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A B S T R A C T

Forecasting the time of failure of landslides at slope-scale is a difficult yet important task that can mitigate the
effects of slope failures in terms of both human lives and economic losses. Common applications include public
safety situations, where the risk is represented by dwellings built near active landslides or unstable cut slopes
that threaten streets and railways, and open-pit mines, for which accurate warnings are fundamental to safe-
guard workers and simultaneously avoid unnecessary interruptions of the extraction activities.

The scientific literature is populated by many methods, guidelines and approaches regarding forecasting the
time of failure or defining the conditions of imminent collapse. Thus, obtaining a synoptic view of the ad-
vantages and limitations of these different methodologies has become difficult. At the same time, innovations in
technology have opened new possibilities to the application of such techniques, which are examined here.

This paper discusses and classifies these methods, addressing their respective differences and peculiarities to
foster the usage even of less popular methods without overlooking the more scientific aspects and issues of
landslide forecasting. Finally, an overview of the future trends and challenges is presented to contribute to the
debate around this important topic.

1. Introduction

Estimating the risk that is represented by landslides on a global scale
is difficult. For instance, damage from landslides is usually attributed to
the events that triggered them (as with earthquakes), and small-scale
failures are often under-reported (Petley et al., 2005a). The true
number of fatalities may be slightly underestimated when victims die of
landslide-derived injuries weeks to months following the event (Petley,
2012). Estimates of human loss and economic cost are therefore vari-
able; safe evaluations consider that the average number of annual
fatalities is> 4300 per year worldwide (Froude and Petley, 2018). The
annual cost in countries such as Italy, the USA and Japan easily exceeds
$1 billion (Schuster and Highland, 2001; Klose et al., 2015) and glob-
ally is about $19.8 billion, which is about 17% of the average annual
global natural disaster losses (Haque et al., 2016); projections that are
based on the possible effects of climate change suggest that these
numbers will probably increase (Gariano and Guzzetti, 2016).

The United Nations International Strategy for Disaster Reduction
(UNISDR, 2006) addresses early warning systems as a powerful tool to
reduce risk in a vast range of fields, including landslides. One of the
main components of early warning systems is forecasting (DiBiagio and
Kjekstad, 2007; Intrieri et al., 2013).

Landslide forecasting consists in the prediction of a slope failure in
spatial and/or temporal terms. In the first case the aim is giving a
spatial probability of where an instability may occur. This is typically
carried out through susceptibility, hazard, or risk maps: the first ones
imply classifying, estimating the area or volume, and assessing the
spatial distribution of existing and potential landslides in the study
area; hazard maps are related to the frequency (i.e. annual probability)
of landslides; risk maps also assess the potential damage to the elements
at risk (Fell et al., 2008). Susceptibility maps are usually the result of
combining the weighted influence that a number of parameters can
have on the landslide predisposition, e.g. slope gradient, lithology, land
cover, aspect, drainage characteristics, etc. (Ayalew and Yamagishi,
2005; Van Westen et al., 2008; Bui et al., 2016; Le et al., 2018). Hazard
maps typically define the probability of occurrence from information
concerning the frequency of past events or from models that compute
the factor of safety (Dietrich and Montgomery, 1998; Salciarini et al.,
2006; Simoni et al., 2008; Rossi et al., 2013). The spatial prediction can
also include where and how the detached material will travel and
eventually deposit. This is often calculated with empirical or numerical
models (Chen and Lee, 2003; De Joode and Van Steijn, 2003;
Rickenmann, 2005; Antolini et al., 2016; McDougall, 2016). The topic
of spatial landslide prediction would require a deeper dissertation that
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is not within the scope of this paper.
Our focus, in fact, is on the temporal prediction of landslides, that

can be defined as the determination of the time of collapse of a land-
slide (or part of it) within an acceptable margin of error (where the
term “acceptable” is linked to the concept of acceptable risk; Fell,
1994). Temporal prediction can be performed at global/regional scale
or at slope-scale; the choice of the scale is usually linked to the choice of
the monitored parameters. In fact, different approaches exist to predict
the time of failure of landslides, depending on which parameter is
adopted to indicate probable imminent failure. Typically, regional scale
predictions can only be made using rainfall monitoring and a geo-
morphological, hydro-meteorological approach, while slope-scale pre-
dictions can take advantage of a geotechnical approach relating dis-
placement or other kinds of data to the time of failure. Although
forecasting methods employing rainfall data exist also for slope-scale
applications, Segoni et al. (2018) found out that only 4.2% of the
rainfall-based methods they reviewed was conceived for slope-scale,
while most of them were for basin or regional scale (Shieh et al., 2009;
Brunetti et al., 2010; Ponziani et al., 2012).

The most common use of precipitation data is to derive rainfall
thresholds. These typically take the form of rainfall-intensity thresh-
olds, thresholds that are based on the total event rainfall, event-dura-
tion thresholds, event-intensity thresholds, and thresholds that are
based on antecedent precipitation (Guzzetti et al., 2007). All these
methods rely on the fact that rainfall is a major trigger of slope in-
stability. Their widespread use is related to the possibility of making
temporal predictions at the regional scale and our ability to perform
relatively accurate weather forecasts (Stähli et al., 2015; Piciullo et al.,
2018). On the other hand, if the slope-scale detail is needed, since these
approaches adopt an indirect indicator of instability (rainfall), they are
more prone to false or missed alarms. Such limitation may not always
satisfy the requirements of an acceptable margin of error.

Other forecasting methods can provide slope-scale predictions of the
time of failure and exploit acoustic emissions, rockfall frequency, pore-
water pressure or different indicators as tell-tale signs that suggest that
the slope is experiencing structural damage and may be prone to failure
(Jurich and Miller, 1987; Szwedzicki, 2003; Rosser et al., 2007; Vilhelm
et al., 2008). Although such parameters may be qualitatively con-
sidered during expert evaluations of failure risk, their inclusion within
codified early warning systems is not common practice.

Finally, the most reliable (and most commonly used) parameters for
forecasting the time of failure at the slope-scale are the slope dis-
placement and its derivatives (velocity and acceleration). These kine-
matic parameters are directly related with the stability conditions of the
moving mass (Lacasse and Nadim, 2008), and modern technology
provides plenty of proficient instruments to accurately monitor them in

real time (Casagli et al., 2017).
From here on, unless otherwise specified, we will refer to prediction

or forecasting only in temporal terms. In particular, this paper focuses
on slope-scale methods based on kinematic parameters. Especially at
this scale, such approaches are still not frequently adopted in risk-
management strategies for civil protection, mainly because of the need
for a dedicated and often expensive monitoring system (Iovine et al.,
2006; Intrieri et al., 2012), but represent a focal point in the mining
industry, where concerns regarding workers' safety and the (un-
necessary) interruption of activities justify the cost for cutting-edge
monitoring systems; in fact, most of the applications and interesting
developments of forecasting methods that are based on slope kine-
matics are documented in this sector (see Section 2.5 “Applications”).

Based on all these considerations, the importance of delving into
time-of-failure forecasting is apparent. Nonetheless, a recent work that
systematically explains, compares and comments on the main methods,
with their respective advantages and limitations, is currently lacking in
the scientific literature. Therefore, this paper aims to provide a state-of-
the-art review for researchers and risk-management operators alike.

2. Classification of kinematics-based failure-forecasting methods

For our purposes, failure (or rupture) is defined as a complete
paroxysmal collapse of the material. Although the described methods
have sometimes been successfully applied to a variety of cases such as
rock specimens (Mufundirwa et al., 2010; Hao et al., 2016), soil spe-
cimens (Petley et al., 2005b; Dok et al., 2011), man-made walls (Carlà
et al., 2017b) or volcanic eruptions (Voight, 1988; De la Cruz-Reyna
and Reyes-Davila, 2001; Smith and Kilburn, 2010; Boué et al., 2015),
these methods are mostly applied to unstable slopes. Thus, landslides
are used as the main references, but the same concepts are still valid in
other contexts.

