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Abstract

Safranal, contained in Crocus sativus L., exerts anti‐inflammatory and analgesic

effects. However, the underlying mechanisms for such effects are poorly under-

stood. We explored whether safranal targets the transient receptor potential ankyrin

1 (TRPA1) channel, which in nociceptors mediates pain signals. Safranal by binding

to specific cysteine/lysine residues, stimulates TRPA1, but not the TRP vanilloid 1

and 4 channels (TRPV1 and TRPV4), evoking calcium responses and currents in

human cells and rat and mouse dorsal root ganglion (DRG) neurons. Genetic deletion

or pharmacological blockade of TRPA1 attenuated safranal‐evoked release of calci-

tonin gene‐related peptide (CGRP) from rat and mouse dorsal spinal cord, and acute

nociception in mice. Safranal contracted rat urinary bladder isolated strips in a

TRPA1‐dependent manner, behaving as a partial agonist. After exposure to safranal

the ability of allyl isothiocyanate (TRPA1 agonist), but not that of capsaicin (TRPV1

agonist) or GSK1016790A (TRPV4 agonist), to evoke currents in DRG neurons, con-

traction of urinary bladder strips and CGRP release from spinal cord slices in rats,

and acute nociception in mice underwent desensitization. As previously shown for

other herbal extracts, including petasites or parthenolide, safranal might exert

analgesic properties by partial agonism and selective desensitization of the TRPA1

channel.
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1 | INTRODUCTION

Crocus sativus L., known as saffron crocus, belongs to the family of

Iridaceas1 and is commonly used for flavouring and colouring food

preparations. Saffron extracts contain three main bioactive

constituents: the carotenoid crocin, responsible for its typical col-

our, the monoterpene aldehyde picrocrocin, and the volatile com-

pound safranal, which accounts for its special flavour.2 Saffron has

been reported to possess beneficial effects against depression, sex-

ual dysfunction, premenstrual syndrome and weight loss.1,3

Although clinical trials reported headache as one possible adverse

effect of saffron,4 in Indian traditional medicine saffron has beenLi Puma and Landini are Equally contributing authors.
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used to treat headache.5 Preclinical studies focused on the pharma-

cological activity of saffron and its purified constituents, suggesting

anti‐oxidant,6 anti‐inflammatory7 and antinociceptive8 properties of

the golden spice. Antinociceptive effect of safranal has been

demonstrated in models of inflammatory pain, such as formalin,

acetic acid or carrageenan,8 and in models of neuropathic pain,

including chronic constriction injury and nerve crush injury.9,10 The

analgesic action of safranal has been attributed to its ability to sup-

press glial activation and proinflammatory cytokines production in

the central nervous system.11 However, the underlying mechanisms

responsible for the analgesic action of saffron have not been yet

elucidated.

Transient receptor potential (TRP) channels are pleiotropic exci-

tatory ion channels present in a large variety of cells. Some TRPs are

highly expressed by specific subpopulations of primary sensory noci-

ceptive neurons, where they contribute to sensing noxious chemical,

mechanical and thermal stimuli.12–14 In particular, the TRP ankyrin 1

(TRPA1) is coexpressed with the vanilloid type 1 (TRPV1, the cap-

saicin receptor), or the vanilloid type 4 (TRPV4) by a subpopulation

of nociceptors, which contain and release the proinflammatory neu-

ropeptide calcitonin gene‐related peptide (CGRP) and substance P

(SP).12,13 CGRP and SP released from peripheral endings of primary

afferents mediate neurogenic inflammation13 and CGRP is now rec-

ognized to play an essential role in migraine pain.13,15 TRPA1 is acti-

vated by a number of exogenous irritant and pungent agents,

including allyl isothiocyanate (AITC), cinnamaldehyde16,17 and forma-

lin.18 Notably, reactive oxygen, nitrogen and carbon species gate

TRPA1 by reacting with specific cysteine/lysine residues, thus medi-

ating pain and neurogenic inflammation.19–23

Here, we evaluated whether the three main constituents of saf-

fron affect the function of TRP channels expressed in nociceptors,

and in particular that of TRPA1. We found that safranal and its pre-

cursor, picrocrocin, but not crocin, selectively activate TRPA1, but

not TRPV1 or TRPV4, safranal being far more effective than picro-

crocin. In addition, safranal behaves as a partial agonist on TRPA1 as

compared to the full agonist, AITC. Finally, safranal induces selective

desensitization of the TRPA1 channel, thus attenuating neuronal

excitation that results in nociception and CGRP release. This unfore-

seen TRPA1‐desensitization mechanism could possibly explain the

analgesic effects attributed to saffron.

2 | MATERIALS AND METHODS

2.1 | Animals

In vivo experiments and tissue collection were carried out according

to the European Union (EU) directive guidelines (2010/63/EU) and

Italian legislation (DLgs 26/2014) for animal care procedures. Studies

were conducted under the University of Florence research permit

#194/2015‐PR. Animals were housed in a temperature‐ and humid-

ity‐controlled vivarium (12‐hour dark/light cycle, free access to food

and water) and were allowed to acclimatize for at least 7 days prior

to experimentation. Animal studies were reported in compliance with

the ARRIVE guidelines.24,25 A group size of six animals for beha-

vioural experiments was determined by sample size estimation using

G*Power (v3.1)26 to detect size effect in a post‐hoc test with type 1

and 2 error rates of 5 and 20% respectively. Allocation concealment

was performed using a randomization procedure (http://www.rand

omizer.org/).

The following mouse strains were used: C57BL/6 mice (male, 20‐
25 g, 5 weeks; Envigo, Milan, Italy); littermate TRPA1 wild‐type
(Trpa1+/+) and TRPA1‐deficient (Trpa1−/−) mice (25‐30 g, 5‐8 weeks)

generated by heterozygotes on a C57BL/6 background (B6.129P‐
Trpa1tm1Kykw/J; Jackson Laboratories, Bar Harbor, ME, USA); wild‐
type (Trpv4+/+) and TRPV4‐deficient (Trpv4−/−) mice (25‐30 g, 5‐
8 weeks), generated by heterozygotes on a C57BL/6 background27

and TRPV1‐deficient mice (Trpv1−/−; B6.129X1‐Trpv1tm1Jul/J) back-

crossed with C57BL/6 mice (Trpv1+/+) for at least 10 generations

(Jackson Laboratories; 25‐30 g, 5‐8 weeks). Sprague‐Dawley rats

(male, 75‐100 g, Envigo) were also used. Animals were killed with

inhaled CO2 plus 10%‐50% O2.

