a velocity threshold, it was possible to extract a total of 652
deformation clusters, divided into three different periods, to study their spatial and
temporal evolution. The final output is a flexible geo-database that contains interfero-
metric parameters, geographical, geomorphological and geological information, a brief
evaluation of the possible triggering cause and information about the temporal evolu-
tion of the moving areas. Considering the 6-days repeatability of the Sentinel-1 con-
stellation, this clustering methodology turns out to be reliable, fast and readily
reproducible.

This work represents the first cluster database in Tuscany region, focused on land-
slide and subsidence phenomena, required by regional Civil Protection for risk man-
agement. In fact, thanks to the update at regional scale it is possible to highlight the
most important deformation areas and thus to create a priority list, allowing the
reduction of economic and personnel costs and correctly planning countermeasures
at municipal scale.
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