The rationale for most time-of-failure predictions is that slopes ex-
perience displacements that can be described with a creep curve before
rupture (Tavenas and Leroueil, 1981). Creep is deformation that varies
with time, occurring at constant, largely plastic stress (i.e., most of the
deformation is not recoverable after an initial elastic, recoverable
strain). Three stages are traditionally individuated, although some au-
thors explained the second stage for brittle materials as a linear su-
perimposition of the first and third stages or a transition between the
two (Main, 2000; Amitrano and Helmstetter, 2006). Nevertheless, ac-
cording to the classic interpretation, the first stage is primary (or de-
celerating or transient) creep, with the strain rate decreasing logarith-
mically, followed by secondary (or steady-state) creep with a constant
strain rate, and tertiary (or accelerating) creep with an increasing creep
rate, which leads to rupturing (Fig. 1).

Fig. 1. Conventional three-state interpretation of creep behaviour.
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Detailed dissertations regarding creep can be found in Terzaghi
(1950), Saito (1969), Zavodni and Broadbent (1978), Varnes (1982),
Cruden and Masoumzadeh (1987), Dusseault and Fordham (2008), and
Dok et al. (2011).

Time-of-failure prediction methods that are based on kinematic
parameters can be classified in two groups:

• Empirical methods: these methods are based on the observation that
the displacement velocity critically increases before rupture and
usually extrapolate the time of failure through geometrical argu-
ments. Equations are also derived and sometimes described as par-
ticular cases of equations that are defined with semi-empirical
methods.

• Semi-empirical methods: the starting point of these methods is a
general equation that relates the displacement rate to the accelera-
tion, with some empirical constants used.

Typically, the above methods are applied on sliding, toppling and
compound landslides, with no intrinsic restrictions to the size, state of
activity and type of material (Intrieri and Gigli, 2016). In this paper,
examples of rarer applications (rockfalls, wedge failures, slow earth
flows) will also be presented.

Other methods are often associated with landslide prediction even
though they do not actually provide an estimation of the time of failure:

• Numerical methods: this category encompasses a wide range of
methods that analyse and model a time series (for example, de-
composing it into several components, often with machine learning)
to predict future displacement values based on past observations.

• Methods for the definition of thresholds: this group includes diverse
approaches that individuate quantitative signals to suggest a prob-
able failure but cannot provide a time frame for such an occurrence.

Within each group, further classifications would be questionable
and not rigorous, so the methods will be described in a broad chron-
ological order and grouped together based on similarity.

2.1. Empirical methods

Without considering the very first attempts at time-of-failure pre-
diction in the literature (Heim, 1932; Jäggli, 1928; Eberhardt et al.,
2008; Bonnard, 2006; Federico et al., 2015), the first notable approach
regarding failure forecasting was developed by Saito and Uezawa
(1961), who introduced a method to forecast the remaining time to
slope failure from the secondary creep curve (Saito and Uezawa, 1961;
Saito, 1965) or, more successfully, from the tertiary creep curve (Saito,
1969).

Saito and Uezawa (1961) proposed an empirical formula based on
the relationship between the constant strain rate ε ̇ (expressed in
10−4 min) and the time left to failure or life expectancy tL (expressed in
minutes) Eq. (1); tL is related to the time of failure (tf) by the relation
tf= tL+ ti, with ti= time of prediction.

= ±log t ε2.33–0.916 log ̇ 0.5910 L 10 (1)

The reason why the strain rate was used instead of the displacement
was because of the limitations that were inherent to the available
monitoring instruments at the time.

On the other hand, Saito (1969) developed an empirical, graphical
method based on the tertiary creep curve (Fig. 2). According to this
method, three points, specifically, A1(ΔD1, t1), A2(ΔD2, t2), and A3(ΔD3,
t3), are selected to have an equal difference of displacement ΔD (that is,
they must be equally spaced on the Y axis). A1′ and A3′ are projections
of A1 and A3, respectively, on a line that passes through A2 and is
parallel to the time axis.M and N are the midpoints of A1′A2 and A1′A3′,
respectively. Then, the time of failure tf can be obtained as the abscissa
of the intersection of a straight line that passes through A1′ and N′ with

a straight line that passes through M' and is parallel to the time axis.
This procedure was justified through geometrical arguments.

Although Saito recommended a graphical approach, the advent of
calculation sheets and algorithms has since made corresponding nu-
merical solutions more practical Eq. (2).

=
−

− +
t

t t t
t t t2 ( )f

2
2

1 3

2 1 3 (2)

Hayashi et al. (1988) derived an equation to predict failure at an
early stage of tertiary creep (that is, earlier than most other methods,
which work better when applied during the latest stage), based on the
observation that a higher initial velocity at the beginning of the tertiary
creep indicates a closer time to failure Eq. (3).

= ∆t c t( )L
m (3)

where c and m are constants whose values (2.13 and 1.6, respectively)
have been empirically calculated from seven natural slope failures, and
Δt is the required time interval for a displacement of 10 cm starting
from the beginning of the tertiary creep. This procedure has never been
popular, and how much the values for c and m can vary is not known
without extensive application to other case histories. The main feature
of this method is its nominal ability to perform early predictions, al-
though this feature means that forecasts cannot be updated in case of
trend changes and the monitoring data must be sufficiently long to
catch the beginning of tertiary creep.

Fukuzono (1985a, 1985b, 1990) further developed Saito's idea by
proposing a simpler graphical method, which is by far the most used
and simple approach to find a slope's time of failure.

This method is valid for tertiary creep, after that the landslide un-
dergoes acceleration at the time t0 (onset of acceleration). At this point,
two possible outcomes can occur (showed in Fig. 3):

a) the velocity (v) increases asymptotically until the landslide collapses
at the time tf, when the velocity is theoretically v→∞;

b) after an initial acceleration, the velocity decreases and the landslide
reaches another equilibrium state without collapsing.

Fukuzono (1985a) calculated that the inverse velocity (1/v or Λ)
corresponds to the following in cases of slow and continuous de-
formation under a constant load until failure Eq. (4):

≡ =Λ 1 v A α 1 t t/ [ ( – )] ( – )1 α 1
f

1 α 1/( – ) /( – ) (4)

where A and α are two values that are found empirically; recent studies
revealed that A and α are not independent from each other, varying
with the over-consolidation ratio and the type of material (Minamitani,
2007; Dok et al., 2011). Eq. (4) is derived from the linear correlation
between the logarithm of acceleration and the logarithm of velocity
during tertiary creep, as found by Fukuzono and Terashima (1982) and
Fukuzono (1984).

The graphical method that was described by Fukuzono (1985a)
consists of plotting the inverse of the velocity versus time Eq. (4). As
long as the landslide is at equilibrium, the plot displays a line that is
parallel to the time axis; when the velocity asymptotically increases, the
plot displays a line whose extrapolation intersects the time axis (1/v→
0) when v→∞. The time that corresponds to the extrapolated inter-
section indicates the time of failure. If α=2, the plot is linear and the
time of failure equals the predicted time from Saito's (1969) method. In
this case, a linear regression is used for the extrapolation.

When α > 2 or 1 < α < 2, the inverse velocity curve is convex or
concave, respectively, therefore Fukuzono (1985a) suggested a dif-
ferent graphical method instead of the linear regression (Fig. 4). This
approach is rarely used because α typically does not differ much from 2
and the simplification of a linear fit is preferred, provided that it is
updated on an ongoing basis to identify the onset of trend changes
(Rose and Hungr, 2007). This method consists of drawing a tangent line
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to the curve at an arbitrary point Λ1 that corresponds to time t1. The
tangent crosses the horizontal axis at point tc1. Then, the point P1 is
plotted vertically above Λ1 so that the segment t1Λ1 equals the segment
t1tc1. This procedure is repeated for another point Λ2. The abscissa of tf
at which a straight line connecting P1 and P2 crosses the horizontal axis
is the time of failure.

