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Abstract: Human Failures are one of the most unexplored causes in industrial accidents. Since there is still lack of 
heeds to qualify as well as quantify Human Errors, in this paper the authors attempt to highlight the importance of 
paying attention to qualitative methods in implementing quantitative risk analyses mainly in the framework of 
estimating more accurate Human Error Probability (HEP). A key point in evaluating such a risk is considering non-
linear socio-technical interaction in system to develop causal network for the accident scenario. An application of 
qualitative and quantitative Bayesian Network (BN) is therefore presented. The study shows that human performance 
has the most changes in the light of evidences. The developed methodology applied to a case study of an operation in 
field of Oil and Gas.  
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1 Introduction 

As it has been dramatically demonstrated in many cases, 
injuries and dangerous occurrences arising from lifting 
operations account for a significant proportion of the total 
of those occurring offshore. Many regulators found that it 
would be beneficial to look at the worldwide picture to 
review national initiatives and to share best practice in order 
to improve their effectiveness in regulating these risks; see 
for example (CAPP, 2013; DNV, 2014; HSE, 2007; OGP, 
2006). 

Human factors play a pivotal role in process industry. There 
is no specified, valid and determined on the statistical 
distribution of the causes to industries accidents owing to 
the different sort of accident analysis. However, the main 
group of causes are identified as human errors, technical 
and mechanical failures (Celik et al, 2009; Muhammad 
Juned Akhtar et al, 2014).  

Human reliability, as defined by Swain et al, 1983, is “the 
probability that a person correctly performs system-
required activities in a required time period (if time is a 
limiting factor)”. Human reliability is one of the most 
substantial parts of human factors engineering major and 
involves the study of human Performance Shaping Factors 
(PSF) (Blackman et al, 2008). PSFs influence to improve or 
decrease the human performance. Different Human 
Reliability Analysis (HRA) techniques were developed by 
consideration and identification of the potential 
contributions of PSFs to accidents (Mashrura Musharraf et 
al, 2013). 

UK Health and Safety Executive published several reports 
due to the importance of human factors in oil and gas 

offshore operations in which the inclusion of human 
factors in the offshore industry process were taken into 
account (Widdowson et al, 2002). An integration of human 
factors principles into offshore system design, 
development and operation were achieved in the result of 
these reports (Khan et al, 2006). 

As it claimed in many research, on a regulatory basis there 
is not any clear definition for the inclusion of human error 
considerations in risk assessments (Khan et al, 2006). 
Without estimating Human Error Probability (HEP), the 
final Risk Priority Number (RPN) will not be plausible.  
Increasing emphasis is being placed on a comprehensive 
assessment of the human role in system safety following 
the occurrence of major disasters in the petrochemical 
industry such as Piper Alpha and other industries like 
Chernobyl where human errors were seen as direct or 
indirect causes. Zarei et al, (2015) investigated human error 
contribution in decision making of operators in the process 
industry. Furthermore, a better estimate of human 
reliability would help design more effective safety systems 
and evaluate more accurate risk assessments. The main 
focus of the paper is improving Human Reliability 
Assessment (HRA) method to have better estimation of 
HEP. 

HEP assessment techniques preliminary have been a focus 
of the nuclear industry and have developed expert 
judgment techniques such as Successive Likelihood Index 
Method (SLIM), Technique for Human Error Rate 
Prediction (THERP), Justified Human Error Data 
Information (JHEDI), and Human Error Assessment and 
Reduction Technique (HEART) which are described 
sufficiently by researchers (Kirwan, 1997; Kirwan, 1998; 
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Kirwan et al, 1997). There have been a blaze of efforts to 
assess HEPs using the aforementioned methods (Miller et 
al, 1986; Raafat and Abdouni, 1987; Zamanali et al, 1992; 
DiMattia et al, 2005; Noroozi et al., 2013; Noroozi et al., 
2014; Abbassi et al., 2015). 

