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Abstract

Background: A controversy exists about the potential effect of childhood varicella vaccination on Herpes Zoster
(HZ) incidence. Mathematical models projected temporary HZ incidence increase after vaccine introduction that
was not confirmed by real-world evidence. These models assume that absence of contacts with infected children
would prevent exogenous boosting of Varicella-Zoster-Virus (VZV) immunity and they do not include an
endogenous VZV immunity-boosting mechanism following asymptomatic VZV reactivation. This study aims to
explore the effect of various assumptions on exogenous and endogenous VZV immunity-boosting on HZ incidence
in the general population after introduction of routine childhood varicella vaccination.

Methods: An age-structured dynamic transmission model was adapted and fitted to the seroprevalence of varicella
in France in absence of vaccination using the empirical contact matrix. A two-dose childhood varicella vaccination
schedule was introduced at 12 and 18 months. Vaccine efficacy was assumed at 65%/95% (dose 1/dose 2), and
coverage at 90%/80% (dose 1/dose 2). Exogenous boosting intensity was based on assumptions regarding HZ-
immunity duration, age-dependent boosting effect, and HZ reactivation rates fitted to observed HZ incidence.
Endogenous boosting was the same as pre-vaccination exogenous boosting but constant over time, whilst
exogenous boosting depended on the force of infection. Five scenarios were tested with different weightings of
exogenous (Exo) - endogenous (Endo) boosting: 100%Exo–0%Endo, 75%Exo–25%Endo, 50%Exo–50%Endo,
25%Exo–75%Endo, 0%Exo–100%Endo.

Results: HZ incidence before varicella vaccination, all ages combined, was estimated at 3.96 per 1000 person-years;
it decreased by 64% by year 80 post vaccine introduction, for all boosting assumptions. The 100%Exo-0%Endo
boosting scenario, predicted an increase in HZ incidence for the first 21 years post vaccine introduction with a
maximum increase of 3.7% (4.1/1000) at year 9. However, with 0%Exo-100%Endo boosting scenario an immediate
HZ decline was projected. The maximum HZ incidence increases at 10, 3, and 2 years post vaccination were 1.8%
(75%Exo-25%Endo), 0.8% (50%Exo-50%Endo) and 0.2% (25%Exo-75%Endo), respectively.
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Conclusions: Assuming modest levels of endogenous boosting, the increase in HZ incidence following childhood
varicella vaccination was smaller and lasted for a shorter period compared with 100%Exo-0%Endo boosting
assumption. Endogenous boosting mechanism could partly explain the divergence between previous HZ-incidence
projections and real-world evidence.
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Background
Varicella (chickenpox) is a highly contagious infectious
disease with a peak incidence among preschool and
school-aged children. It is caused by the varicella-zoster
virus (VZV) [1, 2]. After primary infection, VZV remains
latent in neural ganglia until potential reactivation. Herpes
zoster (HZ), also called shingles, is caused by the symp-
tomatic reactivation of VZV. This reactivation is assumed
to be a consequence of age-related decline of immunity in
older adults or of a health condition that decreases the im-
mune function such as for immunocompromised individ-
uals [3–5].
Varicella is considered as a self-limiting disease which

annually infects a large number of people, mostly children,
almost equal to the size of the annual birth cohort in tem-
perate regions. The disease can lead to serious complica-
tions in 3% of cases under 15 years of age and 6% of cases
above 15 years of age in France, including secondary bac-
terial infections of skin and lungs, sepsis, aseptic meningi-
tis, encephalitis, and Reye syndrome [3, 4, 6]. Severe VZV
infections therefore impose a large burden in terms of
public health and health care resource utilization, result-
ing in large economic and societal impact.
The disease burden and the viral transmission of VZV

are reduced by the routine use of varicella vaccine in
children. Several live attenuated varicella vaccines have
been developed, with well-established efficacy and safety
profiles [4, 7, 8]. In countries where varicella is an im-
portant public health burden, the World Health
Organization recommends the introduction of varicella
vaccination into the routine childhood immunization
program [8]. A significant decline in varicella incidence
has been observed in countries where varicella vaccin-
ation has been introduced [9–12]. Despite this body of
evidence, in some countries, varicella vaccination is not
implemented due to concerns that varicella disease
would be shifting to older age groups for which compli-
cations occur more frequently, and that varicella vaccin-
ation may increase HZ incidence in the older population
[13, 14]. These potential negative effects are not ob-
served in epidemiological data after 2-dose vaccination
in the United States where varicella incidence is shown
to decrease in all age-groups [15] and no specific impact
of varicella vaccination is observed in the older popula-
tion (> 65 years of age) [16].

