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Abstract: Waste orange peel represents a heavy burden for the orange juice industry, estimated in
several million tons per year worldwide; nevertheless, this by-product is endowed with valuable
bioactive compounds, such as pectin, polyphenols, and terpenes. The potential value of the waste
orange peel has stimulated the search for extraction processes, alternative or complementary to
landfilling or to the integral energy conversion. This study introduces controlled hydrodynamic
cavitation as a new route to the integral valorization of this by-product, based on simple equipment,
speed, effectiveness and efficiency, scalability, and compliance with green extraction principles. Waste
orange peel, in batches of several kg, was processed in more than 100 L of water, without any other
raw materials, in a device comprising a Venturi-shaped cavitation reactor. The extractions of pectin
(with a remarkably low degree of esterification), polyphenols (flavanones and hydroxycinnamic acid
derivatives), and terpenes (mainly d-limonene) were effective and efficient (high yields within a few
min of process time). The biomethane generation potential of the process residues was determined.
The achieved results proved the viability of the proposed route to the integral valorization of waste
orange peel, though wide margins exist for further improvements.

Keywords: biomethane; d-limonene; flavanones; food waste; green extraction; hydrodynamic
cavitation; orange waste; pectin; polyphenols

1. Introduction

Accounting for 61% of the world’s citrus fruit production [1], the global production of sweet
orange (Citrus sinensis (L.) Osbeck) in 2017–2018 exceeded 47 million tons, 36% of which (17 million
tons) was used in orange juice production [2]. Production for 2018–2019 was predicted to grow
by another 4.2 million metric tons. Large amounts of by-products, estimated at a level between
50% and 60% of the harvest, consist of discarded fruits, peels, and seeds. Effective technologies to
upgrade the value of these said by-products, which have been so far mostly dealt with as waste, are of
direct and significant relevance to all orange-growing countries and regions, including Brazil, Florida,
India, South Africa, Spain, Turkey, and Italy [3]. Waste orange peel (WOP), in particular, contains
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highly valuable bioproducts, such as carbohydrate polymers (cellulose, hemicellulose, and pectin),
polyphenols (including naringin and hesperidin), and essential oils (mostly d-limonene) [1].

The affordable, large-scale extraction and valorization of these compounds would also result in
the size reduction of the relevant waste stream, thus relieving the environmental burden related to
the still frequent disposal of the WOP in landfills or saving valuable biocompounds before the energy
conversion of the residues. Anaerobic co-digestion, carried out after the extraction and removal of
d-limonene, an inhibitory compound, was assessed as the most environmentally performing technique
for the energetic valorization of WOP by means of biogas generation [3]. Indeed, the latter practice has
been increasingly applied in some orange intensive production areas, such as Sicily.

Extracted from the orange peel prior to squeezing via a mechanical process (a jet of water breaking
the oil-containing glands), orange essential oil (EO) mostly contains d-limonene [4], a monoterpene
whose average content in Citrus sinensis fruit peels is 3.8 wt % on a dry weight basis [5,6]. This molecule
was first used in the 1950s as a bio-solvent and today is the main ingredient of numerous bio-based
functional products whose demand is rapidly growing [6]. In the early 1990s, its plant anti-fungal
and antibacterial properties were first identified [7], leading to the development and utilization of
biopesticide formulations, in which orange oil, and thus d-limonene, was the active ingredient [8].
After the discovery of its natural ozone scavenging properties, in 2005 d-limonene was proposed
as an effective adjuvant in preventive therapies against asthma [9]. Due to its broad spectrum of
antimicrobial, antioxidant, and anti-inflammatory properties, d-limonene is now used in many cosmetic
and nutraceutical applications, as well as an anti-spoilage additive in food [10].

Pectin is currently mostly produced from citrus peels (56% from lemons, 30% from limes, and
13% from oranges) and, to a lesser extent (14%), from apple pomace [11], and it is the most valued
natural hydrocolloid [12]. Since the early 2000s, it was established that pectin has various beneficial
effects on health and nutrition as a dietary and prebiotic fiber, with numerous applications in the food,
feed, cosmetic, medical, and pharmaceutical industries [12,13]. Effectively reducing the interfacial
surface tension between the oil and water phases, pectin is also an excellent emulsifier and emulsion
stabilizer [14,15]. Orange-extracted pectin powder added to an oil-in-water sub-micron size emulsion
(20% w/w of orange oil), prepared with a standard homogenizer, exhibited substantial stability up to at
least 30 days from preparation [14].

In the last fifteen years, numerous green chemistry processes were applied to extract the valued
components of WOP resulting from the orange juice industry. WOP is a potential source of fat
(oleic, linoleic, linolenic, palmitic, and stearic acids, and phytosterols), mono- and disaccharides
(glucose, fructose, and sucrose), organic acids (mainly citric, malic, and tartaric, but also benzoic, oxalic,
and succinic acids), polysaccharides (cellulose, hemicellulose, and pectin), enzymes (pectinesterase,
phosphatase, and peroxidase), flavonoids (hesperidin, naringin, and narirutin), terpenes (d-limonene,
linalool, and myrcene), and pigments (carotenoids and xanthophylls).

A few years ago, solvent-free extraction processes using microwave and ultrasound techniques
were successfully applied to obtain essential oils, polyphenols, and pectin through microwave
hydrothermal processing [16]. Promising results were achieved using solar-driven vapor steam
distillation, to obtain valued pectin, terpenes, and biophenols [17], as well as employing a solvent-free
process based on microwave distillation, hydrodiffusion, and gravity [13].

Hydrodynamic cavitation (HC) is generally achieved via pumping a liquid through one or more
constrictions of suitable geometry, such as Venturi tubes and orifice plates. Controlled HC results in
the generation, growth, and collapse of microbubbles due to pressure variations in the liquid flow [18].
The increase in kinetic energy at the constriction occurs at the expense of pressure, leading to the
generation of microbubbles and nanobubbles, which subsequently collapse under pressure recovery
downstream of the constriction [19]. The violent collapse of the cavitation bubbles results in the
generation of localized hot spots endowed with extremely high-energy density [20,21], highly reactive
free radicals, and turbulence, which can result in the intensification of various physical/chemical
phenomena. These include wastewater remediation and enhancement of biogas generation [22–24],
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preparation of nanoemulsions, biodiesel synthesis, water disinfection, and nanoparticle synthesis [25],
among others.

In the recent past, cavitation has emerged as a green extraction technology for natural products,
reducing process time and energy consumption, while achieving higher extraction yields, as well as a
useful tool for the intensification of food and pharmaceutical processes [25,26]. The growing variety of
applications has also stimulated the development of other promising arrangements, such as those based
on rotating parts [27] and variants of fixed constrictions based, for example, on vortex dynamics [28],
which are in the process of proving the respective affordability and straightforward scalability.