On the other hand, despite there are some researches in 
which the quantification of HEP were thought-out, only a 
few of these techniques would be pragmatic approaches 
(Embrey et al, 1984; Khan et al, 2006). A better 
comprehension of human error and its causes and 
consequences can be gained through the application of 
human error identification methods in the system. 
(DiMattia et al, 2005) Researchers have argued that linear 
approaches fail to represent the complex dynamics and 
interdependencies commonly observed in socio-technical 
systems (Dhillon et al, 2006; Herrera et al, 2010; Hollnagel 
et al, 2014). Also, establishing previous methods singly may 
result in focusing only on an identified accident model that 
occurred in operations mostly based on the energy-barrier 
event models, and not to pay attention to risk reducing 
measures and barriers in regard to decreasing the 
variabilities of activities (Torgauten, 2010). However, 
recently, some systemic models and methods have been 
proposed that consider safety as an emergent property of 
the socio-technical system as a whole (Herrera et al, 2010). 
One of the developed qualitative methods is Functional 
Resonance Accident Model (FRAM) (Hollnagel, 2015; 
Hollnagel et al, 2014). FRAM is based on resilience 
engineering method which is defining as “the ability to 
meet risk” (Hollnagel et al, 2014; Hollnagel, 2013). It 
provides a clear condition for monitoring risk and 
monitoring accident scenarios in a process, especially to 
describe what may happen due to resonance of potential 
variability (i.e., unexpected combinations of human, 
organization and technical errors) (Halseth, 2010; Sjölin, 
2013; Torgauten, 2010). In present paper FRAM is 
implemented as a qualitative technique to achieve deep 
insight into process and estimate human error as a part of 
risk assessment. 

Recently, BN is used exclusively in a wide range of studies 
including medical, engineering, economics, business, etc., 
however implementing HEP in terms of modern-stage 
probabilistic studies still is not considered as it deserves. 
Expressing HEP in connection with probabilistic network 
such as BN will lead up to work out cause and effect 
interaction between each sub-activities of human 
performance in more details. Almost all previous methods 
are based on mutually exclusive assumption without any 
attention being taken into account on the part of human 
interactions with technical and organization issues 
quantitatively. Although, FRAM is supposed to find out 
these reciprocal interaction qualitatively and consider the 
flexibility of system to overcome failure conditions based 
on resilient engineering, still it is derived from a suitable 
quantitative part to give a reasonable number to each 
resonance scenarios. BN itself is quantitative and 
qualitative based probabilistic method with introducing 
acyclic directed graph for the whole system. Probabilistic 
network graph oblige risk assessor to couple BN and 
FRAM. It means Directed Acyclic Graph (DAG) could be 

constructed by using FRAM qualitative analysis which itself 
introducing resonance on system. 

The objective of this paper is to present a methodology for 
developing HRA and risk analysis, using qualitative to 
quantitative risk-based approach for modeling the risk of 
an operation in oil and gas operation in marine. The 
methodology applied in this study is described in section 2 
and illustrated concisely in Figure 1. A short overview on 
the case study is given in section 3. Section 4 is devoted to 
conducting FRAM network while applying methodology to 
estimate HEP is presented in section 5. Finally in section 6 
the conclusion is presented. 

2 Risk-based approach 

A risk-based methodology is developed to assess the risk of 
studied operation as illustrated in Figure 1, including 
qualitative and quantitative risk analysis. These main parts 
are presented by FRAM and BN. FRAM is applied to 
analysis human error interacting with different parts of 
system as well as providing resonance on network to work 
out an accident scenario qualitatively. Finally, as a beneficial 
point of executing BN, in the light of new evidence, the 
influence of variables on each other are investigated. 

 

Figure 1: Risk based methodology for qualitative to 
quantitative analysis 

3 Application of methodology: Case study 

To apply the methodology, a practical case study of support 
structure lifting operation in the South Pars gas field of Iran 
is considered. In shallow water depth, it is common to use 
steel or concrete support structure at crossing point of two 
or more different pipe line directions to overcome the 
problem of intersection between pipes.  
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The main sub-activities in brief are that, (a) vessel is 
positioned in correct coordinate, (b) Ultra Short Base Line 
System (USBL) is used for positioning under the water and 
under water gyro system will be used for object orientation. 
(c) Beacons and under water gyro is transferring the 
transitional position of the object to the survey room on 
board, (d) lifting equipment consists of sling, belt, spreader 
bar, is ready for lifting support, (e) carne ready for lifting, 
(f) object lowered down by crane up to 1 m above seabed 
and checking its orientation by survey team and Remote 
Operating Vehicle (ROV), (g) ROV supervisor check the 
operation by monitor and take fix point to validate the 
position of Support installation on seabed and releasing the 
object on seabed. 

4 Functional Resonance Analysis Method (FRAM) 

The Functional Resonance Accident Model (FRAM; 
Hollnagel, 2004) are systemic models and methods that 
consider safety as an emergent property of the socio-
technical system as a whole. In this approach functions and 
performances of functions are the units of analysis, rather 
than physical components and sequences of events. It is a 
risk model reviewing non-linear interactions and it is 
reviewing everyday activity when things are working as they 
should do. By describing operations when they are 
functioning you can find out how and why something go 
wrong in the system. A function may be defined as ‘‘a set 
of actions that a system performs or is used for, which are 
valuable for the achievement of a set of goals’’ (Woltjer, 
2009). 