The potential negative effects of routine childhood vari-
cella vaccination (RVV) on HZ incidence in older popula-
tion originate from the “exogenous boosting theory”,
which postulates that individuals susceptible to HZ com-
ing into contact with VZV-infected children could main-
tain their cell-mediated immunity (CMI), thereby
reducing the risk of reactivation and developing HZ [17–
19]. The consequence of this theory is that reducing VZV
circulation would result in reduction of contacts with in-
fected children and then immunity boosting events for
older people who have had varicella in the past. Therefore,
these people would experience lower CMI allowing VZV
to reactivate. In 2000, using disease transmission models,
Brisson et al. applied this immunity-boosting mechanism
and predicted an increase in HZ incidence in older people
following the implementation of RVV [20]. In contrast to
these model projections, several published studies based
on epidemiological data from countries with RVV have
not established an association between vaccination and an
increase in HZ incidence [16, 21–33]. A possible reason
for the disparity between the mathematical models and
the epidemiological data may be due to the role of en-
dogenous boosting, resulting from asymptomatic
VZV-reactivation [17, 34], since the early model by Bris-
son et al. and later models, focused only on exogenous
boosting [20, 35, 36].
The alternative hypothesis of endogenous boosting sug-

gests that internal factors (e. g. stress) can cause asymp-
tomatic VZV reactivation and boost CMI, thus preventing
HZ [34, 37, 38]. Asymptomatic reactivation of VZV has
been shown to occur also in immunocompromised and
immunocompetent individuals [39, 40]. Although en-
dogenous boosting is likely to occur [41], the extent of its
role at the population level and possible interplay with ex-
ogenous boosting remains unknown [41, 42].
In this study, we aim to explore the impact of child-

hood varicella vaccination on HZ incidence through sce-
narios with different relative weighting of both
exogenous and endogenous boosting mechanisms. This
may be of importance when modelling the public health
impact of RVV on HZ.

Methods
The model we used for this study is an adaptation of the
model developed by Ouwens et al. [43] which we
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modified by adding in an endogenous boosting effect.
This population model is an age-structured dynamic
transmission model (Fig. 1), developed in Matlab (ver-
sion 2013b), with the same basic structure as the models
by Brisson et al. [20, 35]. Our model is fitted to the
age-specific VZV antibody seroprevalence from the
French population in absence of vaccination and using
an empirical contact matrix. The model reproduced vari-
cella incidence with a plausible age-distribution. Age-
specific VZV reactivation factors are then fitted to repro-
duce HZ incidence. Details of the dynamic model for
France, the impact of the contact matrix, and exogenous
boosting on varicella and zoster disease epidemiology
have been previously reported by Ouwens et al. [43].
Briefly, the model structure (Fig. 1) combines varicella

disease states as susceptible (S), i.e. not infected; latent
or exposed (E), i.e. exposed to the virus but not showing
symptoms; infected (I), which means showing symptoms
and being infectious; and recovered (R) from the disease
(model structure acronym: SEIR). The varicella part is
followed by the zoster disease states as susceptible (Sz),
infected (Iz), corresponding to symptomatic VZV reacti-
vation, and recovered (Rz) which is a SIR-type model.
Decreasing naturally-acquired VZV immunity with time
(decreasing rate δ) causes recovered varicella patients to
become susceptible to zoster, which means a transition
from state R to state Sz, and0020exogenous boosting

