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Relative Privacy Threats and Learning
From Anonymized Data

Michele Boreale, Fabio Corradi , and Cecilia Viscardi

Abstract— We consider group-based anonymization schemes,1

a popular approach to data publishing. This approach aims2

at protecting privacy of the individuals involved in a dataset,3

by releasing an obfuscated version of the original data, where4

the exact correspondence between individuals and attribute5

values is hidden. When publishing data about individuals, one6

must typically balance the learner’s utility against the risk7

posed by an attacker, potentially targeting individuals in the8

dataset. Accordingly, we propose a unified Bayesian model of9

group-based schemes and a related MCMC methodology to learn10

the population parameters from an anonymized table. This allows11

one to analyze the risk for any individual in the dataset to be12

linked to a specific sensitive value, when the attacker knows13

the individual’s nonsensitive attributes, beyond what is implied14

for the general population. We call this relative threat analysis.15

Finally, we illustrate the results obtained with the proposed16

methodology on a real-world dataset.17

Index Terms— Privacy, anonymization, k-anonymity, MCMC18

methods.19

I. INTRODUCTION20

WE CONSIDER a scenario where datasets containing21

personal microdata are released in anonymized form.22

The goal here is to enable the computation of general popula-23

tion characteristics with reasonable accuracy, at the same time24

preventing leakage of sensitive information about individuals25

in the dataset. The Database of Genotype and Phenotype [32],26

the U.K. Biobank [36] and the UCI Machine Learning repos-27

itory [47] are well-known examples of repositories providing28

this type of datasets.29

Anonymized datasets always have “personal identifiable30

information”, such as names, SSNs and phone numbers,31

removed. At the same time, they include information32

derived from nonsensitive (say, gender, ZIP code, age,33

nationality) as well as sensitive (say, disease, income)34

attributes. Certain combinations of nonsensitive attributes, like35

�gender, date of birth, ZIP code�, may be used to uniquely36

identify a significant fraction of the individuals in a population,37

thus forming so-called quasi-identifiers. For a given target38

individual, the victim, an attacker might easily obtain this piece39

of information (e.g. from personal web pages, social networks40
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etc.), use it to identify him/her within a dataset and learn the 41

corresponding sensitive attributes. This attack was famously 42

demonstrated by L. Sweeney, who identified Massachusetts’ 43

Governor Weld medical record within the Group Insurance 44

Commission (GIC) dataset [46]. Note that identity disclosure, 45

that is the precise identification of an individual’s record in 46

a dataset, is not necessary to arrive at a privacy breach: 47

depending on the dataset, an attacker might infer the victim’s 48

sensitive information, or even a few highly probable candidate 49

values for it, without identity disclosure involved. This more 50

general type of threat, sensitive attribute disclosure, is the one 51

we focus on here.1 52

In an attempt to mitigate such threats for privacy, regulatory 53

bodies mandate complex, often baroque syntactic constraints 54

on the published data. As an example, here is an excerpt from 55

the HIPAA safe harbour deidentification standard [48], which 56

prescribes a list of 18 identifiers that should be removed or 57

obfuscated, such as 58

all geographic subdivisions smaller than a state, 59

including street address, city, county, precinct, ZIP 60

code, and their equivalent geocodes, except for the 61

initial three digits of the ZIP code if, according to 62

the current publicly available data from the Bureau 63

of the Census: (1) the geographic unit formed by 64

combining all ZIP codes with the same three initial 65

digits contains more than 20,000 people; and (2) 66

the initial three digits of a ZIP code for all such 67

geographic units containing 20,000 or fewer people 68

is changed to 000. 69

There exists a large body of research, mainly in 70

Computer Science, on syntactic methods. In particular, 71

group-based anonymization techniques have been systemat- 72

ically investigated, starting with L. Sweeney’s proposal of 73

k-anonymity [46], followed by its variants, like �-diversity [30] 74

and Anatomy [49].In group-based methods, the anonymized - 75

or obfuscated - version of a table is obtained by partitioning 76

the set of records into groups, which are then processed to 77

enforce certain properties. The rationale is that, even knowing 78

that an individual belongs to a group of the anonymized 79

table, it should not be possible for an attacker to link that 80

individual to a specific sensitive value in the group. Two 81

examples of group based anonymization are in Table I, adapted 82

1Depending on the nature of the dataset, the mere membership disclosure,
i.e. revealing that an individual is present in a dataset, may also be considered
as a privacy breach: think of data about individuals who in the past have been
involved in some form of felony. We will not discuss membership disclosure
privacy breaches in this paper.
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TABLE I

A TABLE (TOP) ANONYMIZED ACCORDING TO 2-ANONYMITY VIA LOCAL
RECODING (MIDDLE) AND ANATOMY (BOTTOM)

from [9]. The topmost, original table collects medical data83

from eight individuals; here Disease is considered as the84

only sensitive attribute. The central table is a 2-anonymous,85

2-diverse table: within each group the nonsensitive attribute86

values have been generalized following group-specific rules87

(local recoding) so as to make them indistinguishable; more-88

over, each group features 2 distinct sensitive values. In general,89

each group in a k-anonymous table consists of at least k90

records, which are indistinguishable when projected on the91

nonsensitive attributes; �-diversity additionally requires the92

presence in each group of at least � distinct sensitive values,93

with approximately the same frequency. This is an example94

of horizontal scheme. Table I (c) is an example of application95

of the Anatomy scheme: within each group, the nonsensitive96

part of the rows are vertically and randomly permuted, thus97

breaking the link between sensitive and nonsensitive values.98

Again, the table is 2-diverse.99

In recent years, the effectiveness of syntactic anonymization100

methods has been questioned, as offering weak guarantees101

against attackers with strong background knowledge – very102

precise contextual information about their victims. Differen-103

tial privacy [18], which promises protection in the face of104

arbitrary background knowledge, while valuable in the release105

of summary statistics, still appears not of much use when it 106

comes to data publishing (see the Related works paragraph). 107

As a matter of fact, release of syntactically anonymized tables 108

appears to be the most widespread data publishing practice, 109

with quite effective tool support (see e.g. [37]). 110

In the present paper, discounting the risk posed by attackers 111

with strong background knowledge, we pose the problem in 112

relative terms: given that whatever is learned about the general 113

population from an anonymized dataset represents legitimate 114

and useful information (“smoke is associated with cancer”), 115

one should prevent an attacker from drawing conclusions about 116

specific individuals in the table (“almost certainly the target 117

individual has cancer”): in other words, learning sensitive 118

information for an individual in the dataset, beyond what is 119

implied for the general population. To see what is at stake 120

here, consider dataset (b) in Table I. Suppose that the attacker’s 121

victim is a Malaysian living at ZIP code 45501, and known 122

to belong to the original table. The victim’s record must 123

therefore be in the first group of the anonymized table. The 124

attacker may reason that, with the exception of the first group, 125

a Japanese is never connected to Heart Disease; this hint 126

can become a strong evidence in a larger, real-world table. 127

Then the attacker can link with high probability the Malaysian 128

victim in the first group to Heart Disease. In this attack, 129

the attacker combines knowledge of the nonsensitive attributes 130

of the victim (Malaysian, ZIP code 45501) with the group 131

structure and the knowledge learned from the anonymized 132

table. 133

We propose a unified probabilistic model to reason about 134

such forms of leakage. In doing so, we clearly distinguish the 135

position of the learner from that of the attacker: the resulting 136

notion is called relative privacy threat. In our proposal, both 137

the learner and the attacker activities are modeled as forms 138

of Bayesian inference: the acquired knowledge is represented 139

as a joint posterior probability distribution over the sensitive 140

and nonsensitive values, given the anonymized table and, 141

in the case of the attacker, knowledge of the victim’s presence 142

in the table. A comparison between these two distributions 143

determines what we call relative privacy threat. Since posterior 144

distributions are in general impossible to express analytically, 145

we also put forward a MCMC method to practically estimate 146

such posteriors. We also illustrate the results of applying our 147

method to the Adult dataset from the UCI Machine Learn- 148

ing repository [47], a common benchmark in anonymization 149

research. 150

A. Related Works 151

Sweeney’s k-anonymity [46] is among the most popu- 152

lar proposals aiming at a systematic treatment of syntactic 153

anonymization of microdata. The underlying idea is that every 154

individual in the released dataset should be hidden in a 155

“crowds of k”. Over the years, k-anonymity has proven to 156

provide weak guarantees against attackers who know much 157

about their victims, that is have a strong background knowl- 158

edge. For example, an attacker may know from sources other 159

than the released data that his victim does not suffer from 160

certain diseases, thus ruling out all possibilities but one in 161
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the victims’s group. Additional constraints may be enforced162