The FRAM network of studied operation is presented in 
Figure 2. This network is a basis for quantitative analysis of 
HEP estimation. In the FRAM network of present case 
study functions with green color are background function 
which provide a support for foreground function. The 
functions with blue color are foreground function. 
Foreground function directly can lead to a failure in lifting 
process. As it is obvious from FRAM network the process 
has 14 functions, 7 background and 7 foreground. The 
functions are coupled with each other via their common 
aspects. There are some functions with barrier goal such as 
quality control, winch control and connecting wire/belts 
and inspection of connection. Lack of functional barriers 
make some functions of the operation such as under water 
gyro/beacon, USBL system, lifting support by crane, 
vulnerable against unpredictable variabilities. 

 It should be noted that since all operation are assumed to 
be performed at same time, it is not possible to consider 
the variability and resonance of all functions in an entire 
accident scenario. Hence, the HEP estimation is conducted 
for an operation as a specific resonance in the FRAM 
network. This resonance is based on variabilities of the 
functions (it is specified by numbers). The resonance is a 
detectable signal that emerges from the unintended 
interaction of the variabilities of many functions that 
together may combine in unexpected ways, leading to 
consequence that are disproportionally large (Herrera, 
2010). 

 

Figure 2: Resonance of human error in the process of fixing 
the sea fastening of derrick on the vessel. Note: T = Time, 

C=Control, P=Precondition, R=Requirement, I=Input, 
O=Outcome 

5 Applied methodology for HEP estimation 

Human error consideration as a part of risk analysis is 
inevitable if one wants accuracy to be achieved in the 
process of risk assessment. In present paper a developed 
methodology is proposed for HEP estimation. In order to 
implement the idea of developing HEP a novel 
methodology presented in 4 parts: 1) Converting FRAM 
networks into BN, 2) Including provided resonance of 
FRAM into BN, 3) Computing HEP in each function, 4) 
Compile BN based on HEP, evidence and max-
propagation. 

 
Figure 3: quantitative analysis based on qualitative analysis 

5.1 Converting FRAM network into BN 

BN is a graph with a set of probabilities. A Combination of 
probability theory and graph theory and based on a well-
defined Bayes theorem, BN are demonstrated by a DAG, 
contains nodes representing random variables, arcs as joints 
among nodes, and Conditional Probability Tables (CPTs) 
(Tung-Tsan Chen et al., 2014; Majeed Abimbola et al., 
2015) 

BN provide an elegant mathematical structure for modeling 
complicated relationships among random variables and 
inferring the probability of a cause when its effect is 
observed. It allows scientists to combine new data with 
their existing knowledge or expertise. 

BNs are based on the Bayes theorem, that is, inference of 
the posterior probability of a hypothesis according to some 
evidence. Mathematically, the Bayes' rule states, 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
  (1) 

𝑃(𝜃|𝑥) =
𝑝(𝑥|𝜃) 𝑝(𝜃)

𝑝(𝑥)
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Where 𝑃(𝜃|𝑥) denotes the probability that random 
variable “θ” with specific value given the evidence “x”.  

One of the most constructive and widespread criticism 
associated with traditional approach towards HEP 
assessment is inability to update. BN is applied in proposed 
methodology mainly thanks to:  

 Recognizing that Total HEP is affected by what 
functions more than the others. In the other words, 
according to provided resonance in FRAM network, 
human error in each function has specific impact on 
total HEP and implementing BN contributed to find 
out more in details about the influence of each function 
on HEP.  

 Updating HEP in the light of new evidence. 

5.2 Including provided resonance of FRAM into 
BN 

There are just two functions that have no impact on the 
resonance (under water gyro and USBL system) and 
subsequently there is not any variable related to these 
function in the BN. Four variables are defined as a 
resonance in the BN; one, two, three and four (Fig.4.). 
Related functions of these variable in the FRAM network 
are coordinate bridge/control room, positioning the vessels 
on the site, lifting support by crane and release support on 
seabed respectively. 

 

Figure 4: Bayesian Network based on provided resonance 
through functions 1 to 4 in qualitative FRAM network 

 

Each arc in the network is based on both linear and non-
linear interactions between variables according to provided 
resonance. Without considering any resonance there is not 
any relationship between variables in the BN and as a result 
human error would be the common and exclusive 
descendent node of all functions. 

