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Abstract

Determining correlates of density for large carnivores is important to understand their eco-

logical requirements and develop conservation strategies. Of several earlier density studies

conducted globally, relatively few addressed a scale (usually >1000 km2) that allows infer-

ence on correlates of density over heterogeneous landscapes. We deployed 164 camera

trap stations covering ~2500 km2 across five areas characterized by broadly different vege-

tation cover in the Udzungwa Mountains, Tanzania, to investigate correlates of density for a

widespread and adaptable carnivore, the leopard (Panthera pardus). We modelled data in a

spatially explicit capture-recapture framework, with both biotic and abiotic covariates

hypothesised to influence density. We found that leopard density increased with distance to

protected area boundary (mean±SE estimated effect = 0.44±0.20), a proxy for both pro-

tected area extent and distance from surrounding human settlements. We estimated mean

density at 4.22 leopards/100 km2 (85% CI = 3.33–5.35/100 km2), with no variation across

habitat types. Results indicate that protected area extent and anthropogenic disturbance

limit leopard populations whereas no support was found for prey availability and trap array

as drivers of leopard density. Such vulnerability is relevant to the conservation of the leop-

ard, which is generally considered more resilient to human disturbance than other large

cats. Our findings support the notion that protected areas are important to preserve viable

population of leopards, increasingly so in times of unprecedented habitat fragmentation.

Protection of buffer zones smoothing the abrupt impact of human activities at reserve edges

also appears of critical conservation relevance.
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Introduction

Carnivores, and large cats in particular, are not only among the most important flagship spe-

cies, but also carry out critical ecosystem functions such as herbivore population regulation,

which in turn influence ecosystem health [1–3]. Yet, large cats are declining worldwide due to

anthropogenic activities, that causes prey decline and habitat loss, as well as pressure from

unsustainable trophy hunting and direct persecution [4, 5]. Obtaining accurate density esti-

mates for large carnivores, and understanding the underlying factors, represents a challenging

goal in animal ecology [6]. However, this can be difficult because the low abundance and elu-

sive nature of large cats make them inherently difficult to study [2, 7].

Among the large cats, the leopard (Panthera pardus) has the widest distribution in the Old

World and, while it is still considered common in some areas, its range has declined by 63–

75% [8]. Hunting for leopard fur and retaliatory killings for loss of livestock or human attacks

have impacted certain leopard population, yet prey depletion and habitat loss are major causes

of their decline [8, 9]. Leopards are highly adaptable with regards to habitat, and have been

recorded in the widest range of habitat types of any Old World large cat, from mountains,

rainforests and deserts, to agricultural and urban areas; they are generally nocturnal and very

secretive in nature [8, 10, 11]. Such broad adaptability in diet and habitat, along with their

cryptic nature, make deciphering the relative importance of factors affecting density, such as

prey abundance, habitat type, and human disturbance, particularly challenging.

Previous studies suggest that multiple correlates are often associated with leopard density.

In a review on carnivore abundance correlates by Carbone, Pettorelli [7], prey abundance was

highlighted as the most influential factor. Other studies suggested that prey catchability may

also be an important factor in fine-scale habitat selection by leopards, in addition to prey avail-

ability [12, 13]. Protected area size is another commonly assumed predictor of large carnivore

densities and likelihood of their long-term persistence [14, 15]. A study conducted in South

Africa addressed edge and disturbance effects on leopard abundance, and found declining

density from the core of a protected area to the surrounding, unprotected landscape [16]. A

study from Thailand revealed that leopards avoid areas with high human activity, and proxim-

ity to trafficked roads [17]. While site use appears to be affected by humans, leopard densities

did not appear to be influenced by direct anthropogenic disturbance due to encroachment

into a protected area in Nepal [18], and in South Africa some leopard populations had high

densities in non-protected areas [19]. In India leopards have adapted to agriculture-dominated

landscapes where they occur in relatively high densities [10].

Telemetry information has been commonly used to study resource selection (e.g. [20]).

However, while telemetry typically generates fine scale spatial data for a few individuals, spa-

tially explicit capture-recapture (SECR) sampling using camera traps, generates relatively

more coarse scale information on several-to-many individuals [21], allowing testing of explicit

hypotheses on correlates of density and space use [22, 23]. Despite the vast potential of this

approach, to our knowledge there are only a dozen studies that applied robust SECR analyses

to leopard density estimation; in addition, a high proportion of these studies have been per-

formed in southern Africa and within a single habitat type [10, 24–31]. Other studies have

addressed differences in density between protected and non-protected areas [19, 32], yet the

vast majority of leopard density studies have not embraced the potential of SECR analyses by

incorporating drivers of species density and detectability.