in order to mitigate those attacks, like �-diversity [30] and163

t-closeness [27]. Differential Privacy [18] promises protec-164

tion in the face of arbitrary background knowledge. In its165

basic, interactive version, this means that, when querying a166

database via a differentially private mechanism, one will get167

approximately the same answers, whether the data of any168

specific individual is included or not in the database. This is169

typically achieved by injecting controlled levels of noise in the170

reported answer, e.g. Laplacian noise. Differential Privacy is171

very effective when applied to certain summary statistics, such172

as histograms. However, it raises a number of difficulties when173

applied to table publishing: in concrete cases, the level of noise174

necessary to guarantee an acceptable degree of privacy would175

destroy utility [12], [13], [44]. Moreover, due to correlation176

phenomena, it appears that Differential Privacy cannot in177

general be used to control evidence about the participation178

of individuals in a database [4], [26]. In fact, the no-free-179

lunch theorem of Kifer and Machanavajjhala [26] implies that180

it is impossible to guarantee both privacy and utility, without181

making assumptions about how the data have been generated182

(e.g., independence assumptions). Clifton and Tassa [10] crit-183

ically review issues and criticisms involved in both syntactic184

methods and Differential Privacy, concluding that both have185

their place, in Privacy Preserving- Data Publishing and Data186

Mining, respectively. Both approaches have issues that call187

for further research. A few proposals involve blending the188

two approaches, with the goal to achieve both strong privacy189

guarantees and utility, see e.g. [28].190

A major source of inspiration for our work has been191

Kifer’s [25]. The main point of [25] is to demonstrate a pitfall192

of the random worlds model, where the attacker is assumed193

to assign equal probability to all cleartext tables compatible194

with the given anonymized one. Kifer shows that a Bayesian195

attacker willing to learn from the released table can draw196

sharper inferences than those possible in the random worlds197

model. In particular, Kifer shows that it is possible to extract198

from (anatomized) �-diverse tables belief probabilities greater199

than 1/�, by means of the so-called deFinetti attack. While200

pinpointing a deficiency of the random worlds model, it is201

questionable if this should be considered an attack, or just202

a legitimate learning strategy. Quoting [10] on the deFinetti203

attack:204

The question is whether the inference of a general205

behavior of the population in order to draw belief206

probabilities on individuals in that population con-207

stitutes a breach of privacy (. . .). To answer this208

question positively for an attack on privacy, the suc-209

cess of the attack when launched against records that210

are part of the table should be significantly higher211

than its success against records that are not part of212

the table. We are not aware of such a comparison213

for the deFinetti attack.214

It is this very issue that we tackle in the present paper.215

Specifically, our main contribution here is to put forward a216

concept of relative privacy threat, as a means to assess the217

risks implied by publishing tables anonymized via group-based218

methods. To this end, we introduce: (a) a unified probabilistic 219

model for group-based schemes; (b) rigorous characterizations 220

of the learner and the attacker’s inference, based on Bayesian 221

reasoning; and, (c) a related MCMC method, which generalizes 222

and systematizes that proposed in [25]. 223

Very recently, partly inspired by differential privacy, a 224

few authors have considered what might be called a rel- 225

ative or differential approach to assessing privacy threats, 226

in conjunction with some notion of learning or inference 227

from the anonymized data. Especially relevant to our work 228

is differential inference, introduced in a recent paper by 229

Kassem et al. [24]. These authors make a clear distinction 230

between two different types of information that can be inferred 231

from anonymized data: learning of “public” information, con- 232

cerning the population, should be considered as legitimate; 233

on the contrary, leakage of “private” information about indi- 234

viduals should be prevented. To make this distinction formal, 235

given a dataset, they compare two probability distributions 236

that can be machine-learned from two distinct training sets: 237

one including and one excluding a target individual. An attack 238

exists if there is a significant difference between the two dis- 239

tributions, measured e.g. in terms of Earth Moving Distance. 240

While similar in spirit to ours, this approach is conceptually 241

and technically different from what we do here. Indeed, in our 242

case the attacker explicitly takes advantage of the extra piece 243

of information concerning the presence of the victim in the 244

dataset to attack the target individual, which leads to a more 245

direct notion of privacy breach. Moreover, in [24] a Bayesian 246

approach to inference is not clearly posed, so the obtained 247

results lack a semantic foundation, and strongly depend on the 248

adopted learning algorithm. Pyrgelis et al. [39] use Machine 249

Learning for membership inference on aggregated location 250

data, building a binary classifier that can be used to predict 251

if a target user is part of the aggregate data or not. A similar 252

goal is pursued in [35]. Again, a clear semantic foundation 253

of these methods is lacking, and the obtained results can be 254

validated only empirically. In a similar vein, [3] and [17] have 255

proposed statistical techniques to detect privacy violations, 256

but they only apply to differential privacy. Other works, such 257

as [23] and [33], have just considered the problem of how 258

to effectively learn from anonymized datasets, but not of 259

how to characterize legitimate, as opposed to non-legitimate, 260

inference. 261

On the side of the random worlds model, Chi-Wing Wong 262

et al.’s work [9] shows how information on the population 263

extracted from the anonymized table – in the authors’ words, 264

the foreground knowledge – can be leveraged by the attacker 265

to violate the privacy of target individuals. The underlying rea- 266

soning, though, is based on the random worlds model, hence 267

is conceptually and computationally very different from the 268

Bayesian model adopted in the present paper. Bewong et al. [2] 269

assess relative privacy threat for transactional data by a suitable 270

extension of the notion of t-closeness, which is based on com- 271

paring the relative frequency of the victim’s sensitive attribute 272

in the whole table with that in the victim’s group. Here the 273

underlying assumption is that the attacker’s prior knowledge 274

about sensitive attributes matches the public knowledge, and 275

that the observed sensitive attributes frequencies provide good 276
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estimates both for the public knowledge and the attacker’s277