2.2 | Cell culture

Naïve untransfected HEK293 cells (American Type Culture Collec-

tion, Manassas, VA, USA; ATCC® CRL‐1573™) were cultured accord-

ing to the manufacturer's instructions. HEK293 cells were transiently

transfected with the cDNAs (1 μg) codifying for wild‐type (wt‐
hTRPA1) or mutant 3C/K‐Q human TRPA1 (C619S, C639S, C663S,

K708Q; 3C/K‐Q hTRPA1‐HEK293)23 using the jetPRIME transfection

reagent (Poliyplus‐transfection® SA, Strasburg, France) following the

manufacturer's protocol. HEK293 cells stably transfected with cDNA

for human TRPA1 (hTRPA1‐HEK293), or with cDNA for human

TRPV1 (hTRPV1‐HEK293), or with cDNA for human TRPV4

(hTRPV4‐HEK293) were cultured as previously described.28 Human

foetal lung fibroblasts (IMR90; American Type Culture Collection;

ATCC® CCL‐186™), which express the native TRPA1 channel, were

cultured as previously described.29 Cells were plated on glass‐coated
(poly‐L‐lysine, 8.3 μmol/L) coverslips and cultured for 1‐2 days before

being used for recordings.

2.3 | Isolation of primary sensory neurons

Primary dorsal root ganglion (DRG) neurons were isolated from adult

Sprague‐Dawley rats and Trpa1+/+ and Trpa1−/− mice, and cultured

as previously described.30 Briefly, DRG were bilaterally excised and

transferred to Hank's Balanced Salt Solution containing trypsin

(1 mg/mL) and collagenase type 1A or papain (both, 2 mg/mL), for rat

or mouse ganglia respectively (35 minutes, 37°C). Ganglia were then

transferred to warm Dulbecco's Modified Eagle Medium supple-

mented with 10% foetal bovine serum, 10% horse serum, 2 mmol/L

L‐glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin and

dissociated into single cells by several passages through a series of

syringe needles (23‐25G). Ganglia cells were centrifuged and sus-

pended in medium with the addition of normal growth factor

(100 ng/mL) and cytosine‐D‐arabinofuranoside free base (2.5 mmol/L).
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Neurons were then plated on glass coverslips coated with poly‐L‐
lysine (8.3 μmol/L) and laminin (5 μmol/L).

2.4 | Cellular recordings

Mobilization of intracellular calcium ([Ca2+]i) was measured in untras-

fected or transfected HEK293 cells, in IMR90 and in DRG neurons.

Cells on coated coverslips were loaded with 5 μmol/L Fura‐2 AM‐ester
(Alexis Biochemicals, Lausen, Switzerland) added to the extracellular

solution (37°C) containing the following (in mmol/L): 2 CaCl2, 5.4 KCl,

0.4 MgSO4, 135 NaCl, 10 D‐glucose, 10 HEPES and 0.1% bovine

serum albumin at pH 7.4. After 40 minutes loading, coverslips with

cells were washed and then transferred to a chamber on the stage of

an Olympus IX81 microscope for recording. Cells were excited alterna-

tively at 340 and 380 nm and recorded with a dynamic image analysis

system (XCellence Imaging software; Olympus srl, Milan, Italy). Results

were expressed as the percentage of increase in R340/380 over the

baseline (% Change in R340/380), and each effect was normalized to the

maximum effect induced by ionomycin (5 μmol/L).30 For whole‐cell
patch‐clamp recordings, coverslips with cells were transferred to a

recording chamber (1 mL volume), mounted on the platform of an

inverted microscope (Olympus CKX41) and superfused at a flow rate

of 2 mL/min with a standard extracellular solution at pH 7.4 (adjusted

with NaOH) containing (in mmol/L): 10 HEPES, 10 D‐glucose, 147
NaCl, 4 KCl, 1 MgCl2, and 2 CaCl2. Borosilicate glass electrodes (Har-

vard Apparatus, Holliston, MA, USA) were pulled with a Sutter Instru-

ments puller (model P‐87) to a final tip resistance of 4‐7 MΩ. Pipette

solution used for HEK293 cells contained (in mmol/L): 134 K‐gluco-
nate, 10 KCl, 11 EGTA, 10 HEPES (pH adjusted to 7.4 with KOH).

When recordings were performed on rat DRG neurons, the extracellu-

lar solution contained 5 mmol/L CaCl2, and pipette solution contained

(in mmol/L): 120 CsCl, 3 Mg2ATP, 10 BAPTA, 10 HEPES‐Na (pH

adjusted to 7.4 with CsOH). Data were acquired with an Axopatch

200B amplifier (Axon Instruments, CA, USA), stored and analysed with

a pClamp 9.2 software (Axon Instruments). All the experiments were

carried out at room temperature (20‐22°C). Currents were detected as

inward currents activated on cell superfusion with the various stimuli

in the voltage‐clamp mode (holding potential of −60 mV). Cell mem-

brane capacitance was calculated in each cell throughout the experi-

ment by integrating the capacitive currents elicited by a ±10 mV

voltage pulse. Peak currents were normalized to cell membrane capaci-

tance and expressed as mean of the current density (pA/pF) in aver-

aged results. Signals were sampled at 1 kHz and low‐pass filtered at

10 kHz.

Cells and neurons were challenged with safranal (0.1‐300 μmol/

L), picrocrocin (1‐300 μmol/L) and crocin (30‐200 μmol/L). Allyl‐iso-
thiocyanate (AITC, 1‐10 μmol/L) and GSK1016790A (0.05‐0.1 μmol/

L) were used to induce TRPA1 and a TRPV4 selective response

respectively. Capsaicin (0.1‐1 μmol/L) was used to induce a TRPV1

selective response and to identify capsaicin‐sensitive neurons. Buffer

solution containing dimethyl sulfoxide (DMSO, 1%) was used as

vehicle. The activating peptide for human proteinase‐activated
receptor 2 (hPAR2‐AP; 100 μmol/L) or KCl (40‐80 mmol/L) were

used to elicit a TRP‐independent cellular response. Some experi-

ments were performed in the presence of TRPA1, TRPV1 and

TRPV4 selective antagonists, HC‐030031 (50 μmol/L), capsazepine

(10 μmol/L) and HC‐067047 (30 μmol/L) respectively, or their vehi-

cles (0.5% or 0.1% or 0.3% DMSO respectively).