Here, we used camera trapping across an area of ~2500 km2 to estimate the densities of a

leopard meta-population inhabiting a heterogeneous landscape in Tanzania, the Udzungwa

Mountains. This area is a mosaic of forest blocks interspersed with drier habitats and sur-

rounded by settled and intensively farmed areas, hence it represents a relevant landscape to
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study factors affecting leopard density. We used a stratified population model in a spatially-

explicit capture-mark-recapture framework [33] to test hypotheses on natural and anthropo-

genic factors driving leopard density at the landscape level. Specifically, we aimed to determine

the effects of habitat type, prey availability, distance to water source, sex and distance to pro-

tected area boundary on leopard density.

Material and methods

Ethics statement

Data collection consisted of non-invasive, remotely set camera traps and did not involve direct

contact or interaction with the animals. This research was conducted under research permit

numbers 2013-274-NA-2013-111 and 2014-137-ER-2013-111, issued to RWH by the Tanzania

Commission for Science and Technology (COSTECH).

Study area

The Udzungwa Mountains of south-central Tanzania (centred on 7◦46’ S, 36◦43’ E; elevation

285–2600 m asl, 16,000 km2) are part of the Eastern Arc Mountains, a renowned biodiversity

hotspot [34, 35]. The Udzungwas consist of closed forest blocks interspersed with drier habi-

tats [36]. It is surrounded by subsistence farming to the north, west and south, and high inten-

sity sugar cane farming to the east, without natural connectivity to other adjacent protected

areas [37]. Within Africa, the area is known for its outstanding levels of mammalian richness

and endemism [34, 38].

The northern portion of the Udzungwas is protected by the Udzungwa Mountains National

Park (UMNP; 1990 km2), where patrolling rangers and remote ranger stations ensure effective

ground protection. The UMNP is connected to the south and west by the Kilombero Nature

Reserve (1345 km2) administered by Tanzania Forest Service, and receives less in situ protec-

tion. A strip of intense agriculture, in some places just ~5 km wide, separates the UMNP from

the Selous Game Reserve to the east (Fig 1).

As the Udzungwa Mountains consists of a mosaic of habitats with different vegetation

cover types [36, 39], we placed camera trap arrays in five areas to sample a representative varia-

tion of habitat type (Fig 1; S1 Table): (1) Lowland Afrotropical rainforest in the southern

UMNP (300–800 m). (2) Dry grassy Acacia-Commiphora woodlands in the northern UMNP,

buffered by dry baobab woodlands at low elevation and grasslands at high elevation (500–1900

m). (3) Grassy Miombo woodlands in the central valleys of the UMNP (300–500 m). (4) Ndun-

dulu forest, a block of Afromontane forest west of UMNP in the Kilombero Nature Reserve

(1400–2200 m). (5) Mwanihana forest, a rainforest escarpment in the eastern part of UMNP

(300–2100 m).

Camera trapping

We deployed six camera trap arrays covering a total of ~2500 km2 in the five areas. Each array

consisted of 25–34 pairs of traps (Fig 1) and was surveyed one time each. We sampled in the

dry season from August to December 2013 and from June to December 2014. Each station of

paired traps operated for an average of 31 days (minimum 12, maximum 49 days; S1 Table).

Camera traps were set following a protocol designed for studying leopards in African forests

[40]. The average trap spacing was 1.6 km, following a regular spaced grid placed randomly

over the study sites, ensuring a sampling grid tight enough to recapture females (with pre-

sumed smaller home-ranges than males) in multiple camera traps, while still encompassing an

area large enough for a male leopard home-range [40]. Mean edge distance between camera
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trapping grids was 22.8 km (minimum edge distance 5 km, maximum edge distance 49 km).

At each camera trap site, the paired cameras were placed 3–4 m from the centre of an animal

trail or track, facing each other at 30–40 cm above ground level. At least one camera-trap per

station had a white Xenon flash Cuddeback Ambush (Cuddeback Non Typical Inc., Istanti, WI,

USA) and in 87 of 164 stations, the second camera consisted of an infrared camera UOVision

565HD IR+ (UOVision Technology, Shenzhen, China) set on 15-second video recording mode.

Leopards were identified by their unique spot-patterns across their body [41] and presence/

absence of external genitalia by two independent observers (RWH and FR). Only individuals

deemed adult from their body-size and consistently captured alone were used for subsequent

analyses, to avoid non-independence of individual activity centres, e.g. juveniles [22, 23]. For

leopards that could only be identified from one flank, gender was used as distinguishing fea-

ture from captures of other leopards captured only from the opposite flank of opposite sex.