belief. Our proposal yields more sophisticated estimates via a278

Bayesian inferential procedure. Moreover, in our scenario the279

assumption on the attacker’s knowledge is relaxed requiring280

only the knowledge of the victim’s presence in whatever group281

of the table.282

A concept very different from the previously discussed pro-283

posals is Rubin’s multiple imputation approach [43], by which284

only tables of synthetic data, generated sampling from a285

predictive distribution learned from the original table, are286

released. This avoids syntactic masking/obfuscation, whose287

analysis requires customized algorithms on the part of the288

learner, and leaves to the data producer the burden of synthesis.289

Note that this task can be nontrivial and raises a number of290

difficulties concerning the availability of auxiliary variables291

for non-sampled units, see [42]. In Rubin’s view, synthetic292

data overcome all privacy concerns, in that no real individual’s293

data is actually released. However, this position has been ques-294

tioned, on the grounds that information about participants may295

leak through the chain: original table → posterior parameters296

→ synthetic tables. In particular, Machanavajjhala et al. [31]297

study Differential Privacy of synthetic categorical data. They298

show that the release of such data can be made differen-299

tially private, at the cost of introducing very powerful priors.300

However, such priors can lead to a serious distortion in301

whatever is learned from the data, thus compromising utility.302

In fact, [50] argues that, in concrete cases, the required pseudo303

sample size hyperparameter could be larger than the size of304

the table. Experimental studies [7], [8] appear to confirm305

that such distorting priors are indeed necessary for released306

synthetic data to provide acceptable guarantees, in the sense307

of Differential Privacy. See [50] for a recent survey of results308

about synthetic data release and privacy. An outline of the309

model presented here, with no proofs of correctness, appeared310

in the conference paper [5].311

B. Structure of the Paper312

The rest of the paper is organized as follows. In Section313

II we propose a unified formal definition of vertical and314

horizontal schemes. In Section III we put forward a probabilis-315

tic model to reason about learner’s and attacker’s inference;316

the case of prior partial knowledge of the victim’s attributes317

on the part of the attacker is also covered. Based on that,318

measures of (relative) privacy threats and utility are introduced319

in Section IV. In Section V, we study a MCMC algorithm to320

learn the population parameters posterior and the attacker’s321

probability distribution from the anonymized data. In Section322

VI, we illustrate the results of an experiment conducted on a323

real-world dataset. A few concluding remarks and perspectives324

for future work are reported in Section VII. Some technical325

material has been confined to Appendix A.326

II. GROUP BASED ANONYMIZATION SCHEMES327

A dataset consists of a collection of rows, where each row328

corresponds to an individual. Formally, let R and S, ranged329

over by r and s respectively, be finite non-empty sets of330

nonsensitive and sensitive values, respectively. A row is a pair331

(s, r) ∈ S × R. There might be more than one sensitive and 332

nonsensitive characteristic, so s and r can be thought of as 333

vectors. 334

A group-based anonymization algorithm A is an algorithm 335

that takes a multiset of rows as input and yields an obfuscated 336

table as output, according to the scheme 337

multiset of rows −→ cleartext table −→ obfuscated table. 338

Formally, fix N ≥ 1. Given a multiset of N rows, d = 339

{|(s1, r1), . . . , (sN , rN )|}, A will first arrange d into a sequence 340

of groups, t = g1, . . . , gk , the cleartext table. Each group in 341

turn is a sequence of ni rows, gi = (si,1, ri,1), . . . , (si,ni , ri,ni ), 342

where ni can vary from group to group. Note that both the 343

number of groups, k ≥ 1, and the number of rows in each 344

group, ni , depend in general on the original multiset d as well 345

as on properties of the considered algorithm – such as ensuring 346

k-anonymity and �-diversity (see below). The obfuscated table 347

is then obtained as a sequence t∗ = g∗
1, . . . , g∗

k , where the 348

obfuscation of each group gi is a pair g∗
i = (mi , li ). Here, 349

each mi = si,1, . . . , si,ni is the sequence of sensitive values 350

occurring in gi ; each li , called generalized nonsensitive value, 351

is one of the following: 352

• for horizontal schemes, a superset of gi ’s nonsensitive 353

values: li ⊇ {ri,1, . . . , ri,ni }; 354

• for vertical schemes, the multiset of gi ’s nonsensitive 355

values: li = {|ri,1, . . . , ri,ni |}. 356

Note that the generalized nonsensitive values in vertical 357

schemes include all and only the values, with multiplicities, 358

found in the corresponding original group. On the other hand, 359

generalized nonsensitive values in horizontal schemes may 360

include additional values, thus generating a superset. What 361

values enter the superset depends on the adopted technique, 362

e.g. micro-aggregation, generalization or suppression; in any 363

case this makes the rows in each group indistinguishable when 364

projected onto the nonsensitive attributes. For example, each 365

of 45501, 45502 is generalized to the superset 4550∗ = 366

{45500, 45501, . . . , 45509} in the first group of Table I(b). 367

Sometimes it will be notationally convenient to ignore the 368

group structure of t altogether, and regard the cleartext table 369

t simply as a sequence of rows, (s1, r1), (s2, r2), . . . , (s1, sN ). 370

Each row (s j , r j ) is then uniquely identified within the table 371

t by its index 1 ≤ j ≤ N . 372

An instance of horizontal schemes is k-anonymity [46]: 373

in a k-anonymous table, each group consists of at least k≥ 374

1 rows, where the different nonsensitive values appearing 375

within each group have been generalized so as to make them 376

indistinguishable. In the most general case, different occur- 377

rences of the same nonsensitive value might be generalized in 378

different ways, depending on their position (index) within the 379

table t : this is the case of local recoding. Alternatively, each 380

occurrence of a nonsensitive value is generalized in the same 381

way, independently of its position: this is the case of global 382

recoding. Further conditions may be imposed on the resulting 383

anonymized table, such as �-diversity, requiring that at least 384

� ≥ 1 distinct values of the sensitive attribute appear in each 385

group. Table I (center) shows an example of k= 2-anonymous 386

and � = 2-diverse table: in each group the nonsensitive 387
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TABLE II

SUMMARY OF NOTATION

values are indistinguishable and two different sensitive values388

(diseases) appear in each group.389

An instance of vertical schemes is Anatomy [49]: within390

each group, the link between the sensitive and nonsensitive391

values is hidden by randomly permuting one of the two392

parts, for example the nonsensitive one. As a consequence,393

an anatomized table may be seen as consisting of two sub-394

tables: a sensitive and a nonsensitive one. Table I (c) shows395

an example of anatomized table: in the nonsensitive sub-table,396

the reference to the corresponding sensitive values is lost; only397

the multiset of nonsensitive values appears for each group.398

Remark 1 (disjointness): Some anonymization schemes399

enforce the following disjointness property on the obfuscated400

table t∗:401

Any two generalized nonsensitive values in t∗ are402

disjoint: i 
= j implies li ∩ l j = ∅.403

We need not assume this property in our treatment – although404

assuming it may be computationally useful in practice (see405

Section III).406

For ease of reference, we provide a summary of the notation407

that will be used throughout the paper in Table II.408

III. A UNIFIED PROBABILISTIC MODEL409

We provide a unified probabilistic model for reasoning on410

group-based schemes. We first introduce the random variables411

of the model together with their joint density function. On top412

of these variables, we then define the probability distributions413

on S × R that formalize the learner and the attacker knowl-414

edge, given the obfuscated table.415

A. Random Variables416

The model consists of the following random variables.417

• �, taking values in the set of full support probability418

distributions D over S × R, is the joint probability419

distribution of the sensitive and nonsensitive attributes in420

the population.421

• T = G1, . . . , Gk , taking values in the set of422

cleartext tables T . Each group Gi is in turn a423

sequence of ni ≥ 1 consecutive rows in T , Gi =424

(Si,1, Ri,1), . . . , (Si,ni , Ri,ni ). The number of groups k is425

not fixed, but depends on the anonymization scheme and 426

the specific tuples composing T . 427

• T ∗ = G∗
1, . . . , G∗

k , taking values in the set of obfuscated 428

tables T ∗. 429

We assume that the above three random variables form a 430

Markov chain: 431

� −→ T −→ T ∗. (1) 432

In other words, uncertainty on T is driven by �, and T ∗
433

solely depends on the table T and the underlying obfuscation 434

algorithm. As a result, T ∗ ⊥⊥ � | T . Equivalently, the 435

joint probability density function f of these variables can be 436

factorized as follows, where π, t, t∗ range over D, T and T ∗, 437

respectively: 438

f (π, t, t∗) = f (π) f (t|π) f (t∗|t). (2) 439

Additionally, we shall assume the following: 440

• π ∈ D is encoded as a pair π = (πS, πR|S) where πR|S = 441

{πR|s : s ∈ S}. Here, πS are the parameters of a full 442

support categorical distribution over S, and, for each s ∈ 443

S, πR|s are the parameters of a full support categorical 444

distribution over R. For each (s, r) ∈ S × R 445

f (s, r |π) = f (s|π) · f (r |πR|s) 446

We also posit that the πS and the πR|s’s are chosen inde- 447

pendently, according to Dirichlet distributions of hyper- 448

parameters α = (α1, . . . , α|S|) and βs = (βs
1, . . . , β

s
|R|), 449

respectively. In other words 450

f (π) = Dir(πS | α) ·
�
s∈S

Dir(πR|s | βs). (3) 451

The hyperparameters α and β may incorporate prior 452

(background) knowledge on the population, if this is 453

available. Otherwise, a uniformative prior can be chosen 454

setting αi = βs
j = 1 for each i, s, j . When r ∈ R 455

is a tuple of attributes, we shall assume conditional 456

independence of those attributes given s, so that the joint 457

probability of r |s can be determined by factorization. 458

• The N individual rows composing the table t , say 459

(s1, r1), . . . , (sN , rN ), are assumed to be drawn i.i.d. 460

according to f (·|π). Equivalently 461

f (t|π) = f (s1, r1|π) · · · f (sN , rN |π). (4) 462

Instances of the above model can be obtained by specifying 463

an anonymization mechanism A. In particular, the distribution 464

f (t∗|t) only depends on the obfuscation algorithm that is 465

adopted, say obf(t). In the important special case obf(t) acts 466

as a deterministic function on tables, f (t∗|t) = 1 if and only 467

if obf(t) = t∗, otherwise f (t∗|t) = 0. 468

B. Learner and Attacker Knowledge 469

We shall denote by pL the probability distribution over S× 470

R that can be learned given the anonymized table t∗. This 471

distribution we take to be the average of f (s, r |π) with respect 472
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to the density f (� = π |T ∗ = t∗). Formally, for each (s, r) ∈473

S × R:474

pL(s, r |t∗) �= Eπ∼ f (π |t∗)[ f (s, r |π)]=
�
D

f (s, r |π) f(π |t∗) dπ.475

(5)476

Of course, we can condition pL on any given r and obtain477

the conditional probability pL(s|r, t∗). Equivalently, we can478

compute479

pL(s|r, t∗) �= Eπ∼ f (π |t∗)[ f (s|r, π)]=
�
D

f (s|r, π) f (π |t∗) dπ.480

(6)481

In particular, one can read off this distribution on a victim’s482

nonsensitive attribute, say rv, and obtain the corresponding483

distribution on S.484

We shall assume the attacker knows the values of T ∗ = t∗485

and the nonsensitive value rv of a target individual, the victim;486

moreover the attacker knows the victim is an individual in487

the table. Accordingly, in what follows we fix once and for488

all t∗ and rv: these are the values observed by the attacker.489

Given knowledge of a victim’s nonsensitive attribute rv and490

knowledge that the victim is actually in the table T , we can491

define the attacker’s distribution on S as follows.492

Let us introduce in the above model a new random vari-493

able V , identifying the index of the victim within the clear-494

text table T . We posit that V is uniformly distributed on495

{1, . . . , N}, and independent from �, T, T ∗. Recalling that496

each row (Sj , R j ) is identified within T by a unique index497

j , we can define the attacker’s probability distribution on S,498

after seeing t∗ and rv, as follows, where it is assumed that499

f (RV = rv, t∗) > 0, that is the observed victim’s rv is500

compatible with t∗:501

pA(s|rv, t∗) �= f (SV = s | RV = rv, t∗). (7)502

The following crucial lemma provides us with a characteri-503

zation of the above probability distribution that is only based504

on a selection of the marginals R j given t∗. This will be the505

basis for actually computing pA(s|rv, t∗). Note that, on the506

right-hand side, only those rows whose sensitive value - known507

from t∗ - is s contribute to the summation. A proof of the508

lemma is reported in Appendix A.509

Lemma 1: Let T = (Sj , R j ) j∈ 1...N . Let s j be the sensitive510

value in the j -th entry of t∗. Let rv and t∗ such that f (RV =511

rv, t∗) > 0. Then512

pA(s|rv, t∗) ∝
�

j : s j =s

f (R j = rv | t∗). (8)513

Note that the disjointness of generalized nonsensitive values514

of the groups can make the computation of (8) more efficient,515

restricting the summation on the right-hand side to a unique516

group.517

Example 1: In order to illustrate the difference between518

the learner’s and the attacker’s inference, we reconsider the519

toy example in the Introduction. Let t∗ be the 2-anonymous,520

2-diverse Table I(b). Assume the attacker’s victim is521

the first individual of the original dataset, who is from522

Malaysia(= M) and lives in the ZIP code 45501 area, hence523

TABLE III

POSTERIOR DISTRIBUTIONS OF DISEASES FOR A VICTIM WITH
rv = (M, 45501), FOR THE ANONYMIZED t∗ IN TABLE I(B).