Real-scale applications of cavitation are quickly spreading in the food and beverage industries,
including the processing of food waste [29]. Again, the HC processing of vegetable raw materials, such
as grains and hops for beer-brewing [30,31] or plant leaves [32], and its application to the extraction of
bioactive compounds [27], offer distinct advantages, such as shorter process times, higher energy efficiency
and yields, and enhanced extraction rates. When compared with both conventional techniques and newer
ones, including acoustic cavitation sustained by ultrasound irradiation, the HC-based processes showed
superior performance, due to enhanced process yields and straightforward scalability [18,33].

HC-based techniques appear as natural candidates for applications to the valorization of WOP.
Nevertheless, to the best of our knowledge, no studies have been reported so far on the application of
hydrodynamic cavitation processes to extract the valued components of waste orange peel. This study
reports the first results concerning a novel route to valorize WOP based on criteria of effectiveness,
reliability, efficiency, and affordability. The starting idea was that waste orange peel contains EOs,
water-soluble pectin, and polyphenols, which can be transferred to the aqueous phase. In particular,
the EOs could form oil-in-water emulsions, stabilized by the presence of pectin. All this, carried out by
means of HC processes and without additives, as elucidated in Section 2.2.

After the HC-based extraction process, the liquid phase could be used as such to functionalize
foods and beverages, affecting both the nutraceutical properties and the shelf life. The residual WOP
solid fraction, mostly composed of cellulose and hemicellulose and deprived of inhibitory compounds,
such as the EOs, could be effectively used to produce biogas in an anaerobic digester, and the resulting
digestate used as a soil amendant or easily converted into biochar or hydrochar [34,35].

2. Materials and Methods

2.1. HC Device and Processes

Figure 1 shows the experimental device implementing the HC-based process, including a closed
hydraulic loop (total volume capacity around 230 L) and a centrifugal pump (Lowara, Vicenza, Italy,
model ESHE 50-160/ 75, with 7.5 kW nominal mechanical power and rotation speed of 2900 rpm).
The processes were carried out at atmospheric pressure (open plant).

Such a device was used in past studies, to carry out innovative beer-brewing [30,31,36,37],
for which application an industrial-level plant (2000 L) was developed [38], to enhance biochar
properties [39], and in the solvent-free extraction of bioactive compounds, namely polyphenols and
flavonoids, from the leaves of silver fir plants [32]. The geometry of the Venturi-shaped cavitation
reactor was defined and graphically represented in a previous study [40]: the reactor was circular,
the throat diameter 2.4 cm, the convergence angle 22.61◦, and the divergent angle 6.4◦. Due to the
diameter of the pipe at the level of 10.16 cm, the lengths of the convergent and divergent sections were
11 cm and 43 cm, respectively.

Venturi-shaped cavitation reactors were shown to outperform other reactors based on fixed
constrictions, such as orifice plates, in the treatment of viscous food liquids [33]. This superiority
especially holds with liquids containing solid particles, as well as for the inactivation of spoilage
microorganisms [40], and the creation of oil-in-water stable nanoemulsions [41], all these features being
relevant to the processes under study.
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Figure 1. Experimental hydrodynamic cavitation (HC)-based installation. 1) Centrifugal pump, 2) HC 
reactor, 3) main vessel, 4) cover, 5) discharge. 
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side of Equation (1) represents the specific potential energy, while the second term represents the 
specific kinetic energy. Assuming equal heights, the pressure drop (P2 < P1) arises at the reactor’s 
nozzle because of the fluid acceleration due to mass conservation (v2 > v1). Whenever P2 drops below 
the vapor pressure, at a certain temperature level, local evaporation occurs and vapor bubbles are 
generated. 
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radicals) [21,24]. However, the concentration of oxidizing compounds, which could be harmful in 
food processes, was found to be quite limited in the absence of specific additives [42,43]. 

Despite the inherent complexity of the physicochemical processes associated with cavitation, for 
fixed constrictions, a widely used dimensionless quantity, named the cavitation number (σ), can be 
used to characterize the cavitation intensity in a flow system in terms of easily measurable physical 
quantities. Its representativeness holds in most of the relatively simple HC reactors, such as Venturi 
tubes and orifice plates [20], and is related to the cavitational intensity, with cavitation generally 
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Venturi tube or an orifice plate, where cavitation bubbles collapse. Since the fluid was not 
pressurized, P0 was assumed to be equal to the atmospheric pressure. Pv (N·m−2) is the liquid-vapor 
pressure, which is a function of the average temperature for any given liquid. As in Equation (1), v2 
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Figure 1. Experimental hydrodynamic cavitation (HC)-based installation. (1) Centrifugal pump, (2) HC
reactor, (3) main vessel, (4) cover, (5) discharge.

In case of a fixed mechanical constriction, such as the Venturi-shaped HC reactor shown in Figure 1,
the liquid velocity and static pressure are regulated by Bernoulli’s equation [20], i.e., the conservation
of the mechanical energy for a moving fluid is represented by Equation (1):

P1 + ρv1
2/2 + ρgh1 = P2 + ρv2

2/2 + ρgh2 (1)

where P1 and P2 (N·m−2) are the upstream pressure and the pressure at the nozzle, respectively,
ρ (kg·m−3) is the liquid density, v1 and v2 (m·s−1) are the fluid speed upstream and through the nozzle,
respectively, h1 and h2 (m) are the heights of the fluid, and g (m·s−2) is gravity. The third term at
each side of Equation (1) represents the specific potential energy, while the second term represents
the specific kinetic energy. Assuming equal heights, the pressure drop (P2 < P1) arises at the reactor’s
nozzle because of the fluid acceleration due to mass conservation (v2 > v1). Whenever P2 drops
below the vapor pressure, at a certain temperature level, local evaporation occurs and vapor bubbles
are generated.

Theoretical and experimental evidence has grown about the unique physical (mechanical and
thermal) phenomena occurring at the scale of the collapsing cavitation bubbles [20,21], and the
chemical phenomena, such as water splitting and generation of powerful oxidants (e.g., OH·hydroxyl
radicals) [21,24]. However, the concentration of oxidizing compounds, which could be harmful in food
processes, was found to be quite limited in the absence of specific additives [42,43].

Despite the inherent complexity of the physicochemical processes associated with cavitation,
for fixed constrictions, a widely used dimensionless quantity, named the cavitation number (σ), can be
used to characterize the cavitation intensity in a flow system in terms of easily measurable physical
quantities. Its representativeness holds in most of the relatively simple HC reactors, such as Venturi
tubes and orifice plates [20], and is related to the cavitational intensity, with cavitation generally
arising for σ < 1. The cavitation number is derived from Bernoulli’s equation [44] and represents the
ratio between the pressure drop needed to achieve vaporization and the specific kinetic energy at the
cavitation inception section, as per Equation (2):

σ = (P0 − Pv)/(0.5·ρ·v2
2) (2)

where P0 (N·m−2) is the average recovered pressure downstream of the cavitation reactor, such as a
Venturi tube or an orifice plate, where cavitation bubbles collapse. Since the fluid was not pressurized,
P0 was assumed to be equal to the atmospheric pressure. Pv (N·m−2) is the liquid-vapor pressure,
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which is a function of the average temperature for any given liquid. As in Equation (1), v2 (m·s−1) is the
flow velocity through the nozzle of the cavitation reactor and depends on the pump’s inlet pressure.
In this study, the cavitation number values were computed according to the available data, such as
temperature and pump discharge; the latter was based on the consumed power, as explained in a
previous study [30].