(gλ(a)) partially offsets this effect by triggering the op-
posite transition from state Sz to state R. The endogen-
ous boosting (e(a)), which is a constant for each age a, is
included as a transition from state Sz to state R in the
natural progression part of the model, and from state
VSz to state VR in the vaccination arm of the model. A
main difference between endogenous and exogenous
boosting effects is that the first one is considered con-
stant over time but is varying over age whereas the sec-
ond one varies over time as a function of the Force of
Infection (FOI, λ), which denotes the rate at which sus-
ceptible individuals become infected per unit of time or
alternatively measures VZV circulation in the popula-
tion. Overall, in Fig. 1, the normal disease progression
(before vaccination) arm is shown in black, and the dis-
ease progression in the vaccination arm in red.
The progression from state R to state Sz; then from

state Sz to state Iz (as a result of VZV-reactivation) de-
pends on three key parameters: (1) immunity duration
against HZ after a varicella infection, (2) the risk of
boosting event as a function of age when susceptible to
zoster, and (3) VZV reactivation rates.
For the first parameter, the duration of immunity (1/δ)

against HZ is unknown. Therefore, fixed values were as-
sumed and tested in sensitivity analyses: 10 years in the
base case and values of 2 and 20 years in the scenario
analysis. Regarding the second parameter on the risk of

Fig. 1 Model Structure [3, 4, 6]. Adapted from Ouwens et al. [43]. Addition of e(a) parameter to the model structure. Under public license CC
BY-NC-ND 4.0.http://creativecommons.org/licenses/by-nc-nd/4.0/
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exogenous boosting, the same values are used as in Bris-
son et al. [35] with a probability of boosting reducing
with age from 75 to 50% after a contact with a varicella
infected person (Table 1). Finally, the third parameter re-
lates to the age-specific VZV reactivation rates (ρ(a))
that are calibrated to reproduce HZ incidence (reactiva-
tion rates are adjusted accordingly).
Incidence was presented following the French age groups

of preschool and school children, young adults, working
adults, and older-age population: < 1 year, 1–4 years, 5–9
years, 10–14 years, 15–24 years, 25–44 years, 45–64 years,
and ≥ 65 years. The lack of population-level data on en-
dogenous boosting does not allow a full calibration of these

parameters. Therefore, the constant age-dependent e(a)
was assumed to be the same as the exogenous boosting be-
fore vaccination (pre-vaccination equilibrium). This level of
boosting was derived by Brisson et al. from results of a trial
on the live-attenuated HZ vaccine efficacy [35, 44].
Five different relative weights of endogenous and ex-

ogenous boosting effects were tested as different scena
rios in the model (100%Exo-0%Endo, 75%Exo-25%Endo,
50-%Exo50%Endo, 25%Exo-75%Endo, and 0%Exo-100
%Endo) so that the total force of boosting combining
both exogenous and endogenous effects was assumed to
be the same before vaccine introduction in all scenarios.
In absence of data on the boosting effect, we set the total

Table 1 Model parameters

Parameter Description Value Source

Demographic parameters

Birth rate Fraction of annual birth cohort out of total French population 0.01295 INSEE, www.insee.fr [54]

Biological parameters

σ Latent period of varicella (average duration: 14 days) 26.07 Brisson et al. [20]

α Infectious period of varicella (average duration: 7 days) 52.14 Brisson et al. [20]

δ Waning natural immunity (average duration: 10 years) 0.1 Expert opinion

g * λ (a) Exogenous boosting against zoster Brisson et al. [35]

< 50 years 75% * λ

50–64 years 71%* λ

> 65 years 50%* λ

Vaccine parameters

mmr1 Coverage of first dose of MMR
French current coverage

90%

mmr2 Coverage of second dose of MMR
French current coverage

80%

Dose1 Age at first vaccination (in months) 12 Assumption

Dose2 Age at second vaccination (in months) 18 Assumption

Introduction
time

Number of years before maximum vaccination coverage is reached 3 Assumption

Tv Varicella vaccine efficacy (% successfully vaccinated and temporarily protected) 65% Prymula et al. [45];
NCT00226499

P Varicella vaccine failures (%) 5% Prymula et al. [45];
NCT00226499

1-Tv-P Varicella vaccine-recipients partially protected (%) 30% 100%-Tv-P

Wv1 Waning rate for 1 dose of varicella vaccine (duration 17 years) 0.0588 Silverman et al. [55]