NB: FIGURES AFFECTED BY ROUNDING ERRORS

rv = (M, 45501). Table III shows the belief probabilities of 524

the learner, pL(s|rv, t∗), and of the attacker, pA(s|rv, t∗), for 525

the victim’s disease s. We also include the random worlds 526

model probabilities, pRW(s|rv, t∗), which are just proportional 527

to the frequency of each sensitive value within the victim’s 528

group. Note that the learner and the attacker distributions have 529

the same mode, but the attacker is more confident about his 530

prediction of the victim’s disease. The random worlds model 531

produces a multi-modal solution. 532

As to the computation of the probabilities in Table III, 533

a routine application of the equations (2) – (8) shows that 534

pL and pA reduce to the expressions (9) and (10) below, 535

given in terms of the model’s density (2). The crucial point 536

here is that the adversary knows the group his victim is in, 537

i.e. the first two lines of t∗ in the example. Below, s ∈ S; 538

for j = 1, 2, s j denotes the sensitive value of the j -th row, 539

while t is a cleartext table, from which t− j is obtained by 540

removing (s j , rv). It is assumed that the obfuscation algorithm 541

A is deterministic, so that f (t∗|t) ∈ {0, 1}. 542

pL(s|rv, t∗) ∝
�
D

f (π) f (s, rv|π)
�

t :A(t)=t∗
f (t|π) dπ (9) 543

pA(s j |rv, t∗) ∝
�
D

f(π) f(s j , rv|π)
�

t− j :A(t)=t∗
f (t|π) dπ. (10) 544

Unfortunately, the analytic computation of the above integrals, 545

even for the considered toy example, is a daunting task. 546

For instance, the summation in (9) has as many terms as 547

t∗-compatible tables t , that is 6.4 × 105 for Example 1 – 548

although the resulting expression can be somewhat simplified 549

using the independence assumption (4). Accordingly, the fig- 550

ures in Table III have been computed resorting to simulation 551

techniques, see Section V. 552

An alternative, more intuitive description of the inference 553

process is as follows. The learner and the attacker first learn 554

the parameters π given t∗, that is they evaluate f (πDis|t∗), 555

f (πZIP|s |t∗) and f (πNat|s |t∗), for all s ∈ S. Due to the 556

uncertainty on the ZIP code and/or Nationality, learning π 557

takes the form of a mixture (this is akin to learning with 558

soft evidence, see Corradi et al. [11]). After that, the learner, 559

ignoring the victim is in the table, predicts the probability of 560

rv, pL(rv|s, t∗), for all s, by using a mixture of Multinomial- 561

Dirichlet. The attacker, on the other hand, while still basing 562

his prediction pA(rv|s, t∗) on the parameter learning outlined 563

above, restricts his attention to the first two lines of t∗, thus 564

realizing that s ∈ {Heart, Flu}. Then, by Bayes theorem, 565

and adopting the relative frequencies of the diseases in t∗ as 566

an approximation of f (s|t∗), the posterior probability of the 567

diseases for the victim can be computed. 568
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Remark 2 (attacker’s inference and forensic identification):569

The attacker’s inference is strongly reminiscent of two famous570

settings in forensic science: the Island Problem (IP) and the571

The Data Base Search Problem (DBS), see e.g. [1], [14]572

and more recently [45]. In an island with N inhabitants a573

crime is committed; a characteristic of the criminal (e.g.574

a DNA trait) is found on the crime scene. It is known that the575

island’s inhabitants posses this characteristic independently576

with probability p. It is assumed the existence of exactly577

one culprit C in the island. In IP, one island’s inhabitant I ,578

the suspect, is found to have the given characteristic, while579

the others are not tested. An investigator is interested in the580

probability that I = C.581

When we cast this scenario in our framework, the individ-582

uals in the table play the role of the inhabitants (including583

the culprit), while rv plays the role of the characteristic found584

on the crime scene, matching that of the suspect. In other585

words - perhaps ironically - our framework’s victim plays here586

the role of the suspect S, while our attacker is essentially587

the investigator. Letting S = {0, 1} (innocent/guilty) and588

R = {0, 1} (characteristic absent/present), the investigator’s589

information is then summarized by an obfuscated horizontal590

table t∗ of N rows with as many groups, where exactly one591

row, say the j -th, has S j = 1 and R∗
j = R j = 1 (the culprit),592

while for i 
= j , Si = 0 and R∗
i = ∗ (N − 1 innocent593

inhabitants). Recalling that the variable V in our framework594

represents the suspect’s index within the table, the probability595

that I = C is596

Pr(V = j |RV = 1, t∗) = Pr(SV = 1|RV = 1, t∗)597

= pA(s = 1|rv = 1, t∗).598

Then applying (8), we find599

pA(s = 1|rv = 1, t∗) = f (R j =1|t∗)
f(R j = 1|t∗)+(N −1) f (Ri
=j =1|t∗)600

= 1

1 + (N − 1) f (Ri 
= j = 1|t∗) . (11)601

By taking suitable prior hyperparameters, f (Ri 
= j = 1|t∗) can602

be made arbitrarily close to p. For ease of comparison with603

the classical IP and DBS settings, rather than relying on a604

learning procedure, we just assume here f (Ri = 1|t∗) = p605

for i 
= j , so that (11) simplifies to606

pA(s = 1|rv = 1, t∗) = 1

1 + (N − 1)p
(12)607

which is the classical result known from the literature.608

In DBS, the indicted exhibiting rv is found after testing 1 ≤609

k < N individuals that do not exhibit rv. This means the table610

t∗ consists now of k rows (s, r) = (0, 0) (the k innocent,611

tested inhabitants not exhibiting rv), one row (s, r) = (1, 1)612

(the culprit) and N −1−k rows (s, r∗) = (0, ∗) (the N −1−k613

innocent, non-tested inhabitants). Accordingly, (11) becomes614

(letting j = k + 1, and possibly after rearranging indices),615

(13), as shown at the bottom of this page. Letting f (Ri = 616

1|t∗) = p for i > k + 1, equation (13) becomes 617

pA(s = 1|rv = 1, t∗) = 1

1 + (N − 1 − k)p
618

which again is the classical result known from the literature. 619

Finally note that our methodology also covers the possibility 620

to learn about the probability of the characteristic, f (Ri = 621

1|t∗), but here we have only stressed how the attacker strategy 622

solves the IP and DBS forensic problems. Uncertainty about 623

population parameters and identification has been considered 624

elsewhere by one of us [6]. 625

We now briefly discuss an extension of our framework to 626

the more general case where the attacker has only partial 627

information about his victim’s nonsensitive attributes. For a 628

typical application, think of a dataset where R and S are 629

individuals’ genetic profiles and diseases, respectively, with an 630

adversary knowing only a partial DNA profile of his victim; 631

e.g. only the alleles at a few loci. Formally, fix a nonempty 632

set Y and let g : R → Y be a (typically non-injective) 633

function, modeling the attacker’s observation of the victim’s 634

nonsensitive attribute. With the above introduced notation, 635

consider the random variable Y
�= g(RV ). It is natural to 636

extend definition (7) as follows, where g(rv) = yv ∈ Y and 637

f (Y = yv, t∗) > 0: 638

pA(s|yv, t∗) �= f (SV = s | Y = yv, t∗). (14) 639

It is a simple matter to check that (8) becomes the following, 640

where g−1(y) ⊆ R denotes the counter-image of y according 641

to g: 642

pA(s|rv, t∗) ∝
�

j : s j =s

f (R j ∈ g−1(yv) | t∗). (15) 643

Also note that one has f (R j ∈ g−1(yv) | t∗) = 644�
r∈g−1(yv)

f (R j = r | t∗). An extension to the case of partial 645

and noisy observations can be modeled similarly, by letting 646

Y = g(RV , E), where E is a random variable representing 647

an independent source of noise. We leave the details of this 648

extension for future work. 649

IV. MEASURES OF PRIVACY THREAT AND UTILITY 650

We are now set to define the measures of privacy threat and 651

utility we are after. We will do so from the point of view of 652

a person or entity, the evaluator, who: 653

(a) has got a copy of the cleartext table t , and can build an 654

obfuscated version t∗ of it; 655

(b) must decide whether to release t∗ or not, weighing the 656

privacy threats and the utility implied by this act. 657

The evaluator clearly distinguishes the position of the learner 658

from that of the attacker. The learner is interested in learning 659

from t∗ the characteristics of the general population, via pL . 660

The attacker is interested in learning from t∗ the sensitive 661

pA(s = 1|rv = 1, t∗)= f (Rk+1 = 1|t∗)
f (Rk+1 = 1|t∗) + k f (Ri∈{1,k} = 1|t∗) + (N − 1 − k) f (Ri>k+1 = 1|t∗) (13)
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value of a target individual, the victim, via pA. The last662