Covariates of leopard density

To model leopard density, we derived the following set of covariates across the areas covered

by the six trap arrays. We first used Landsat 7 TM and ETM+ satellite imagery to derive at 500

Fig 1. Map of the study area in south-central Tanzania. Six camera trap arrays (Ruipa, Idete, Mbatwa, Lumemo, Ndundulu-Luhomero and

Mwanihana) were deployed to detect leopards in five areas with a representative gradient of vegetation cover in the Udzungwa Mountains

National Park and Kilombero Nature Reserve. Camera trap sites are indicated by yellow dots, with dot size indicating number of uniquely

identified leopards and white dots indicate no detections of leopards. Rainforest areas are indicated in green with a black outline. The elevational

gradient ranges from light yellow at low elevation (dry open habitats) to green at higher elevation (moister and mainly forested habitats). The

floodplain between Udzungwa Mountains National Park and Selous Game Reserve is an intense agricultural zone with a high human

population density.

https://doi.org/10.1371/journal.pone.0209541.g001
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m resolution (1) distance from each camera trap station to the nearest river, (2) distance to the

nearest protected area boundary (national park or nature reserve depending on arrays, see Fig

1). Elevation (3) was recorded at each camera trap site using a Garmin GPSMAP 64sc (Olathe,

Kansas, USA). Distance to protected area boundary correlated positively (r = 0.65) with dis-

tance to the nearest human settlement from each camera trap, thus to avoid collinearity we

only used distance to reserve border and considered it a proxy of both anthropogenic distur-

bance and extent of protected area. The 500 m resolution chosen for the covariates corre-

sponds to the resolution of the state-space adopted in the spatially explicit capture-recapture

models (see below), which we defined after testing a range of resolution values that yielded sta-

ble parameter estimates and reasonable computational time. We also derived (4) an index of

probability of leopard encounter with prey similar to Everatt, Andresen [42] as the array-spe-

cific mean estimated occupancy probability of 18 ground dwelling mammals detected by the

camera traps [43]. These species were assumed to be potential leopard prey based on dietary

studies [44]. In addition, 12 of these species were confirmed to be leopard prey in Udzungwa

through DNA analysis of leopard scats ([43]; S2 Table). We estimated mean and array-specific

site use probabilities (S3 Table) for the pool of potential prey by fitting a multi-species occu-

pancy model [45] to prey species’ detection/non-detection data. This modelling approach

accounts for imperfect detection and solves the ambiguity between species absence and non-

detection. We therefore considered occupancy a better state variable for prey abundance than

a crude index of captures, as this likely underestimates true abundance due to false negatives

[46]. In addition, as we set camera traps to target leopards, detectability of other mammals

across sites may vary largely among species, likely resulting in variably biased detection rates;

hence we considered it especially critical to use a state variable of prey encounter that is cor-

rected by detectability [47]. We designed our community occupancy model to estimate array-

specific mean occupancy values for the pool of prey species, as we assumed that the different

habitat types sampled by arrays represent a relevant correlate of variation in the ‘abundance’ of

prey species across the study area. However, given that we only had information on prey spe-

cies at camera trap sites, we could not realistically model prey occupancy across the state-

space. Specifically, we modelled the presence/absence zi,j of species i at sites j as a Bernoulli

trial with array-specific (a) occupancy probability ψi,a(j): zi,j ~ Bern(ψi,a(j)). We constrained the

species-specific parameters (i.e., the heterogeneity in occupancy and detection probability) by

the assumption of a common normal prior distribution for their logits [48]. For occupancy, we

considered an array-specific hyperparameter: logit(ψi,a(j)) = βi,a with βi,a ~ Normal(μψ,a, σψ),
where μψ,a is the mean (community) occupancy of prey species in each array, and σψ is the

standard deviation. We organized daily detections into a species by sites matrix, with elements

yi,j, and modelled detections as yi,j ~ Bin(kj, pi,j�zi,j) where kj are the sampling occasions per site

and pi,j is the detection probability. As we were not interested in modelling array-specific

detectability, we modelled detection probability as logit(pi,j) = αi with αi ~ Normal(μp, σp),
where μp is the mean (community) detectability of prey species and σp is the standard devia-

tion. We fitted the model using a Bayesian formulation, the Markov chain Monte Carlo, imple-

mented using the program JAGS [49] and executed from R [50]. The model code is provided

in S1 Appendix. Finally, given that leopard density associated significantly with the distance to

reserve border (see Results), we also controlled whether our prey encounter index may also be

associated with this variable, hence potentially confounding the interpretation of effects on

leopard density. We therefore ran a second prey occupancy model where the linear predictor

for occupancy included an effect of distance to reserve border on array-specific prey site use.

Prey site use was found not to be significantly associated with distance to reserve border, there-

fore we exclude that this effect may also be related to collinear variation in prey site use (see

also Discussion).
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Leopard density estimation

We used spatial capture-recapture (SECR) models [22, 23] to account for animal movement in

density estimation, regarding array-specific data as samples of independent populations. This

assumption is supported by the absence of individuals recorded in more than one trap array.