Under conditions easily achievable in Venturi-shaped reactors, developed cavitation with frequent
and violent bubble collapses occurs within the range 0.1 < σ < 1 and even at higher values in the
presence of solid particles or dissolved gases [45,46]. In general, the lower the cavitation number,
the more efficient the cavitation processes, at least down to the onset of chocked cavitation conditions
(supercavitation), even though that regime is very efficient for disinfection purposes [47].

2.2. Orange Waste Samples and Tests

Two HC-based extraction tests were performed using WOP from organic fruits of Citrus sinensis
(L.) Osbeck, ‘Washington navel orange’ variety, originating from Sicily, Italy. The first test (WOP1) was
carried out in March 2017, with WOP from red oranges kindly provided by Ortogel S.p.A. (Caltagirone,
Sicily, Italy), representing the wastes from their orange juice production line. This test was aimed at
the extraction and analysis of pectin, as well as at assessing the biochemical methane potential of the
process solid residues.

The second test (WOP2) was carried out in April 2019, using raw material peels manually
discarded from oranges collected at a local organic farm in Ribera, Sicily, Italy. This test aimed at
analyzing the extraction rate of bioactive compounds, such as polyphenols and EOs (terpenes).

In both tests, WOP was frozen immediately after collection, ground in ice (maximum linear size
of 10 mm) to avoid the degradation of bioactive compounds, then pitched into the HC device and
processed in tap water only. Table 1 shows the basic features of both tests.

Table 1. Basic features of the waste orange peel (WOP) extraction tests. The WOP mass is expressed in
kg of fresh weight.

Test Water Volume (L) WOP Mass (kg) Test Duration (min) Temperature (◦C)

WOP1 120 42 270 14.5–96
WOP2 147 6.38 127 18.5–80

In both tests, the HC device was not airtight, allowing volatile compounds to escape, thereby
hindering the retention of terpenes in aqueous solution and affecting the EO extraction yields. Among
monoterpenes, d-limonene is particularly volatile; for example, its fraction, extracted from hops during
high temperature steps of the brewing process, could not be retained in finished beer [48,49].

The evolution of the temperature and the cavitation number are shown in Figure 2a for the test
WOP1 and in Figure 2b for the test WOP2, along with the respective sampling points. No temperature
control (i.e., no cooling step) was performed, thus the overall heating was the result of the balance
between the mechanical energy supplied by the pump’s impeller and the heat loss from the uninsulated
device [36].
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high concentration of the raw material (28.6% w/v). Later, as the cavitation process caused the 
reduction of WOP particle size and promoted the extraction and solubilization of bioproducts, the 
cavitation number slowly decreased down to 0.1 at 91 °C (235 min). The final increase of σ up to 0.19 
was instead due to the strong friction induced by the high temperature, reducing the pump discharge 
and counteracting the effect of the increased vapor pressure. 

Figure 2. Evolution of the temperature and the cavitation number, along with sampling points (from
T11 to T14 for WOP1 and from T21 to T214 for WOP2), in the two tests: (a) WOP1; (b) WOP2.

In the earlier phase of the WOP1 test (more than 30 min), the cavitation number was rather high
(0.46 to 0.57), pointing to relatively poor cavitation performance. This behavior derived from the
centrifugal pump running in a suboptimal regime (low consumed power) and was likely due to the
high concentration of the raw material (28.6% w/v). Later, as the cavitation process caused the reduction
of WOP particle size and promoted the extraction and solubilization of bioproducts, the cavitation
number slowly decreased down to 0.1 at 91 ◦C (235 min). The final increase of σ up to 0.19 was



Processes 2019, 7, 581 7 of 24

instead due to the strong friction induced by the high temperature, reducing the pump discharge and
counteracting the effect of the increased vapor pressure.

Due to the suboptimal performance during the earlier phase of the WOP1 test, a substantially
lower concentration of WOP was used for the WOP2 test (4.3% w/v), where the sampling was much
more frequent in time. Indeed, in WOP2, the cavitation number was as low as 0.2 from the beginning,
slowly decreasing in the first 20 min, then stabilizing around 0.15, and finally decreasing again down
to 0.12 during the heating from 70 ◦C to 80 ◦C, as a result of the increasing vapor pressure. These levels
of the cavitation number fell within the recommended range, found for brewing applications using the
same device as in this study [30].

The specific energy consumed (electricity per kg of fresh WOP), limited to the range 18 to 80 ◦C for
a heating of 10 ◦C, was on average 0.065 kWh/kg in WOP1 and 0.36 kWh/kg in WOP2. This outcome is
the result of the higher water volume by 1.225 times and the lower content of raw material by 6.6 times
in WOP2. However, the ratio of the specific energies (about 5.5) was lower than expected, based on
the above-mentioned data, because the pump in WOP2 was more efficient (higher consumed power,
by 1.2 times on average), thus the heating rate was higher and the heat loss from the uninsulated
device was lower. The overall specific energy consumed at the end of the WOP1 and WOP2 tests was
around 0.62 kWh/kg and 2.20 kWh/kg, respectively.

2.3. Experimental and Analytical Procedures

2.3.1. Biochemical Methane Generation Potential

The biochemical methane potential (BMP) of the solid residues obtained in the WOP1 test was
evaluated using assays performed by a standard method [50]. In detail, vessel-shaped static reactors of
100 mL were filled in with a mixture consisting of a portion of the WOP1 solid residues (substrate) and
an inoculum obtained from an existing biogas generation plant. Such inoculum included mesophilic
bacteria and biomass with the following characteristics: moisture 94.2% (wet basis), ash 25.1%, volatile
substance (VS) 69.1%, carbon content 41.7%, hydrogen content 5.1%, nitrogen content 2.3%, and
sulfur content 0.5%, all such quantities being determined on a dry basis, unless otherwise stated.
One vessel containing only the inoculum served as a blank test. The mass of both WOP1 process
residues (substrate) and the inoculum was 0.6 g, thus the inoculum to substrate ratio was 1:1.

The vessels were kept warm at 38 ◦C in a thermal bath, and the daily volume of biogas
generated was measured for 36 days, starting 15 days after the WOP1 test. Each measurement was
performed in triplicate. The contribution of the WOP to the biogas production, normalized to the
volatile substance’s content, was estimated subtracting the average generation of the blank test of the
WOP-containing vessels.