probability distribution is derived by exploiting the additional663

piece of information that the victim is an individual known to664

be in the original table, of whom the attacker gets to know the665

nonsensitive values. As pointed out in [34], information about666

the victim’s nonsensitive attributes can be easily gathered from667

other sources such as personal blogs and social networks.668

These assumptions about the attacker’s knowledge allow a669

comparison between the risks of a sensitive attribute disclosure670

for an individual who is part of the table and for individuals671

who are not. The evaluator adopts the following relative,672

or differential, point of view:673

a situation where, for some individual, pA conveys674

much more information than that conveyed by pL675

(learner’s legitimate inference on general popula-676

tion), must be deemed as a privacy threat.677

Generally speaking, the evaluator should refrain from pub-678

lishing t∗ if, for some individual, the level of relative pri-679

vacy threat exceeds a predefined threshold. Concerning the680

definition of the level of threat, the evaluator adopts the681

following Bayesian decision-theoretic point of view. Whatever682

distribution p is adopted to guess the victim’s sensitive value,683

the attacker is faced with some utility function. Here, we con-684

sider a simple 0-1 utility function for the attacker, yielding 1 if685

the sensitive attribute is guessed correctly and 0 otherwise.686

The resulting attacker’s expected utility is maximized by687

the Bayes act, i.e. by choosing s = argmaxs �∈S p(s�), and688

equals p(s). The above discussion leads to the following689

definitions. Note that we consider threat measures both for690

individual rows and for the overall table. For each threatened691

row, the relative threat index Ti says how many times the692

probability of correctly guessing the secret is increased by693

the attacker’s activity i.e. by exploiting the knowledge of694

the victim’s presence in the table. At a global, table-wise695

level, the evaluator also considers the fraction GTA of rows696

threatened by the attacker.697

Definition 1 (privacy threat): We define the following pri-698

vacy threat measures.699

• Let q be a full support distribution on S and (s, r) be a700

row in t . We say (s, r) is threatened under q if q(s) =701

maxs � q(s�), and that its threat level under q is q(s).702

• For a row (s, r) in t that is threatened by pA(·|r, t∗), its703

relative threat level is704

Ti(s, r, t, t∗) �= pA(s|r, t∗)
pL(s|r, t∗)

. (16)705

• Let NA(t, t∗) be the number of rows (s, r) in t threatened706

by pA(·|r, t∗). The global threat level GTA(t, t∗) is the707

fraction of rows that are threatened, that is708

GTA(t, t∗) �= NA(t, t∗)
N

. (17)709

Similarly, we denote by GTL(t, t∗) the fraction of rows710

(s, r) in t that are threatened under pL(·|r, t∗).711

• As a measure of how better the attacker performs than712

learner at a global level, we introduce relative global713

threat:714

RGTA(t, t∗) �= max{0, GTA(t, t∗) − GTL(t, t∗)}.(18)715

Remark 3 (setting a threshold for Ti): A difficult issue is 716

how to set an acceptable threshold for the relative threat level 717

Ti. This is conceptually very similar to the question of how to 718

set the level of � in differential privacy: its proponents have 719

always maintained that the setting of � is a policy question, 720

not a technical one. Much depends on the application at hand. 721

For instance, when the US Census Bureau adopted differential 722

privacy, this task was delegated to a committee (the Data 723

Stewardship Executive Policy committee, DSEP); details on 724

the operations of this committee can be found in [19, Sect.3.1]. 725

We think that similar considerations apply when setting the 726

threshold of Ti. For instance, an evaluator might consider the 727

distribution of the Ti values in the dataset (see Fig. 3a–3h in 728

Section VI) and then choose a percentile as a cutoff. 729

The evaluator is also interested in the potential utility 730

conveyed by an anonymized table for a learner. Note that the 731

learner’s utility is distinct from the attacker’s one. Indeed, the 732

learner’s interest is to make inferences that are as close as 733

possible to the ones that could be done using the cleartext 734

table. Accordingly, obfuscated tables that are faithful to the 735

original table are the most useful. This leads us to compare two 736

distributions on the population: the distribution learned from 737

the anonymized table, pL, and the ideal (I) distribution, pI, 738

one can learn from the cleartext table t . The latter is formally 739

defined as the expectation2 of f (s, r |π) under the posterior 740

density f (π |t). Explicitly, for each (s, r) 741

pI(s, r |t) �=
�
D

f (s, r |π) f (π |t) dπ. (19) 742

Note that the posterior density f (π |t) is in turn a Dirichlet 743

density (see next section) and therefore a simple closed form 744

of the above expression exists, based on the frequencies of 745

the pairs (s, r) in t . In particular, recalling the αs , β
s
r notation 746

for the prior hyperparameters introduced in Section III, let 747

α0 = �
s αs and βs

0 = �
r βs

r , and γs(t) and δs
r (t) denote the 748

frequency counts of s and (s, r), respectively, in t . Then we 749

have 750

pI(s, r |t) = αs + γs(t)

α0 + N
· βs

r + δs
r (t)

βs
0 + γs(t)

. (20) 751

The comparison between pL and pI can be based on some 752

form of distance between distributions. One possibility is to 753

rely on total variation (aka statistical) distance. Recall that, 754

for discrete distributions q, q � defined on the same space X , 755

the total variation distance is defined as 756

TV(q, q �) �= sup
A⊆X

|q(A) − q �(A)| = 1

2

�
x

|q(x) − q �(x)|. 757

Note that TV(q, q �) ∈ [0, 1]. Note that this is a quite 758

conservative notion of diversity since it based on the event 759

that shows the largest difference between distributions. 760

Definition 2 (faithfulness): The relative faithfulness level of 761

t∗ w.r.t. t is defined as 762

RF(t, t∗) �= 1 − TV
�

pI(·| t) , pL(·| t∗)
�
. 763

2Another sensible choice would be taking pI(s, r| t) = f (s, r| πMAP),
where πMAP = argmaxπ f (π |t) is the maximum a posteriori distribution
given t . This choice would lead to essentially the same results.
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Remark 4: In practice, the total variation of two high-764

dimensional distributions might be very hard to compute.765

Pragmatically, we note that for M large enough, TV(q, q �) =766

1
2 Ex∼q(x)[|1− q �(x)

q(x) |] ≈ 1
2M

�M
i=1 |1− q �(xi )

q(xi )
|, where the xi are767

drawn i.i.d. according to q(x). Then a proxy to total variation768

is the empirical total variation defined below, where (si , ti ),769

for i = 1, . . . , M, are generated i.i.d. according to pI(·, ·| t):770

ETV(t, t∗) �= 1

2M

M�
i=1

����1 − pL(si , ri | t∗)
pI(si , ri | t)

���� . (21)771

772

Remark 5 (ideal knowledge vs. attacker’s knowledge):773

The following scenario is meant to further clarify the extra774

power afforded to the attacker, by the mere knowledge that775

his victim is in the table. Consider a trivial anonymization776

mechanism that simply releases the cleartext table, that is777

t∗ = t . As pL = pI in this case, it would be tempting778

to conclude that the attacker cannot do better than the779

learner, hence there is no relative risk involved. However,780

this conclusion is wrong: for instance, pI(·|rv, t) can fail to781

predict the vicitim’s correct sensitive value if this value is782

rare, as we show below.783

For the sake of simplicity, consider the case where the784

observed victim’s nonsensitive attribute rv occurs just once in t785

in a row (s0, rv). Also assume a noninformative Dirichlet prior,786

that is, in the notation of Section III, set the hyperparameters787

to αs = βs
r = 1 for each s ∈ S, r ∈ R. Then, simple788

calculations based on (20) and the attacker’s distribution789

characterization (8), show the following. Here for each s ∈ S,790

γs = γs(t) denotes the frequency count of s in t, and c a791

suitable normalizing constant:792

pI(s|rv, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 + γs

|R| + γs
c, if s 
= s0

2(1 + γs0)