5.3 Computing HEP in each function  

After mapping the operation into BN based on FRAM, it 
is needed to find the probability of error for each human 
related lifting activity. If significant human contributors to 
the likelihood of major occurring accidents be omitted, 
then the probability of the occurring event may be seriously 

underestimated. Conversely, the role of human in 
enhancing the reliability of a system needs to be taken into 
account. Although dozens of Quantitative Risk Assessment 
(QRA) techniques are employed today, most of them suffer 
from lack of calculation of human error likelihood.  

The SLIM integrates various Performance Shaping Factors 
(PSFs) relevant to a task into a single number called a 
success likelihood index (SLI). The SLI is calculated by the 
following formula (see Eq.(2)). For numerous sub-activities 
for each task then SLI should be calculated for each sub-
activity separately and consequently the related HEP 
should be calculated by Eq. (3) in which, “n” is the number 
of sub-activity and “m” is the number of PSFs to find 
related SLI for task jth, besides, R and W are the Rate and 
Weight of each PSF respectively. 

𝑆𝐿𝐼 = ∑ 𝑅𝑖𝑊𝑖
𝑚
𝑖=1      (2) 

𝑆𝐿𝐼𝑗 = ∑ ∑ 𝑅𝑖𝑗𝑊𝑖
𝑚
𝑖=1

𝑛
𝑗=1      (3) 

For a given SLI, the human-error probability (HEP) for a 
task is estimated by using the Eq. (4): 

log(𝐻𝐸𝑃) = 𝑎 × 𝑆𝐿𝐼 + 𝑏     (4) 

𝐻𝐸𝑃 = 10𝑎×𝑆𝐿𝐼+𝑏      (5) 

Where a and b are constants determined from two or more 
tasks for which HEPs are known. In this study a and b are 
considered as -1.95 and 10 E-04, respectively.  

Identifying PSFs is a substantial step of presenting the 
SLIM. The first step of Human Reliability Assessment is to 
focus on human behavior and identify a set of human 
factors believed to be related to performance. These PSFs 
are then employed to estimate the probability of human 
error in a given situation (Mashrura Musharraf et al, 2013). 

5.3.1 Identification PSFs  

Performance shaping factor is provided basis for 
considering potential influences on human performance 
and systematically considering them in quantification of 
Human Error Probabilities (HEPs). PSFs often 
characterized as internal and external. Internal PSFs are 
influences that the individual brings to the situation such as 
mood, fitness, stress level, etc. External PSFs are influences 
in the situation or environment that affect the individual 
such as temperature, noise, work practices, etc. Currently 
there is no standard set of PSFs used in HRA methods, but 
most sets use PSFs identified in human performance 
literature. Personal factors include, attention, attitude, 
personality, fatigue, knowledge, experience, motivation. 
Additional factors include communication, teams, 
leadership, safety culture, ergonomics, training, 
environment, management, time and workload. PSFs are 
used to meet multiple goals in HRA and the study of human 
performance. PSFs are used to pin-point positive or 
negative influences on human performance and to predict 
conditions that lead to human errors. Several HRA 
methods use the state (level of influence) of the PSFs to 
estimate HEPs or to gain qualitative insight about the 
scenario. PSF states are defined on different scales 
depending on the selected method, but they generally range 
from low to high influence.  
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5.3.2 PSFs assessment  

Determining the weight of PSFs to estimate the SLIs is one 
of the most pivotal steps. Human performance data with 
greater detail is difficult to find in real world situations, 
which requires the use of expert judgment techniques 
(Mashrura Musharraf et al, 2013). In this assessment, the 
PSFs with highest ranks are taken into account as the 
related PSFs, listed in Table 1 . The number in the second 
column denotes the normalized importance (weight Wi) of 
a particular PSF for the task under consideration, as 
determined by experts. 

Table 1: Rank and weight of PSFs  

PSF Rank Weight 

Experience 
Skill 
Motivation 
Stress Level  
Work Memory 
Time Pressure 

    10 
9 

8 

7 

7 

6 

 0.21 
0.19 

0.17 

0.15 

0.15 

0.13 

 

Rating the PSFs is another important step in the SLIM 
procedure. Participant experts such as technical engineers 
select rating R, from 0 to 1 for each of PSFs. Each PSF 
rating has an ideal value of 1 at which human performance 
is judged to be optimal. These ratings are based on six PSFs 
demonstrated in Table 1 as the most important ones in 
lifting of light structures. It is necessary to mentioned that, 
Human Error assessment are faced up with uncertainty, 
especially in any modern and novel industry like offshore 
industry. In these technologies, the problem of Minimum 
field data in regard to major component is inevitable. The 
main reason of uncertainty in such technologies is the lack 
of knowledge with regard to inappropriate or missing 
experimental and operational data. As a result, a 
combination of qualitative and quantitative risk assessment 
with expert judgment could result in a better interpretation 
of system based on epistemic knowledge and subsequently 
a better ability to cope with scarce in operational experience 
and uncertainty.   