SECR models allow study of the distribution of individuals (i.e. density) while accounting for

encounter probability (p) that declines with distance between an individual activity centre (s)

and a detector (j). We used a half-normal encounter model where detectability p is a function

of the baseline encounter probability (p0) and the spatial scale parameter (σ), which determines

how encounter probability decreases with an increase in the distance between trap j and activ-

ity centre si.

Both homogeneous and inhomogeneous point process models were fitted to study the dis-

tribution of individual activity centres within a defined state-space S, depending on the

absence or presence, respectively, of spatially explicit covariates on density. We fitted a strati-

fied population model [22, 23] to data grouped by trap array, where array-specific population

size was assumed as Nr ~ Poisson(Λr), where Λr is the expected number of activity centres in

the state-space, or region, surrounding array r, with r = 1, . . ., R = 6. We investigated the effects

of covariates (‘COV’, see previous section for details) on leopard density and detectability by

testing different hypotheses. First, we defined the best structure of the encounter model by

assessing the effect of the following covariates on the baseline encounter probability (p0): (i)

trap array, as a proxy of habitat type and seasonality (i.e. temporal variation in sampling), (ii)

distance of trap j to the nearest river, (iii) distance to reserve boundary, (iv) camera trap type

and (v) sex, for testing the effect of different probabilities of detections of males and females.

The same covariates, with the additional array-specific effect of prey encounters, along with

sex, which has been found to produces better estimates of density due to differences in home-

ranges sizes [51], were used as competing predictors for modelling the scale parameter (σ).

The general formulation of the linear predictors for two parameters of the encounter model,

for individual i in trap j of array r, was as follows:

logitðp0;jrÞ ¼ a0 þ aCOVCOVjr ð1Þ

logðsjrÞ ¼ d0 þ dCOVCOVjr: ð2Þ

Competing encounter models based on plausible combination of different covariates

(‘COV’).

Specifically, we expected encounter rate to decline (i) with increasing distance to rivers, as

waterways are frequently used as travelling routes and foraging areas [52, 53], and (ii) with

increasing distance to reserve boundary, in relation to possible behavioural effects induced by

an increase of anthropogenic disturbance close to the reserve boundary [13, 54]. We also

expected leopards to move less (thus having smaller home range size), in dense versus open

habitats, as the species has been found to prefer dense habitat for hunting and thus would have

to travel smaller distances in search of optimal hunting grounds [13]. In addition, we expected

leopard space usage to be (i) positively correlated with distance to the nearest river, as rivers

may represent good hunting grounds [53], and (ii) positively correlated with distance from

reserve boundary, where anthropogenic disturbance is higher.

We were interested in modelling density as a function of spatially-varying covariates and

used a discrete representation of the state space with the centre points of each pixel g(r) (with g

(r) = 1, . . ., Gr) in the state-space (region) surrounding trap array (r). The expected number of

activity centres in the state-space surrounding trap array (r) was modelled in relation to (i) ele-

vation, (ii) distance to the nearest river, (iii) distance to reserve boundary, (iv) prey encounter

Reserve size and human disturbance affect density of an African leopard population
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index (occupancy probability of prey community; S3 Table), (v) trap array, and (vi) sex (S1

Table). Distance to river was intended as a proxy to major traveling routes used by leopards

[52, 53]. In addition, it may also indicate proximity to optimal hunting grounds. As elaborated

above, we considered distance to reserve boundary a proxy for both reserve size (i.e. remote-

ness) and human disturbance; as settlements and farms occur right outside protected areas, we

assumed human encroachment and other forms of disturbance to be more intense near

boundaries [16, 17, 55]. We expected density to be negatively correlated with elevation, as area

declines with increased altitude and because high-altitude habitats (1400–2600 m) may hold

sub-optimal abundance and low diversity of prey, that may be limiting leopard densities [56].

We hypothesised a negative correlation for density with increasing distance to permanently

flowing rivers as an indication of preferred hunting ground and travel routes [52]. We

expected the mean of the prey encounter index as proxy for prey abundance to be positively

correlated with leopard density, matching evidence for other large carnivores and for leopards

[57, 58]. We assumed leopard densities to be higher in low elevation habitats with denser,

arboreal vegetation cover (closed lowland forest versus open woodland and wooded grassland)

as these may hold more optimal hunting grounds [13]. We assumed different densities

between male and female leopards as overlap in home-ranges of adult males is unusual and

their home-ranges are normally larger than females [59]. Expected number of activity centres

were modelled the in the state-space of array r in relation to the different covariates (‘COV’) as

follows:

logðLgðrÞÞ ¼ b0 þ bCOVCOVgðrÞ þ bCOVCOVr ð3Þ

where covariates can be either spatially explicit (i.e. rasterised, ‘COVg(r)’) or region (i.e. survey

or array) specific (‘COVr’). We first defined the best structure for the encounter model (36