Based on each sample’s composition, the theoretical biomethane generation potential (Th-BMP)
and methane relative in the biogas were computed from Buswell’s formulas [51]. The cumulative
BMP attributed to the WOP1 solid residues was assessed on a daily basis, by multiplying the biogas
generation by the methane content.

2.3.2. Pectin

Pectin extracted from citrus fruits is generally a high molecular weight (80−400 kDa) block
copolymer alternating linear homopolymeric (poly-α(1−4)-D-galacturonic acid) and branched
(poly-α(1−2)-L-rhamnosyl-α(1−4)-D-galacturonosyl with side branches of either α-L-arabinofuranose
or α-D-galactopyranose) repeating units [52]. These repeating domains, schematically illustrated in
Figure 3, are known as the homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) regions and their
relative proportions determine the flexibility and rheological properties of the polymer in aqueous
solution: HG regions promote molecular interactions, allowing the formation of hydrogels, while RG
regions promote the formation of entangled structures, enhancing the gels’ stability [53].
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Figure 3. Schematic model of citrus fruits’ pectin block copolymer structure, illustrating its two major
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Some of the homopolymeric galacturonic acid backbone C-2, C-3, and C-5 carboxyl groups may
be partially esterified with methoxyl and/or acetyl groups or exist as a uronic acid salt, affecting the
polymer charge in solution [54]. The degree of esterification (DE) of pectin (proportion of methoxyl
content) determines the gelling mechanism since it influences the availability of COO− groups in the
solution [55]. Typically, pectin with low DE (<50%) tends to promote the presence of charged groups
and form gels electrostatically stabilized by metal cations [54], making it particularly appropriate for
food, beverage, pharmaceutical, and nutraceutical applications, because it does not require sugar or
acidic conditions to gel [56].

Only the aqueous sample labeled as T14 in Figure 2a displaying the WOP1 test, extracted at the end
of the process (temperature of 96 ◦C), was analyzed in quadruplicate. The analysis of the corresponding
extracted pectin was carried out 18 months after the test. During this period, the samples of lyophilized
pectin, consisting of a pale orange powder with a delicate fragrance, was kept at room temperature in
sealed plastic vessels.

The structure of the respective subsamples, labeled as P2, P3, P4, and P5, was characterized by
diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, using a Vertex 70 FTIR spectrometer
(Bruker, Ettlingen, Germany) equipped with a wide band mercury cadmium telluride (MCT) detector
and a Specac selector, in the 4000 to 500 cm−1 range, at 4 cm−1 resolution.

The spectra were the result of rationing 500 co-added single beam scans for each sample, i.e.,
grinded pectin powder (Figure 4) diluted in grinded FTIR grade potassium bromide (KBr) in the
appropriate proportion to assure the validity of the Kubelka–Munk assumptions [57], against the same
number of scans for the background (grinded KBr). The spectra were converted into Kubelka–Munk
units using OPUSTM software (Version 8.2, Bruker Optics, Ettlingen, Germany) and further processed
using ORIGINTM software (Version 8.0, OriginLab Corporation, Northampton, MA, USA).



Processes 2019, 7, 581 9 of 24
Processes 2019, 7, x 9 of 24 

 

 
Figure 4. Sample of lyophilized pectin powder from the WOP1 test (right), which was ground in a 
quartz mortar (left) prior to the diffuse reflectance infrared Fourier transform (DRIFT) experiments. 

2.3.3. Polyphenols Analysis by High Performance Liquid Chromatography with a Diode Array 
Detector (HPLC-DAD) 

After the HC process, the samples collected during the WOP2 test (from T21 to T214) were 
centrifuged (5 min, 9000 rpm, at 5 °C). The supernatants (5 mL) were then partitioned with n-hexane 
(5 mL × 3) to completely remove lipophilic compounds, and thus to obtain the aqueous phases. The 
pellets (process residues) were dried with an oven (40 °C, for 48 h), extracted (5% w/v) with 75% 
ethanol in an ultrasonic bath (30 °C) for 30 min, similarly to the method described in [58], and 
partitioned with n-hexane (1:1). This extraction method was also applied to dried peels (dry WOP). 
The extracts were evaporated to dryness, resuspended in methanol and acid water (pH 2.5 by 
HCOOH) 50:50 (v/v), and then injected (15 µL) in a Perkin® Elmer Flexar liquid chromatograph 
equipped with a quaternary 200Q/410 pump and a LC 200 diode array detector (DAD) (all from 
Perkin Elmer®, Bradford®, CT, USA). 

The stationary phase consisted of an Agilent® Zorbax® SB-18 column (250 × 4.6 mm, 5 µm) kept 
at 30 °C (Agilent Tech., Palo Alto, CA, USA). The eluents were (A) acidified water (at pH 2.5 adjusted 
with HCOOH) and (B) acetonitrile/ water (90/10, at pH 2.5 adjusted with HCOOH), and the following 
gradient was applied: 0–20 min (5%–20% B), 20–22 min (20% B), 22–32 min (20%–25% B), 32–42 min 
(25%–100% B), and 42–43 min (100%–5% B), with an elution flow of 0.6 mL/min.  

The quantification of different polyphenols was performed through an external standard 
method, using stock solutions of the following compounds: Caffeic acid, naringin, and hesperidin (all 
from Sigma–Aldrich, Milan, Italy). The identification of single compounds was accomplished based 
on the comparison of their UV-VIS spectra with the literature [58]. All solvents used for the analyses 
were from Sigma–Aldrich (Milan, Italy). All measurements were performed in triplicate. 

2.3.4. Analysis of Terpenes 

After the WOP2 test, all the aqueous phase samples (from T21 to T214) and five selected solid 
residue samples (T21, T22, T26, T210, and T214) were analyzed for terpenes. Moreover, the analyses 
were also carried out on raw orange peel samples stored at −20 °C.  

Liquid extraction was done by mixing 1 mL of aqueous phase samples with the same volume of 
heptane, containing 20 ppm tridecane as an internal standard [59] in 2 mL glass vials with a Teflon-
coated screw cap (Perkin–Elmer, Norwalk, CT, USA). 

The solid residue samples were dehydrated on filter paper with a vacuum pump for 5 min, and 
0.5 mg (fresh weigh (FW)) of each sample were closed in a glass vial, suspended in 2 mL of heptane 
with 20 ppm tridecane and a small amount of sodium chloride, and stirred for 5 min at room 
temperature. This procedure was also applied to raw orange peel samples previously grounded in 
liquid nitrogen in a mortar to a fine powder (0.5 mg FW). 

Figure 4. Sample of lyophilized pectin powder from the WOP1 test (right), which was ground in a
quartz mortar (left) prior to the diffuse reflectance infrared Fourier transform (DRIFT) experiments.