Petley et al. (2002) and Petley (2004) related the presence of a
linear trend (α=2) to brittle behaviour that was associated with crack
formation and first-time failures. On the other hand, Intrieri and Gigli
(2016) provided examples of concave-shaped inverse velocity plots that
were attributable to first-time failures in brittle materials and linear
trends to reactivated landslides (i.e. landslides where the movement
occurs along the same sliding surface where it already occurred in the
past). De la Cruz-Reyna and Reyes-Davila (2001) applied a visco-elastic
material model to the artificial landslides (5 m-high scaled models built
in a laboratory) that were studied by Fukuzono (1985a), and concluded
that the inverse velocity at the time when the load conditions change
cannot be a straight line when the initial stage corresponds to in-
creasing stress (for example, caused by rainfall) and the final stage
corresponds to constant stress (for example, because the soil has

reached saturation).
Fukuzono (1985a) applied his method for artificial landslides in

loam or sand on slopes that were characterized by different angles and
shape. Notably, the failures were triggered by artificial rainfall; al-
though this setup did not comply with the requirement of a lack of
external factors (condition necessary for a theoretical creep curve), the
predictions were still correct.

In the mining industry, the graphical method that assumes α=2 is
often integrated within the trigger action response plan (TARP; Read
and Stacey, 2009; Dick et al., 2015) because of its immediate visual
feedback. For this reason, the mathematical solution for α=2 that was
provided in Fukuzono (1985a) is seldom employed Eq. (5).

= −
−

t t Λ t Λ
Λ Λ

( ) ( )
f

2 1 1 2

1 2 (5)

Because of the popularity of Fukuzono's (1985a) method, several
authors provided suggestions and guidelines for proficient usage.

This method relies on the inverse value of a derivative parameter
(velocity), so the time series experience a high degree of variability, and
instrumental or natural noise in displacement measurements

Fig. 2. Graphical approach for determining the time of failure in the tertiary creep range (modified after Saito, 1969).

Fig. 3. Kinematic evolution of a landslide; after a period of relative stability
that is characterized by constant velocity v0 during secondary creep (1), if
tertiary creep begins, the landslide either accelerates until collapse (2a) or ac-
celerates and then reaches a new equilibrium (2b).

Fig. 4. Graphical method for determining the time of failure when α≠ 2
(modified after Fukuzono, 1985a).
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propagates when calculating the inverse velocity. For this reason, Carlà
et al. (2017b) recommend performing moving averages to the velocity
values (vt), testing with different values for the number of samples (n)
Eq. (6).

=
+ +…+− − −v

v v v
nt

t t t n1 ( 1)

(6)

To address the variability of predictions from noise, Carlà et al.
(2017b) suggested using two different moving averages in parallel, each
with a higher (long-term moving average, LMA) or lower (short-term
moving average, SMA) value of n. Simultaneously projecting the best-
fits of both averaged time series will yield two diverse tf values, with the
difference between tf(LMA) and tf(SMA) being indicated as Δ; here, as-
suming tf(SMA) < tf(LMA), tfw is determined to be between the following
range Eq. (7):

⎡
⎣

− + ⎤
⎦

t tΔ
2

; Δ
2f SMA f LMA( ) ( ) (7)

This equation permits us to define a failure window that represents
the time frame during which the occurrence of the collapse event is
considered most probable.

According to Rose and Hungr (2007), the inverse velocity method is
not suitable for predictions over a long period, which should be con-
stantly updated to assess the significance of apparent trend changes. On
the other hand, Intrieri and Gigli (2016) suggested reiterating the
predictions and considering the entire dataset of forecasted times of
failure instead of focusing only on the most recent times. These authors
applied this procedure to the methods of Saito (1969), Fukuzono
(1985a) and Mufundirwa et al. (2010) and discovered that the most
recent displacement monitoring data increase the confidence when
estimating the time of failure, but do not necessarily provide more
accurate predictions than the older data (provided that predictions are
started after the initiation of tertiary creep). In fact, if ongoing pre-
dictions are plotted against the time when such predictions are made
(prediction plots), the latest forecasts usually either over- or under-
predict the time of failure, after a period during which the forecasts
oscillate around this time (Sornette et al., 2004; Venter et al., 2013;
Intrieri and Gigli, 2016). Therefore, an averaged value of the entire
series of forecasts (eliminating outliers and unreasonable values) can
provide better results than only the latest predictions.

Starting from the same theoretical basis as Saito and Fukuzono,
Azimi et al. (1988) proposed another graphical method (Fig. 5) that was
developed from Asaoka (1978), who proposed this approach to assess
the final settlement in an edometric test. This method consists of plot-
ting displacements versus time and individuating segments of equal
displacement (ΔD). As the velocity increases, these segments will be
subtended by increasingly shorter time intervals Δt until Δt → 0

(Fig. 5a). Thus, the final and initial instants of this time interval (ti and
ti-1, respectively) tend to be equal. By plotting ti versus ti-1 during the
tertiary creep, data will be roughly aligned on a straight line. The time
of failure coincides with the ti that corresponds with the intercept of this
line with the line that represents the identity (ti = ti-1) (Fig. 5b). The
extrapolation of this line can enable a timely forecast. Azimi et al.
(1988) stressed the importance of choosing only the most recent data
because older data may increase the error in the prediction. This
method coincides with Fukuzono's (1985a) when α=2, but no appli-
cations are found in the literature because of its more complicated
implementation.

Li et al. (1996) derived an inverse Verhulst function to predict the
time of failure of two landslides Eq. (8):

= −
−

+D
m

m nt t
m nt t

n1 ln ( )
( )

0

0
0 (8)

where failure is expected to occur for displacement D→∞, with m and
n corresponding to parameters that represent the best fit of the mon-
itoring data.

More recently, Mufundirwa et al. (2010) continued the tradition of
Japanese scholars researching in this field and developed a completely
new method “with minimal sensitivity to different lithology, sizes/vo-
lumes of failure and more importantly to failure mechanisms”. These
authors started from Eq. (9), which was first proposed by Fukui and
Okubo (1997) and represents strain divergence in the terminal phase of
creep failure in rocks.

= − − +ε B log t t C( )f (9)

where ε is the strain, and B and C are constants. Then, these authors
replaced the strain ε with the displacement D and differentiated Eq. (9)
with respect to the time t, to obtain the following Eq. (10):

=
−

dD
dt

B
t tf (10)

where the left side of Eq. (10) represents the velocity. By multiplying
both sides of Eq. (10) by the life expectancy tf – t, the following Eq. (11)
is finally obtained.

= −tv t v Bf (11)

This equation is a straight line, where the product between time and
velocity (tv) is the dependent variable (y), v is the independent variable
(x), B is the intercept and tf is the angular coefficient of the line.
Therefore, we must plot the velocity data (x) versus the velocity times t
(y) and calculate the angular coefficient of the resulting line (Fig. 6) to
predict the time of failure; for this reason, this method was termed by
the authors as “SLO” (from “slope”).

Eq. (11) can be rewritten as a function of tf as follows Eq. (12):

Fig. 5. a: Displacement curves of the final stages before rupture; b: variations in ti with respect to ti−1 (modified after Azimi et al., 1988).
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= +t t B
vf (12)

Mufundirwa et al. (2010) showed that their method provided reli-
able predictions where structural failure (rupture plane) was dominant.
These results were more conservative than those from Fukuzono's
method. Like Fukuzono's approach, also the method developed by
Mufundirwa et al. appears to be scale-independent.

Zavodni and Broadbent (1978) developed another method when
studying the Liberty Pit slope failure, which showed that data in a log
(velocity)-time plot were aligned on a straight line. The ratio between
the slope velocity at the middle point between the onset of acceleration
and the failure (vmp) and the velocity at the onset of acceleration (vOOA)
produced a constant (K). The same ratio was calculated for five other
slope failures, producing an average K value of 7.21 with a standard
deviation of 2.11 Eq. (13).