competing models, S4 Table), while considering survey-specific densities, and then tested

hypotheses on the correlates of leopard density (13 competing models, S5 Table) while keeping

the best encounter structure constant. We set a 6 km buffer around each trap array based on

ridged density estimates descending from 30 km, and based inference on maximum likelihood

estimates for leopard density using the R package ‘secr’ v. 3.2.0 [33]. Capture histories were

based on daily sampling occasions. We calculated the Akaike Information Criterion (AIC) for

each candidate model and used the difference among values (ΔAIC) to rank models. Accord-

ing to Burnham and Anderson [60], we examined models within 2 ΔAIC units to assess

whether they differed from the best model by one parameter and had similar values of the

maximized log-likelihood as the best model. In our case, we did not consider the top two mod-

els being supported, despite being within 2 ΔAIC units, because the second-best model had an

additional parameter, yet the log-likelihood value was not improved. We also considered 85%

confidence intervals for parameter estimates, that are compatible with information-based

model selection to evaluate potential uninformative parameters Arnold [61]. We derived den-

sity surface estimates from models that scored two points within their estimated ΔAIC [62].

We also derived home range size estimates (in km2) based on Royle, Chandler [22], using the

formula π (σ
p

5.99)2, where σ is the spatial scale parameter in km, interpreted as the radius of

the bivariate normal model of space use. The product (σ
p

5.99) is the 95% of space used by an

individual from the home-range centre. The value
p

5.99 derives from the fact that the square

of the distances between trap location and individual activity centres used in the Gaussian

encounter probability model have a chi-square distribution with 2 degrees of freedom which,

for α = 0.05, corresponds to
p

5.99.
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Results

We accumulated a sampling effort of 5038 camera trap days and obtained 185 leopard events.

Overall, 62 individuals were identified from all six surveys (median 10, minimum 5, maxi-

mum 15; S1 Table), of these 62 individuals four were identified as juveniles and never captured

independently and were therefore excluded from the dataset, bringing the total number of

individuals used in the SECR analyses to 58. The 58 adult leopards were captured in 48.6% of

the 164 camera trap stations (S1 Table). No discrepancies were found between the two persons

reviewing the photos (RWH and FR). Individuals identified from just one flank made up

<13% of individuals (8 of 62) and all of these were single records (~4% of the total dataset)

were confidently identified as unique, as males were captured on their right flank, and females

were captured on their left flank. Five captures were of unidentifiable leopards and were not

included in the dataset.

Based on AIC weight, the most parsimonious encounter model included an effect of dis-

tance to the nearest river on the baseline encounter probability (p0) and array-specific scale

parameter σ (Table 1).

A single model that included distance to reserve boundary (model Md7 in Table 2) was

most supported based on AIC score. Another model (Md15 in Table 2), with an additional

effect of prey encounters, was ranked within 2 AIC units (ΔAIC = 0.771) of the model with

lowest AIC (model Md7). However, since Md15 differs from the best model by one parameter

and have essentially the same value of the maximized log-likelihood (-1025.334 vs -1024.719),

indicating the fit is not improved, we considered Md15 not adequately supported. Further-

more, the 85% CI for the estimate of the effect of prey encounters on leopard density in model

Md15 encompassed zero (0.093 mean; 85%CI = -0.027–0.214) supporting the uninformative

role of this covariate. We thus based our inference on the most supported model (Md7 in

Table 2), which suggested that leopard density was positively influenced by distance to reserve

boundary, with the related parameter βd2boundary equal to 0.44, (0.15–0.73, mean and 85% CI)

(Table 3, Fig 2).

This effect translated into predicted densities that varied from approximately 2/100 km2

along the reserve border to over 8/100 km2 in the reserve interior (Fig 2). Mean density for the

total area surveyed was estimated to be 4.22/100 km2 (85% CI = 3.33–5.35/100 km2); mean

density in this case is the exponential of the intercept of density (β0 in equation [3]), which cor-

responds to density evaluated at the mean value of the covariates that were standardized to

have mean 0 and unit variance.

Intercept of the baseline encounter probability, on probability scale, was 0.030 (0.022–

0.040). In addition, results suggest a negative relationship between encounter probability and

distance of camera trap to the nearest river (αd2river = -0.21, -0.36– -0.01, Table 3). Trap array-

specific estimates of the spatial scale parameter of the half-normal encounter model (S6 Table)

were used to derive array-specific estimates of 95% home range sizes, which varied from a

minimum of 25 km2 in Mwanihana to a maximum of 112 km2 in Lumemo (mean 66 km2) (S7

Table).