2.3.3. Polyphenols Analysis by High Performance Liquid Chromatography with a Diode Array
Detector (HPLC-DAD)

After the HC process, the samples collected during the WOP2 test (from T21 to T214) were
centrifuged (5 min, 9000 rpm, at 5 ◦C). The supernatants (5 mL) were then partitioned with n-hexane
(5 mL × 3) to completely remove lipophilic compounds, and thus to obtain the aqueous phases. The
pellets (process residues) were dried with an oven (40 ◦C, for 48 h), extracted (5% w/v) with 75% ethanol
in an ultrasonic bath (30 ◦C) for 30 min, similarly to the method described in [58], and partitioned with
n-hexane (1:1). This extraction method was also applied to dried peels (dry WOP). The extracts were
evaporated to dryness, resuspended in methanol and acid water (pH 2.5 by HCOOH) 50:50 (v/v), and
then injected (15 µL) in a Perkin® Elmer Flexar liquid chromatograph equipped with a quaternary
200Q/410 pump and a LC 200 diode array detector (DAD) (all from Perkin Elmer®, Bradford®, CT, USA).

The stationary phase consisted of an Agilent® Zorbax® SB-18 column (250 × 4.6 mm, 5µm) kept
at 30 ◦C (Agilent Tech., Palo Alto, CA, USA). The eluents were (A) acidified water (at pH 2.5 adjusted
with HCOOH) and (B) acetonitrile/ water (90/10, at pH 2.5 adjusted with HCOOH), and the following
gradient was applied: 0–20 min (5–20% B), 20–22 min (20% B), 22–32 min (20–25% B), 32–42 min
(25–100% B), and 42–43 min (100–5% B), with an elution flow of 0.6 mL/min.

The quantification of different polyphenols was performed through an external standard method,
using stock solutions of the following compounds: Caffeic acid, naringin, and hesperidin (all from
Sigma–Aldrich, Milan, Italy). The identification of single compounds was accomplished based on the
comparison of their UV-VIS spectra with the literature [58]. All solvents used for the analyses were
from Sigma–Aldrich (Milan, Italy). All measurements were performed in triplicate.

2.3.4. Analysis of Terpenes

After the WOP2 test, all the aqueous phase samples (from T21 to T214) and five selected solid
residue samples (T21, T22, T26, T210, and T214) were analyzed for terpenes. Moreover, the analyses
were also carried out on raw orange peel samples stored at −20 ◦C.

Liquid extraction was done by mixing 1 mL of aqueous phase samples with the same volume
of heptane, containing 20 ppm tridecane as an internal standard [59] in 2 mL glass vials with a
Teflon-coated screw cap (Perkin–Elmer, Norwalk, CT, USA).

The solid residue samples were dehydrated on filter paper with a vacuum pump for 5 min, and
0.5 mg (fresh weigh (FW)) of each sample were closed in a glass vial, suspended in 2 mL of heptane with
20 ppm tridecane and a small amount of sodium chloride, and stirred for 5 min at room temperature.
This procedure was also applied to raw orange peel samples previously grounded in liquid nitrogen in
a mortar to a fine powder (0.5 mg FW).



Processes 2019, 7, 581 10 of 24

All samples were incubated in an ultrasonic bath for 30 min at 0 ◦C and then slowly stirred for
24 h at room temperature. The supernatant (100 µL) was used for analysis after centrifugation at
4000 rpm for 10 min at room temperature in an Eppendorf centrifuge model 5810R (Westbury, NY,
USA). The heptane extracts (1 µL) were analyzed using an Agilent 7820A gas chromatograph (GC)
interfaced to an Agilent 5977E mass spectrometer (MS) with EI ionization and single quadrupole mass
analyzer (Agilent Tech., Palo Alto, CA, USA). A chromatographic column, Agilent HP-INNOWax
capillary 50 m length, 0.20 mm radius (ID), 0.4 µm film thickness (DF), was used. The GC injection
temperature was 250 ◦C, splitless mode, and the oven was programmed at 40 ◦C for 1 min, followed
by ramps of 5 ◦C/min to 200 ◦C, and 10 ◦C/min to 260 ◦C. This high temperature was held for 5 min.

Terpene compounds were identified based on both peaks, matching with the library spectral
database (NIST 11) and Kovats retention indices (KRI) retrieved in the literature for the identified
compounds. All measurements were performed in triplicate, and the amount of each terpene expressed
as a percentage of the total.

3. Results

3.1. Biochemical Methane Generation Potential

Table 2 shows the composition of the solid residues from the samples collected during the WOP1
test, in terms of the relative contents of moisture, ash, volatile substance, carbon, hydrogen, nitrogen,
and sulfur, along with the Th-BMP and the theoretical relative content of methane (CH4) in the biogas.
Additionally, the BMP achieved after 36 days is shown.

Table 2. Composition of solid residues from the samples of the WOP1 test. Unless specified otherwise,
units are % w/w on a dry basis. Theoretical biomethane generation potential (Th-BMP).

Sample Moisture 1 Ash VS C H N S Th-BMP 2 CH4
3 BMP 4

T11 95.6 3.8 96.2 42.7 6.2 0.7 0.1 421.3 50.0 256
T12 96.6 3.5 96.5 42.2 6.3 0.7 0.1 415.6 49.6 261
T13 97.0 3.2 96.8 42.6 6.2 0.9 0.1 408.9 48.9 318
T14 96.6 2.8 97.2 41.1 6.4 0.7 0.1 392.5 49.3 763

1 Unit: % w/w as determined. 2 Unit: mL/g VS. 3 Unit: % in biogas. 4 After 36 days. Unit: mL/g VS.

Figure 5a shows the cumulated daily biogas generation (in mL) from all the samples, including
the blank, resulting from the average of triplicate measurements. At the end of the 36 day period, the
biogas generation achieved the levels of 185, 554, 564, 637, and 763 mL for the blank T11, T12, T13,
and T14 samples, respectively. The standard deviations of the measurements did not exceed 3% of the
average value at the 8th day and afterward (for example, 497 ± 14 mL for the T14 sample at the 8th
day), thus visible differences were also statistically significant.

Most of the biogas production from samples T11 to T14 occurred within the first 7–8 days (57% to
68% of the overall generation), while it was delayed and evolved much more linearly with time for
the blank sample. In particular, after the first week a substantial part of the biogas generation from
samples T11 to T14 was due to emissions from the inoculum (constituting the blank sample).

After the subtraction of the biogas generation from the blank sample and the conversion to
methane, based on the relative content of CH4 in the biogas (as shown in Table 2), the BMP attributed
to the solid residues of the samples, extracted during the WOP1 test, could be calculated. Figure 5b
shows the assessed cumulated daily methane generation in mL per gram of volatile substance from the
samples T11 to T14 during the 36-days biodigestion period.
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Figure 5. (a) Cumulated biogas generation from all the WOP1 test samples, including the blank sample;
(b) cumulated methane production from all the WOP1 test samples, after subtraction of the generation
from the blank sample.