=K
v

v
mp

OOA (13)

From Eq. (13), the following Eq. (14) could be derived according to
the semi-log relationship between the time and velocity.

=v K vf OOA
2 (14)

where vf is the velocity at failure. The time of failure can then be de-
termined by extrapolating the log(velocity)-time line until vf is reached.

This method is simple but has two major drawbacks. First, a sta-
tistically significant validation is necessary to assess the range of var-
iations in K. Because K is raised to the power of 2, a slight variation in
its value can determine critical differences in the calculation of vf.
Second, the on-time recognition and precise determination of the onset
of acceleration becomes decisive.

2.2. Semi-empirical methods

The stages that precede failure represent the progressive degrada-
tion of a material and, during these stages, parameters such as the
displacement may display a rate of growth that follows a common
pattern, as shown above. This can represent an underlying physical law
that, if completely understood, could provide a theoretical model to
exactly link such parameters to the failure. At present, no knowledge
exists regarding how to physically describe the process that leads to
failure; in fact, the constitutive relationships that are typically used in
numerical modelling to assess slope stability solve for the stress, strain
and displacement but not the time (Eberhardt, 2008). Therefore, the
only option, apart from the phenomenological black-box models that
were described in the previous section, is to rely on semi-empirical

approaches.
The method by Voight (1988, 1989a, 1989b), which is a mathe-

matical generalization of Fukuzono's solution, represents the best at-
tempt to provide a law of general validity for this purpose Eq. (15).

= AΩ̈ Ω̇α (15)

where α and A are empirical constants and Ω indicates any measurable
quantity that appropriately describes the phenomenon. The latter can
be interpreted in terms of geodetic observations (such as length
changes, fault slip, strain, angular changes, or the number of fracturing
events), seismic quantities (such as the square root of the cumulative
energy release, also called the Benioff strain) or geochemical observa-
tions (such as gas-emission rates or chemical ratios) (Voight, 1988). Ω̇
(or dΩ/dt) and Ω̈ (or d2Ω/dt2) represent the “velocity” and “accelera-
tion” of Ω, respectively.

This equation has been successfully applied with hindsight to de-
termine the eruption time of Mt. St. Helens in 1982 (Voight, 1988) by
using different parameters, and is reportedly valid for many different
materials other than rocks and soils, such as ice, metals, alloys, concrete
and polymers.

Voight assumed that failure occurs when Ω̇ reaches an estimated
threshold value Ω̇f , whereas Fukuzono considered this value to be in-
finite; therefore, the predicted time to failure when using Voight's
equation is more conservative. A method to estimate this threshold for
large rockslides was proposed by Crosta & Agliardi (2002).

Considering = ∞Ω̇f under Fukuzono's (1985a) assumption, Eq.
(15), which is expressed in terms of tf, becomes the following Eq. (16):

=
⎡

⎣
⎢
⎢

−
−

⎤

⎦
⎥
⎥

+
− −

t
A α

t
Ω̇ Ω̇

( 1)f

α
f

α(1 ) (1 )

(16)

Voight's solution is only usable when the data are characterized by
continuous acceleration and constant external conditions. In fact, the
model fails, or becomes less accurate, when the external conditions are
not time invariant, and deviations that are induced by variations in
temperature and rainfall regimes occur (Crosta & Agliardi, 2002). To
extend analyses to deformation under increasing stress, Kilburn (2012)
proposed the following Eq. (17) and tested it on pre-eruptive data from
Hawaii.

= − −k t tΩ̇ ( )f
β (17)

where k=[A(α− 1)]1/(1−α) and β=1/(α− 1).
The major drawback of Eqs. (15) and (17) is represented by the

necessity of determining two empirical constants α and A. These con-
stants are the same as those in Fukuzono's method, but no graphical
solution can be applied in this case. Although Voight's method is often
regarded as furnishing the mathematical background of Fukuzono's
method, it is rarely applied to real landslide-emergency cases.

Several authors provided experimental values for such constants
(Table 1); in particular, A spans over 4 orders of magnitude. Segalini
et al. (2018), who studied 26 different pre-failure landslide time series,
found that A tends to assume particularly high or low values as α di-
verges from 2. While α shows moderate variation (roughly between 1
and 3 but is usually close to 2), this characteristic can be sufficient to
sensibly affect the results of a prediction. Furthermore, more recent
studies of eruption precursors suggested that α is not constant with time
but increases from ≈1 to ≈2 as fracturing progresses (Cornelius and
Voight, 1995; Kilburn and Voight, 1998; Kilburn, 2003; Smith et al.,
2009; Bell and Kilburn, 2012).

To solve this issue, α is often assumed to equal 2, thus simplifying
Eq. (15) into the following Eq. (18) (Lavallée et al., 2008).

= −A t t1
Ω̇

( )f (18)

Alternatively, Hao et al. (2016; 2017) proposed an interesting so-
lution Eq. (19) from Eq. (15), with the additional value of providing a

Fig. 6. Plot for predicting failure with the SLO method (modified after
Mufundirwa et al., 2010).
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graphical solution similar to Fukuzono's method (Fig. 7).

= − −− α t tΩ̇Ω̈ ( 1)( )f
1

(19)

This equation is also a straight line. By plotting −Ω̇Ω̈ 1 against t and
extrapolating the trend line, its intercept with the time axis provides tf.
So far, this method has only been applied to rock-specimen tests and
volcanic eruptions, but no theoretical constraints for successful appli-
cations to landslides exist either. Moreover, this equation bypasses the
need for knowing the values of the constants in advance and imple-
ments a well-known graphical approach, making this method a pro-
mising tool for failure forecasting.

2.3. Numerical methods

Numerical methods are used to describe the behaviour of a landslide
through mathematical and/or statistical arguments. Rather than fore-
casting the time of failure, the aim is to predict a landslide's future
displacements, often taking advantage of machine-learning models. The
basic idea is that measured displacements can be compared to dis-
placements that are simulated by a reference model to confirm that the
slope is responding as initially predicted (Newcomen and Dick, 2015).
This approach is typically explicated by assessing whether the newly
acquired deformation data comply with a pre-determined confidence
interval of the predicted displacement. This analysis methodology is
usually challenging and finds application only for the specific landslide

Table 1
Empirical values for the parameters α and A from different authors; the values marked with an asterisk have been calculated by Segalini et al. (2018) starting from the
data published in the corresponding paper indicated in the “references” column. References are listed in alphabetical order.