Discussion

Correlates of leopard density at the landscape level

We analysed factors affecting the spatial variation of leopard density within a heterogeneous

landscape and found that leopard density was significantly associated with distance to reserve

boundary, which we considered a proxy for the extent of protected area and decreasing human

disturbance [63]. The Udzungwa Mountains National Park and adjacent Kilombero Nature
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Table 1. Results of encounter models evaluated to estimate leopard density. Summary of the encounter model selection for the 36 competing models based on different

covariate combinations on the baseline encounter probability (p0) and scale parameter (σ) of leopards detected by camera traps in the Udzungwa Mountains of Tanzania.

Parameters were run either as single or dual covariables. Number of parameters, log likelihood, AIC and AIC weight is listed for each model.

Model p0 S No. of parameters Log. likelihood AIC AIC weight

ggs1 Distance to river Trap array 14 -1023.343 2074.687 0.3423

ggs2 Null Trap array 13 -1025.376 2076.751 0.2628

ggs3 Distance to river + Distance to

boundary

Trap array 15 -1021.873 2073.746 0.2333

ggs4 Distance to

boundary

Trap array 14 -1024.808 2077.617 0.0791

ggs5 Camera trap type Trap array 14 -1025.183 2078.365 0.0544

ggs6 Distance to river Prey encounter

index

10 -1033.179 2086.359 0.0136

ggs7 Distance to river + Distance to

boundary

Prey encounter

index

11 -1032.11 2086.219 0.0085

ggs8 Distance to river Prey encounter

index

+ Distance to river 11 -1033.051 2088.102 0.0033

ggs9 Distance to

boundary

Prey encounter

index

10 -1034.761 2089.522 0.0028

ggs10 Trap array Trap array + Distance to

boundary

19 -1018.171 2074.342 0

ggs11 Distance to

boundary

Prey encounter

index

+ Distance to river 11 -1033.861 2089.723 0

ggs19 Trap array Trap array 18 -1020.808 2077.615 0

ggs12 Null Null 8 -1039.493 2094.986 0

ggs13 Distance to river Distance to river 10 -1036.937 2093.875 0

ggs14 Trap array + Distance to

boundary

Trap array 19 -1020.094 2078.188 0

ggs15 Trap array + Distance to river Trap array 19 -1020.113 2078.226 0

ggs16 Distance to river + Distance to

boundary

Distance to river 11 -1035.707 2093.415 0

ggs17 Distance to river + Distance to

boundary

Distance to

boundary

11 -1035.989 2093.977 0

ggs18 Trap array + Camera trap type Trap array 19 -1020.778 2079.557 0

ggs20 Trap array Trap array + Distance to river 19 -1020.795 2079.59 0

ggs21 Distance to

boundary

Distance to river 10 -1037.783 2095.565 0

ggs22 Trap array Prey encounter

index

14 -1032 2092 0

ggs23 Distance to

boundary

Distance to

boundary

10 -1039.064 2098.129 0

ggs24 Trap array Null 13 -1035.59 2097.181 0

ggs25 Trap array Distance to river 14 -1034.535 2097.069 0

ggs26 Trap array Distance to

boundary

14 -1034.864 2097.727 0

ggs27 Sex Trap array 14 -1062.545 2153.09 0

ggs40 Distance to river Sex + Trap array 15 -1061.271 2152.542 0

ggs42 Null Sex + Trap array 14 -1063.362 2154.724 0

ggs43 Sex Sex + Trap array 15 -1062.437 2154.874 0

ggs41 Distance to

boundary

Sex + Trap array 15 -1062.769 2155.539 0

ggs44 Camera trap type Sex + Trap array 15 -1063.185 2156.37 0

ggs39 Distance to river + Distance to

boundary

Prey encounter

index

+ Sex 12 -1070.494 2164.989 0

(Continued)

Reserve size and human disturbance affect density of an African leopard population

PLOS ONE | https://doi.org/10.1371/journal.pone.0209541 June 12, 2019 9 / 17

https://doi.org/10.1371/journal.pone.0209541


Reserve form a relatively large protected area (3335 km2). Concomitantly, evidence suggests

that in proximity of reserve boundaries human disturbance increases, in the form of firewood

collection, selective pole and timber logging, poaching and charcoal production [43, 64].

Importantly, by assessing that prey occupancy model was not associated with distance to

reserve boundary (see Methods) we could exclude that increasing leopard density away from

reserve borders is mediated by an effect of increasing prey encounter probability.