2.5 | Organ bath assay

Rat urinary bladder was excised from rat, and longitudinal strips

were suspended at a resting tension of 1 g in 10‐mL organ bath

bathed in aerated (95% O2 and 5% CO2) Krebs‐Henseleit solution

maintained at 37°C containing (in mmol/L): 119 NaCl, 25 NaHCO3,

1.2 KH2PO4, 1.5 MgSO4, 2.5 CaCl2, 4.7 KCl and 11 D‐glucose. After
40 minutes of equilibration, tissues were challenged twice with car-

bachol (CCh, 1 μmol/L), with a 45‐minute washing out period

between the two administrations. Motor activity was recorded on a

force transducer isometrically (Harvard Apparatus, Ltd, Kent, UK).

Tissues were challenged with safranal (10‐300 μmol/L), AITC

(100 μmol/L), GSK1016790A (10 μmol/L) and capsaicin (0.3 μmol/L)

or their vehicles. In some experiments, tissues were pre‐exposed to

HC‐030031 (50 μmol/L), capsazepine (10 μmol/L), HC‐067047
(30 μmol/L) or a combination of NK1 and NK2 receptor antagonists,

L‐733,060 and SR48968 respectively (both 1 μmol/L). Some prepara-

tions were desensitized by treatment with a high concentration of

capsaicin (10 μmol/L for 20 minutes, twice) or were exposed to

safranal (300 μmol/L for 20 minutes, twice) before the challenge with

other stimuli. Responses were expressed as percentage (%) of the

maximum contraction, induced by CCh (1 μmol/L).

2.6 | CGRP‐like immunoreactivity assay

For CGRP‐like immunoreactivity (CGRP‐LI) outflow, 0.4‐mm slices of

rat or mouse spinal cord were superfused with an aerated (95% O2

and 5% CO2) Krebs‐Henseleit solution modified with 0.1% bovine

serum albumin plus the angiotensin‐converting enzyme inhibitor,

captopril (1 μmol/L) and the neutral endopeptidase inhibitor, phos-

phoramidon (1 μmol/L) to minimize peptide degradation. Fractions

(4 mL) of superfusate were collected at 10‐minute intervals before,

during and after administration of the stimuli and then freeze‐dried,
reconstituted with assay buffer, and analysed for CGRP‐LI using a

commercial enzyme‐linked immunosorbent assay kit (Bertin Pharma,

Montigny le Bretonneux, France). Detection limits of the assays

were 5 pg/mL. Stimuli did not cross‐react with CGRP antiserum. Tis-

sues were stimulated with safranal (10‐300 μmol/L) or its vehicle (1%

DMSO). Some tissues were pre‐exposed to capsaicin (10 μmol/L,

30 minutes) or superfused with a calcium‐free buffer containing

EDTA (1 mmol/L). Some preparations were pre‐exposed to TRPA1

antagonist, HC‐030031 (50 μmol/L), capsazepine (10 μmol/L) or HC‐
067047 (30 μmol/L). Other tissues were pre‐exposed to safranal

(100 μmol/L, 30 minutes) and then, after a prolonged washing

(40 minutes), stimulated with AITC (50 μmol/L) capsaicin (0.1 μmol/L)

or GSK1016790A (10 μmol/L). Results were expressed as femto-

moles of peptide per gram of tissue.
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2.7 | Acute nociceptive response

The acute nociception was assessed in C57BL/6, Trpa1+/+ and

Trpa1−/−, Trpv1+/+ and Trpv1−/− or Trpv4+/+ and Trpv4−/− mice, after

intraplantar (i.pl.) injection (20 μL/paw) of safranal (0.2‐20 nmol),

AITC (10 nmol), capsaicin (0.2 nmol), GSK1016790A (2 nmol) or their

vehicle (7% and 0.5% DMSO). Immediately after injection, mice were

placed individually in plexiglas chambers and the amount of time

(seconds) spent licking and shaking the injected paw was recorded

for a 5‐minute time period, as previously described.31 Nociception

induced by safranal (20 nmol) was also evaluated 60 minutes after

intraperitoneal (i.p.) treatment with HC‐030031 (100 mg/kg) or

30 minutes after capsazepine (4 mg/kg) or HC‐067047 (10 mg/kg) or

their vehicle (all, 4% DMSO plus 4% tween 80 in isotonic saline,

0.9% NaCl). In another experimental setting, safranal (0.5‐1 mg/kg,

i.g.) was administered each day for 5 consecutive days.8 Each day,

60 minutes after safranal i.g. administration, AITC (10 nmol), cap-

saicin (0.2 nmol) or GSK1016790A (2 nmol) or their vehicles (0.5%

DMSO) were administered (20 μL, i.pl.) and acute nociceptive

response was recorded.

2.8 | Drugs and reagents

HC‐030031 [2‐(1,3‐dimethyl‐2,6‐dioxo‐1,2,3,6‐tetrahydro‐7H‐purin‐7‐
yl)‐N‐(4‐isopropylphenyl) acetamide] was synthesized as previously

described.32 If not otherwise indicated, all other reagents were

obtained from Sigma‐Aldrich (Milan, Italy).

2.9 | Statistical analysis

Statistical analysis was performed using the unpaired two‐tailed Stu-

dent's t test for comparisons between two groups and the one‐ or

two‐way ANOVA, followed by the post‐hoc Bonferroni's test for

comparisons of multiple groups (GraphPad Prism version 5.00, San

Diego, CA, USA). A P < 0.05 was considered statistically significant.

Data are reported as mean ± SEM.

3 | RESULTS

3.1 | Safranal and picrocrocin, but not crocin,
selectively activate the human TRPA1 channel

Safranal and picrocrocin evoked a concentration‐dependent calcium

response in hTRPA1‐HEK293 (EC50s 17 ± 0.3 μmol/L and 56 ± 0.3

μmol/L respectively), but not in naïve HEK293 cells (Figure 1B). The

selective TRPA1 antagonist HC‐030031 attenuated the response

evoked by safranal and picrocrocin and AITC (Figure 1B). Crocin, the

third main constituent of saffron was not investigated in this test

because of its intense yellow colour which interferes with the

recording system. Thus, the ability of crocin to target TRPA1 was

analysed by whole‐cell patch‐clamp electrophysiology. Crocin did not

evoke any measurable inward current in hTRPA1‐HEK293, compared

to its vehicle (Figure 1C).