Almost all the methane was generated within the first 7–8 days, varying from 88% for sample
T14 to 100% for sample T12. Based on the data shown in Table 2, after 36 days, the actual BMP was
−39%, −37%, −22%, and +8% of the Th-BMP for the samples T11, T12, T13, and T14, respectively.
Thus, the HC process was able to effectively increase the methane generation from the solid residues
of the WOP material, with a clear increasing trend during the hydrocavitation process up to the full
exploitation of the respective BMP.



Processes 2019, 7, 581 12 of 24

Considering the chemical energy density of the methane at the level of 10.5 kWh/m3, the data
shown in Table 2, and the methane generation rates at the end of the 36-day period mentioned above,
Table 3 shows the energy balance of the process for the four analyzed samples. However, electricity and
methane chemical energy cannot be directly compared. In particular, the consumed electricity should
be converted into the chemical energy of methane needed for power generation, with conversion
factors depending on the specific production technology.

Table 3. Energy balance of the process: Consumed specific energy (electricity during the HC process) and
specific energy available in the generated methane (chemical energy). Units are kWh/kg fresh weight.

Sample Consumed Specific Energy Specific Energy in the Generated Methane

T11 0.01 0.28
T12 0.09 0.28
T13 0.27 0.34
T14 0.62 0.45

3.2. Pectin

Pectin isolated from four subsamples (P2, P3, P4, and P5) by lyophilization of sample T14, collected
at the end of the WOP1 test (Figure 2a), was analyzed via DRIFT spectroscopy. Figure 6 shows the
corresponding DRIFT spectra (2000–500 cm−1 region), which exhibit the typical features of pectin.
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band of carboxylate groups at 1610 cm−1.

The main features in the 1800–1550 cm−1 region, with maxima at 1740, 1647, and 1610 cm−1,
were assigned to the stretching modes of carbonyl groups from esterified galacturonic acid (νC =

Oester), non-esterified hydrogenated acidic groups (νC = Oacid), and carboxylate groups (νasCOO−),
respectively [13]. The 1550–1200 cm−1 region is dominated by CHx and C-O-H deformation modes,
partially overlapped with ester related stretching modes [60,61], and includes:

• The δasCH3 and δsCH3 (from ester methyl groups in the galacturonic rings and rhamnose rings of
the pectin backbone) at 1520 and 1365 cm−1;

• The νsCOO− at 1425 cm−1;
• The νC–O–Cester at 1277cm−1;
• The δipC–O–H (from alcohol hydroxyl groups in the pyranose rings of the pectin chain) at

1242 cm−1.
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The 1200–950 cm−1 region includes a set of very intense bands partially overlapped, typical of
pectin, assigned to skeletal (νC–C), C–O–C stretching (νC–O–C) modes of the pyranose rings and
glycosidic bonds, and to a combination of the νC–OH and νC–C modes from the pyranose rings [62,63].
Finally, the 950–500 cm−1 region contains the bands related to the external deformation vibrations of
methyl, methylene, and methyne groups (ρCHx and δC–H) [61].

The degree of esterification of pectin (percent of esterified carboxyl groups) was determined by
spectral analysis of the 1800–1550 cm−1 region, such as the ratio of ester carboxyl to total carboxyl peak
areas, as shown in Equation (3) [64]:

DE = ΣAνC = Oester/(ΣAνC = Oester + AνC = Oacid + AνasCOO
−) (3)

The νC = O and νasCOO– band areas were estimated by decomposing the 1900–850 cm−1 region (two
consecutive absorption zeros) into a sum of Gaussian components, using a nonlinear least-squares
fitting [13].

Table 4 summarizes the components’ centers, full width at half maxima, and integrated areas
obtained for the four samples. Based on these results, it was possible to determine a rather low degree
of esterification for this pectin, namely 17.05 ± 0.60%.

Table 4. Decomposition results of the 1800–1550 cm−1 region of the DRIFT spectra: Centers (C), full
width at half maxima (FWHM), integrated areas (A) of the νC = O and νasCOO− band areas, and
degree of esterification (DE).

Sample Band Areas C (cm−1) FWHM (cm−1) A(a.u.) DE

P2
νC = Oester
νC = Oacid
νasCOO−

1741
1648
1608

47
18
137

28.03
3.37

125.50
0.1786

P3
νC = Oester
νC = Oacid
νasCOO−

1740
1649
1609

50
19
143

28.67
3.04

135.42
0.1715

P4
νC = Oester
νC = Oacid
νasCOO−

1741
1648
1610

48
18
148

28.66
3.05

140.55
0.1664

P5
νC = Oester
νC = Oacid
νasCOO−

1741
1648
1610

47
19
149

28.55
3.09

140.87
0.1655

3.3. Polyphenols

As an example, Figure 7 shows the chromatograms of the sample T28 (39 min, 40.5 ◦C), its pellet
(process residues), and the dry WOP. As expected, the flavanones naringin and hesperidin dominated
the chromatogram of the dry WOP, along with another peak, labeled as F5 and classified as an
unidentified flavanone derivative, according to its UV spectra. The same features dominated the
chromatogram of the pellet, although with a lower relative contribution of naringin.
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(b) process residues; (c) dry WOP.

In the aqueous phase, along with the peaks attributed to naringin and hesperidin, the peaks
labeled as F1 to F4 were detected and identified as flavanone derivatives based on their UV spectra.
The unlabeled peaks were putatively identified as hydroxycinnamic acid derivatives (HAD), based
on their UV spectra similar to those of caffeic acid, with absorbance peak around 330 nm, instead of
280 nm, as for flavanones [65].

Figure 8 shows the total polyphenolic content (flavanones and HAD) present in the aqueous phase
of the whole system (total volume = 147 L). Sample T27 (30 min, 37 ◦C) exhibited a total polyphenols
content significantly lower than all the samples from T22 to T214 (p < 0.05). Moreover, the total
polyphenolic content of the sample T23 was significantly higher than that of sample T28 (p < 0.05).

Quite surprisingly, the higher content of polyphenols, mostly due to the increase of naringin and
other flavanones (F1–F5), was reached after 10 min from the beginning of the process time (sample
T23, temperature of 24 ◦C), corresponding to about 30 passes of the entire volume of the processed
mixture through the cavitation reactor. Moreover, the apparent stability of the total content up to the
sample T26 (20 min, 30 ◦C), and the following rather abrupt decrease at T27 (30 min, 35 ◦C), in turn
followed by the return to the levels typical of T23–T26, could suggest a possible kinetics involving
thermal degradation and further extraction from the circulating WOP.