Our findings partially mirror those from a study in South Africa, where edge effects and

higher mortality rates were associated with lowered densities of leopards outside the protected

area relative to inside [16]. Our results are similar to those of a study in Thailand, in which

leopards were reported to avoid roads and areas with high human activity compared to undis-

turbed areas and became more diurnal when human presence became limited [54]. In a

broader perspective, the magnitude of the effect of distance to reserve boundary fits the known

requirement of large carnivores, for large areas of protected habitat [65]. We elaborate in

Table 1. (Continued)

Model p0 S No. of parameters Log. likelihood AIC AIC weight

ggs32 Trap array Trap array + Sex 19 -1057.454 2152.909 0

ggs28 Distance to river Sex 10 -1075.787 2171.573 0

ggs33 Distance to river + Distance to

boundary

Sex 11 -1074.816 2171.632 0

ggs31 Null Sex 9 -1078.037 2174.074 0

ggs37 Distance to river + Distance to

boundary

Distance to river + Sex 12 -1074.396 2172.791 0

ggs29 Distance to

boundary

Sex 10 -1077.787 2175.575 0

ggs38 Distance to river + Distance to

boundary

Distance to

boundary

+ Sex 12 -1074.815 2173.629 0

ggs34 Camera trap type Sex 10 -1078.018 2176.037 0

ggs35 Trap array + Distance to river Sex 15 -1072.338 2174.676 0

ggs30 Trap array Sex 14 -1074.557 2177.114 0

ggs36 Trap array + Camera trap type Sex 15 -1074.546 2179.091 0

https://doi.org/10.1371/journal.pone.0209541.t001

Table 2. Results of density estimation models. Ranking of the 13 models evaluated for density estimation of leopards detected by camera traps in the Udzungwa Moun-

tains of Tanzania. The highest scoring model (Md7) included the covariates of distance to boundary on Density, distance to river on encounter probability (p0) and trap

array on the scale parameter (σ). Number of parameters, log. likelihood, AIC score, ΔAIC and AIC weight is listed for each model.

Model Density p0 σ No. parameters Log. likelihood AIC AIC weight

Md7 Distance to boundary Distance to river Trap array 10 -1025.334 2070.668 0.423

Md15 Prey encounter index + Distance to boundary Distance to river Trap array 11 -1024.719 2071.439 0.167

Md2 Null Distance to river Trap array 9 -1027.797 2073.594 0.158

Md9 Elevation Distance to river Trap array 10 -1027.029 2074.057 0.078

Md23 Prey encounter index Distance to river Trap array 10 -1027.25 2074.5 0.062

Md8 Distance to river Distance to river Trap array 10 -1027.446 2074.891 0.051

Md13 Prey encounter index + Elevation Distance to river Trap array 11 -1026.575 2075.151 0.026

Md14 Prey encounter index + Distance to river Distance to river Trap array 11 -1026.66 2075.319 0.024

Md4 Trap array + Distance to boundary Distance to river Trap array 15 -1020.902 2071.805 0.008

Md1 Trap array Distance to river Trap array 14 -1023.343 2074.687 0.004

Md5 Trap array + Distance to river Distance to river Trap array 15 -1022.447 2074.893 0

Md6 Trap array + Elevation Distance to river Trap array 15 -1022.803 2075.605 0

Md3 Sex Distance to river Trap array 10 -1066.593 2153.185 0

https://doi.org/10.1371/journal.pone.0209541.t002
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Methods the value of this metric of occurrence that accounts for imperfect detection, a consis-

tent issue when sampling elusive mammals in dense habitats, e.g. Dorazio, Royle [45], and

therefore standardizes occupancy estimation across arrays that differ markedly in habitat type

and across species. We acknowledge that a limitation of this metric is that it does not measure

Table 3. Results of the leopard density model. Maximum likelihood estimates for leopards detected by camera trapping in the Udzungwa Mountains of Tanzania. Esti-

mates were derived from the most supported model (Md7 in Table 3) which included covariates on distance to boundary for the density parameter, distance to river on the

baseline encounter probability (p0) and trap array on the scale parameter (σ).

Parameter Description (scale) Mean SE Lower 85% CI Upper 85% CI

β0 Intercept of density (log) -7.770 0.164 -8.007 -7.534

βd2boundary Effect of distance to reserve boundary on density (log) 0.439 0.203 0.147 0.731

α0 Intercept of baseline encounter probability p0 (logit) -3.392 0.135 -3.586 -3.198

αd2river Effect of distance to river on the baseline encounter probability p0 (logit) -0.211 0.106 -0.364 -0.059

δ0 Intercept of scale parameter σ of the encounter model (log) 7.517 0.144 7.310 7.725

δLumemo Survey effect on the scale parameter σ (log) 0.283 0.180 0.023 0.542

δMbatwa Survey effect on the scale parameter σ (log) 0.033 0.167 -0.208 0.273

δMwanihana Survey effect on the scale parameter σ (log) -0.471 0.198 -0.756 -0.186

δNdundulu Survey effect on the scale parameter σ (log) -0.348 0.171 -0.595 -0.102

δRuipa Survey effect on the scale parameter σ (log) 0.206 0.177 -0.049 0.462

https://doi.org/10.1371/journal.pone.0209541.t003

Fig 2. Spatially explicit leopard density map. Expected leopard density (individuals/100 km2) in the Udzungwa Mountains, Tanzania, as the

predicted density surface for the state-space S superimposed over each trap array. Densities are scaled individually for each trap array with green

colour indicating low densities, increasing to higher densities with warmer reddish colours. Camera trap sites are indicated as red crosses.

https://doi.org/10.1371/journal.pone.0209541.g002
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actual prey abundance, biomass or leopard prey preference, and it may also under-represent

the full spectrum of prey species. Our results partially mirror those of Balme, Hunter [13], that

did not find prey abundance to be the most important factor for a population of leopards in

South African savannah woodland.