Further investigation was limited to safranal, the most potent of the

three compounds. The non‐electrophilic agonist, menthol, evoked a

robust calcium response in 3C/K‐Q hTRPA1‐HEK293 cells, which

express a mutant form of the TRPA1 receptor, lacking three key cys-

teine (C619, C639, C663) and one lysine (K708) residues, which are

required for channel activation by electrophilic agonists23,33 (Figure 1D).

However, safranal failed to induce any calcium response in 3C/K‐Q
hTRPA1‐HEK293 cells (Figure 1D). Finally, in IMR90 cells, which consti-

tutively express the native human TRPA1 receptor,34 safranal and picro-

crocin evoked concentration‐dependent calcium responses (EC50s

9 ± 0.2 μmol/L and 44 ± 0.4 μmol/L respectively) that were attenuated

by HC‐030031, alike the response evoked by AITC (Figure 1E).

Similar results were obtained in whole‐cell patch‐clamp recording

experiments. Safranal elicited concentration‐dependent inward cur-

rents in hTRPA1‐HEK293 cells, an effect that was attenuated by

HC‐030031 and was absent in untransfected HEK293 cells (Fig-

ure S1A). Either safranal or picrocrocin failed to evoke calcium

responses or inward currents (safranal) in HEK293 cells transfected

with the human TRPV1 (hTRPV1‐HEK293) or TRPV4 (hTRPV4‐
HEK293) that, however, were efficiently stimulated by their selective

agonists, capsaicin and GSK1016790A respectively (Figure S1B‐E). In
all experiments, calcium responses elicited by hPAR2‐AP and ion cur-

rents evoked by KCl were not affected by HC‐030031, indicating
selectivity (Figure 1B,E and Figure S1A).

3.2 | Safranal selectively excites TRPA1 in rodent
sensory neurons

Exposure to safranal of cultured rat DRG neurons evoked a concen-

tration‐dependent calcium response in a subset of cells, identified as

nociceptors by their ability to respond to KCl, capsaicin and AITC31

(Figure 2A). In rat DRG neurons maximum calcium responses to

safranal or AITC were 35.8% ± 8.5% and 56.0% ± 6.0% of ionomycin

(n = 25, P < 0.01) respectively, and EC50s were 38 ± 0.03 μmol/L

and 5 ± 0.3 μmol/L respectively. Calcium responses were attenuated

by HC‐030031, and unaffected by the respective TRPV1 and TRPV4

selective antagonists, capsazepine and HC‐067047 (Figure 2A).

Safranal or AITC elicited inward currents in rat DRG neurons, that

were blocked by HC‐030031 (Figure 2B), which, however, did not

affect currents evoked by capsaicin, indicating selectivity (Figure 2A,

B). Safranal and AITC produced calcium responses in DRG neurons

isolated from Trpa1+/+ mice, but not in neurons isolated from

Trpa1−/− mice (Figure 2C), while the response to capsaicin was

unchanged in both mice strains.

3.3 | Safranal causes neuropeptides release and
acute pain via TRPA1 activation in nociceptors

There is evidence that TRPA1 is localized in peptidergic primary sen-

sory neurons.35,36 Central and peripheral endings of primary sensory

neurons are widely expressed in most tissues and organs, including

rat urinary bladder and rat or mouse spinal cord, where upon stimu-

lation they release proinflammatory neuropeptides, such as CGRP
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and SP. SP released upon stimulation of TRPV1 or TRPA1 results in

a contractile response of isolated strips of rat urinary bladder that is

mediated by activation of the NK1 and NK2 receptors for SP in

bladder smooth muscle cells.37

Safranal caused a concentration‐dependent contractile response

of isolated strips of rat urinary bladder with a slightly lower potency

than AITC (EC50s were 76 ± 0.07 μmol/L and 56 ± 0.02 μmol/L

respectively) (Figure 3A). Efficacy of safranal was also lower than

F IGURE 1 Safranal (SFR) and picrocrocin (PICR) selectively target the human TRPA1 channel. A, Chemical structures of SFR, PICR and
crocin (CRO). B, Concentration response curves of the calcium mobilization evoked by SFR and PICR in hTRPA1 HEK293 cells. Representative
traces and pooled data of calcium response evoked by SFR, PICR and AITC in hTRPA1 HEK293 pre‐exposed to HC‐030031 (HC03, 30 μmol/L)
or its vehicle (‐) and in naïve HEK293 cells. C, Representative traces and pooled data of whole‐cell patch‐clamp inward currents evoked by
CRO and AITC (100 μmol/L) in hTRPA1 HEK293. D, Pooled data of calcium responses evoked by SFR and menthol in wild‐type (wt) and
mutant (3C/K‐Q) hTRPA1 HEK293 transfected cells. E, Concentration response curves of the calcium mobilization evoked by SFR and PICR in
IMR90 cells. Representative traces and pooled data of calcium responses evoked by SFR, PICR and AITC pre‐exposed HC03 (30 μmol/L) or its
vehicle (‐) in IMR90 cells. HC03 does not affect the response evoked by the hPAR2‐AP (100 μmol/L). Veh is the vehicle of SFR, dash (‐)
indicates the vehicle of HC03. Data are mean ± SEM of n > 20 cells from 4 to 6 independent experiments (B, D, E) and n > 3 cells from 3 to
5 independent experiments (C). *P < 0.05 vs veh, §P < 0.05 vs SFR, PICR or AITC; one‐way ANOVA with Bonferroni post‐hoc correction
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that of AITC (maximum response, 15.5% ± 3.0% of carbachol, n = 6,

and 35.1% ± 6.2% of carbachol respectively, n = 6, P < 0.05) (Fig-

ure 3A). The response of safranal was attenuated by pre‐exposure to

a combination of NK1 and NK2 receptor antagonists (L‐733,060 and

SR48968 respectively), by pre‐exposure to a high concentration of

capsaicin able to desensitize the nociceptors and by pre‐exposure to

the TRPA1 selective antagonist, HC‐030031, while it was unaffected

by pre‐exposure to capsazepine (TRPV1 antagonist) and HC‐067047
(TRPV4 antagonist) (Figure 3A). This finding supports the hypothesis

that safranal behaves as a partial agonist at the TRPA1 channel.