The total contents of naringin, hesperidin, and other flavanones (F1–F5) in the raw fresh
WOP (6.379 kg) were 16.39, 36.26, and 2.95 g, respectively. Based on these data, and the total
contents (including HAD) observed in the aqueous phase (Figure 8), the extraction yields peaked in
correspondence of the samples T23 (59.5%) and T24 (59.6%). However, the extraction yield was already
as high as 53.5% at T21, i.e., after just 2 min of process time and about 6 passes of the entire volume of
the processed mixture through the cavitation reactor.
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3.4. Terpenes

Figure 9 shows the concentration of the detected monoterpenes in the aqueous phase and the
solid residues, derived from the observed concentration in each of the samples collected during the
WOP2 test. In the aqueous phase (Figure 9a, unit ng/mL), d-limonene represented more than 73% of all
monoterpenes in any of the first seven samples and, in particular, more than 93% in sample T22. In the
solid residues (Figure 9b, in ng/g fresh weight, except for d-limonene, expressed in µg/g fresh weight),
d-limonene represented more than 96% of all monoterpenes in any sample.

The concentration of d-limonene in the aqueous solution more than doubled from the sample T21
(2 min, 18.5 ◦C) to T22 (6 min, 22 ◦C); such a pattern was shared by the other detected monoterpenes,
although with milder changes. As mentioned in Section 2.2, volatile compounds were free to escape
from the processing device, which explains why the limonene concentration decreased abruptly by
almost 80% from the sample T22 to T23 (10 min, 24 ◦C). The d-limonene content stabilized around
similar levels, eventually further decreasing from sample T28 (39 min, 40.5 ◦C) onwards, reaching
zero in the last sample T214 (127 min, 80 ◦C), along with all the other terpenes. Beyond cavitation,
temperature appears to play an essential role in the volatilization of the terpenes.

The fast and effective extraction of d-limonene from the WOP was confirmed by the abrupt
decrease of its concentration (by about 45%) in the solid residues, from sample T21 to sample T22,
again stabilizing around similar levels onwards. Noticeably, the mass of solid residues decreased
substantially during the HC-based process (as visually observed). Hence, the respective actual content
of d-limonene probably decreased much more than represented in Figure 9b.

In the raw WOP, limonene accounted for over 96% of all monoterpenes, with a concentration of
5.9 ± 0.9 µg/g FW. Based on the original WOP mass (fresh weight) of 6.379 kg, a total content of 38 ± 6 mg
of d-limonene in the raw material was estimated. The peak concentration in the aqueous phase (sample
T22) was 18.7 ± 0.5 ng/mL, which, multiplied by the volume of the water (147 L), translates into a total
content of 2.75 ± 0.07 mg, i.e., a yield just over 7%. However, it is unknown how much terpene escaped
the hydrocavitation open reactor during the first 6 min of the process, and data concerning the solid
residues suggest that the actual extraction yield was substantially higher, at least up to 45%.

Finally, it is interesting to notice that, among the other detected monoterpenes, myrcene was the
most relatively abundant in the solid residues, while linalool prevailed in the aqueous solution, in full
agreement with the alcohol nature of the latter.
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4. Discussion

The device used to process the orange peel waste, employing no proprietary components, is easy
to construct and maintain, and its operation, at the pre-industrial scale, was verified by experiments
carried out on real scale (more than 100 L of water, quantity of WOP raw material of about 6.4 and 42 kg).
The scalability of the proposed device, up to the industrial scale (1700 L), was recently demonstrated in
the brewing sector [66]. Additionally, the reliability of the device was proven by the absence of any
wear of flow components after thousands of hours of operation, as was already noted in a previous
study using the device [30].
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The hydrodynamic cavitation processes, sustained by a circular Venturi-shaped reactor, allowed
us to effectively and completely separate and extract the most valued components of the waste orange
peel. It is remarkable that no solvents or any additives, other than tap water, were used in the
extraction processes.

As shown in Section 3.1, the biomethane generation potential was boosted in terms of both total
cumulated production and generation rate. Within only 3 min at 14.5 ◦C, corresponding to less than
10 passes of the entire processed mixture through the cavitation reactor, the BMP was already at 61%
of its theoretical value. Additionally, the specific energy content of the generated methane (chemical
energy) was about 30 times higher than the specific consumed energy (electricity). Since then, the BMP
increased up to the Th-BMP at the end of the process WOP1 (273 min, temperature of 96 ◦C), but the
energy balance became negative.

From the energy balance point of view, it would be imperative to limit the processing time as
much as possible, i.e., to a few min. However, the processing time should be optimized based on the
assessment of the overall value of the extractable materials, such as pectin, polyphenols, and terpenes,
as well as on the processing of the substrate resulting from the anaerobic digestion (e.g., disposal,
composting). Such topics will require further research.

Due to the apparent suboptimal cavitation regime during most of the WOP1 process, especially
during the first 60–90 min, it is likely that simple technical adjustments, such as a different centrifugal
pump, could produce even better results. However, with a lower concentration of WOP in the aqueous
mixture, as in the WOP2 test, the HC process was carried out in the optimal regime, as proven by
the low levels of the cavitation number. Thus, an optimized HC process is expected to lead to higher
methane generation in a shorter process time, even for higher WOP concentrations, thereby further
improving the energy balance.

According to the results presented in Section 3.2, the pectin isolated in the sample collected at the
end of the WOP1 process showed a very low degree of esterification, namely 17.05 ± 0.60%, meaning
that it would be particularly appropriate for food and beverage, pharmaceutical, and nutraceutical
applications, because it does not require sugar or acidic conditions to form stabilized gels. It should
be noted that this result nicely agrees with previous studies, in which pectin from WOP originating
from red oranges from the same area of Sicily, extracted via microwave hydrodistillation and gravity,
was shown to have a DE of 25%, suggesting that the pectin from the red orange pulp is likely to have a
very low DE [67]. However, a distinct beneficial role of the HC-based extraction method on the pectin
DE cannot be ruled out, which deserves further comparative research.

We remind that WOP (exo-, meso-, and endocarp) contains not only the outer skin (exocarp)
and the peel (exo- and mesocarp), but also endocarp residues. It is remarkable that, as mentioned in
Section 2.3.2., pectin, analyzed 18 months after extraction and lyophilization, remained stable during
prolonged storage at room temperature in direct contact with oxygen. In fact, after another three months
in the same plastic vessel, pectin continued to show no sign of degradation. This evidence pointed to
the stabilization effect of powerful antioxidant orange biophenols, including the flavanones (Section 3.3)
found in the WOP2 aqueous solutions, and is likely available in an even higher concentration in the
sample T14 from the WOP1 test.