A α Event References

0.0205* 1.96* Delabole quarry landslide Boyd et al., 1973
0.3944 1.4166 Landslide on cut slope Bozzano et al., 2014
0.1062 1.8059 Landslide on cut slope Bozzano et al., 2014
0.0994 1.4209 Landslide on cut slope Bozzano et al., 2014
2.7188 1.2323 Landslide on cut slope Bozzano et al., 2014
58.4589 0.6217 Landslide on cut slope covered with spritz beton Bozzano et al., 2014
43.7721 0.7321 Landslide on cut slope covered with spritz beton Bozzano et al., 2014
66.6634 0.9204 Landslide on cut slope covered with spritz beton Bozzano et al., 2014
20.9233 0.9064 Landslide on cut slope covered with spritz beton Bozzano et al., 2014
2.6756 1.1491 Landslide on cut slope covered with spritz beton Bozzano et al., 2014
0.0024* 1.97* Hogarth pit landslide Brawner and Stacey, 1979
0.0191* 2.00* Nevis Bluff landslide Brown et al., 1980
0.102 1.994 Mount Beni landslide Carlà et al., 2017b
– 1.47–2.42 – Cornelius and Scott, 1993
– ≈1.5 – Cornelius and Voight, 1995
1–1310.345 1.63–2.59 – Dok et al., 2011
– 1.5–2.2 – Fukuzono, 1985a
0.0024* 2.03* Preonzo landslide Geopraevent, 2012
0.0016* 1.94* Afton mine landslide Glastonbury and Fell, 2002
0.0343* 2.07* Tuckabianna West landslide Glastonbury and Fell, 2002
– 2.96 Test by monotonically increasing the boundary displacement Hao et al., 2013
– 2.5 Creep-relaxation tests Hao et al., 2014
– 3.0 Fibre-bundle models loaded by increasing stress Hao et al., 2016
– 2.0 – Heap et al., 2011
0.0777* 1.93* Maoxian landslide Intrieri et al., 2018a
0.0779* 1.96* Cavallerizzo di Cerzeto landslide Iovine et al., 2006
0.0008* 2.00* Xintan landslide Keqiang and Sijing, 2006
– ≈2.0 – Kilburn and Petley, 2003
0.1371* 2.05* Town of Peace River landslide Kim et al., 2010
0.0109* 2.00* Huanglongxi landslide Li et al., 2012
0.0135* 1.77* La Saxe landslide Manconi and Giordan, 2016
(α – 1.814)/0.1781 1.85–2.46 – Minamitani, 2007
0.0767* 1.94* La Chenaula landslide Noverraz and Bonnard, 1992
0.1570* 2.03* Selborne landslide Petley, 2004
0.0119* 2.00* Betze Post SE landslide Rose and Hungr, 2007
0.0173* 2.01* Betze Post SW landslide Rose and Hungr, 2007
0.0106* 1.94* Puigcercòs Royán et al., 2015
0.0056* 1.96* Asamushi landslide Saito, 1969
0.0098* 2.01* Dosan landslide Saito, 1969
0.2813* 1.85* Ooigawa Saito, 1969
0.0548* 1.53* Braced-up cliff landslide Schumm and Chorley, 1964
– 3.3 Mount Pinatubo eruption Smith and Kilburn, 2010
– 2.1 Mount Pinatubo eruption Smith and Kilburn, 2010
0.0319* 1.97* Vajont landslide Sornette et al., 2004
0.0400* 1.90* Ohto landslide Suwa et al., 2010
0.0038* 2.15* Bomba landslide Urciuoli and Picarelli, 2008
80 1.6 Bezymianny eruption (cumulative seismic strain release) Voight, 1988
– 1.0 Vajont landslide (3 years before failure) Voight, 1988
0.037 2 Vajont landslide (near failure) Voight, 1988
0.1 1.4 Mt. St. Helens (fault movement) Voight, 1988
0.059 1.96 Mt. St. Helens (line length change) Voight, 1988
0.002 ≈2.0 Mt. St. Helens (tilt) Voight, 1988
– 1–3 – Voight, 1989a
– 1.74–2.1 – Voight, 1989b
0.0004* 2.10* Chuquicamata open-pit mine landslide Voight and Kennedy, 1979
– 1.70–2.13 – Yoshida and Yachi, 1984
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for which it has been calibrated. Numerical methods may be considered
particularly suitable to landslides that experience periodic variations in
the displacement rate. Nonetheless, this field has experienced a great
pulse of research development in the very recent past, even to the point
that the literature seems to be quite redundant and not conclusive.
Models can also include variables such as the groundwater level, pore
pressure, or rainfall intensity–duration. A few such examples are hereby
cited.

Chousianitis et al. (2014) introduced an empirical estimator of co-
seismic landslide displacements based on Newmark's sliding block
model. This topic was also addressed by Du and Wang (2016), who
formulated a one-step Newmark displacement model to estimate
earthquake-induced slope displacement based on four seismological
parameters.

Liu et al. (2014) presented a comparative study on landslide non-
linear displacement prediction by means of computational-intelligence
techniques. Specifically, these authors evaluated the ability of the
support vector machine, relevance vector machine, and Gaussian pro-
cess theories to fit and predict nonlinear displacements of the Baishuihe
landslide in China and the Super-Sauze landslide in the French Alps.
Also Miao et al. (2018) proposed a support vector regression (SVR)
algorithm to model three pre-defined terms (trend, periodic, and
random) of the Baishuihe landslide. In the same area, Zhou et al. (2016)
had previously described a particle swarm optimization (PSO; Eberhart
and Kennedy, 1995) and support vector machine coupling model to
represent the relationship between the rainfall/reservoir level and the
displacement of the Bazimen landslide. Similarly, Zhou et al. (2018)
used PSO to optimize the parameters of a kernel extreme learning
machine (KELM; Huang et al., 2012) to improve predictions (PSO-
KELM). Du et al. (2013) adopted a back-propagation neural-network
model with selected rainfall–water level factors to predict the dis-
placements of active colluvial landslides in the Three Gorges Reservoir
in China. Yao et al. (2015) argued that the applicability of static models
such as feed-forward neural networks is quite limited in landslide-
prediction tasks and therefore proposed the use of recurrent neural
networks that were trained into dynamic predictors of landslide dis-
placement. Krkač et al. (2017) presented a methodology to predict
landslide movements with a machine-learning algorithm based on re-
gression trees, which was calibrated to two years of monitoring data of
landslide movement, groundwater levels, and precipitation at the
slowly moving Kostanjek landslide in Croatia; the displacements were
successfully predicted for periods of up to 30 days.

Another exploited field is the use of displacement data to train and

test neural networks. For example, Neaupane and Achet (2004) devel-
oped a back-propagation neural network (BPNN) model to predict
ground movements at a landslide site in Nepal, which was trained on
input variables that typically control the stability of a slope (such as
permeability, steepness, and soil-strength parameters). Chen and Zeng
(2012) proposed an improved BPNN to consider the nonlinear com-
ponents that are inherent to a trend of landslide displacement. On the
other hand, Gao and Feng (2004) introduced a combined Grey System
and Evolutionary Neural Network (ENN) to decompose the mono-
tonously increasing nature of time series of landslide displacements into
separate “trend” and “deviation” components.

Corominas et al. (2005) attempted to predict the displacement and
velocity of the Vallcebre landslide by solving the momentum equation,
in which a viscous term (Bingham and power law) was added.
Bernardie et al. (2015) used a combined statistical-mechanical model to
predict changes in landslide displacement rates from observed changes
in rainfall amounts at the Super-Sauze landslide. Cao et al. (2016)
analysed the relationships among the rainfall, reservoir water level, and
groundwater according to the step-like displacement behaviour of the
Baijiabao landslide and consequently derived an extreme learning
machine model for prediction purposes. Lian et al. (2015) proposed a
multiple artificial neural network switched-prediction method to
identify individual predictors for different environmental factors and
thus forecast the displacements of different landslides in the Three
Gorges Reservoir area (China).

Further examples have been published by Lu and Rosenbaum
(2003), Feng et al. (2004), Randall (2007), Li et al. (2012), and others.

The practical usefulness of numerical methods for early warning
may be quite limited because an indication of whether and when a
failure might occur is not provided. In fact, these methods were mostly
formulated based on statistical approximations of historical data, so any
significant deviations in the landslide from its previous deformation
behaviour (i.e., from the displacement trend that is observed during the
calibration of the model) cannot be predicted. The latter aspect has
considerable repercussions when landslides quickly transition from a
primary or secondary creep stage to a tertiary creep stage, leading to
failure. Therefore, these methods' practical purpose lies in the possibi-
lity of detecting when the actual displacement exceeds the forecasted
values, implying the onset of an unprecedented acceleration (Zhou
et al., 2016).

Few authors attempted to propose solutions to fill this gap. Carlà
et al. (2016) linked the probability of the failure occurrence of the
Stromboli volcano's flank with the amount of measured “anomalous”
slope deformation (i.e., the divergence of the observed data from the
predicted data). This task was achieved by sequentially performing one-
step-ahead displacement forecasts by means of an Auto-Regressive In-
tegrated Moving Average (ARIMA) model and then comparing the ac-
tual measurement with the confidence interval of the forecast. These
authors determined that the precursory phase to the August 2014 flank
eruption was characterized by a significantly larger total amount and
rate of anomalous deformation with respect to what was observed
during previous periods of high volcanic activity, which ultimately did
not lead to this outcome.