We deployed six camera trap arrays covering five areas representative of the variation in

vegetation cover, from montane to lowland rainforest, dry forest and wooded grassland (Fig 1;

S1 Table). However, we did not find support for a substantial variation of leopard density

across these arrays. This result supports the notion of leopards being habitat generalists [59],

and in our case study their apparent flexibility in respect to vegetation cover and the fact that

leopards are the most abundant large carnivore in Udzungwa (spotted hyenas [Crocuta cro-
cuta] occur in lower density and lions [Panthera leo] are only occasionally recorded [43]), thus

leopards are not constrained by interactions with other large carnivores.

We found that baseline encounter probability (p0) was positively correlated with proximity

to rivers, while space-usage (σ) varied with trap array. Higher encounter probability close to

waterways may be related to habitat structure, with large and frequently used trails cutting across

dense vegetation may result in optimal detection of animals by camera traps, as opposed to less

dense habitats. Travelling along rivers is also known to be more energy efficient and favoured

places for scent marking and hunting [40, 52, 53]. Higher density of leopards close to rivers may

increase encounter probability if the two variables are positively correlated. However, we did

not find support for a significant relationship between density and distance to rivers, potentially

because trails along rivers are used as travel routes and boundaries for many individuals.

Conservation implications

We considered a suite of natural and anthropogenic factors hypothesised to affect leopard den-

sities in a complex landscape with different habitat types and found that distance to protected

area boundary was the single most influential factor affecting leopard density. We also found

that the importance of this factor, overwhelmed the influence of prey encounters and of areas

with different vegetation cover, as neither had an effect on leopard densities. These results sup-

port the notion of high flexibility of the leopard [44]. However, we note that no individual

leopards were recaptured between the sampling grids despite their relative proximity. Our

mean population density estimate of 4.22 leopards/100 km2 appears in the mid-range when

compared to densities from other areas of Africa, where high density estimates of 12.03/100

km2 are known from Kenya [31] and low estimates of 0.59/100 km2 are known from Namibia

[27]. In Udzungwa, leopards are reported as extremely rare or locally extinct in the least pro-

tected parts of the Kilombero Nature Reserve [66] and in smaller and poorly protected forests

in the range, such as Uzungwa Scarp [67]. Indeed recent research shows that the reserves adja-

cent to UMNP have much lower mammalian abundance and species richness and that this is

associated with their level of protection [64]. Despite of the intense patrolling and permanently

manned ranger stations in the UMNP, we captured photographs of armed poachers across all

arrays, and recorded camps, snares, carcasses (predominantly elephants, but also other animals

including leopard) across the UMNP.

Leopards disappearance in parts of the Udzungwas has been attributed to direct hunting

and prey depredation [68], mirroring findings from the Congo [69] and South Africa [16].

While our study shows populations in the highest category of protected areas are in the mid-

range densities reported in Africa, the regional metapopulation could be at risk if they lose

connectivity with the major adjacent ecosystems of Selous and Ruaha. While Selous Game

Reserve is in close proximity (min. 6.4 km, Fig 1), the intersecting area is intensively farmed

and settled, hence leopard movements between these protected areas may be absent or only

Reserve size and human disturbance affect density of an African leopard population

PLOS ONE | https://doi.org/10.1371/journal.pone.0209541 June 12, 2019 12 / 17

https://doi.org/10.1371/journal.pone.0209541


sporadic. Our findings carry important conservation implications, which are related to the

need for maintaining large areas of continuous, well-protected habitat to preserve viable popu-

lations of large carnivores [14]. This becomes even more imperative given the ever increasing

habitat fragmentation that terrestrial mammals face globally [70]. Wildlife Management Areas

(WMAs), i.e., areas co-managed with local communities [71], have been proven effective in

protecting other wildlife species in Tanzania [72]. This could potentially be a useful manage-

ment strategy in the Udzungwas for establishing buffer zones in the community land sur-

rounding the nature and forest reserves. This would ensure greater protection along the

currently abrupt edges between reserves and human settlements [73]. Given that similarly to

all other large cats leopards are suffering from population decline and range loss [8], it is

imperative that their strongholds are efficiently protected and their populations monitored to

ensure their long-term survival.
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