Wv2 Waning rate for 2 doses of varicella vaccine (lifelong protection) 1e− 6 Expert opinion

Ki * λ (a) Rate of exogenous boosting 0.91 * λ
(a)

Brisson et al. [20]

h Relative VZV reactivation after varicella vaccination 0.167 Brisson et al. [20]

b * λ (a) Rate of infection among vaccinated susceptibles 0.73 * λ
(a)

Brisson et al. [20]

m Relative infectiousness of infected vaccine-recipients versus non-vaccine-
recipients

0.5 Brisson et al. [20]

Note: MMR measles, mumps and rubella, MMVR measles, mumps, rubella, and varicella, INSEE National Institute of Statistics and Economic Studies (Institut national
de la statistique et des études économiques), VZV varicella zoster virus, WHO World Health Organization
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force of boosting to what was assumed by Brisson et al.,
[35] i.e. 75% for people ≤50 years, 71% for 51–69 years,
57% for 70–79 years and 32% for ≥80 years.
The model output was the evolution of HZ incidence

over time after childhood varicella vaccine introduction
in each scenario.
Tables 1 and 2 present the model input parameters

and sensitivity analyses, respectively. Table 2 indicates
the vaccination coverage for each dose, time for gradual
implementation of varicella vaccination, vaccine efficacy
waning assumptions and the type of age-structured con-
tact matrix which is the same as in Ouwens et al. [43].
The table also include the resulting reactivation rates for
HZ obtained after calibration given the assumptions on
boosting rate and duration of immunity against HZ (10
years in the base case and 2 to 20 years in the sensitivity
analysis). Ageing mechanism was included in the model.
Each year, a cohort of newborns is introduced in the
population and an age-specific mortality factor was ap-
plied while the rest of the population is moved to the
older 1-year wide age-group. The mechanism assumed
demographic equilibrium (the proportion of each age
group remains constant over 100 years). A two-dose
childhood varicella vaccination schedule was considered
with doses given at the ages of 12 and 18months.
Vaccine efficacy was obtained from the clinical trials

and assumed to be 65% for the first, and 95% for the
second dose [45]. Vaccine coverages, of 90% for dose
1 and 80% for dose 2, were assumed with gradual
scaling-up of varicella vaccination coverage over 3
years. No catch-up program was introduced into the
model. The last two assumptions are different from
Ouwens et al. [43] who have assumed 80% replace-
ment of measles, mumps and rubella (MMR) by mea-
sles, mumps, rubella, and varicella (MMRV), and a
50% catch-up program.

Results
HZ incidence was well reproduced by the mathemat-
ical model for each age group and all boosting- effect
assumptions. Before varicella vaccine introduction, the
overall population HZ incidence was estimated at
3.96 per 1000 individuals, increasing with age
(Table 3). Eighty years after varicella vaccine introduc-
tion, HZ incidence decreased by approximately 60%
and was consistent across all Exo-Endo scenarios
(Table 4). This decrease resulted from the lower risk
of developing HZ in varicella vaccinees as they age.
The 100% exogenous boosting effect and with 10
years of VZV immunity, however, resulted in a tem-
porary initial increase (3.7%) in HZ incidence in the
general population for the first 21 years after vaccine
introduction (Fig. 2). In contrast, 100% endogenous

boosting resulted in an immediate decrease in HZ
after varicella vaccine introduction.
For the other 3 scenarios (Exo-Endo 75–25%,

Exo-Endo 50–50%, Exo-Endo 25–75%), higher propor-
tions of endogenous boosting led to lower temporary in-
crease in HZ incidence of 1.8, 0.8 and 0.2% and for
shorter duration of increase of 10, 3, 2 years respectively
(Table 4).
In addition, higher proportions of endogenous

boosting lead to shorter time to maximum temporary
increase in HZ incidence: 6 years for 25%Exo–
75%Endo, 8 years for 50%Exo–50%Endo, 9 years for
75%Exo–25%Endo.