Safranal elicited a concentration‐dependent increase in CGRP‐LI
outflow from rat spinal cord slices which was absent in a calcium‐
free medium or in tissues pre‐exposed to a desensitizing concentra-

tion of capsaicin and in the presence of HC‐030031 (Figure 3B).

Safranal‐evoked CGRP release was unaffected by capsazepine or

HC‐067047 (Figure 3B). Exposure to safranal increased CGRP out-

flow from dorsal spinal cord slices obtained from Trpa1+/+ mice, but

not from tissues taken from Trpa1−/− mice (Figure 3C). Thus, safranal

elicits CGRP release from a subset of TRPV1‐positive neurons via a

neurosecretory process, mediated by TRPA1.

F IGURE 2 Safranal (SFR) selectively activates TRPA1 in rodent primary sensory neurons. A, Concentration response curves of the calcium
mobilization evoked by SFR and AITC in rat DRG (rDRG) neurons. Representative traces and pooled data of calcium response evoked by SFR,
AITC and capsaicin (CPS) in rDRG neurons pre‐exposed to HC‐030031 (HC03, 50 μmol/L), capsazepine (CPZ; 10 μmol/L), HC‐067047 (HC06;
30 μmol/L) or their vehicles (‐). B, Representative traces and pooled data of whole‐cell patch‐clamp inward currents evoked by SFR, AITC and
CPS in rDRG neurons. HC03 does not affect the responses evoked by CPS. C, Representative traces and pooled data of the calcium responses
evoked by SFR or AITC in mouse DRG (mDRG) neurons from Trpa1+/+ and Trpa1−/− mice. Veh is the vehicle of SFR. Dash (‐) indicates vehicles
of the different treatments. Data are mean ± SEM of n > 20 cells from 4 to 6 independent experiments (A, C) and n > 3 cells from 3 to 5
independent experiments (B). *P < 0.05 vs veh; §P < 0.05 vs SFR or AITC; one‐way ANOVA with Bonferroni post‐hoc correction
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These ex vivo findings were replicated in an in vivo setting.

Injection of safranal (0.2‐20 nmol) into the mouse paw (20 μL, i.pl.)

evoked a dose‐dependent acute nociceptive response (Figure 3D).

The response evoked by the highest dose (20 nmol) of safranal was

attenuated by pretreatment with systemic administration HC‐
030031 (100 mg/kg, i.p.) and was absent in Trpa1−/− mice (Fig-

ure 3E,F). Selectivity of safranal action for TRPA1 was strengthened

by the observation that the nociceptive response evoked by i.pl.

safranal (20 nmol) in Trpv1+/+ and Trpv4+/+ was maintained in

Trpv1−/− and Trpv4−/− mice (Figure 3G,H). Similarly, the nociceptive

response to safranal was unaffected by pretreatment with TRPV1

and TRPV4 antagonists (capsazepine and HC‐067047 respectively)

(Figure 3E).

3.4 | In vitro and in vivo exposure to safranal
attenuated TRPA1‐mediated responses

In hTRPA1‐HEK293 transfected cells, inward currents evoked by

AITC underwent a concentration‐dependent attenuation after pre‐
exposure to increasing concentrations of safranal (Figure 4A),

whereas KCl‐evoked currents were not affected (Figure 4A). In

cultured rat DRG neurons, pre‐exposure to safranal reduced inward

currents evoked by AITC, but not currents evoked by capsaicin, sug-

gesting that safranal promotes selective TRPA1 desensitization (Fig-

ure 4B). Specific desensitization of TRPA1 was also observed in

organ bath experiments. Pre‐exposure to safranal reduced contractile

responses of rat urinary bladder strips evoked by safranal and AITC,

but not those evoked by capsaicin, GSK1016790A or carbachol (Fig-

ure 4C). Finally, pre‐exposure to safranal was able to markedly

reduce CGRP release from rat spinal cord evoked by AITC, without

affecting the release evoked by capsaicin or GSK1016790A

(Figure 4D).

To test whether pre‐exposure to safranal could desensitize

TRPA1‐mediated responses in vivo, safranal was administered by the

intragastric route (i.g.) at two different doses (0.5‐1 mg/kg). One sin-

gle i.g. administration of either doses (day 1) did not affect the ability

of local (i.pl.) AITC, capsaicin or GSK1016790A to evoke acute noci-

ceptive responses (Figure 5A‐C). After administration of the two

doses of safranal for 3 consecutive days the nociceptive responses

evoked by i.pl. AITC were slightly reduced, but not those evoked by

capsaicin and GSK1016790A (Figure 5A‐C). After administration of

the two doses of safranal for 5 consecutive days the nociceptive

F IGURE 3 Safranal (SFR) activating TRPA1 in nociceptors causes neuropeptides release and pain. A, Concentration response curves of the
contractile response induced by SFR and AITC in rat urinary bladder. Pooled data of the contractile response evoked by SFR in rat urinary
bladder pre‐exposed to a combination of NK1/NK2 receptor antagonists (NK1/2 RA; L‐733,060 and SR48968, both 1 μmol/L), to a high
concentration of capsaicin (CPS des; 10 μmol/L), HC‐030031 (HC03, 50 μmol/L), capsazepine (CPZ; 10 μmol/L), HC‐067047 (HC06; 30 μmol/L)
or their vehicles (‐). B, Pooled data of CGRP release evoked by SFR from rat dorsal spinal cord after calcium removal (Ca2+ free), or after
capsaicin desensitization (CPS des; 10 μmol/L), or exposed to HC03 (50 μmol/L), CPZ (10 μmol/L) or HC06 (30 μmol/L). (C) CGRP release
evoked by SFR from dorsal spinal cord from Trpa1+/+ and Trpa1−/− mice. D, Dose‐dependent acute nociceptive response evoked by
intraplantar (i.pl.) injection (20 μL) of SFR in C57BL/6 mice. E, Pooled data of the acute nociceptive response evoked by SFR (20 nmol, i.pl.)
after intraperitoneal (i.p.) HC03 (100 mg/kg), CPZ (4 mg/kg), HC06 (10 mg/kg) or their vehicles (‐, 4% DMSO, 4% tween 80 in 0.9% NaCl). F‐H,
Acute nociceptive response evoked by SFR (20 nmol, i.pl.) in Trpa1+/+ and Trpa1−/−, Trpv1+/+ and Trpv1−/−, and Trpv4+/+ and Trpv4−/− mice.
Veh is the vehicle of SFR. Dash (‐) indicates vehicles of treatments. Data are mean ± SEM of 4‐6 independent experiments (A‐C) and n = 6
mice per group (D‐H). *P < 0.05 vs Veh; §P < 0.05 vs SFR; one‐way ANOVA with Bonferroni post‐hoc correction
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responses evoked by i.pl. AITC were markedly attenuated, the effect

of the highest dose of safranal being more pronounced (Figure 5A).