|R| + γs0

c, if s = s0

793

pA(s|rv, t∗) =



0, if s 
= s0

1, if s = s0.
(22)794

As far as the target individual (s0, rv) ∈ t is concerned, we795

see that while pA predicts s0 with certainty, predictions based796

on pL = pI will be blatantly wrong, if there are values s 
= s0797

that occur very frequently in t, while s0 is rare, and N is large798

compared to |R|. To make an extreme numeric case, consider799

|S| = 2, |R| = 1000 and γs0 = 1 in a table t of N =800

106 rows: plugging these values in (22) yields pL(s0|rv, t∗) =801

pI(s0|rv, t) ≈ 0.004, hence a relative threat for (s0, rv) of802

1/pL(s0|rv, t∗) ≈ 250.803

V. LEARNING FROM THE OBFUSCATED TABLE BY MCMC804

Estimating the privacy threat and faithfulness measures805

defined in the previous section, for specific tables t and t∗,806

implies being able to compute the distributions (5), (6) and (8).807

Unfortunately, these distributions, unlike (19), are not available808

in closed form, since f (� = π | T ∗ = t∗) = f (π |t∗) cannot809

be derived analytically. Indeed, in order to do so, one should810

integrate f (π, t|t∗) with respect to the density f (t|t∗), which811

appears not to be feasible.812

To circumvent this difficulty, we will introduce a Gibbs sam- 813

pler, defining a Markov chain (Xi )i≥0, with Xi = (�i , Ti ), 814

converging to the density 815

f (� = π, T = t|t∗) 816

= f
�
� = π, S1 = s1, R1 = r1, . . . , SN = sN , RN = rN | t∗

�
817

(note that the sensitive values s j in T are in fact fixed and 818

known, given t∗). General results (see e.g. [41]) ensure that, 819

if �0,�1, . . . are the samples drawn from the �-marginal of 820

such a chain, then for each (s, r) ∈ S × R 821

1
M

M�
�=0

f (s, r |��) →
�
D

f (s, r |π) f (π |t∗)dπ = pL(s, r |t∗) 822

(23) 823

1
M

M�
�=0

f (s|r,��) →
�
D

f (s|r, π) f (π |t∗)dπ = pL(s|r, t∗) 824

(24) 825

almost surely as M −→ +∞. Therefore, by selecting 826

an appropriately large M , one can build approximations of 827

pL(s, r |t∗) and pL(s|r, t∗) using the arithmetical means on 828

the left-hand side of (23) and (24), respectively. Moreover, 829

for each index 1 ≤ j ≤ N , using samples drawn from the 830

R j -marginals of the same chain, one can build an estimate of 831

f (R j = r j | t∗). Consequently, using (8) (resp. (15), in the case 832

of partial observation) one can estimate pA(s|rv, t∗) (resp. 833

pA(s|yv, t∗)) for any given rv (resp. yv). 834

In the rest of the section, we will first introduce the MCMC 835

for this problem and then show its convergence. We will then 836

discuss details of the sampling procedures for each of the two 837

possible schemes, horizontal and vertical. 838

A. Definition and Convergence of the Gibbs Sampler 839

Simply stated, our problem is sampling from the marginals 840

of the following target density function, where t∗ = g∗
1 , . . . , g∗

k 841

and t = g1, . . . , gk (note that the number of groups k is known 842

and fixed, given t∗). 843

f (π, t|t∗). (25) 844

Note that the r j ’s of interest, for 1 ≤ j ≤ N , are the elements 845

of the groups gi ’s, for 1 ≤ i ≤ k. The Gibbs scheme allows 846

for some freedom as to the blocking of variables. Here we 847

consider k + 1 blocks, coinciding with π and g1, . . . , gk . 848

This is natural as, in the considered schemes, (Ri , Si ) ⊥⊥ 849

(R j , Sj )|π, t∗ for (Ri , Si ) and (R j , Sj ) occurring in distinct 850

groups. Formally, let x0 = π0, t0 (with t0 = g0
1, . . . , g0

k ) 851

denote any initial state satisfying f (π0, t0|t∗) > 0. Given 852

a state at step h, xh = πh , th (th = gh
1 , . . . , gh

k ), one lets 853

xh+1 �= πh+1, th+1, where th+1 = gh+1
1 , . . . , gh+1

k and 854

πh+1 is drawn from f (π |th , t∗) (26) 855

gh+1
i is drawn from 856

f (g|πh+1, gh+1
1 , . . . , gh+1

i−1 , gh
i+1, . . . , gh

k , t∗) 857

(1 ≤ i ≤ k). (27) 858
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Running this chain presupposes we know how to sample859

from the full conditional distributions on the right-hand side860

of (26) and (27). In particular, there are several possible861

approaches to sample from g. In this subsection we provide a862

general discussion about convergence, postponing the details863

of sampling from the full conditionals to the next subsection.864

Let us denote by t−i
�= g1, . . . , gi−1, gi+1, . . . , gk the table865

obtained by removing the i -th group gi from t . The following866

relations for the full conditionals of interest can be readily867

checked, relying on the conditional independencies of the868

model (2) and (4) (we presuppose that in each case the869

conditioning event has nonzero probability)870

f (π |t, t∗) = f (π |t) (28)871

f (g|π, t−i , t∗) ∝ f (g|π) f (t∗|g, t−i ) (1 ≤ i ≤ k). (29)872

As we shall see, each of the above two relations enables sam-873

pling from the densities on the left-hand side. Indeed, (28) is a874

posterior Dirichlet distribution, from which effective sampling875

can be easily performed (see next subsection). A straight-876

forward implementation of (29) in a Acceptance-Rejection877

(AR) sampling perspective is as follows: draw g according to878

f (g|π) and accept it with probability f (t∗|g, t−i ) = f (t∗|t).879

Here, f (t∗|t) is just the probability that the obfuscation880

algorithm returns t∗ as output when given t = g, t−i as input.881

Actually, to make sampling from the RHS of (29) effective,882

further assumptions will be introduced (see next subsection).883

Note that, since the sensitive values are fixed in t and known884

from the given t∗, sampling g in (29) is actually equivalent to885

sampling the nonsensitive values of the group.886

In addition to (29), to simplify our discussion about conver-887

gence, we shall henceforth assume that, for each group index888

1 ≤ i ≤ k, the set of instances of the i -th group that are889

compatible with t∗ does not depend on the rest of the table,890

t−i . That is, we assume that for each i (1 ≤ i ≤ k):891

{g : f (t∗|g, t−i ) > 0} = {g : f (t∗|g, t �−i ) > 0} ∀ t−i and t �−i892

�= Gi . (30)893

For instance, (30) holds true if the anonymization algorithm894

ensures t∗ is independent from ti−1 given a i -th group g: t∗ ⊥⊥895

t−i | g.896

Let x = (π, g1, . . . , gk) denote a generic state of this897

Markov chain. Under the assumption (30), the support of the898

target density f (x |t∗) is the product space899

X �= D × G1 × · · · × Gk . (31)900

By this, we mean that {x : f (x |t∗) > 0 } = X . This is901

a consequence of: (a) the fact that Dirichlet only consid-902

ers full support distributions; and (b) equation (29), taking903

into account the assumption (30). Let X0, X1, . . . denote the904

Markov chain defined by the sampler over X and denote by905

κ(·|·) its conditional kernel density over X . Slightly abusing906

notation, let us still indicate by f (·|t∗) the probability distri-907

bution over X induced by the density f (x |t∗). Convergence908

in distribution follows from the following proposition, which909

is an instance of general results – see e.g. the discussion910

following Corollary 1 of [41].911

Proposition 1 (convergence): Assume (30). For each (mea- 912

surable) set A ⊆ X such that f (A|t∗) > 0 and each x0 ∈ X , 913

we have κ(X1 ∈ A|X0 = x0) > 0. As a consequence, 914

the Markov chain (Xi )i≥0 is irreducible and aperiodic, and 915

its stationary density is f (x |t∗) in (25). 916

B. Sampling From the Full Conditionals 917

Let us consider (28) first. It is a standard fact that the 918

posterior of the Dirichlet distribution f (π |t), given the N 919

i.i.d. observations t drawn from the categorical distribution 920

f (·|π), is still a Dirichlet, where the hyperparameters have 921

been updated as follows. Denote by γ (t) = (γ1, . . . , γ|S|) the 922

vector of the frequency counts γi of each si in t . Similarly, 923

given s, denote by δs(t) = (δs
1, . . . , δ

s
|R|) the vector of the 924

frequency counts δi of the pairs (ri , s), for each ri , in t . Then, 925

for each π = (πS, πR|S), we have 926

f(π |t) = Dir(πS | α+γ (t))·
�
s∈S

Dir(πR|s | βs + δs(t)). (32) 927

Let us now discuss (29). In what follows, for the sake 928

of notation we shall write a generic i -th group as gi = 929

(s1, r1), . . . , (sn, rn) (thus avoiding double subscripts), and let 930

g∗
i = (mi , li ) denote the corresponding obfuscated group in 931

t∗. As already observed, given an obfuscated i -th group g∗
i = 932

(li , mi ), when sampling a i -th group g from (29), one actually 933

needs to generate only the nonsensitive values of g, which are 934

constrained by li , as the sensitive ones are already fixed by 935

the sequence mi . In what follows, to make sampling from (29) 936

effective, will shall work under the following assumptions, 937

which are stronger than (30). 938

(a) Deterministic obfuscation function: for each t and t∗, 939

f (t∗|t) is either 0 or 1. 940

(b) For each 1 ≤ i ≤ k, letting g∗
i = (li , mi ), with mi = 941

s1, . . . , sn , the i -th obfuscated group in t∗, the following 942

holds true: 943

Horizontal schemes 944

Gi={g = (s1, r1), . . . , (sn, rn) : r� ∈li for 1 ≤ � ≤ n } (33) 945

Vertical schemes 946

Gi = {g = (s1, ri1 ), . . . , (sn, rin ) : 947

for ri1 , . . . , rin a permutation of li }. (34) 948

Assumption (a) is realistic in practice. In horizontal 949

schemes, assumption (b) makes the considered sets Gi ’s pos- 950

sibly larger than the real ones, that is li ⊃ {r1, . . . , rn}. This 951

happens, for instance, if in certain groups the ZIP code is 952

constrained to just, say, two values, while the generalized code 953

“5013*” allows for all values in the set {50130, . . . , 50139}. 954

We will not attempt here a formal analysis of this assumption. 955

In some cases, such as in schemes based on global recoding, 956

this assumption is realistic. Otherwise, we only note that the 957

support X of the resulting Markov chain may be (slightly) 958

larger than the one that would be obtained not assuming (33) 959

or (34). Heuristically, this leads one to sampling from a more 960

dispersed density than the target one. At least, the resulting 961

distributions can be taken to represent a lower bound of what 962

the attacker can actually learn. 963
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Fig. 1. Sampling from f (g|π, t−i , t∗) (g ∈ Gi ) for horizontal schemes,
across all the groups.