Sensitivity analysis
The impact of introducing an endogenous boosting ef-
fect on HZ incidence in the general population was less
important with the 2-year VZV immunity scenario,
while a substantial difference was observed for 20 years
of VZV immunity (Table 4).
Specifically, for 100% exogenous boosting, with the

scenario of 2-year VZV immunity in comparison to the
base-case scenario (10 years), the temporary initial in-
crease in HZ incidence was projected to be smaller
(1.3% versus 3.7%) and shorter (3 years versus 21 years).
Thus, the estimated impact of increased endogenous
boosting effect was smaller in the 2-year immunity sce-
nario than in the base case.
When 20-year VZV immunity was assumed and

with 100% exogenous boosting, the temporary initial
increase in HZ incidence was projected to be higher
(5.7% versus 3.7%) and to last longer (33 years versus
21 years) than in the base-case scenario. On the
other hand, introducing 25% of endogenous boosting
had a larger impact, with a lower maximum HZ inci-
dence increase (− 3.1 percentage points, from 5.7 to
2.6%) and a shorter duration of HZ incidence com-
pared to pre-vaccination levels (− 10 years from 33 to
23 years).
The maximum estimated increases in HZ incidence

compared to the pre-vaccination rate in the base-
case scenario were in the group 25–44 years of age
(Fig. 3), although the absolute increase in incidence
was larger in the group 45–64 years of age (not
shown on the figure). In the scenario with 20 years of
HZ immunity, the maximum increase was projected
in the 45–64 age group. When 50%Exo-50%Endo was
considered, the maximum temporary initial increase
was reduced by 53% in both the base case and in the
20-year HZ-immunity scenario, and by 51% in the
2-year HZ-immunity scenario.
Additional file 1 summarizes the content of the study

in a form that could be shared with patients by health-
care professionals.
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Discussion
A small number of studies have attempted to model the
effect of childhood varicella vaccination on the incidence
of HZ in the population in the presence of endogenous
boosting and its relative weight with exogenous boost-
ing. Our analysis shows that even with a limited fraction

of endogenous boosting, a substantial reduction occurs
in the duration and magnitude of temporary initial HZ
incidence increase after introduction of vaccination rela-
tive to pre-vaccination levels.
The current insight from the model means that rela-

tive weighting of exogenous and endogenous boosting
effects may have an important and varied impact on
VZV immunity and predicted HZ burden in the
population.
Previous modelling studies projected that RVV would

increase HZ incidence in the general population above

Table 2 Base-case and sensitivity analyses

Description French coverage

Base case
analysis

Vaccination coverage of MMR dose 1 and 2 Dose 1: 90%; Dose 2: 80%

Time for replacement (MMR by MMRV) 3 years

Catch-up program No catch-up

Exogenous/endogenous boosting Included and relative weighting depends on
scenario

Contact matrix Empirical

Vaccine protection Post-dose 1: 17 years; Post-dose 2: lifelong
protection

Sensitivity
analysis

Waning natural immunity (average duration 10 years – base case) changed to 2
and 20 years

bc: δ = 0.1
Low: δ = 0.05
High: δ = 0.5

Reactivation rate of infectious zoster, by age group for δ = 0.1

0–4 years 0.028

5–9 years 0.009

10–14 years 0.0068

15–24 years 0.0035

25–44 years 0.0033

45–64 years 0.008

≥65+ years 0.016

Reactivation rate of infectious zoster, by age group for δ = 0.5

0–4 years 0.00769

5–9 years 0.00339

10–14 years 0.00326

15–24 years 0.00227

25–44 years 0.00256

45–64 years 0.00646

≥65+ years 0.01387

Reactivation rate of infectious zoster, by age group for δ = 0.05

0–4 years 0.05478

5–9 years 0.01666

10–14 years 0.01183

15–24 years 0.00548

25–44 years 0.00453

45–64 years 0.01035

≥65+ years 0.01991

δ, waning natural immunity (average duration 10 years), bc base case (scenario), MMR measles, mumps, and rubella, MMRV measles, mumps, rubella, and varicella