Nociceptive responses evoked by both capsaicin and GSK1016790A

were unaffected (Figure 5B,C).

4 | DISCUSSION

Present results show that two of the three main constituents of saf-

fron, safranal and its precursor, picrocrocin, target the mouse, rat and

human (native and recombinant) TRPA1, whereas the third con-

stituent, crocin, was completely inactive. The lower potency of picro-

crocin compared to safranal may depend on various factors. The

presence of two β substituents on the double bond and chemical

instability as compared to safranal38 could explain the lower reactivity

of picrocrocin. The failure to stimulate TRPV1 or TRPV4 channels

indicates that nociceptor activation by safranal is selectively mediated

by TRPA1. Interestingly, safranal failed to evoke any calcium response

in HEK293 cells transfected with mutant TRPA1 (3C/K‐Q) channel,

indicating that, similarly to other electrophilic and reactive ago-

nists,23,33 channel activation by the saffron constituent is mediated by

specific cysteine/lysine residues. Both potency and efficacy of the cal-

cium response evoked by safranal in cultured rat DRG neurons were

lower than that of AITC. In particular, the lower efficacy supports the

hypothesis that safranal may act as a partial TRPA1 agonist.

Peptidergic sensory neurons expressing TRPA1 exert a dual

afferent and efferent role, because upon stimulation they can both

signal pain to the brain and release from their peripheral terminals

the neuropeptides SP and CGRP, which mediate neurogenic inflam-

matory responses.13,39 One of these responses is the SP‐mediated

contraction of rat urinary bladder smooth muscle,40 which can be

also produced by TRPA1 activation in intramural sensory nerve ter-

minals.37 Here, we found that safranal produced a contraction mech-

anistically similar to that induced by AITC, because it was abrogated

after exposure to a high, desensitizing, concentration of capsaicin, in

the presence of a TRPA1 selective antagonist and in the presence of

a combination of NK1 and NK2 receptor antagonists. Notably, the

efficacy of safranal to target TRPA1 in the urinary bladder was lower

than that of AITC, further supporting a possible partial agonism of

the compound.

Results obtained in vitro were recapitulated in an in vivo set-

ting, where the proalgesic action of safranal was mediated exclu-

sively by TRPA1. Intraplantar injection of safranal elicited a

concentration‐dependent acute nociceptive response that was

TRPA1‐dependent, being selectively attenuated by TRPA1 antago-

nism and gene deletion. However, there is also indication that saf-

fron has beneficial effect in certain pain conditions.3,41 Furthermore,

safranal has been reported to attenuate pain‐like responses in animal

models of inflammatory and neuropathic pain.8–10 In particular, safra-

nal attenuated mechanical allodynia and thermal hyperalgesia in a

chronic constriction injury model,10 suppressed the second phase of

the orofacial pain induced by formalin42 and the late phase of the

carrageenan‐induced paw oedema.8 The apparent contradiction

between these findings and the ability of safranal to excite the

F IGURE 4 Safranal (SFR) causes
desensitization. A, Representative traces
and pooled data of whole‐cell patch‐clamp
inward currents of the concentration
dependant desensitization induced by SFR
in response to AITC and KCl in hTRPA1
HEK293. B, Representative traces and
pooled data of whole‐cell patch‐clamp
inward currents of the desensitization
induced by SFR in response to AITC and
capsaicin (CPS) in rat DRG (rDRG) neurons.
C, Pooled data of the desensitization
induced by SFR in the contractile response
evoked by SFR, AITC, CPS, GSK and
carbachol (CCh). D, Pooled data of the
desensitization induced by SFR in CGRP‐LI
release from rat spinal cord evoked by
AITC, CPS and GSK. Veh is the vehicle of
SFR. Data are mean ± SEM of n > 3 cells
from 3‐5 independent experiments (A, B)
and 4‐6 independent experiments (C, D).
§P < 0.05 vs AITC, SFR; one‐way ANOVA
followed by Bonferroni test. #P < 0.05 vs
AITC and SFR, Student's t test
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proalgesic TRPA1 may be explained considering that pre‐exposure to

safranal of cultured DRG neurons selectively attenuated AITC‐
evoked responses, without affecting TRPA1‐independent responses.

In vitro results were recapitulated by in vivo experiments, where

repeated administration (5 days) of i.g. safranal reduced the acute

nociceptive responses evoked by local AITC, leaving unaffected the

nociceptive responses evoked by TRPV1 or TRPV4 stimulation. Thus,

safranal attenuates the afferent function of nociceptors apparently

by promoting a process of homologous desensitization of the TRPA1

channel, which might contribute to the antinociceptive properties of

saffron. More recently, it has been demonstrated that TRPA1 is

expressed by Schwann cells, where it can amplify and sustain macro-

phage‐dependent neuropathic pain.19 Thus, it is possible that

safranal exerts its partial agonist and desensitizing activities at the

Schwann cell TRPA1, contributing in this manner to reduce neuro-

pathic pain.

Clinical investigations with saffron has reported headache as a

possible adverse reaction.4 In contrast with this observation, saffron

has been used by Indian traditional medicine to treat headaches.5

TRPA1 is preferentially expressed by peptidergic sensory neurons,

and upon its activation evokes the simultaneous release of the proin-

flammatory and proalgesic neuropeptides, SP and CGRP.21,43 CGRP

is now considered a major contributor of migraine pain as small

molecule CGRP receptor antagonists and monoclonal antibodies

against CGRP or its receptor have marked beneficial effects in

migraine.13,15 The observation that in strips rat urinary bladder and

in rat dorsal spinal cord slices pre‐exposure to safranal reduced

AITC‐evoked SP‐mediated contractile responses and CGRP release

respectively, without affecting TRPA1‐independent responses further

suggests that safranal attenuates the efferent and pro‐migraine func-

tion of peptidergic nociceptors.