Under assumptions (a) and (b) above, for each 1 ≤ i ≤ k,964

it holds that g ∈ Gi if and only if f (t∗|g, t−i ) = 1. Therefore965

sampling according to the right-hand side of (29) reduces to966

the following:967

draw g ∈ Gi with probability ∝ f (g|π) (1 ≤ i ≤ k). (35)968

We discuss now how to implement (35) effectively. This969

will achieve sampling from the full conditionals (29) without970

resorting to a presumably inefficient AR method. We deal with971

the two cases, horizontal and vertical, separately.972

a) Horizontal schemes: In order to generate g =973

(r1, s1), . . . , (rn, sn) ∈ Gi , for each � = 1, .., n, we draw974

r� ∈ li with probability ∝ f (r�|s�, π). Explicitly, (29) now975

becomes976

f (g|π, t−i , t∗) =

⎧⎪⎨
⎪⎩

0, if g /∈ Gi
n�

�=1

f (r�|s�, π)�
r∈li f (r |s�, π)

, if g ∈ Gi
(36)977

thus satisfying (35). Note that this is equivalent to sam-978

pling each row independently. The sampling process of979

f (g|π, t−i , t∗) for horizontal schemes across all the groups980

of the table is illustrated graphically in Fig. 1.981

b) Vertical schemes: Let li = {| r1, . . . , rn |}. We have982

that g ∈ Gi if and only if g = (s1, ri1 ), . . . , (sn, rin ), for983

some permutation (ri� )1≤�≤n of r1, . . . , rn . Here, sampling984

the nonsensitive values of g row by row would involve to985

gradually reduce the sample space. A sampling procedure986

along these lines is possible, but nontrivial, see Appendix B.987

We discuss here a more straightforward sampling procedure,988

based on generating gi ∈ Gi in a single shot. We adopt a989

single-iteration Metropolis within Gibbs scheme. Essentially,990

this consists in running a Metropolis method that targets the991

distribution ∝ f (g|π) with support Gi , for one iteration.992

Specifically, let us write the current value of the i -th group in993

the Gibbs Markov chain as gh
i . Following Casella and Robert994

[40, Ch.10], this step consists in drawing g ∈ Gi according to995

a proposal distribution J (g|gh
i ) and accepting it, that is letting996

gh+1
i = g, with probability997

�
�= min



1,

f (g|π)J (gh
i |g)

f (gh
i |π)J (g|gh

i )

�
(37)998

while keeping gh+1
i = gh

i with probability 1 − �. The999

resulting MCMC method is still theoretically sound: see Casella1000

TABLE IV

SUMMARY OF THREAT AND FAITHFULNESS MEASURES FOR
ANONYMIZATION ACCORDING TO K-ANONYMITY

AND �- DIVERSITY

and Robert [40, Ch.10.3.3]. As to the proposal distribution 1001

J (g|gh
i ), a possibility is generating g ∈ Gi via a pure random 1002

permutation of the n nonsensitive values in li ; or just to swap 1003

the nonsensitive values of two randomly chosen positions 1004

in gh
i . In both cases, the proposal is symmetric, and (37) 1005

simplifies accordingly as follows, where r1, . . . , rn is the 1006

sequence of sensitive values in the poposed g: 1007

� = min



1,

�n
�=1 f (r�|s�, π)�n
�=1 f (rh

� |s�, π)

�
. 1008

VI. EXPERIMENTS 1009

We have put a proof-of-concept implementation3 of our 1010

methodology at work on a subset of the Adult dataset extracted 1011

by Barry Becker from the 1994 US Census database and 1012

available from the UCI machine learning repository [47]. This 1013

is a common benchmark for experiments on anonymization 1014

[38]. In particular, we have focused on the subset of 5692 rows 1015

also considered by the authors of [38], with the following 1016

categorical attributes: sex, age, race, marital status, education, 1017

native country, workclass, salary class, occupation, with occu- 1018

pation (14 values) considered as the only sensitive attribute. 1019

We will discuss implementation and results details separately 1020

for vertical and horizontal schemes. We will then briefly 1021

discuss convergence issues of the employed MCMC method. 1022

A. Horizontal Schemes: k-Anonymity 1023

Using the ARX anonymization tool [37] we obtained two 1024

different k-anonymous versions of the considered dataset, 1025

enjoying respectively k-anonymity and �-diversity4 for k = 1026

� = 4 and k = � = 6. The average size of the groups 1027

was respectively of 38 rows (k = � = 4) and of 355 rows 1028

(k = � = 6). 1029

The results we have obtained are summarized in Table IV. 1030

For reference, we include the following information in the last 1031

two lines: baseline accuracy, the fraction of rows correctly 1032

classified using the empirical distribution obtained from the 1033

frequencies of the sensitive values in the anonymized table 1034

– i.e., the fraction of the most frequent sensitive value; and 1035

3Python code and data available from the authors.
4Recall that �-diversity requires at least � distinct values of the sensitive

attribute in each group.
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ideal accuracy, the fraction of tuples threatened under pI.1036

As a further element of comparison, we also consider an1037

attacker whose reasoning is based on the random worlds1038

models, and include in the table GTRW, the fraction of rows1039

correctly classified assuming all tables compatible with t∗1040

equally likely. Like in [25], we compute ABSA and ABSRW,1041

the absolute error under the distribution derived under pA and1042

under the random worlds distribution pRW, respectively. ABS1043

is defined as
N�

i=1

�
s∈S

|1{si=s} − p(s|ri , t∗)|, where p(·) might1044

be either of pA(·) or pRW(·). Note that, since the considered1045

anonymized tables do not enjoy disjointness between groups1046

(see Remark 1), also in the random worlds perspective the1047

probability of each sensitive attribute may well be ≥ 1/�.1048

In our experiments, when � = 4 the attacker outperforms1049

random worlds classification, while when a more powerful1050

obfuscation is adopted the two results are quite similar.1051

The remaining rows in Table IV consider the privacy threats1052

and faithfulness measures introduced in Section IV. As a1053

general comment, small variations of � and/or k do not produce1054

dramatic changes. The faithfulness level is stable, but does not1055

reach a satisfactory level. The attacker is anyway in a position1056

to correctly classify the sensitive attribute of individuals in the1057

table ≈ 2.3 − 2.5% more often than the learner. We found the1058

maximum value of TiA for the threatened rows is about 13.8,1059

meaning the attacker can be up to ≈14 times more confident1060

than the learner about the guessed value.1061

A more informative summary of our analysis is provided by1062

the scatter plots and histograms of Figure 2. The scatter plots1063

are obtained from the threat levels under pL and under pA.1064

The number of rows (s, r) in which pA(s|r, t∗) ≥ pL(s|r, t∗)1065

roughly equals those in which pA(s|r, t∗) ≤ pL(s|r, t∗),1066

although globally the attacker has a slight advantage in terms1067

of number of threatened rows. In Figure 2 we also report the1068

empirical distribution log2 TiA for tuples threatened under pA1069

and under pL. We also have evidence of positive skewness,1070

as shown by the value of γ (the third standardized moments1071

of the empirical distributions). Recalling that log2 TiA = 11072

means pA(s|r, t∗) = 2 pL(s|r, t∗), the histograms show that1073

pA(s|r, t∗) is often more than twice pL(s|r, t∗) leading to a1074

log2 TiA ≥ 1. In particular, when k = � = 4, log2 TiA is1075

at least 1 for ≈ 6% of the individuals threatened under pA,1076

meaning ≈ 0.6% of the whole table. Conversely, log2 TiA1077

is close to 0 for most of the rows in which pA(s|r, t∗) ≤1078

pL(s|r, t∗).1079

B. Vertical Schemes: Anatomy1080

Using a freely available anonymization tool [22], we have1081

obtained two anatomized versions of the considered dataset,1082

with groups of size � = 4 and � = 6, respectively. The1083

resulting tables also enjoy �-diversity. The results we have1084

obtained are summarized in Table V. Concerning the random1085

worlds approach, we note the following. Anatomy partitions1086

the tables in groups all of size �. Therefore, although disjoint-1087

ness is not satisfied, just as in the horizontal case, the sensitive1088

attribute frequencies equal 1/� in each group. This implies1089

that the probability of a sensitive value depends on how many1090

groups contain the victim’s nonsensitive attributes and on1091

Fig. 2. Results for k-anonymity. Top (� = k = 6): scatter plots of pL vs
pA for tuples threatened under pA (a), and under pL (c); (b) and (d) are the
histograms of log2 TiA for these two cases. Bottom: same for � = k = 4. The
skewness value (γ ) represents the third standardized moment of the empirical
distribution. Dark red areas show where the attacker performs better than the
learner.

their frequencies in each group, leading often to multimodal 1092

distributions. We assume that a guess may be obtained ran- 1093

domly choosing between the equally likely sensitive attributes. 1094

Accordingly, the fractions of threatened rows, GTRW, are 1095

averaged over 500 different sampling. Here, it is apparent that 1096

the our attacker is able to classify better than the random 1097

worlds scenario. We note that, as � increases from 4 to 6, 1098

the fraction of rows threatened under the distributions derived 1099

by the learner (GTL) and by the attacker (GTA) decreases 1100

significantly. Moreover, as � grows both the relative threat 1101

RGTA and the faithfulness level RF decrease, which implies 1102

a trade-off between privacy and the utility conveyed by the 1103

table. 1104

Again, for a more informative summary of our analysis, 1105

we look at scatter plots and histograms, displayed in Figure 3, 1106

where we compare pA and pL on threatened rows. It is 1107

apparent here that the attacker is more confident than the 1108

learner in the majority of the cases, even when focusing on 1109

the rows threatened under pL. This is in contrast with the 1110

horizontal case, where the attacker exhibits smaller threat 1111
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TABLE V