Table 3 Pre-vaccination HZ incidence by age group

All ages < 5 y 5-9y 10-14y 15-24y 25-44y 45-64y ≥65y

3.96 1.03 1.69 2.33 1.87 1.87 2.12 9.09

y years of age
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pre-vaccination levels for about 20 to 50 years after the
introduction of childhood vaccination under assumption
of reduced exogenous boosting [20, 35, 36, 43, 46], and
would decrease HZ incidence after 50 years of RVV. The
individual-based dynamic transmission model of Ogun-
jimi et al. [46] predicted that the increase in HZ inci-
dence would mainly affect people between 31 and 40

years of age and would decrease over time. Our model
predicted a maximum relative increase for the 25–
44-years age group and was therefore similar to Ogunji-
mi’s finding [46]. However, we found the absolute in-
crease to be higher in the 45–64 years age group. When
we compare with real-world data in the United States,
despite some long-term increasing trend, epidemiolo

Table 4 Base-case scenario and sensitivity analysis results

HZ incidence parameters Exogenous-Endogenous (%)

100–0 75–25 50–50 25–75 0–100

2-year immunity to HZ scenario

Decrease in HZ by year 80 (%) 63.6 63.8 64.0 64.2 64.4

Number of years with HZ increase above pre-vaccine rate 3 3 2 1 0

Max HZ increase (%) above pre-vaccine rate 1.3 0.8 0.3 0.0 0.0

Year at max HZ increase 3 3 2 2 NA

10-year immunity to HZ scenario (base case)

Decrease in HZ by year 80 (%) 62.1 63.1 64.0 64.8 65.6

Number of years with HZ increase above pre-vaccine rate 21 10 3 2 0

Max HZ increase (%) above pre-vaccine rate 3.7 1.8 0.8 0.2 0.0

Year at max HZ increase 9 4 3 2 NA

20-year immunity to HZ scenario

Decrease in HZ by year 80 (%) 60.1 61.8 63.3 64.7 66.0

Number of years with HZ increase above pre-vaccine rate 33 23 9 3 1

Max HZ increase (%) above pre-vaccine rate 5.7 2.6 1.0 0.9 0.8

Year at max HZ increase 19 9 1 1 1

HZ herpes zoster, NA not available

Fig. 2 Trend in post-vaccination HZ incidence by scenario. HZ, herpes zoster; V, varicella
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gical data have not shown an increase in HZ incidence
related to the introduction of RVV in numerous coun-
tries [16, 21–33]. In a cohort study conducted in collab-
oration with the Centers for Disease Control and
Prevention in 8017 patients with HZ, Kawai et al. [32]
concluded that the more-than-4-times increase in HZ
incidence over the past 60 years could not be attributed
to the introduction of varicella vaccination. They exam-
ined the HZ incidence for the periods 1945–1960 and
1980–2007 and found that the incidence of HZ in-
creased at the same rate before and after the introduc-
tion of varicella vaccination [32]. A Medicare study also
found no association between the increase in HZ inci-
dence and the introduction of varicella vaccination over
19 years (1992–2010) (relative risk of 0. 9998; 95% confi-
dence interval, 0. 9997 to 1. 0022) [16]. At the June 2017
Advisory Committee on Immunization Practices meet-
ing, discussions highlighted that none of the United
States studies showing an increase in HZ incidence
trends, showed evidence of association with varicella
vaccination [33]. A recent systematic literature review of
HZ risk reduction through exposure to varicella patients
concluded that exogenous boosting exists, but may not
be applicable to all situations, and that its magnitude is
yet to be determined adequately in future epidemio-
logical studies [34]. Real-world evidence rather suggests
that factors other than exogenous, or even endogenous
boosting, may play a role in HZ increase in the popula-
tion, such as the use of immunosuppressive drugs [47].
After revising earlier mathematical models and incorpor-
ating recent epidemiological data, another study

concluded that generalisations across different countries
could not be made, and that the country-specific epi-
demiology of varicella affects the predicted impact of
RVV on HZ [42]. In our modelling study, calibration
was performed using only epidemiological data from
France, which is a limitation considering that the initial
level of exogenous boosting may vary from one country
to another. However, some simulations done with data
from another country show similar pattern on HZ inci-
dence when introducing endogenous boosting (data not
shown).
Using varicella and HZ data from the Netherlands,