We previously showed that upon in vitro or in vivo exposure

to other herbal preparations, such as isopetasin, contained in

butterbur [Petasites hybridus (L.) Gaertn.],29 and parthenolide, a

major constituent of Tanacetum parthenium,30 TRPA1‐expressing
trigeminal neurons undergo concentration‐ or dose‐dependent
desensitization. However, while isopetasin and parthenolide evoked

non‐selective desensitization of peptidergic nociceptors as they also

attenuated responses mediated by TRPV1 and TRPV4 activa-

tion,29,30 safranal seems to selectively reduce responses elicited by

TRPA1 agonism. The mechanism of the selective activity of safranal

is unknown. Different pharmacokinetic properties or distinct activa-

tion of intracellular signalling mechanisms may be the causes of the

diverse ability of the three herbal derivatives to desensitize the

channel, and these deserve further investigation. Nevertheless,

safranal, one major constituent of saffron extract, targets TRPA1

with a lower potency than full agonists and attenuates responses

mediated by TRPA1 activation by other stimuli. The dual action of

safranal on TRPA1 might contribute to the reported either detri-

mental or beneficial actions of the compound in animal models of

pain and of saffron in humans.

ACKNOWLEDGMENTS

We thank A.H. Morice (University of Hull, UK) for the hTRPA1‐
HEK293 cells, M.J. Gunthorpe (GlaxoSmithKline, UK) for the

hTRPV1‐HEK293 cells, N.W. Bunnett (Monash Institute of Pharma-

ceutical Sciences, Australia) for the hTRPV4‐HEK293 cells, D. Julius

(UCSF, CA USA) for the human TRPA1 wild‐type and human TRPA1

mutant (C619S, C639S, C663S, K708Q) cDNAs, and G. Cirino

(University of Naples, Italy) for PAR2 selective agonist, SLIGKV‐NH2.

We also thank Mary K. Lokken for her expert English revision. This

work was supported by grants from Regione Toscana, grant

Nutraceuticals 2014, “POFCADT”; Ministry for University and Scien-

tific Research (MiUR) Rome, Italy Grants PRIN 201532AHAE_003

(to P.G.).

F IGURE 5 Repeated treatment with systemic safranal (SFR)
causes TRPA1 desensitization. A‐C, Pooled data of the acute
nociceptive response induced by intraplantar (20 μL) AITC (A),
capsaicin (CPS) (B) or GSK1016790A (GSK) (C) after daily intragastric
administration of SFR (0.5‐1 mg/kg) in C57BL/6 mice. Veh is vehicle
of SFR. Data are mean ± SEM of n = 6 mice per group. *P < 0.05 vs
veh; §P < 0.05 vs AITC; two‐way ANOVA with Bonferroni post‐hoc
correction

LI PUMA ET AL. | 9



CONFLICT OF INTEREST

RP is fully employed at Chiesi Farmaceutici SpA, Parma, Italy. The

other authors declare no competing financial interests.

AUTHOR CONTRIBUTION

SLP, LL, EC, RP, PG, SM, RN and FDL designed experiments and

interpreted results. SLP, LL, SJM and VS, performed calcium experi-

ments. SLP, EC and R.P., performed electrophysiological experiments.

SLP, LL, SJM, IMM, EC and SM, performed neurochemical in vitro

assays. SLP, LL, SJM, IMM, SM, RN, and FDL, performed in vivo

experiments. RP, PG, RN and FDL wrote the manuscript.

ORCID

Romina Nassini https://orcid.org/0000-0002-9223-8395

REFERENCES

1. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsat-

sakis AM. The effects of Crocus sativus (saffron) and its con-

stituents on nervous system: a review. Avicenna J Phytomed.

2015;5:376‐391.
2. Abdullaev FI. Biological effects of saffron. BioFactors. 1993;4:83‐86.
3. Hausenblas HA, Heekin K, Mutchie HL, Anton S. A systematic

review of randomized controlled trials examining the effectiveness of

saffron (Crocus sativus L.) on psychological and behavioral outcomes.

J Integr Med. 2015;13:231‐240.
4. Moshiri M, Vahabzadeh M, Hosseinzadeh H. Clinical applications of

saffron (Crocus sativus) and its constituents: a review. Drug Res

(Stuttg). 2015;65:287‐295.
5. Ali Esmail Al-Snafi. The pharmacology of Crocus sativus ‐ A review.

IOSRPHR. 2016;6:08‐38.
6. Assimopoulou AN, Sinakos Z, Papageorgiou VP. Radical scavenging

activity of Crocus sativus L. extract and its bioactive constituents.

Phytother Res. 2005;19:997‐1000.
7. Boskabady MH, Tabatabaee A, Byrami G. The effect of the extract

of Crocus sativus and its constituent safranal, on lung pathology and

lung inflammation of ovalbumin sensitized guinea‐pigs. Phy-

tomedicine. 2012;19:904‐911.
8. Tamaddonfard E, Farshid AA, Eghdami K, Samadi F, Erfanparast A.

Comparison of the effects of crocin, safranal and diclofenac on local

inflammation and inflammatory pain responses induced by car-

rageenan in rats. Pharmacol Rep. 2013;65:1272‐1280.
9. Tamaddonfard E, Farshid AA, Maroufi S, et al. Effects of safranal, a

constituent of saffron, and vitamin E on nerve functions and

histopathology following crush injury of sciatic nerve in rats. Phy-

tomedicine. 2014;21:717‐723.
10. Amin B, Hosseinzadeh H. Evaluation of aqueous and ethanolic

extracts of saffron, Crocus sativus L., and its constituents, safranal

and crocin in allodynia and hyperalgesia induced by chronic constric-

tion injury model of neuropathic pain in rats. Fitoterapia.

2012;83:888‐895.
11. Zhu KJ, Yang JS. Anti‐allodynia effect of safranal on neuropathic

pain induced by spinal nerve transection in rat. Int J Clin Exp Med.

2014;7:4990‐4996.
12. Nilius B, Szallasi A. Transient receptor potential channels as drug tar-

gets: from the science of basic research to the art of medicine. Phar-

macol Rev. 2014;66:676‐814.

13. Nassini R, Materazzi S, Benemei S, Geppetti P. The TRPA1 channel

in inflammatory and neuropathic pain and migraine. Rev Physiol Bio-

chem Pharmacol. 2014;167:1‐43.
14. Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of

TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons

with adelta/c‐fibers and colocalization with trk receptors. J Comp

Neurol. 2005;493:596‐606.
15. Edvinsson L. CGRP receptor antagonists and antibodies against

CGRP and its receptor in migraine treatment. Br J Clin Pharmacol.