By applying Eq. (3) SLI were obtained for each activity. 
Afterward, Eq. (4) and Eq. (5) are used to calculate the 
HEP of each task. Human Error Probability of activities is 
presented in Table 2. 

the probability of human error, HEPT, for light structure’s 
lifting in the offshore industry can be calculated using Eq. 
(6) 

𝐻𝐸𝑃𝑇 = 1 − ∏ (1 − 𝐻𝐸𝑃𝑗)𝑛
𝑗=1     (6) 

5.4 compile BN based on HEP, evidence and Max-
propagation 

The application of BNs are climbed gradually based on 
probabilistic and uncertain knowledge specially in the 
major of risk and reliability engineering (Khakzad et al, 
2011). Using probabilistic network such as BN to represent 
HEP will result in finding cause and effect interaction 
between each sub-activities of human performance in more 
details. The CPTs determined to the nodes restate how the 

linked nodes have impact on each other (Toledano JG et al, 
1998; Khakzad et al, 2011). 

In order to find out that how BN help to have better 
interpretation about relationship between nodes, the 
evidence are set on two variable; survey task failure, human 
performance failure. Also, the results from BN are depicted 
in Fig.5 and Fig.6. BN illustrated that what variables work 
most effectively on the others when evidences are set. The 
maximum changes in both types of Max-propagation 
analysis for human error, are related to second resonance 
(two) and third resonance (three) nodes. 

 

Figure 5: Max-Propagation analysis for human errors based 
on evidence on Human Performance 

In the light of mentioned evidence the CPTs were changed 
and shown separately in Table 3. As it has been mentioned 
previously, the primary HEP value are based on SLIM and 
subsequently the update process using NOGM are made 
according to these rates. The differences of methodologies 
are appeared in probability of resonance nodes (see Table 
2). It is necessary to say that two variables in the BN (Splash 
zone and Limited weather) do not have any value in 
primary HEP estimation. The reasons are that firstly, 
mentioned variables are not within the scope of human 
performance and control and secondly, HEP estimation 
was carried out based on PSFs, using SLIM. 

 

Figure 6: Max-Propagation analysis for human errors based 
on evidence on Survey Task 
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6 Conclusion 

A method was developed to estimate HEP accurately and 
provide good understanding of the events that lead to 
human errors. It also illustrated that coupling FRAM and 
BN will result in better HEP estimation. 

The First half of the paper was devoted to qualitative 
analysis of considered case study where FRAM network 
were drawn and build on this network the BN were 
conducted qualitatively. The second half of the paper 
discussed quantitatively in which HEP estimation for each 
function were assigned. Finally, in the light of new 
information and to figure out the impact of failure in each 
nodes on the other nodes, two evidences were set. 

The application of the developed methodology to a case 
study depicted that the proposed coupling of FRAM and 
BN has made the application of risk assessment more 
reliable. It is highly recommended to have interdisciplinary 
studies based on HRA and statistical method to find 
accurate estimation of human error in terms of hidden 
cause effects and time dependence. Including the time 
element in HEP estimation, gives more accurate results. 
Besides, “Hidden causes effect gap” plays a prominent rule 
in understanding the accuracy of prior estimation of human 
error. Since, it means a hidden cause individually 
contributes to a major means of error, but it could not be 
realized in reality. 

Table 2: Human error (failures) probability comparison of 
different sub activity using SLIM and BN 

Variables SLIM 
BN (Fig. 
4) 

BN (Fig. 5) 
Evidence on 
Human 
Performance 

BN (Fig. 6) 
Evidence 
on Survey 
Task 

Draw up 
work 
description 

40.07% 40.07% 51.85% 40.07% 

Mobilization 42.33% 42.33% 46.19% 42.33% 
Limited 
weather 

-  25% 27.9% 25% 

Splash zone -  25% 26.49% 25% 

Auxiliary 
tugger and 
winches 

23.03% 23.03% 25.22% 23.03% 

Survey task 50.6% 50.6% 60.19% 100 % 
Connecting 
wire and 
belts 

33.59% 33.59% 36.11% 33.59% 

ROV 23.11% 23.11% 24.12% 23.11% 
First 
resonance 

28.33% 40.07% 51.85% 40.07% 

Second 
resonance 

10.5% 57.61% 77.04% 72.07% 

Third 
resonance 

47.63% 61.53% 82.66% 78.6% 

Forth 
resonance 

13.6% 44.91% 60.89% 54.59% 

Human 
Performance 

86% 65.82% 100 % 78.29% 
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