2.4. Other methods to define warning thresholds

Despite not delivering time-of-failure predictions, methods that
define the critical thresholds of parameters that indicate a change in the
stability conditions of a slope can still be considered within the activ-
ities of an early warning system, encompassing forecasting in a broad
sense (Intrieri et al., 2013).

The threshold approach is generally more conservative because
thresholds are typically set safely before a possible failure; conse-
quently, these thresholds are also more prone to false alarms. For this
reason, thresholds and time-of-failure forecasting methods are some-
times integrated into the same early warning system (Intrieri et al.,

Fig. 7. Graphical method to determine the time of failure (dashed line) in a
granite specimen. The prediction is the time that corresponds to the intercept of
the trend line (in red) and the time axis (modified after Hao et al., 2017). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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2012).
In many cases, completely empirical threshold values that are only

based on expert judgement and available monitoring records are im-
plemented (Wyllie and Munn, 1979; Zavodni and Broadbent, 1978;
MacRae, 1982; Zavodni, 2001; Iovine et al., 2006; Blikra, 2012; Gigli
et al., 2014; Lombardi et al., 2017). However, these values are strictly
valid for a specific landslide and lack any consolidated approach or
premise. Instead, only slope-scale methods that have a degree of ex-
portability, i.e., methods that are based on a robust observational basis
or derived from time-of-failure methods, are described in this section.

For example, Crosta and Agliardi (2002) fitted displacement data
from the Ruinon rockslide in the Central Alps (Italy) by using Voight's
(1988) equation through the application of non-linear estimation
techniques. These authors then determined the parameters A and α and
computed velocity–time theoretical curves. Consequently, these authors
defined velocity-threshold values that theoretically corresponded to 30,
15, and 7 days before failure to activate pre-alert, alert, and emergency
states, respectively.

In a similar fashion, Segalini et al. (2018) explained a method to
define theoretical velocity curves that are not dependent on the specific
case study. After estimating the parameters A and α and calculating
theoretical velocity curves through Fukuzono's (1985a),b) equations,
these authors normalized the obtained values with respect to the
average and standard deviation. As a result, a normalized, dimension-
less velocity curve was obtained to set velocity thresholds. A further
advantage was that this type of curve proved to depend on α, while the
influence of A was negligible.

Brox and Newcomen (2003) studied the issue of slope-stability
prediction in open-pit mines, referring to a number of failure me-
chanisms such as planar, wedge, stepped-path, toppling, rotational/
rock mass, and complex or some combination of the above. Rather than
describing a method to define thresholds, these authors directly pro-
posed threshold values, which were partially based on suggestions from
Zavodni (2001). Such thresholds use the deformation ε, defined as the
ratio between the maximum deformation of the highwall and the total
height of the highwall, which can be considered a more normalized
parameter than the displacement, thus hinting at a higher exportability
of the method. These authors individuated three thresholds that cor-
responded to ε, equalling 0.1% (development of tension cracks), 0.6%
(accelerating movement) and 1% (imminent collapse), respectively;
then, these values are expressed in the function of the rock-mass quality
(described by the RMR, Bieniawski, 1976). A stable area, an unstable
area and a transition zone are hence delimited in the space that is de-
fined by ε and the RMR. These authors also discussed how the depen-
dence on the rock-mass quality and the tolerance to strain are different
for each failure mechanism but did not implement such differences in
the proposed method, which does not consider the type of failure.

Xu et al. (2011) developed an approach based on the observation
that the displacement-time curve becomes almost vertical during the
last phase of tertiary creep. To identify a general and quantitative cri-
terion, the displacement is normalized by dividing it with respect to the
average velocity of the secondary creep. This method produces a plot
that, dimensionally, is a time in both axes. The thresholds that were
proposed by Xu et al. (2011) are based on the values that are assumed
by the tangential angle of the curve of this plot: when the angle
is> 45°, the slope enters the tertiary stage; a value of 80° corresponds
to a second threshold; eventually, if the tangential angle> 85°, the
slope deformation enters a highly accelerated state that is typical of pre-
failure conditions.

Another method that uses the normalization of kinematic para-
meters to determine warning thresholds was described in Carlà et al.
(2017c). These authors analysed a dataset of 40 slope failures in coal
mines, which was provided by Cabrejo and Harries (2012), and dis-
covered that the ratios of the calculated accelerations over two fixed
time ranges before failure were constant for all cases. For example, the
ratio between the acceleration over the last 3 h (a3h) and that over the

last 24 h (a24h) before failure was ≈7 for all cases. Thus, when the
acceleration at any time is seven times greater than the acceleration
21 h earlier, the failure is expected to occur in 3 h. Similarly, the ratios
a3h/a48h and a24h/a48h were constant (≈13 and ≈2, respectively). This
approach has direct early warning applications; in fact, by continuously
calculating and plotting the value of the acceleration ratio, for example,
a3h/a24h, an alarm can be issued when the value of seven is approached,
indicating failure in 3 h. This method has been validated for as many as
40 cases, although all of them likely shared similar geological condi-
tions (details regarding the failure mechanism, size, rock-mass quality
and other important parameters were not furnished in the database by
Cabrejo and Harries, 2012). Therefore, further studies are necessary to
understand how the values of these ratios change depending on the
context. Otherwise, this method can still prove to be a useful tool,
provided that a number of failures, which are needed to calibrate the
value of the ratio, have occurred in the same area.

Manconi and Giordan (2016), based on Fukuzono's (1985a) method,
developed an approach to increase the confidence of the forecasts. This
method consists of applying a linear regression analysis to the inverse
velocity. This procedure is repeated for 1000 iterations by applying a
bootstrap resampling strategy (Efron, 1979) to derive robust assess-
ments of errors that are associated with the estimated regression coef-
ficients. The model vs. data fitness is then evaluated by calculating both
the Pearson's correlation coefficient (CCORR) and the root mean square
(RMS) of the residuals of the difference between the data and the
model. A failure window is defined between the 5th and 95th percen-
tiles of the bootstrap distribution, while the best-fit model is considered
the most probable time of failure. This method enables the user to
implement thresholds when the forecast confidence level is sufficiently
high (for example, when CCORR>75%).

Carlà et al. (2017b) also started from Fukuzono's (1985) method and
derived two threshold levels. The first is triggered at the onset of ac-
celeration, which is defined as the time when a short-term moving
average (SMA) of the displacement time series crosses above a long-
term moving average (LMA) (positive cross-over). Such moving
averages are generally stronger than those that are designed to simply
smooth the inverse velocity plots (as described in Section 2.2). If em-
ployed to establish thresholds, the SMA should be set so that it already
smooths out most of the smaller fluctuations, while the LMA should be
calculated over three or four times the SMA's period. The second
threshold that was proposed by Carlà et al. (2017b) is triggered at a
time that corresponds to the beginning of the failure window, as de-
fined in Section 2.2. The application of thresholds that are based on
failure windows was tested on a landslide retaining wall in Canada
(Carlà et al., 2017d).

2.5. Applications

Table 2 lists a series of papers from the literature that adopted the
empirical or semi-empirical failure-forecasting methods described
herein. The most used was Fukuzono's (1985a), probably because of its
fast and easy-to-use approach. A few cases involved volcanic eruptions,
which were also included because they shared the same methods
(mostly semi-empirical) that are used for landslides.

One of the fields where all these approaches are most frequently
used is the mining industry. As noted by Hutchinson (2001), the risk in
open-pit mines is potentially very serious in terms of both human lives
and economical losses because of continuous extraction activities often
compromising slope stability and the high values of the elements at risk,
given the continuous presence of personnel and the economic con-
sequences of interrupting work because of collapses or even false
alarms that are issued by poor warning procedures. Another reason is
that open-pit slopes display optimal rock exposures and are usually
monitored by reliable and cutting-edge displacement-monitoring net-
works. Moreover, the people in charge of the TARP and monitoring
systems are also at risk, so any complicated relationships with local
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authorities and the general public, which usually compound the diffi-
culties that are observed in other emergencies and in the management
of an EWS, are absent. Some of these factors also apply to the safety of
rail and road routes (such as in Saito, 1969).