Overall, the WOP1 test proved that the HC process allowed the effective extraction of high-quality
pectin from the waste orange peel and a very efficient exploitation of the biomethane generation
potential from the solid residues of the process. Additionally, there was no evidence of microbiological
degradation or spoilage in the T14 liquid sample, even though it was unlikely that any relevant
concentration of antimicrobial d-limonene remained in the aqueous solution, due to the very high
working temperature (as shown for sample T214 from the WOP2 test). We hypothesize that the reason
for the apparent microbiological stability lies in the well-known effective disinfection carried out by
the HC-thermal process [40]. The stabilization effects produced by the extracted flavanones and the
process-driven disinfection could be distinctive features of the HC-based extraction method.
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As shown in Section 3.3, water-soluble flavanones, naringin and hesperidin, constituted the
majority of polyphenols in the WOP. Both compounds were extracted in the aqueous solution quite
effectively and efficiently through the HC process and were partially transformed into other compounds,
mostly other flavanones and possibly hydroxycinnamic acid derivatives. Overall, the extraction process
yield was nearly 60%, regarding the sum of the detected compounds. Such a level was achieved within
10 min of processing, while after just 2 min it was at about 53%, thus proving the effectiveness of
the extraction.

The HC-based polyphenols extraction rate was remarkably greater than achieved by means of a
state-of-the-art hydro-distillation extraction method [17], where the total polyphenol content in the
aqueous phase was only about 17% of the original content, as well as the HC-based extraction was
much faster.

We hypothesize that the other flavanones (peaks F1 to F4 in Figure 7) might have derived from
hesperidin and/or naringin, following the loss of at least one hexose unit. In their turn, since these
peaks were practically undetectable in the chromatogram of the process residues, this decomposition
could have been due to cavitation processes occurring in the liquid phase. In addition, the peaks
shown just on the left of the peak F1 region in the chromatogram for the aqueous phase (Figure 7,
unlabeled peaks), attributed to HAD, were not observed in dry WOP or process residues and could be
considered as a distinct effect of the cavitation process.

From the decrease of d-limonene concentration in the solid residues (Section 3.4), a lower limit of
45% for the respective extraction yield in the aqueous phase was inferred, such a compound being by
far the most abundant monoterpene in the WOP. However, the actual extraction yield is expected to
be much higher, as suggested by two pieces of evidence. First, the abrupt drop of its concentration in
the aqueous phase shortly after its highest value (6 min of process time) is achieved, pointing to its fast
volatilization. Second, the mass loss from the solid residues due to the continuous extraction leads to the
overestimation of the respective total content of d-limonene, based on its concentration. In forthcoming
practical applications, airtight HC extractors will be used in order to retain liquid limonene, both floating
and emulsified in the aqueous solution due to the emulsifying action of pectin [15].

While postponing the comparison of EO extraction rates to future experiments, based on the
available data it can be safely stated that the HC-based EO extraction was remarkably faster than achieved
by means of a state-of-the-art hydro-distillation extraction method [17], which took about 120 min
to complete. The same holds with regard to an innovative solvent-free process based on microwave
distillation, hydrodiffusion, and gravity [13], where the semi-industrial process took about 60 min.

The high volatility of orange peel EOs under environmental conditions (in particular d-limonene,
which is chemically unstable) hinders their effectivity as flavorings in the food industry (affecting the
shelf-life) and as biopesticides in agronomic applications [68]. Moreover, the antimicrobial action of
d-limonene was found to markedly increase when applied as an oil-in-water nanoemulsion, for example
reducing the thermal resistance of Listeria monocytogenes by 100 times, against only two to five times
when added directly [69].

Therefore, methods have been proposed to reduce the volatility, increase the stability, and control
the release of such compounds. Two recent studies suggested the nanoencapsulation of orange peel
EOs [70] and d-limonene [71], respectively, in oil-in-water nanoemulsions prepared by ultrasonic
irradiation (acoustic cavitation) and stabilized with a mixture of pectin and whey proteins. Thus,
the combination of cavitation processes and pectin appears very promising for the retention and
effectivity of d-limonene, provided its early volatilization is prevented.

Indeed, the residual retention of d-limonene in the aqueous solution, up to sample T27 (30 min,
35 ◦C) in the WOP2 test (Figure 9a), could have been favored by two factors. First, the likely
micronization and partial emulsification of the terpenes in water, based on the well-established
effectivity of HC processes in the creation of stable sub-micron oil-in-water emulsions [41,72]. Second,
the effectivity of pectin as an emulsifying compound, as well as a stabilizer for emulsions [15]. Due
to the effective extraction of high-quality pectin in the aqueous phase (Section 3.2), the micronized
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limonene drops could have been partly emulsified and stabilized, concurring to the limitation of its
volatilization. Future research will investigate these relevant emulsion chemistry aspects.

Further research using optimized devices and processes will allow more comprehensive and
rigorous comparison of the presented process with either conventional or newer extraction techniques.
As an example, the effective retaining and recovery of orange peel oil during the HC process will allow
the determination of comprehensive performance indices, such as those recently advanced, based on
the extraction yield, energy efficiency, and quality of the product [73].

Finally, hydrodynamic cavitation techniques were compared many times with competing
techniques, very often resulting in higher process yields [33]. Nevertheless, separating and quantifying
the contribution of cavitation to the achieved results, in comparison with other processes, such as
pumping, heating, and turbulence, would be desirable. Although prevented in this study due to
technical limitations, this issue could be solved by means of the installation of a bypass excluding the
cavitation reactor, all else being equal, which is recommended for further research. Additionally, the
direct visualization of cavitation could be useful in order to assess its features (extent, intensity), which
could be done by means of reactors made of transparent material.

5. Conclusions

This study reports remarkable results concerning the valorization of waste orange peel via controlled
hydrodynamic cavitation. One of its strengths is the presentation of results obtained on a semi-industrial
scale, namely the extraction from 42 kg of WOP with 120 L of tap water (test WOP1). This allowed us
to prove the scalability of the process, which is often an issue in laboratory studies dealing with the
extraction of valued bioproducts from (at most) a few hundred grams of a biological matrix.

Although the extraction conditions were far from optimal under various aspects, both water-soluble
flavanones and d-limonene (by far the most abundant monoterpene in red orange and Washington
Navel orange EO) were extracted within 10 min of process time and at room temperature. High-quality
(low degree of esterification and high molecular weight) pectin was isolated from the aqueous extract
via straightforward lyophilization. The cellulose- and hemicellulose-rich solid residue revealed
excellent methane generation potential under anaerobic digestion, with a few minutes of process
time being sufficient to result in a high ratio of the energy contained in the generated methane to the
consumed energy.

The results presented in this study open the route to the integral valorization of WOP via a simple,
low cost, and highly effective technology, requiring water as the unique additional raw material.
The relevance of these findings also arises from the abundance of WOP (around 25 MT/year as a
by-product of the agrifood industry), the anticipated applicability to the processing by-products of
other citrus fruits, and the rapid spreading of the controlled HC processes in several food-related
products [25,26,32].

The process applied in this study adheres to the six principles of green extraction [74], even though
wide margins for further improvement, based on thorough optimization, clearly exist.
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