2015;80:193‐199.
16. Macpherson LJ, Geierstanger BH, Viswanath V, et al. The pungency

of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr

Biol. 2005;15:929‐934.
17. Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabi-

noids excite sensory nerve fibres through the TRP channel

ANKTM1. Nature. 2004;427:260‐265.
18. McNamara CR, Mandel-Brehm J, Bautista DM, et al. TRPA1 medi-

ates formalin‐induced pain. Proc Natl Acad Sci USA.

2007;104:13525‐13530.
19. De Logu F, Nassini R, Materazzi S, et al. Schwann cell TRPA1 medi-

ates neuroinflammation that sustains macrophage‐dependent neuro-

pathic pain in mice. Nat Commun. 2017;8:1887.

20. Trevisan G, Benemei S, Materazzi S, et al. TRPA1 mediates trigemi-

nal neuropathic pain in mice downstream of monocytes/macro-

phages and oxidative stress. Brain. 2016;139:1361‐1377.
21. Trevisani M, Siemens J, Materazzi S, et al. 4‐Hydroxynonenal, an

endogenous aldehyde, causes pain and neurogenic inflammation

through activation of the irritant receptor TRPA1. Proc Natl Acad Sci

USA. 2007;104:13519‐13524.
22. Bautista DM, Jordt SE, Nikai T, et al. TRPA1 mediates the inflamma-

tory actions of environmental irritants and proalgesic agents. Cell.

2006;124:1269‐1282.
23. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activa-

tion by reversible covalent modification. Proc Natl Acad Sci USA.

2006;103:19564‐19568.
24. McGrath JC, Lilley E. Implementing guidelines on reporting research

using animals (ARRIVE etc.): new requirements for publication in

BJP. Br J Pharmacol. 2015;172:3189‐3193.
25. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improv-

ing bioscience research reporting: the ARRIVE guidelines for report-

ing animal research. J Pharmacol Pharmacother. 2010;1:94‐99.
26. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses

using G*Power 3.1: tests for correlation and regression analyses.

Behav Res Methods. 2009;41:1149‐1160.
27. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4(‐/‐)

mice. Proc Natl Acad Sci USA. 2003;100:13698‐13703.
28. Nassini R, Fusi C, Materazzi S, et al. The TRPA1 channel mediates

the analgesic action of dipyrone and pyrazolone derivatives. Br J

Pharmacol. 2015;172:3397‐3411.
29. Benemei S, De Logu F, Li Puma S, et al. The anti‐migraine compo-

nent of butterbur extracts, isopetasin, desensitizes peptidergic noci-

ceptors by acting on TRPA1 cation channel. Br J Pharmacol.

2017;16:13917.

30. Materazzi S, Benemei S, Fusi C, et al. Parthenolide inhibits nocicep-

tion and neurogenic vasodilatation in the trigeminovascular system

by targeting the TRPA1 channel. Pain. 2013;154:2750‐2758.
31. Materazzi S, Nassini R, Andre E, et al. Cox‐dependent fatty acid

metabolites cause pain through activation of the irritant receptor

TRPA1. Proc Natl Acad Sci USA. 2008;105:12045‐12050.
32. Andre E, Campi B, Materazzi S, et al. Cigarette smoke‐induced neu-

rogenic inflammation is mediated by alpha, beta‐unsaturated aldehy-

des and the TRPA1 receptor in rodents. J Clin Invest.

2008;118:2574‐2582.
33. Macpherson LJ, Xiao B, Kwan KY, et al. An ion channel essential for

sensing chemical damage. J Neurosci. 2007;27:11412‐11415.

10 | LI PUMA ET AL.

https://orcid.org/0000-0002-9223-8395
https://orcid.org/0000-0002-9223-8395
https://orcid.org/0000-0002-9223-8395


34. Jaquemar D, Schenker T, Trueb B. An ankyrin‐like protein with

transmembrane domains is specifically lost after oncogenic transfor-

mation of human fibroblasts. J Biol Chem. 1999;274:7325‐7333.
35. Bhattacharya MR, Bautista DM, Wu K, Haeberle H, Lumpkin EA,

Julius D. Radial stretch reveals distinct populations of mechanosensi-

tive mammalian somatosensory neurons. Proc Natl Acad Sci USA.

2008;105:20015‐20020.
36. Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP‐like channel

expressed in nociceptive neurons, is activated by cold temperatures.

Cell. 2003;112:819‐829.
37. Andrade EL, Ferreira J, Andre E, Calixto JB. Contractile mechanisms

coupled to TRPA1 receptor activation in rat urinary bladder. Biochem

Pharmacol. 2006;72:104‐114.
38. Sanchez AM, Carmona M, Jaren-Galan M, Mosquera MI, Alonso GL.

Picrocrocin kinetics in aqueous saffron spice extracts (Crocus

sativus L.) upon thermal treatment. J Agric Food Chem. 2011;59:249‐
255.

39. Benemei S, Fusi C, Trevisan G, Geppetti P. The TRPA1 channel in

migraine mechanism and treatment. Br J Pharmacol. 2014;171:2552‐
2567.

40. Maggi CA, Patacchini R, Santicioli P, Giuliani S. Tachykinin antago-

nists and capsaicin‐induced contraction of the rat isolated urinary

bladder: evidence for tachykinin‐mediated cotransmission. Br J Phar-

macol. 1991;103:1535‐1541.

41. Ríos JLRMC, Giner RM, Mánez S. An update review of saffron and

its active constituents. Phytother Res. 1996;10:189‐193.
42. Erfanparast A, Tamaddonfard E, Taati M, Dabbaghi M. Effects of

crocin and safranal, saffron constituents, on the formalin‐induced
orofacial pain in rats. Avicenna J Phytomed. 2015;5:392‐402.

43. Dai Y, Wang S, Tominaga M, et al. Sensitization of TRPA1 by PAR2

contributes to the sensation of inflammatory pain. J Clin Invest.

2007;117:1979‐1987.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Li Puma S, Landini L, Macedo SJ Jr,

et al. TRPA1 mediates the antinociceptive properties of the

constituent of Crocus sativus L., safranal. J Cell Mol Med.

2018;00:1–11. https://doi.org/10.1111/jcmm.14099

LI PUMA ET AL. | 11

https://doi.org/10.1111/jcmm.14099