Applications with civil-protection and public safety purposes (for
example landslides threatening people, buildings, environment, infra-
structures) are proportionally rarer (this number grows if back-analyses
are counted). The primary reason is probably the common lack of early
warning systems that are implemented before failure.

Many of the events listed in Table 2 are rockslides, but this ob-
servation is biased by the fact that many applications originate from the
open-pit mining industry. Translational and rotational slides and top-
pling are also documented. Generally (as documented in Intrieri and
Gigli, 2016), no restrictions exist regarding the type of material, state of
activity (first-time failure or reactivation) and volume of a landslide.

3. Discussion and conclusions

Determining the method with the best performance among the
several forecasting methods that were described in this paper is diffi-
cult, mainly because many methods do not have enough applications to
be properly evaluated and seldom applications involved predictions
that were made before the event (see Table 2); furthermore, only few
papers made direct comparisons between different methods (Venter
et al., 2013; Dick et al., 2015; Intrieri and Gigli, 2016). One of the aims
of this paper was to increase the availability of these less common
approaches, which could bear new input in this research field.

Many methods imply a graphical solution, which is probably one of
the main features by which they should be evaluated; using the words
of Lambe (1973), “an outstanding plot can go far towards giving […]
perspective and understanding of a process or an event”. In this regard,
Fukuzono's (1985a) method clearly appears to be the most graphically
communicative, although very good forecast representations can be
obtained with every method, for example, by plotting the predicted
time of failure as a function of the time when the prediction is made.

The fact that Fukuzono's method is the most used does not imply it
is the most accurate; this method still exhibits specific drawbacks be-
cause it is based on the inverse value of a derivative parameter, so it is
strongly affected by noise in the measured displacement and is much
more sensitive (i.e., the forecasted time of failure experiences strong
fluctuations) when the velocities are small (Carlà et al., 2017a). Simi-
larly, methods that are based on acceleration (Voight, 1988; Hao et al.,
2016) also experience a propagation of errors when measuring the
displacement, differently from methods (such as in Saito, 1969) that are
directly applied on displacements. These issues can be solved but using
forecasting methods still presents difficulties. First, appropriate filtering
and a degree of experience are frequently required to interpret the
confidence of a prediction. Second, the determination of the onset of
acceleration (which can be used as the starting time to make reasonable
forecasts) is often a problematic task; similarly, detecting when the
slope has reached a new equilibrium and tertiary creep acceleration has
stopped is also important because all the above forecasting methods
assume an accelerating trend, whereas abrupt decelerations can disturb
predictions (as shown in the case studies of Mazzanti et al., 2015).
Solutions to address these issues have been presented in this paper.

At present, the most reliable approach appears to be employing
more than one method (including those to determine thresholds, as
described in Section 2.4) and making decisions according to the average
or safest prediction.

The experiences that were reported in this paper show that these
forecasting methods are based on physical behaviours that are shared
among many different environments and that failures can be forecasted
for to a variety of phenomena (rockslides, earth slides, walls, eruptions,
and specimens), materials (rock, earth, glass, and metal), volumes
(from cubic centimetres to millions of cubic metres), geometries (planar
failures, wedge failures, curvilinear sliding surface, and toppling) andTa

bl
e
2
(c
on

tin
ue
d)

R
ef
er
en

ce
Fo

re
ca
st
in
g
m
et
ho

d
Fi
el
d
of

ap
pl
ic
at
io
n

D
es
cr
ip
ti
on

of
th
e
ev

en
t

A
pp

lie
d
be

fo
re

th
e
ev

en
t

Zv
el
eb

il,
19

85
N
ot

av
ai
la
bl
e

N
ot

av
ai
la
bl
e

D
ec
in

ro
ck
fa
ll
in

sa
nd

st
on

e
Y
es

Zv
el
eb

il
an

d
M
os
er
,
20

01
Em

pi
ri
ca
l
th
re
sh
ol
d;

Fu
ku

zo
no

,1
98

5a
Pu

bl
ic

sa
fe
ty

(s
lo
pe

fa
ilu

re
s)

3
la
nd

sl
id
es

Y
es

E. Intrieri, et al. Earth-Science Reviews 193 (2019) 333–349

343



parameters (displacement, velocity, acoustic emissions, and seismic or
geochemical quantities). Furthermore, contrary to what is often as-
sumed (Voight, 1988; Rose and Hungr, 2007), landslides can also be
forecasted when external forces are acting on them, as demonstrated by
Intrieri and Gigli (2016), who relaxed this assumption. The full po-
tential of such methods is still to be exploited, and interesting scientific
and technological advancements could determine the future trends in
this field. Some possibilities are described as follows.

Models and experiments on rock specimens that display brittle creep
behaviour have revealed the existence of power-law relationships be-
tween the time of failure and the applied stress, where a number of
constants that depend on the rock properties and ambient conditions
also play a role, including the strength of the rock, temperature, water
saturation and chemical-corrosion processes (Charles, 1958; Scholz,
1972; Amitrano and Helmstetter, 2006). Knowledge of all these para-
meters theoretically allows the user to deterministically calculate the
time of failure.

When scaling up to a more complex system (such as a landslide),
tertiary creep still typically assumes the shape of a power law (usually
with a high exponent, which makes it very similar to an exponential
law; Lockner, 1993; Zvelebil and Moser, 2001; Crosta and Agliardi,
2003; Amitrano and Helmstetter, 2006; Cruden and Masoumzadeh,
1987; Dok et al., 2011; Corcoran and Davies, 2018) but calculating the
time of failure starting from a landslide's characteristics is currently not
possible. As Hutchinson (2001) noted, a degree of uncertainty exists
partially because of uncertainties in extrapolating the creep curves and
especially because these features may be irregular (non-monotonic, as
with case 2b in Fig. 3), for instance, because of changes in the internal
or external conditions or simply instrumental noise.

The existence of a power-law relationship between the displacement
and time in fracturing (brittle) materials can be attributed to crack
propagation (Petley, 2004), particularly to a positive feedback process
(Main, 2000; Corcoran and Davies, 2018) where the increasing length
of the propagating cracks increases the stress intensity at the tip of the
crack itself and, therefore, the velocity of further crack propagation
(Atkinson, 1984; Amitrano and Helmstetter, 2006). Such a self-feeding
process creates the striking non-linearity of tertiary creep.

However, accelerations that fit a power law can also be observed in
cases where fracturing does not occur at all (reactivated landslides or
earth flows). This phenomenon was observed in the Marano landslide,
an earth flow in central Italy that had an estimated volume of 0.7
million m3 and experienced periodic reactivations (the last event was in
1996; Bertolini et al., 2004). In 2018, a prolonged period of rainfall
caused a new acceleration of the landslide, which was monitored
through ground-based interferometric synthetic aperture radar (GB-
InSAR) to evaluate the risk of river damming because of the fast pro-
gression of the toe.

The GB-InSAR recorded a strong accelerating trend during the
morning of 11 March 2018 (Fig. 8). The inverse-velocity method was
then implemented to detect a point when the landslide could have
experienced a paroxysmal acceleration, leading to a fast obstruction of
the river.

The application of Fukuzono's (1985a) method showed a good
linear trend (R2=0.95) that intercepted the horizontal axis around 11
March at 22:15 (Fig. 8). Although the linear fitting was quite good, a
more detailed observation showed a slightly concave trend until 18:00
(as generally observed for this type of landslide; Petley, 2004; Petley
et al., 2005b), when the slope of the inverse velocity increased and
became more linear. Roughly at the time when the trend line inter-
cepted the horizontal axis, the landslide reached the maximum velocity
and continued at a constant rate (around 2.3 m/day as measured along
the radar line of sight). The strong peak that was recorded around 21:00
was considered an instrumental effect because it was caused by phase
wrapping, which means that the actual velocity at that moment was too
high for the capabilities of the system. The absence of any acceleration
implies the equilibrium of the forces acting on the landslide, so this

behaviour can be explained with a friction model. On 13 March 2018,
the landslide experienced a further smooth deceleration, leading to very
low to null displacements (occasionally interrupted by minor re-
activations after rainfall).