Marinelli et al. [48], compared the performance of fitting
various sets of model parameters based on statistical cri-
teria: Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Both criteria modulate the
quality of the fit obtained by introducing a penalty on
the number of parameters used to fit the data, the pen-
alty being more important for BIC. Interestingly, intro-
ducing a constant endogenous boosting rate over age
was the best fit for AIC, while excluding endogenous
boosting was the best fit for BIC. It should be noted
however that a single parameter was used to characterize
exogenous boosting across all ages. This implies that the
probability of immunity boosting after a contact with a
varicella infectious individual is constant over age which
is not consistent with previously-published VZV models.
Large ranges of HZ-immunity durations have been as-
sumed in the literature (up to 24 years of immunity). In
our model, we assumed 10 years of immunity with a
variation from 2 to 20 years in the sensitivity analyses.

Fig. 3 Maximum HZ increase, in full and partial exogenous boosting, by age groups and immunity scenarios. bc, base case (scenario); HZ, herpes
zoster; y, years (of immunity).); YOA, years of age

Sauboin et al. BMC Infectious Diseases          (2019) 19:126 Page 8 of 11



Results indicated a similar effect of a shorter 2-year dur-
ation of immunity than a longer 10-year immunity with
some endogenous boosting. Assuming longer duration
of HZ-immunity leads to a larger increase of HZ inci-
dence after vaccination. In this case, the introduction of
endogenous boosting further reduces that negative
effect.
Moreover, complex interactions between exogenous

and endogenous boosting mechanisms as well as other
factors may exist, and the effect on HZ incidence may
not be solely influenced by reactivation rates and ex-
ogenous boosting, as assumed in dynamic transmission
models.
Introduction of HZ vaccination in older adults [49,

50], alongside the childhood varicella vaccination, could
be a strategy to diminish the possible increase in HZ in-
cidence in the general population. Previous studies that
accounted for this approach in their model-based pro-
jections anticipated only a small effect of adult HZ vac-
cination on the predicted increase in HZ incidence in
persons not vaccinated against varicella [36, 51]. How-
ever, this impact could increase substantially, depending
on the effectiveness and duration of protection of the
HZ vaccine as well as acceptance of the community to
get a HZ vaccine [36].
Our study has limitations. The various assumptions

(e.g. age at vaccination, vaccine coverage, duration of
protection against HZ, and magnitude of exogenous and
endogenous boosting), and the uncertainties around
these assumptions can have a significant impact on
model-based projections.
Some key parameters of the model like vaccination

coverage, detection rate of HZ, demography and age-
structured contact pattern are based on current know-
ledge and held constant over the analysis period. These
are common hypotheses for population models in
high-income countries. Also, due to the compartmental
structure of the model, as opposed to individual-based
models, heterogeneity in the immune-system status of
individuals of the same age is not taken into account.
Differences in HZ risk have been reported for different
groups in the population e.g., higher risk in female,
lower risk for black individuals [52]. Our model does not
account for these differences within the population be-
cause we ignore if this reflects differences in boosting ef-
fect or another mechanism. Varicella disease seasonality
was also not included in our model, first because the
time-span of the model is long and is not likely to be af-
fected by seasonality, second because it would increase
the complexity of the calibration without enhancing the
scientific question. HZ-related seasonality has not been
established [53]. It is important to consider this model-
ling exercise as an exploratory analysis showing the po-
tential role of various levels of endogenous boosting on

the projected pattern of HZ incidence after varicella
vaccination.

Conclusions
In a VZV dynamic transmission model, assumptions on
relative weighting of exogenous and endogenous boost-
ing effects may have an important and varied impact on
the predicted HZ burden following introduction of
childhood varicella vaccination. The HZ burden in the
general population is projected to decrease for all boost-
ing scenarios, but a temporary increase in HZ precedes
this effect when exogenous boosting alone is considered.
This predicted increase in HZ is markedly reduced even
when endogenous boosting is assumed to have a small
weight. Endogenous boosting could therefore partly ex-
plain divergence between real-world evidence on HZ
burden in countries utilizing childhood varicella vaccin-
ation and model projections based on exogenous-only
boosting assumption. A safe and effective Varicella vac-
cine seems to offer the greatest promise controlling even
long-term issues caused by this virus.
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