SUMMARY OF THREAT AND FAITHFULNESS MEASURES FOR
ANONYMIZATION ACCORDING TO ANATOMY

levels on the rows threatened under pL (Figure 2, (d) and (h)).1112

As far as the histograms are concerned, an even greater1113

skewness than the horizontal case is evident here. In particular,1114

the attacker can be up to ≈ 287 times more confident then1115

the learner, being the maximum TiA about 286.19. Moreover,1116

when � = 4, the individuals with log2 TiA ≥ 1 are ≈ 26% of1117

the rows threatened under pA (≈ 8% of the whole table). This1118

means that there are 483 individuals in the dataset for which1119

the threat level under pA is at least twice as much the threat1120

level under pL.1121

C. Discussion1122

Comparing the horizontal and the vertical cases for the1123

considered dataset, the following considerations are in order.1124

• In the horizontal case, we have a situation of low faith-1125

fulness and low privacy threat, irrespective of the value1126

of k and �. Indeed, in both cases the average group size1127

is well above k, and this has a negative effect on the1128

inference capabilities of both the learner and the attacker.1129

The slight numerical differences observed between the1130

cases k = � = 4 and k = � = 6 are basically an artifact1131

of the anonymization tool. Yet, in relative terms, one can1132

observe a significant increase in the number of tuples1133

threatened by the attacker, over the learner.1134

• In the vertical case, one obtains a greater faithfulness1135

at the price of a greater privacy threat. This difference1136

from the horizontal case is partly explained by the smaller1137

group size, which now coincides with �. Now moving1138

from � = 4 to � = 6 has a tangible negative impact1139

on the inference capabilities of both the learner and the1140

attacker. In relative terms, one can observe an even more1141

marked increase of the number of tuples threatened by1142

the attacker, over the learner.1143

The above considerations partly depend on both the original1144

dataset and the details of the employed anonymization tool.1145

D. Assessing MCMC Convergence1146

For each of the considered anonymized datasets, we ran a1147

MCMC as introduced in Section V for M = 100, 000 runs.1148

The convergence of each chain to the stationary distribu-1149

tion was assessed via a methodology based on comparing1150

sub-sequences of the sample sequences with one another. More1151

precisely, as for the population parameters distribution (32),1152

we used the method proposed by Geweke [21]. The Geweke1153

Fig. 3. Results for Anatomy. Top (� = 6): scatter plots of pL vs pA for tuples
threatened under pA (a), and under pL (c); (b) and (d) are the histograms of
log2 TiA for these two cases. Bottom: same for � = 4. The skewness value
(γ ) represents the third standardized moment of the empirical distribution.
Dark red areas show where the attacker performs better than the learner.

proposal is based on an adapted two-samples test on the means 1154

in sub-sequences of the chain. 1155

After a burn-in of 50,000 iterations, we compared the last 1156

25,000 samples against 5 blocks of of 5,000 consecutive sam- 1157

ples each, taken starting from the 50,000-th iteration. We found 1158

that all the distributions πR|S produced a test statistic within 1159

two standard deviations from zero, thus providing evidence of 1160

convergence. 1161

As for the distribution of the cleartext table, f (t|π, t∗), we 1162

used a test specifically designed for categorical distributions 1163

by Deonovich and Smith, called Weiß procedure [15]. The 1164

approach is based on a χ2 test adjusted for the autocorrelation 1165

induced by the chain. The test is based on partitioning the 1166

whole sample sequence into sub-sequences, and then testing 1167

the homogeneity between the empirical distribution of each 1168

sub-sequence and the empirical distribution of the whole 1169

chain. After a burn-in of 50,000 observations, we compared 1170

5 sub-sequences of 10,000 consecutive samples each. For the 1171

vertical scheme, we assessed the convergence for each row of 1172

the table, thereby demonstrating the stationary of f (t|π, t∗). 1173
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For the horizontal scheme, some of the rows did not exhibit1174

evidence of convergence. However, we found that, starting1175

with several independent chains, very similar results in terms1176

of the proposed assessment measures were obtained.1177

In the vertical case, within the Metropolis step both the pure1178

random permutation and the swap group generation strategies1179

(Section V-B) were experimented. The obtained results are1180

consistent; however, the pure random permutation strategy1181

shows a much higher rate of rejection, suggesting that the1182

swap strategy should be preferred.1183

VII. CONCLUSION1184

We have put forward a notion of relative privacy threat that1185

applies to group-based anonymization schemes. Our proposal1186

is based on a rigorous characterization of the learner’s and1187

of the attacker’s inference, in a unified Bayesian model of1188

group-based schemes. A related MCMC algorithm for posterior1189

parameters estimation has also been introduced. Experiments1190

conducted on the well-known Adult dataset [47] have been1191

illustrated.1192

Our analysis emphasizes the risks posed by the mere fact1193

that an attacker can look up a released anonymized table.1194

This prompts an obvious alternative: release the parameters1195

of the posterior distribution learned from the cleartext table1196

(pI, in our notation). This may not always be possible, or be1197

a good idea, for several reasons. First, certain organizations1198

must release datasets as part of their mission, e.g. census1199

bureaus. Second, especially in the case of high-dimensional1200

data, the computation of the posterior is feasible only assum-1201

ing suitable conditional independencies, whereby potentially1202

important correlations are lost; see [10] and references therein.1203

Third, parameters release itself is not exempt from risks for1204

privacy. In particular, although differentially private release of1205

the parameters is possible [16], it seems that quite strong1206

priors are necessary to obtain acceptable guarantees; see1207

[50, Ch.6] and references therein. In conclusion, further1208

research is called for in order to understand under what1209

circumstances data and/or parameters release can be done1210

safely.1211

APPENDIX A1212

PROOF OF LEMMA 11213

We first characterize the probability f (V = j |RV = rv, t∗),1214

for an arbitrary j ∈ {1, . . . , N}. Bayes theorem yields1215

f (V = j |RV = rv, t∗) ∝ f (RV = rv|V = j, t∗) f (V = j |t∗)1216

= f (R j = rv|V = j, t∗) f (V = j |t∗)1217

∝ f (R j = rv|V = j, t∗) (38)1218

= f (R j = rv|t∗) (39)1219

where (38) follows from f (V = j |t∗) = f (V = j) = 1/N1220

(independence of V ), and (39) follows because, as easily1221

checked, for any fixed j , independence of R j and V is1222

preserved by conditioning on t∗. Now we have, for every s ∈ S1223

pA(s|rv, t∗) (40)1224

= f (SV = s | RV = rv, t∗)1225

=
�

j

f (SV = s, V = j |RV = rv, t∗)1226

Fig. 4. Sampling from θ(g|π, t∗) for vertical schemes.

=
�

j

f (SV = s|V = j, RV = rv, t∗) f (V = j |RV = rv, t∗) 1227

=
�

j

f (Sj = s|V = j, R j = rv, t∗) f (V = j |RV = rv, t∗) 1228

=
�

j : s j=s

f (Sj = s|V = j, R j = rv, t∗) f (V = j |RV =rv, t∗) 1229

(41) 1230

=
�

j : s j=s

f (V = j |RV = rv, t∗) (42) 1231

∝
�

j : s j=s

f (R j = rv|t∗). (43) 1232

where (41) and (42) follow from the fact that, for s j 
= s, 1233

f (Sj = s, t∗) = 0, while for s j = s obviously f (Sj = s|V = 1234

j, R j = rv, t∗) = 1. Finally, (43) follows from (39). 1235

Note that in (43) each term on the RHS actually is the joint 1236

probability f (R j = rv, Sj = s|t∗), being s j = s embedded in 1237

the range of the summation. 1238

APPENDIX B 1239

AN ALTERNATIVE GROUP SAMPLING METHOD FOR 1240

VERTICAL SCHEMES 1241

We consider the following method for sampling g ∈ Gi . 1242

Draw n values ri� , � = 1, . . . , n, as follows: 1243

1. draw ri1 from li according to a distribution ∝ f (r |s1, π); 1244

2. draw ri2 from li \ {| ri1 |} according to a distribution ∝ 1245

f (r |s2, π); 1246

… 1247

n. draw rin from li \ {| ri1 , . . . , rin−1 |} according to a distrib- 1248

ution ∝ f (r |sn, π). 1249

For a multiset l �, let σ(l �|s�, π)
�= �

r in l� f (r |s�, π) denote 1250

the probability of extracting some element appearing in l � 1251

(disregarding multiplicities) according to f (·|s�, π). Using this 1252

notation, the probability of returning exactly the sequence 1253

ri1 , . . . , rin , hence g = (s1, ri1 ), . . . , (sn, rin ) ∈ Gi , as a result 1254

of the above n drawings, can be written as 1255

θ(g|π, t∗) �= f (ri1 |s1, π)

σ (li |s1, π)
· f (ri2 |s2, π)

σ (li \ {| ri1 |}|s2, π)
· · · f (rin |sn, π)

f (rin |sn, π)
1256

=
�n

�=1 f (ri� |s�, π)

ν(g|π)
1257

where we denote by ν(g|π) the denominator of the expression 1258

on the RHS of
�= above. The sampling process of θ(g|π, t∗) 1259

for vertical schemes across all the groups of the table is 1260

illustrated in Fig. 4. We note that θ(g|π, t∗) is dependent on 1261

the chosen ordering of the sensitive values s1, . . . , sn , which 1262
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may invalidate condition (35). A possible solution could be to1263

sweep the order of sampling according to the Random Sweep1264

Gibbs sampler scheme originally proposed by [20] and further1265

developed by [29].1266
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