In such a case, the time of failure must not be interpreted as a proper
“failure” or a collapse but still as a paroxysmal event, which consists of
an abrupt acceleration that drastically changes the kinematics of an
earth flow and can cause severe damage. One experience of how earth
flows can evolve paroxysmally can be found in Berti et al. (2013). From
the perspective of public safety, such events can be considered identical
to collapses.

The existence of a power-law relationship, even without crack
propagation, means that a corresponding positive feedback mechanism
must also occur also in earth flows. Future research in this topic should
also involve shedding light on what this possible process represents and
maybe investigate if debris flows can also be forecasted with the same
tools. As highlighted by Voight (1988), a power-law relationship with
the time of failure is not exclusive to brittle rocks but can be established
for a number of parameters and applications (as shown in Table 2).

A similar experience of an earth flow undergoing a catastrophic
failure after a long period of ductile deformations was reported by
Fletcher et al. (2002). This case involved the Attachie landslide (Ca-
nada), which consisted of over-consolidated glaciolacustrine clay and
silt. Borehole samples and tests revealed that 31% of the source volume
was low-plasticity or non-plastic silt, 48% was plastic clayey silt or clay,
and 21% was sand. Clay samples from near the sliding surface con-
tained highly plastic clay with a clay fraction of 60–70% and a plasticity
index over 30%. Fletcher et al. (2002) attributed the sudden develop-
ment of the Attachie landslide into an extremely rapid flow slide of 6.4
million m3 to three possible causes (where mechanisms 2 and 3 both
require the presence of non-plastic material, silt in this case):

1. undrained brittleness from the collapse of a metastable structure:
this mechanism is typical of quick (sensitive) clays and liquefiable
soils and occurs when a disturbance (e.g., an undrained load) in-
creases the pore-pressure as the unstable clay particle structure
collapses (Gregersen, 1981); as Hutchinson (1987) noted, undrained
head loading alone can be a cause for otherwise unexpected, rapid
displacements.

2. Internal strength of the slide mass: if a failure occurs along a com-
pound surface, the moving mass must be broken up by internal
shears to form a kinematically admissible mechanism; if the slide
mass retains sufficient brittleness at the moment of the break up, a
paroxysmal phase may occur (Hutchinson, 1987).

3. “Macroscopic” brittleness: this mechanism involves the opening of
multiple tension cracks because of the slow displacements of the
landslide, which are then filled with loose material; if surface water
saturates this material, liquefaction and heavy fluid pressure can
occur inside the cracks (Hutchinson, 1987).

Future trends in landslide prediction will also be fostered by tech-
nological advancements in monitoring techniques. The most striking
example is related to recent developments in interferometric satellites.
The potential of this technique has long been evident, but only after the
launch of satellites with relatively short revisiting times (a few days as
opposed to a few weeks) have the first feasibility tests been conducted.
In particular, the Sentinel-1 constellation, which has an effective re-
visiting time of 6 days, is a game-changer in the interferometric mon-
itoring scene. Although proper predictions (i.e., predictions made be-
fore the event) are not present in the scientific literature (at the time of
writing), promising experiences have shown that a continuous check of
satellite data would have permitted scientists to properly forecast
deadly events such as the Xinmo landslide (Maoxian, China) in 2017
(Intrieri et al., 2018a), which caused>100 casualties, and a landslide
in an undisclosed copper open-pit mine that killed several workers
(Carlà et al., 2018), because both events were anticipated by clear
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tertiary creep.
Appropriate monitoring and early warning programs that exploit

satellite data could also be set for public administrations to con-
tinuously monitor entire regions by implementing a systematic pro-
cessing chain of interferometric acquisitions to create continuously
updated ground-deformation data. For instance, one application is
being tested in the Tuscany Region (Italy) with the Sentinel-1 con-
stellation (Raspini et al., 2018), where displacement time series that are
continuously updated with the most recent available acquisitions are
analysed to identify points where changes in the kinematics occur.

Even terrestrial instruments are changing what were only recently

considered consolidated assumptions. For example, the capability of
modern GB-InSAR apparatuses to monitor areas (not only single points)
in a few tens of seconds enables us to further push the limits of what
was considered (near) real-time monitoring. Rose and Hungr (2007)
and Mufundirwa et al. (2010) argued that very brittle (or more ap-
propriately, rigid) materials would not allow for any warning because
sudden collapses cannot be anticipated by any measurable deformation.
This assumption was true until recently, when new experiences (Carlà
et al., 2017a) showed that even small failures in very good-quality rock
masses can show tertiary creep curves, permitting a prediction of the
rupture time minutes or tens of minutes in advance. Therefore, the use

Fig. 8. Top: displacement time series of a portion of the Marano landslide as measured by a GB-InSAR. The yellow rectangle represents the time window zoomed
below, in which the inverse velocity is plotted and the red dashed line represents the linear trend. The displacement and inverse velocity values were measured along
the line of sight of the instrument. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of cutting-edge near real-time monitoring instruments sensibly in-
creases the possibility of using forecasting methods.

GB-InSAR also has the advantage of performing measurements over
a broad coverage area (instead of on single discrete points). This cap-
ability is generally under-used, and the wide dataset that is available is
often reduced to a small number of selected points that are used for
time-series analyses. For example, a possible approach to exploit GB-
InSAR data was provided by Dick et al. (2015), who merged two
common practices that have been adopted in open-pit mines worldwide
in the framework of an early warning system: Fukuzono's method
(Fukuzono, 1985a) and displacement monitoring that is performed
through a GB-InSAR. To fully use spatial area data from GB-InSAR, Dick
et al. (2015) suggested starting with selecting a single benchmark pixel
(either the one that triggered a warning threshold or the one that
measured the highest accumulated displacement) and then performing
time-of-failure prediction methods over both this pixel and a cluster of
adjacent pixels that experienced at least 50% of the displacement of the
benchmark.

Despite the relevance of the performances provided by these and
similar innovations, the many experiences reported in Table 2 show
that in some cases a high precision or a high acquisition frequency were
not necessary to forecast the time of failure, e.g. when the landslide has
a clear and long tertiary creep phase. Considering the above, a dramatic
increase in the diffusion of the practice of time-of-failure forecasting
could come along with low-cost instrumentations capable of furnishing
displacement data of a reasonable quality. Interesting results could
come from the development of Wireless Sensor Networks (WSN) per-
forming ranging measurements using the same ultrawide band signal
used to transfer data, thus bypassing the cost related to specific sensors
(Intrieri et al., 2018b; Mucchi et al., 2018). Another promising tech-
nology for early warning applications is the Radio-Frequency Identifi-
cation (RFID), that is based on tags that can be installed with a low
environmental impact and measure their relative distances with high
temporal resolution (Le Breton et al., 2019). Furthermore, in the last
years, single-frequency Global Positioning System (GPS) chips available
at a lower cost have been used for landslide early warning systems
(Benoit et al., 2015). The development of low-cost instruments can
therefore enable the monitoring where, for economic reasons, it was not
possible or can enable the installation of many measurement points to
allow for spatially distributed observations at high spatial resolution,
thus reducing the cost for rapid mapping.

Landslide forecasting is a topic that surely deserves more research
efforts because of its effects on society. The state of the art of the most
relevant studies in this field was defined in this paper to set a starting
point for future works. The relationships between the kinematics and
time of failure of a slope have been adequately described, but a robust
link between geomorphological, geotechnical, and geomechanical fea-
tures and kinematics (or other parameters acting as collapse indicators)
is still missing. New insights could be derived from joint contributions
from different research and industry fields, such as engineering
geology, materials science, open-pit mining, and remote sensing.
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